1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/vmalloc.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include <trace/events/f2fs.h> 24 25 #define __reverse_ffz(x) __reverse_ffs(~(x)) 26 27 static struct kmem_cache *discard_entry_slab; 28 static struct kmem_cache *sit_entry_set_slab; 29 static struct kmem_cache *inmem_entry_slab; 30 31 /* 32 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 33 * MSB and LSB are reversed in a byte by f2fs_set_bit. 34 */ 35 static inline unsigned long __reverse_ffs(unsigned long word) 36 { 37 int num = 0; 38 39 #if BITS_PER_LONG == 64 40 if ((word & 0xffffffff) == 0) { 41 num += 32; 42 word >>= 32; 43 } 44 #endif 45 if ((word & 0xffff) == 0) { 46 num += 16; 47 word >>= 16; 48 } 49 if ((word & 0xff) == 0) { 50 num += 8; 51 word >>= 8; 52 } 53 if ((word & 0xf0) == 0) 54 num += 4; 55 else 56 word >>= 4; 57 if ((word & 0xc) == 0) 58 num += 2; 59 else 60 word >>= 2; 61 if ((word & 0x2) == 0) 62 num += 1; 63 return num; 64 } 65 66 /* 67 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 68 * f2fs_set_bit makes MSB and LSB reversed in a byte. 69 * Example: 70 * LSB <--> MSB 71 * f2fs_set_bit(0, bitmap) => 0000 0001 72 * f2fs_set_bit(7, bitmap) => 1000 0000 73 */ 74 static unsigned long __find_rev_next_bit(const unsigned long *addr, 75 unsigned long size, unsigned long offset) 76 { 77 const unsigned long *p = addr + BIT_WORD(offset); 78 unsigned long result = offset & ~(BITS_PER_LONG - 1); 79 unsigned long tmp; 80 unsigned long mask, submask; 81 unsigned long quot, rest; 82 83 if (offset >= size) 84 return size; 85 86 size -= result; 87 offset %= BITS_PER_LONG; 88 if (!offset) 89 goto aligned; 90 91 tmp = *(p++); 92 quot = (offset >> 3) << 3; 93 rest = offset & 0x7; 94 mask = ~0UL << quot; 95 submask = (unsigned char)(0xff << rest) >> rest; 96 submask <<= quot; 97 mask &= submask; 98 tmp &= mask; 99 if (size < BITS_PER_LONG) 100 goto found_first; 101 if (tmp) 102 goto found_middle; 103 104 size -= BITS_PER_LONG; 105 result += BITS_PER_LONG; 106 aligned: 107 while (size & ~(BITS_PER_LONG-1)) { 108 tmp = *(p++); 109 if (tmp) 110 goto found_middle; 111 result += BITS_PER_LONG; 112 size -= BITS_PER_LONG; 113 } 114 if (!size) 115 return result; 116 tmp = *p; 117 found_first: 118 tmp &= (~0UL >> (BITS_PER_LONG - size)); 119 if (tmp == 0UL) /* Are any bits set? */ 120 return result + size; /* Nope. */ 121 found_middle: 122 return result + __reverse_ffs(tmp); 123 } 124 125 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 126 unsigned long size, unsigned long offset) 127 { 128 const unsigned long *p = addr + BIT_WORD(offset); 129 unsigned long result = offset & ~(BITS_PER_LONG - 1); 130 unsigned long tmp; 131 unsigned long mask, submask; 132 unsigned long quot, rest; 133 134 if (offset >= size) 135 return size; 136 137 size -= result; 138 offset %= BITS_PER_LONG; 139 if (!offset) 140 goto aligned; 141 142 tmp = *(p++); 143 quot = (offset >> 3) << 3; 144 rest = offset & 0x7; 145 mask = ~(~0UL << quot); 146 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest); 147 submask <<= quot; 148 mask += submask; 149 tmp |= mask; 150 if (size < BITS_PER_LONG) 151 goto found_first; 152 if (~tmp) 153 goto found_middle; 154 155 size -= BITS_PER_LONG; 156 result += BITS_PER_LONG; 157 aligned: 158 while (size & ~(BITS_PER_LONG - 1)) { 159 tmp = *(p++); 160 if (~tmp) 161 goto found_middle; 162 result += BITS_PER_LONG; 163 size -= BITS_PER_LONG; 164 } 165 if (!size) 166 return result; 167 tmp = *p; 168 169 found_first: 170 tmp |= ~0UL << size; 171 if (tmp == ~0UL) /* Are any bits zero? */ 172 return result + size; /* Nope. */ 173 found_middle: 174 return result + __reverse_ffz(tmp); 175 } 176 177 void register_inmem_page(struct inode *inode, struct page *page) 178 { 179 struct f2fs_inode_info *fi = F2FS_I(inode); 180 struct inmem_pages *new; 181 int err; 182 183 SetPagePrivate(page); 184 185 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 186 187 /* add atomic page indices to the list */ 188 new->page = page; 189 INIT_LIST_HEAD(&new->list); 190 retry: 191 /* increase reference count with clean state */ 192 mutex_lock(&fi->inmem_lock); 193 err = radix_tree_insert(&fi->inmem_root, page->index, new); 194 if (err == -EEXIST) { 195 mutex_unlock(&fi->inmem_lock); 196 kmem_cache_free(inmem_entry_slab, new); 197 return; 198 } else if (err) { 199 mutex_unlock(&fi->inmem_lock); 200 goto retry; 201 } 202 get_page(page); 203 list_add_tail(&new->list, &fi->inmem_pages); 204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 205 mutex_unlock(&fi->inmem_lock); 206 } 207 208 void invalidate_inmem_page(struct inode *inode, struct page *page) 209 { 210 struct f2fs_inode_info *fi = F2FS_I(inode); 211 struct inmem_pages *cur; 212 213 mutex_lock(&fi->inmem_lock); 214 cur = radix_tree_lookup(&fi->inmem_root, page->index); 215 if (cur) { 216 radix_tree_delete(&fi->inmem_root, cur->page->index); 217 f2fs_put_page(cur->page, 0); 218 list_del(&cur->list); 219 kmem_cache_free(inmem_entry_slab, cur); 220 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 221 } 222 mutex_unlock(&fi->inmem_lock); 223 } 224 225 void commit_inmem_pages(struct inode *inode, bool abort) 226 { 227 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 228 struct f2fs_inode_info *fi = F2FS_I(inode); 229 struct inmem_pages *cur, *tmp; 230 bool submit_bio = false; 231 struct f2fs_io_info fio = { 232 .type = DATA, 233 .rw = WRITE_SYNC, 234 }; 235 236 /* 237 * The abort is true only when f2fs_evict_inode is called. 238 * Basically, the f2fs_evict_inode doesn't produce any data writes, so 239 * that we don't need to call f2fs_balance_fs. 240 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this 241 * inode becomes free by iget_locked in f2fs_iget. 242 */ 243 if (!abort) 244 f2fs_balance_fs(sbi); 245 246 f2fs_lock_op(sbi); 247 248 mutex_lock(&fi->inmem_lock); 249 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 250 lock_page(cur->page); 251 if (!abort && cur->page->mapping == inode->i_mapping) { 252 f2fs_wait_on_page_writeback(cur->page, DATA); 253 if (clear_page_dirty_for_io(cur->page)) 254 inode_dec_dirty_pages(inode); 255 do_write_data_page(cur->page, &fio); 256 submit_bio = true; 257 } 258 radix_tree_delete(&fi->inmem_root, cur->page->index); 259 f2fs_put_page(cur->page, 1); 260 list_del(&cur->list); 261 kmem_cache_free(inmem_entry_slab, cur); 262 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 263 } 264 if (submit_bio) 265 f2fs_submit_merged_bio(sbi, DATA, WRITE); 266 mutex_unlock(&fi->inmem_lock); 267 268 filemap_fdatawait_range(inode->i_mapping, 0, LLONG_MAX); 269 f2fs_unlock_op(sbi); 270 } 271 272 /* 273 * This function balances dirty node and dentry pages. 274 * In addition, it controls garbage collection. 275 */ 276 void f2fs_balance_fs(struct f2fs_sb_info *sbi) 277 { 278 /* 279 * We should do GC or end up with checkpoint, if there are so many dirty 280 * dir/node pages without enough free segments. 281 */ 282 if (has_not_enough_free_secs(sbi, 0)) { 283 mutex_lock(&sbi->gc_mutex); 284 f2fs_gc(sbi); 285 } 286 } 287 288 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 289 { 290 /* check the # of cached NAT entries and prefree segments */ 291 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) || 292 excess_prefree_segs(sbi) || 293 available_free_memory(sbi, INO_ENTRIES)) 294 f2fs_sync_fs(sbi->sb, true); 295 } 296 297 static int issue_flush_thread(void *data) 298 { 299 struct f2fs_sb_info *sbi = data; 300 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 301 wait_queue_head_t *q = &fcc->flush_wait_queue; 302 repeat: 303 if (kthread_should_stop()) 304 return 0; 305 306 if (!llist_empty(&fcc->issue_list)) { 307 struct bio *bio = bio_alloc(GFP_NOIO, 0); 308 struct flush_cmd *cmd, *next; 309 int ret; 310 311 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 312 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 313 314 bio->bi_bdev = sbi->sb->s_bdev; 315 ret = submit_bio_wait(WRITE_FLUSH, bio); 316 317 llist_for_each_entry_safe(cmd, next, 318 fcc->dispatch_list, llnode) { 319 cmd->ret = ret; 320 complete(&cmd->wait); 321 } 322 bio_put(bio); 323 fcc->dispatch_list = NULL; 324 } 325 326 wait_event_interruptible(*q, 327 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 328 goto repeat; 329 } 330 331 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 332 { 333 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 334 struct flush_cmd cmd; 335 336 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 337 test_opt(sbi, FLUSH_MERGE)); 338 339 if (test_opt(sbi, NOBARRIER)) 340 return 0; 341 342 if (!test_opt(sbi, FLUSH_MERGE)) 343 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL); 344 345 init_completion(&cmd.wait); 346 347 llist_add(&cmd.llnode, &fcc->issue_list); 348 349 if (!fcc->dispatch_list) 350 wake_up(&fcc->flush_wait_queue); 351 352 wait_for_completion(&cmd.wait); 353 354 return cmd.ret; 355 } 356 357 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 358 { 359 dev_t dev = sbi->sb->s_bdev->bd_dev; 360 struct flush_cmd_control *fcc; 361 int err = 0; 362 363 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 364 if (!fcc) 365 return -ENOMEM; 366 init_waitqueue_head(&fcc->flush_wait_queue); 367 init_llist_head(&fcc->issue_list); 368 SM_I(sbi)->cmd_control_info = fcc; 369 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 370 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 371 if (IS_ERR(fcc->f2fs_issue_flush)) { 372 err = PTR_ERR(fcc->f2fs_issue_flush); 373 kfree(fcc); 374 SM_I(sbi)->cmd_control_info = NULL; 375 return err; 376 } 377 378 return err; 379 } 380 381 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 382 { 383 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 384 385 if (fcc && fcc->f2fs_issue_flush) 386 kthread_stop(fcc->f2fs_issue_flush); 387 kfree(fcc); 388 SM_I(sbi)->cmd_control_info = NULL; 389 } 390 391 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 392 enum dirty_type dirty_type) 393 { 394 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 395 396 /* need not be added */ 397 if (IS_CURSEG(sbi, segno)) 398 return; 399 400 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 401 dirty_i->nr_dirty[dirty_type]++; 402 403 if (dirty_type == DIRTY) { 404 struct seg_entry *sentry = get_seg_entry(sbi, segno); 405 enum dirty_type t = sentry->type; 406 407 if (unlikely(t >= DIRTY)) { 408 f2fs_bug_on(sbi, 1); 409 return; 410 } 411 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 412 dirty_i->nr_dirty[t]++; 413 } 414 } 415 416 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 417 enum dirty_type dirty_type) 418 { 419 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 420 421 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 422 dirty_i->nr_dirty[dirty_type]--; 423 424 if (dirty_type == DIRTY) { 425 struct seg_entry *sentry = get_seg_entry(sbi, segno); 426 enum dirty_type t = sentry->type; 427 428 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 429 dirty_i->nr_dirty[t]--; 430 431 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 432 clear_bit(GET_SECNO(sbi, segno), 433 dirty_i->victim_secmap); 434 } 435 } 436 437 /* 438 * Should not occur error such as -ENOMEM. 439 * Adding dirty entry into seglist is not critical operation. 440 * If a given segment is one of current working segments, it won't be added. 441 */ 442 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 443 { 444 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 445 unsigned short valid_blocks; 446 447 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 448 return; 449 450 mutex_lock(&dirty_i->seglist_lock); 451 452 valid_blocks = get_valid_blocks(sbi, segno, 0); 453 454 if (valid_blocks == 0) { 455 __locate_dirty_segment(sbi, segno, PRE); 456 __remove_dirty_segment(sbi, segno, DIRTY); 457 } else if (valid_blocks < sbi->blocks_per_seg) { 458 __locate_dirty_segment(sbi, segno, DIRTY); 459 } else { 460 /* Recovery routine with SSR needs this */ 461 __remove_dirty_segment(sbi, segno, DIRTY); 462 } 463 464 mutex_unlock(&dirty_i->seglist_lock); 465 } 466 467 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 468 block_t blkstart, block_t blklen) 469 { 470 sector_t start = SECTOR_FROM_BLOCK(blkstart); 471 sector_t len = SECTOR_FROM_BLOCK(blklen); 472 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 473 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 474 } 475 476 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 477 { 478 if (f2fs_issue_discard(sbi, blkaddr, 1)) { 479 struct page *page = grab_meta_page(sbi, blkaddr); 480 /* zero-filled page */ 481 set_page_dirty(page); 482 f2fs_put_page(page, 1); 483 } 484 } 485 486 static void __add_discard_entry(struct f2fs_sb_info *sbi, 487 struct cp_control *cpc, unsigned int start, unsigned int end) 488 { 489 struct list_head *head = &SM_I(sbi)->discard_list; 490 struct discard_entry *new, *last; 491 492 if (!list_empty(head)) { 493 last = list_last_entry(head, struct discard_entry, list); 494 if (START_BLOCK(sbi, cpc->trim_start) + start == 495 last->blkaddr + last->len) { 496 last->len += end - start; 497 goto done; 498 } 499 } 500 501 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 502 INIT_LIST_HEAD(&new->list); 503 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 504 new->len = end - start; 505 list_add_tail(&new->list, head); 506 done: 507 SM_I(sbi)->nr_discards += end - start; 508 cpc->trimmed += end - start; 509 } 510 511 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 512 { 513 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 514 int max_blocks = sbi->blocks_per_seg; 515 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 516 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 517 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 518 unsigned long dmap[entries]; 519 unsigned int start = 0, end = -1; 520 bool force = (cpc->reason == CP_DISCARD); 521 int i; 522 523 if (!force && !test_opt(sbi, DISCARD)) 524 return; 525 526 if (force && !se->valid_blocks) { 527 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 528 /* 529 * if this segment is registered in the prefree list, then 530 * we should skip adding a discard candidate, and let the 531 * checkpoint do that later. 532 */ 533 mutex_lock(&dirty_i->seglist_lock); 534 if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) { 535 mutex_unlock(&dirty_i->seglist_lock); 536 cpc->trimmed += sbi->blocks_per_seg; 537 return; 538 } 539 mutex_unlock(&dirty_i->seglist_lock); 540 541 __add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg); 542 return; 543 } 544 545 /* zero block will be discarded through the prefree list */ 546 if (!se->valid_blocks || se->valid_blocks == max_blocks) 547 return; 548 549 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 550 for (i = 0; i < entries; i++) 551 dmap[i] = ~(cur_map[i] | ckpt_map[i]); 552 553 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 554 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 555 if (start >= max_blocks) 556 break; 557 558 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 559 560 if (end - start < cpc->trim_minlen) 561 continue; 562 563 __add_discard_entry(sbi, cpc, start, end); 564 } 565 } 566 567 void release_discard_addrs(struct f2fs_sb_info *sbi) 568 { 569 struct list_head *head = &(SM_I(sbi)->discard_list); 570 struct discard_entry *entry, *this; 571 572 /* drop caches */ 573 list_for_each_entry_safe(entry, this, head, list) { 574 list_del(&entry->list); 575 kmem_cache_free(discard_entry_slab, entry); 576 } 577 } 578 579 /* 580 * Should call clear_prefree_segments after checkpoint is done. 581 */ 582 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 583 { 584 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 585 unsigned int segno; 586 587 mutex_lock(&dirty_i->seglist_lock); 588 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 589 __set_test_and_free(sbi, segno); 590 mutex_unlock(&dirty_i->seglist_lock); 591 } 592 593 void clear_prefree_segments(struct f2fs_sb_info *sbi) 594 { 595 struct list_head *head = &(SM_I(sbi)->discard_list); 596 struct discard_entry *entry, *this; 597 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 598 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 599 unsigned int start = 0, end = -1; 600 601 mutex_lock(&dirty_i->seglist_lock); 602 603 while (1) { 604 int i; 605 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 606 if (start >= MAIN_SEGS(sbi)) 607 break; 608 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 609 start + 1); 610 611 for (i = start; i < end; i++) 612 clear_bit(i, prefree_map); 613 614 dirty_i->nr_dirty[PRE] -= end - start; 615 616 if (!test_opt(sbi, DISCARD)) 617 continue; 618 619 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 620 (end - start) << sbi->log_blocks_per_seg); 621 } 622 mutex_unlock(&dirty_i->seglist_lock); 623 624 /* send small discards */ 625 list_for_each_entry_safe(entry, this, head, list) { 626 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 627 list_del(&entry->list); 628 SM_I(sbi)->nr_discards -= entry->len; 629 kmem_cache_free(discard_entry_slab, entry); 630 } 631 } 632 633 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 634 { 635 struct sit_info *sit_i = SIT_I(sbi); 636 637 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 638 sit_i->dirty_sentries++; 639 return false; 640 } 641 642 return true; 643 } 644 645 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 646 unsigned int segno, int modified) 647 { 648 struct seg_entry *se = get_seg_entry(sbi, segno); 649 se->type = type; 650 if (modified) 651 __mark_sit_entry_dirty(sbi, segno); 652 } 653 654 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 655 { 656 struct seg_entry *se; 657 unsigned int segno, offset; 658 long int new_vblocks; 659 660 segno = GET_SEGNO(sbi, blkaddr); 661 662 se = get_seg_entry(sbi, segno); 663 new_vblocks = se->valid_blocks + del; 664 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 665 666 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 667 (new_vblocks > sbi->blocks_per_seg))); 668 669 se->valid_blocks = new_vblocks; 670 se->mtime = get_mtime(sbi); 671 SIT_I(sbi)->max_mtime = se->mtime; 672 673 /* Update valid block bitmap */ 674 if (del > 0) { 675 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 676 f2fs_bug_on(sbi, 1); 677 } else { 678 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 679 f2fs_bug_on(sbi, 1); 680 } 681 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 682 se->ckpt_valid_blocks += del; 683 684 __mark_sit_entry_dirty(sbi, segno); 685 686 /* update total number of valid blocks to be written in ckpt area */ 687 SIT_I(sbi)->written_valid_blocks += del; 688 689 if (sbi->segs_per_sec > 1) 690 get_sec_entry(sbi, segno)->valid_blocks += del; 691 } 692 693 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 694 { 695 update_sit_entry(sbi, new, 1); 696 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 697 update_sit_entry(sbi, old, -1); 698 699 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 700 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 701 } 702 703 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 704 { 705 unsigned int segno = GET_SEGNO(sbi, addr); 706 struct sit_info *sit_i = SIT_I(sbi); 707 708 f2fs_bug_on(sbi, addr == NULL_ADDR); 709 if (addr == NEW_ADDR) 710 return; 711 712 /* add it into sit main buffer */ 713 mutex_lock(&sit_i->sentry_lock); 714 715 update_sit_entry(sbi, addr, -1); 716 717 /* add it into dirty seglist */ 718 locate_dirty_segment(sbi, segno); 719 720 mutex_unlock(&sit_i->sentry_lock); 721 } 722 723 /* 724 * This function should be resided under the curseg_mutex lock 725 */ 726 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 727 struct f2fs_summary *sum) 728 { 729 struct curseg_info *curseg = CURSEG_I(sbi, type); 730 void *addr = curseg->sum_blk; 731 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 732 memcpy(addr, sum, sizeof(struct f2fs_summary)); 733 } 734 735 /* 736 * Calculate the number of current summary pages for writing 737 */ 738 int npages_for_summary_flush(struct f2fs_sb_info *sbi) 739 { 740 int valid_sum_count = 0; 741 int i, sum_in_page; 742 743 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 744 if (sbi->ckpt->alloc_type[i] == SSR) 745 valid_sum_count += sbi->blocks_per_seg; 746 else 747 valid_sum_count += curseg_blkoff(sbi, i); 748 } 749 750 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - 751 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 752 if (valid_sum_count <= sum_in_page) 753 return 1; 754 else if ((valid_sum_count - sum_in_page) <= 755 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 756 return 2; 757 return 3; 758 } 759 760 /* 761 * Caller should put this summary page 762 */ 763 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 764 { 765 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 766 } 767 768 static void write_sum_page(struct f2fs_sb_info *sbi, 769 struct f2fs_summary_block *sum_blk, block_t blk_addr) 770 { 771 struct page *page = grab_meta_page(sbi, blk_addr); 772 void *kaddr = page_address(page); 773 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); 774 set_page_dirty(page); 775 f2fs_put_page(page, 1); 776 } 777 778 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 779 { 780 struct curseg_info *curseg = CURSEG_I(sbi, type); 781 unsigned int segno = curseg->segno + 1; 782 struct free_segmap_info *free_i = FREE_I(sbi); 783 784 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 785 return !test_bit(segno, free_i->free_segmap); 786 return 0; 787 } 788 789 /* 790 * Find a new segment from the free segments bitmap to right order 791 * This function should be returned with success, otherwise BUG 792 */ 793 static void get_new_segment(struct f2fs_sb_info *sbi, 794 unsigned int *newseg, bool new_sec, int dir) 795 { 796 struct free_segmap_info *free_i = FREE_I(sbi); 797 unsigned int segno, secno, zoneno; 798 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 799 unsigned int hint = *newseg / sbi->segs_per_sec; 800 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 801 unsigned int left_start = hint; 802 bool init = true; 803 int go_left = 0; 804 int i; 805 806 write_lock(&free_i->segmap_lock); 807 808 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 809 segno = find_next_zero_bit(free_i->free_segmap, 810 MAIN_SEGS(sbi), *newseg + 1); 811 if (segno - *newseg < sbi->segs_per_sec - 812 (*newseg % sbi->segs_per_sec)) 813 goto got_it; 814 } 815 find_other_zone: 816 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 817 if (secno >= MAIN_SECS(sbi)) { 818 if (dir == ALLOC_RIGHT) { 819 secno = find_next_zero_bit(free_i->free_secmap, 820 MAIN_SECS(sbi), 0); 821 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 822 } else { 823 go_left = 1; 824 left_start = hint - 1; 825 } 826 } 827 if (go_left == 0) 828 goto skip_left; 829 830 while (test_bit(left_start, free_i->free_secmap)) { 831 if (left_start > 0) { 832 left_start--; 833 continue; 834 } 835 left_start = find_next_zero_bit(free_i->free_secmap, 836 MAIN_SECS(sbi), 0); 837 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 838 break; 839 } 840 secno = left_start; 841 skip_left: 842 hint = secno; 843 segno = secno * sbi->segs_per_sec; 844 zoneno = secno / sbi->secs_per_zone; 845 846 /* give up on finding another zone */ 847 if (!init) 848 goto got_it; 849 if (sbi->secs_per_zone == 1) 850 goto got_it; 851 if (zoneno == old_zoneno) 852 goto got_it; 853 if (dir == ALLOC_LEFT) { 854 if (!go_left && zoneno + 1 >= total_zones) 855 goto got_it; 856 if (go_left && zoneno == 0) 857 goto got_it; 858 } 859 for (i = 0; i < NR_CURSEG_TYPE; i++) 860 if (CURSEG_I(sbi, i)->zone == zoneno) 861 break; 862 863 if (i < NR_CURSEG_TYPE) { 864 /* zone is in user, try another */ 865 if (go_left) 866 hint = zoneno * sbi->secs_per_zone - 1; 867 else if (zoneno + 1 >= total_zones) 868 hint = 0; 869 else 870 hint = (zoneno + 1) * sbi->secs_per_zone; 871 init = false; 872 goto find_other_zone; 873 } 874 got_it: 875 /* set it as dirty segment in free segmap */ 876 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 877 __set_inuse(sbi, segno); 878 *newseg = segno; 879 write_unlock(&free_i->segmap_lock); 880 } 881 882 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 883 { 884 struct curseg_info *curseg = CURSEG_I(sbi, type); 885 struct summary_footer *sum_footer; 886 887 curseg->segno = curseg->next_segno; 888 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 889 curseg->next_blkoff = 0; 890 curseg->next_segno = NULL_SEGNO; 891 892 sum_footer = &(curseg->sum_blk->footer); 893 memset(sum_footer, 0, sizeof(struct summary_footer)); 894 if (IS_DATASEG(type)) 895 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 896 if (IS_NODESEG(type)) 897 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 898 __set_sit_entry_type(sbi, type, curseg->segno, modified); 899 } 900 901 /* 902 * Allocate a current working segment. 903 * This function always allocates a free segment in LFS manner. 904 */ 905 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 906 { 907 struct curseg_info *curseg = CURSEG_I(sbi, type); 908 unsigned int segno = curseg->segno; 909 int dir = ALLOC_LEFT; 910 911 write_sum_page(sbi, curseg->sum_blk, 912 GET_SUM_BLOCK(sbi, segno)); 913 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 914 dir = ALLOC_RIGHT; 915 916 if (test_opt(sbi, NOHEAP)) 917 dir = ALLOC_RIGHT; 918 919 get_new_segment(sbi, &segno, new_sec, dir); 920 curseg->next_segno = segno; 921 reset_curseg(sbi, type, 1); 922 curseg->alloc_type = LFS; 923 } 924 925 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 926 struct curseg_info *seg, block_t start) 927 { 928 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 929 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 930 unsigned long target_map[entries]; 931 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 932 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 933 int i, pos; 934 935 for (i = 0; i < entries; i++) 936 target_map[i] = ckpt_map[i] | cur_map[i]; 937 938 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 939 940 seg->next_blkoff = pos; 941 } 942 943 /* 944 * If a segment is written by LFS manner, next block offset is just obtained 945 * by increasing the current block offset. However, if a segment is written by 946 * SSR manner, next block offset obtained by calling __next_free_blkoff 947 */ 948 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 949 struct curseg_info *seg) 950 { 951 if (seg->alloc_type == SSR) 952 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 953 else 954 seg->next_blkoff++; 955 } 956 957 /* 958 * This function always allocates a used segment(from dirty seglist) by SSR 959 * manner, so it should recover the existing segment information of valid blocks 960 */ 961 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 962 { 963 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 964 struct curseg_info *curseg = CURSEG_I(sbi, type); 965 unsigned int new_segno = curseg->next_segno; 966 struct f2fs_summary_block *sum_node; 967 struct page *sum_page; 968 969 write_sum_page(sbi, curseg->sum_blk, 970 GET_SUM_BLOCK(sbi, curseg->segno)); 971 __set_test_and_inuse(sbi, new_segno); 972 973 mutex_lock(&dirty_i->seglist_lock); 974 __remove_dirty_segment(sbi, new_segno, PRE); 975 __remove_dirty_segment(sbi, new_segno, DIRTY); 976 mutex_unlock(&dirty_i->seglist_lock); 977 978 reset_curseg(sbi, type, 1); 979 curseg->alloc_type = SSR; 980 __next_free_blkoff(sbi, curseg, 0); 981 982 if (reuse) { 983 sum_page = get_sum_page(sbi, new_segno); 984 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 985 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 986 f2fs_put_page(sum_page, 1); 987 } 988 } 989 990 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 991 { 992 struct curseg_info *curseg = CURSEG_I(sbi, type); 993 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 994 995 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 996 return v_ops->get_victim(sbi, 997 &(curseg)->next_segno, BG_GC, type, SSR); 998 999 /* For data segments, let's do SSR more intensively */ 1000 for (; type >= CURSEG_HOT_DATA; type--) 1001 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1002 BG_GC, type, SSR)) 1003 return 1; 1004 return 0; 1005 } 1006 1007 /* 1008 * flush out current segment and replace it with new segment 1009 * This function should be returned with success, otherwise BUG 1010 */ 1011 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1012 int type, bool force) 1013 { 1014 struct curseg_info *curseg = CURSEG_I(sbi, type); 1015 1016 if (force) 1017 new_curseg(sbi, type, true); 1018 else if (type == CURSEG_WARM_NODE) 1019 new_curseg(sbi, type, false); 1020 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1021 new_curseg(sbi, type, false); 1022 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1023 change_curseg(sbi, type, true); 1024 else 1025 new_curseg(sbi, type, false); 1026 1027 stat_inc_seg_type(sbi, curseg); 1028 } 1029 1030 void allocate_new_segments(struct f2fs_sb_info *sbi) 1031 { 1032 struct curseg_info *curseg; 1033 unsigned int old_curseg; 1034 int i; 1035 1036 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1037 curseg = CURSEG_I(sbi, i); 1038 old_curseg = curseg->segno; 1039 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 1040 locate_dirty_segment(sbi, old_curseg); 1041 } 1042 } 1043 1044 static const struct segment_allocation default_salloc_ops = { 1045 .allocate_segment = allocate_segment_by_default, 1046 }; 1047 1048 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1049 { 1050 __u64 start = range->start >> sbi->log_blocksize; 1051 __u64 end = start + (range->len >> sbi->log_blocksize) - 1; 1052 unsigned int start_segno, end_segno; 1053 struct cp_control cpc; 1054 1055 if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) || 1056 range->len < sbi->blocksize) 1057 return -EINVAL; 1058 1059 cpc.trimmed = 0; 1060 if (end <= MAIN_BLKADDR(sbi)) 1061 goto out; 1062 1063 /* start/end segment number in main_area */ 1064 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1065 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1066 GET_SEGNO(sbi, end); 1067 cpc.reason = CP_DISCARD; 1068 cpc.trim_start = start_segno; 1069 cpc.trim_end = end_segno; 1070 cpc.trim_minlen = range->minlen >> sbi->log_blocksize; 1071 1072 /* do checkpoint to issue discard commands safely */ 1073 mutex_lock(&sbi->gc_mutex); 1074 write_checkpoint(sbi, &cpc); 1075 mutex_unlock(&sbi->gc_mutex); 1076 out: 1077 range->len = cpc.trimmed << sbi->log_blocksize; 1078 return 0; 1079 } 1080 1081 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1082 { 1083 struct curseg_info *curseg = CURSEG_I(sbi, type); 1084 if (curseg->next_blkoff < sbi->blocks_per_seg) 1085 return true; 1086 return false; 1087 } 1088 1089 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1090 { 1091 if (p_type == DATA) 1092 return CURSEG_HOT_DATA; 1093 else 1094 return CURSEG_HOT_NODE; 1095 } 1096 1097 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1098 { 1099 if (p_type == DATA) { 1100 struct inode *inode = page->mapping->host; 1101 1102 if (S_ISDIR(inode->i_mode)) 1103 return CURSEG_HOT_DATA; 1104 else 1105 return CURSEG_COLD_DATA; 1106 } else { 1107 if (IS_DNODE(page) && is_cold_node(page)) 1108 return CURSEG_WARM_NODE; 1109 else 1110 return CURSEG_COLD_NODE; 1111 } 1112 } 1113 1114 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1115 { 1116 if (p_type == DATA) { 1117 struct inode *inode = page->mapping->host; 1118 1119 if (S_ISDIR(inode->i_mode)) 1120 return CURSEG_HOT_DATA; 1121 else if (is_cold_data(page) || file_is_cold(inode)) 1122 return CURSEG_COLD_DATA; 1123 else 1124 return CURSEG_WARM_DATA; 1125 } else { 1126 if (IS_DNODE(page)) 1127 return is_cold_node(page) ? CURSEG_WARM_NODE : 1128 CURSEG_HOT_NODE; 1129 else 1130 return CURSEG_COLD_NODE; 1131 } 1132 } 1133 1134 static int __get_segment_type(struct page *page, enum page_type p_type) 1135 { 1136 switch (F2FS_P_SB(page)->active_logs) { 1137 case 2: 1138 return __get_segment_type_2(page, p_type); 1139 case 4: 1140 return __get_segment_type_4(page, p_type); 1141 } 1142 /* NR_CURSEG_TYPE(6) logs by default */ 1143 f2fs_bug_on(F2FS_P_SB(page), 1144 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1145 return __get_segment_type_6(page, p_type); 1146 } 1147 1148 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1149 block_t old_blkaddr, block_t *new_blkaddr, 1150 struct f2fs_summary *sum, int type) 1151 { 1152 struct sit_info *sit_i = SIT_I(sbi); 1153 struct curseg_info *curseg; 1154 1155 curseg = CURSEG_I(sbi, type); 1156 1157 mutex_lock(&curseg->curseg_mutex); 1158 1159 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1160 1161 /* 1162 * __add_sum_entry should be resided under the curseg_mutex 1163 * because, this function updates a summary entry in the 1164 * current summary block. 1165 */ 1166 __add_sum_entry(sbi, type, sum); 1167 1168 mutex_lock(&sit_i->sentry_lock); 1169 __refresh_next_blkoff(sbi, curseg); 1170 1171 stat_inc_block_count(sbi, curseg); 1172 1173 if (!__has_curseg_space(sbi, type)) 1174 sit_i->s_ops->allocate_segment(sbi, type, false); 1175 /* 1176 * SIT information should be updated before segment allocation, 1177 * since SSR needs latest valid block information. 1178 */ 1179 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1180 1181 mutex_unlock(&sit_i->sentry_lock); 1182 1183 if (page && IS_NODESEG(type)) 1184 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1185 1186 mutex_unlock(&curseg->curseg_mutex); 1187 } 1188 1189 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, 1190 block_t old_blkaddr, block_t *new_blkaddr, 1191 struct f2fs_summary *sum, struct f2fs_io_info *fio) 1192 { 1193 int type = __get_segment_type(page, fio->type); 1194 1195 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type); 1196 1197 /* writeout dirty page into bdev */ 1198 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio); 1199 } 1200 1201 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1202 { 1203 struct f2fs_io_info fio = { 1204 .type = META, 1205 .rw = WRITE_SYNC | REQ_META | REQ_PRIO 1206 }; 1207 1208 set_page_writeback(page); 1209 f2fs_submit_page_mbio(sbi, page, page->index, &fio); 1210 } 1211 1212 void write_node_page(struct f2fs_sb_info *sbi, struct page *page, 1213 struct f2fs_io_info *fio, 1214 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr) 1215 { 1216 struct f2fs_summary sum; 1217 set_summary(&sum, nid, 0, 0); 1218 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio); 1219 } 1220 1221 void write_data_page(struct page *page, struct dnode_of_data *dn, 1222 block_t *new_blkaddr, struct f2fs_io_info *fio) 1223 { 1224 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1225 struct f2fs_summary sum; 1226 struct node_info ni; 1227 1228 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1229 get_node_info(sbi, dn->nid, &ni); 1230 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1231 1232 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio); 1233 } 1234 1235 void rewrite_data_page(struct page *page, block_t old_blkaddr, 1236 struct f2fs_io_info *fio) 1237 { 1238 f2fs_submit_page_mbio(F2FS_P_SB(page), page, old_blkaddr, fio); 1239 } 1240 1241 void recover_data_page(struct f2fs_sb_info *sbi, 1242 struct page *page, struct f2fs_summary *sum, 1243 block_t old_blkaddr, block_t new_blkaddr) 1244 { 1245 struct sit_info *sit_i = SIT_I(sbi); 1246 struct curseg_info *curseg; 1247 unsigned int segno, old_cursegno; 1248 struct seg_entry *se; 1249 int type; 1250 1251 segno = GET_SEGNO(sbi, new_blkaddr); 1252 se = get_seg_entry(sbi, segno); 1253 type = se->type; 1254 1255 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1256 if (old_blkaddr == NULL_ADDR) 1257 type = CURSEG_COLD_DATA; 1258 else 1259 type = CURSEG_WARM_DATA; 1260 } 1261 curseg = CURSEG_I(sbi, type); 1262 1263 mutex_lock(&curseg->curseg_mutex); 1264 mutex_lock(&sit_i->sentry_lock); 1265 1266 old_cursegno = curseg->segno; 1267 1268 /* change the current segment */ 1269 if (segno != curseg->segno) { 1270 curseg->next_segno = segno; 1271 change_curseg(sbi, type, true); 1272 } 1273 1274 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1275 __add_sum_entry(sbi, type, sum); 1276 1277 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1278 locate_dirty_segment(sbi, old_cursegno); 1279 1280 mutex_unlock(&sit_i->sentry_lock); 1281 mutex_unlock(&curseg->curseg_mutex); 1282 } 1283 1284 static inline bool is_merged_page(struct f2fs_sb_info *sbi, 1285 struct page *page, enum page_type type) 1286 { 1287 enum page_type btype = PAGE_TYPE_OF_BIO(type); 1288 struct f2fs_bio_info *io = &sbi->write_io[btype]; 1289 struct bio_vec *bvec; 1290 int i; 1291 1292 down_read(&io->io_rwsem); 1293 if (!io->bio) 1294 goto out; 1295 1296 bio_for_each_segment_all(bvec, io->bio, i) { 1297 if (page == bvec->bv_page) { 1298 up_read(&io->io_rwsem); 1299 return true; 1300 } 1301 } 1302 1303 out: 1304 up_read(&io->io_rwsem); 1305 return false; 1306 } 1307 1308 void f2fs_wait_on_page_writeback(struct page *page, 1309 enum page_type type) 1310 { 1311 if (PageWriteback(page)) { 1312 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1313 1314 if (is_merged_page(sbi, page, type)) 1315 f2fs_submit_merged_bio(sbi, type, WRITE); 1316 wait_on_page_writeback(page); 1317 } 1318 } 1319 1320 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1321 { 1322 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1323 struct curseg_info *seg_i; 1324 unsigned char *kaddr; 1325 struct page *page; 1326 block_t start; 1327 int i, j, offset; 1328 1329 start = start_sum_block(sbi); 1330 1331 page = get_meta_page(sbi, start++); 1332 kaddr = (unsigned char *)page_address(page); 1333 1334 /* Step 1: restore nat cache */ 1335 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1336 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); 1337 1338 /* Step 2: restore sit cache */ 1339 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1340 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, 1341 SUM_JOURNAL_SIZE); 1342 offset = 2 * SUM_JOURNAL_SIZE; 1343 1344 /* Step 3: restore summary entries */ 1345 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1346 unsigned short blk_off; 1347 unsigned int segno; 1348 1349 seg_i = CURSEG_I(sbi, i); 1350 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1351 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1352 seg_i->next_segno = segno; 1353 reset_curseg(sbi, i, 0); 1354 seg_i->alloc_type = ckpt->alloc_type[i]; 1355 seg_i->next_blkoff = blk_off; 1356 1357 if (seg_i->alloc_type == SSR) 1358 blk_off = sbi->blocks_per_seg; 1359 1360 for (j = 0; j < blk_off; j++) { 1361 struct f2fs_summary *s; 1362 s = (struct f2fs_summary *)(kaddr + offset); 1363 seg_i->sum_blk->entries[j] = *s; 1364 offset += SUMMARY_SIZE; 1365 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1366 SUM_FOOTER_SIZE) 1367 continue; 1368 1369 f2fs_put_page(page, 1); 1370 page = NULL; 1371 1372 page = get_meta_page(sbi, start++); 1373 kaddr = (unsigned char *)page_address(page); 1374 offset = 0; 1375 } 1376 } 1377 f2fs_put_page(page, 1); 1378 return 0; 1379 } 1380 1381 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1382 { 1383 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1384 struct f2fs_summary_block *sum; 1385 struct curseg_info *curseg; 1386 struct page *new; 1387 unsigned short blk_off; 1388 unsigned int segno = 0; 1389 block_t blk_addr = 0; 1390 1391 /* get segment number and block addr */ 1392 if (IS_DATASEG(type)) { 1393 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1394 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1395 CURSEG_HOT_DATA]); 1396 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) 1397 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1398 else 1399 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1400 } else { 1401 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1402 CURSEG_HOT_NODE]); 1403 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1404 CURSEG_HOT_NODE]); 1405 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) 1406 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1407 type - CURSEG_HOT_NODE); 1408 else 1409 blk_addr = GET_SUM_BLOCK(sbi, segno); 1410 } 1411 1412 new = get_meta_page(sbi, blk_addr); 1413 sum = (struct f2fs_summary_block *)page_address(new); 1414 1415 if (IS_NODESEG(type)) { 1416 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) { 1417 struct f2fs_summary *ns = &sum->entries[0]; 1418 int i; 1419 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1420 ns->version = 0; 1421 ns->ofs_in_node = 0; 1422 } 1423 } else { 1424 int err; 1425 1426 err = restore_node_summary(sbi, segno, sum); 1427 if (err) { 1428 f2fs_put_page(new, 1); 1429 return err; 1430 } 1431 } 1432 } 1433 1434 /* set uncompleted segment to curseg */ 1435 curseg = CURSEG_I(sbi, type); 1436 mutex_lock(&curseg->curseg_mutex); 1437 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); 1438 curseg->next_segno = segno; 1439 reset_curseg(sbi, type, 0); 1440 curseg->alloc_type = ckpt->alloc_type[type]; 1441 curseg->next_blkoff = blk_off; 1442 mutex_unlock(&curseg->curseg_mutex); 1443 f2fs_put_page(new, 1); 1444 return 0; 1445 } 1446 1447 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1448 { 1449 int type = CURSEG_HOT_DATA; 1450 int err; 1451 1452 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1453 /* restore for compacted data summary */ 1454 if (read_compacted_summaries(sbi)) 1455 return -EINVAL; 1456 type = CURSEG_HOT_NODE; 1457 } 1458 1459 for (; type <= CURSEG_COLD_NODE; type++) { 1460 err = read_normal_summaries(sbi, type); 1461 if (err) 1462 return err; 1463 } 1464 1465 return 0; 1466 } 1467 1468 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1469 { 1470 struct page *page; 1471 unsigned char *kaddr; 1472 struct f2fs_summary *summary; 1473 struct curseg_info *seg_i; 1474 int written_size = 0; 1475 int i, j; 1476 1477 page = grab_meta_page(sbi, blkaddr++); 1478 kaddr = (unsigned char *)page_address(page); 1479 1480 /* Step 1: write nat cache */ 1481 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1482 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); 1483 written_size += SUM_JOURNAL_SIZE; 1484 1485 /* Step 2: write sit cache */ 1486 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1487 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, 1488 SUM_JOURNAL_SIZE); 1489 written_size += SUM_JOURNAL_SIZE; 1490 1491 /* Step 3: write summary entries */ 1492 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1493 unsigned short blkoff; 1494 seg_i = CURSEG_I(sbi, i); 1495 if (sbi->ckpt->alloc_type[i] == SSR) 1496 blkoff = sbi->blocks_per_seg; 1497 else 1498 blkoff = curseg_blkoff(sbi, i); 1499 1500 for (j = 0; j < blkoff; j++) { 1501 if (!page) { 1502 page = grab_meta_page(sbi, blkaddr++); 1503 kaddr = (unsigned char *)page_address(page); 1504 written_size = 0; 1505 } 1506 summary = (struct f2fs_summary *)(kaddr + written_size); 1507 *summary = seg_i->sum_blk->entries[j]; 1508 written_size += SUMMARY_SIZE; 1509 1510 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1511 SUM_FOOTER_SIZE) 1512 continue; 1513 1514 set_page_dirty(page); 1515 f2fs_put_page(page, 1); 1516 page = NULL; 1517 } 1518 } 1519 if (page) { 1520 set_page_dirty(page); 1521 f2fs_put_page(page, 1); 1522 } 1523 } 1524 1525 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1526 block_t blkaddr, int type) 1527 { 1528 int i, end; 1529 if (IS_DATASEG(type)) 1530 end = type + NR_CURSEG_DATA_TYPE; 1531 else 1532 end = type + NR_CURSEG_NODE_TYPE; 1533 1534 for (i = type; i < end; i++) { 1535 struct curseg_info *sum = CURSEG_I(sbi, i); 1536 mutex_lock(&sum->curseg_mutex); 1537 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); 1538 mutex_unlock(&sum->curseg_mutex); 1539 } 1540 } 1541 1542 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1543 { 1544 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1545 write_compacted_summaries(sbi, start_blk); 1546 else 1547 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1548 } 1549 1550 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1551 { 1552 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) 1553 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1554 } 1555 1556 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, 1557 unsigned int val, int alloc) 1558 { 1559 int i; 1560 1561 if (type == NAT_JOURNAL) { 1562 for (i = 0; i < nats_in_cursum(sum); i++) { 1563 if (le32_to_cpu(nid_in_journal(sum, i)) == val) 1564 return i; 1565 } 1566 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) 1567 return update_nats_in_cursum(sum, 1); 1568 } else if (type == SIT_JOURNAL) { 1569 for (i = 0; i < sits_in_cursum(sum); i++) 1570 if (le32_to_cpu(segno_in_journal(sum, i)) == val) 1571 return i; 1572 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) 1573 return update_sits_in_cursum(sum, 1); 1574 } 1575 return -1; 1576 } 1577 1578 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1579 unsigned int segno) 1580 { 1581 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1582 } 1583 1584 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1585 unsigned int start) 1586 { 1587 struct sit_info *sit_i = SIT_I(sbi); 1588 struct page *src_page, *dst_page; 1589 pgoff_t src_off, dst_off; 1590 void *src_addr, *dst_addr; 1591 1592 src_off = current_sit_addr(sbi, start); 1593 dst_off = next_sit_addr(sbi, src_off); 1594 1595 /* get current sit block page without lock */ 1596 src_page = get_meta_page(sbi, src_off); 1597 dst_page = grab_meta_page(sbi, dst_off); 1598 f2fs_bug_on(sbi, PageDirty(src_page)); 1599 1600 src_addr = page_address(src_page); 1601 dst_addr = page_address(dst_page); 1602 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 1603 1604 set_page_dirty(dst_page); 1605 f2fs_put_page(src_page, 1); 1606 1607 set_to_next_sit(sit_i, start); 1608 1609 return dst_page; 1610 } 1611 1612 static struct sit_entry_set *grab_sit_entry_set(void) 1613 { 1614 struct sit_entry_set *ses = 1615 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC); 1616 1617 ses->entry_cnt = 0; 1618 INIT_LIST_HEAD(&ses->set_list); 1619 return ses; 1620 } 1621 1622 static void release_sit_entry_set(struct sit_entry_set *ses) 1623 { 1624 list_del(&ses->set_list); 1625 kmem_cache_free(sit_entry_set_slab, ses); 1626 } 1627 1628 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1629 struct list_head *head) 1630 { 1631 struct sit_entry_set *next = ses; 1632 1633 if (list_is_last(&ses->set_list, head)) 1634 return; 1635 1636 list_for_each_entry_continue(next, head, set_list) 1637 if (ses->entry_cnt <= next->entry_cnt) 1638 break; 1639 1640 list_move_tail(&ses->set_list, &next->set_list); 1641 } 1642 1643 static void add_sit_entry(unsigned int segno, struct list_head *head) 1644 { 1645 struct sit_entry_set *ses; 1646 unsigned int start_segno = START_SEGNO(segno); 1647 1648 list_for_each_entry(ses, head, set_list) { 1649 if (ses->start_segno == start_segno) { 1650 ses->entry_cnt++; 1651 adjust_sit_entry_set(ses, head); 1652 return; 1653 } 1654 } 1655 1656 ses = grab_sit_entry_set(); 1657 1658 ses->start_segno = start_segno; 1659 ses->entry_cnt++; 1660 list_add(&ses->set_list, head); 1661 } 1662 1663 static void add_sits_in_set(struct f2fs_sb_info *sbi) 1664 { 1665 struct f2fs_sm_info *sm_info = SM_I(sbi); 1666 struct list_head *set_list = &sm_info->sit_entry_set; 1667 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 1668 unsigned int segno; 1669 1670 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 1671 add_sit_entry(segno, set_list); 1672 } 1673 1674 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 1675 { 1676 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1677 struct f2fs_summary_block *sum = curseg->sum_blk; 1678 int i; 1679 1680 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { 1681 unsigned int segno; 1682 bool dirtied; 1683 1684 segno = le32_to_cpu(segno_in_journal(sum, i)); 1685 dirtied = __mark_sit_entry_dirty(sbi, segno); 1686 1687 if (!dirtied) 1688 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 1689 } 1690 update_sits_in_cursum(sum, -sits_in_cursum(sum)); 1691 } 1692 1693 /* 1694 * CP calls this function, which flushes SIT entries including sit_journal, 1695 * and moves prefree segs to free segs. 1696 */ 1697 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1698 { 1699 struct sit_info *sit_i = SIT_I(sbi); 1700 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1701 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1702 struct f2fs_summary_block *sum = curseg->sum_blk; 1703 struct sit_entry_set *ses, *tmp; 1704 struct list_head *head = &SM_I(sbi)->sit_entry_set; 1705 bool to_journal = true; 1706 struct seg_entry *se; 1707 1708 mutex_lock(&curseg->curseg_mutex); 1709 mutex_lock(&sit_i->sentry_lock); 1710 1711 /* 1712 * add and account sit entries of dirty bitmap in sit entry 1713 * set temporarily 1714 */ 1715 add_sits_in_set(sbi); 1716 1717 /* 1718 * if there are no enough space in journal to store dirty sit 1719 * entries, remove all entries from journal and add and account 1720 * them in sit entry set. 1721 */ 1722 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL)) 1723 remove_sits_in_journal(sbi); 1724 1725 if (!sit_i->dirty_sentries) 1726 goto out; 1727 1728 /* 1729 * there are two steps to flush sit entries: 1730 * #1, flush sit entries to journal in current cold data summary block. 1731 * #2, flush sit entries to sit page. 1732 */ 1733 list_for_each_entry_safe(ses, tmp, head, set_list) { 1734 struct page *page = NULL; 1735 struct f2fs_sit_block *raw_sit = NULL; 1736 unsigned int start_segno = ses->start_segno; 1737 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 1738 (unsigned long)MAIN_SEGS(sbi)); 1739 unsigned int segno = start_segno; 1740 1741 if (to_journal && 1742 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL)) 1743 to_journal = false; 1744 1745 if (!to_journal) { 1746 page = get_next_sit_page(sbi, start_segno); 1747 raw_sit = page_address(page); 1748 } 1749 1750 /* flush dirty sit entries in region of current sit set */ 1751 for_each_set_bit_from(segno, bitmap, end) { 1752 int offset, sit_offset; 1753 1754 se = get_seg_entry(sbi, segno); 1755 1756 /* add discard candidates */ 1757 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards) { 1758 cpc->trim_start = segno; 1759 add_discard_addrs(sbi, cpc); 1760 } 1761 1762 if (to_journal) { 1763 offset = lookup_journal_in_cursum(sum, 1764 SIT_JOURNAL, segno, 1); 1765 f2fs_bug_on(sbi, offset < 0); 1766 segno_in_journal(sum, offset) = 1767 cpu_to_le32(segno); 1768 seg_info_to_raw_sit(se, 1769 &sit_in_journal(sum, offset)); 1770 } else { 1771 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 1772 seg_info_to_raw_sit(se, 1773 &raw_sit->entries[sit_offset]); 1774 } 1775 1776 __clear_bit(segno, bitmap); 1777 sit_i->dirty_sentries--; 1778 ses->entry_cnt--; 1779 } 1780 1781 if (!to_journal) 1782 f2fs_put_page(page, 1); 1783 1784 f2fs_bug_on(sbi, ses->entry_cnt); 1785 release_sit_entry_set(ses); 1786 } 1787 1788 f2fs_bug_on(sbi, !list_empty(head)); 1789 f2fs_bug_on(sbi, sit_i->dirty_sentries); 1790 out: 1791 if (cpc->reason == CP_DISCARD) { 1792 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 1793 add_discard_addrs(sbi, cpc); 1794 } 1795 mutex_unlock(&sit_i->sentry_lock); 1796 mutex_unlock(&curseg->curseg_mutex); 1797 1798 set_prefree_as_free_segments(sbi); 1799 } 1800 1801 static int build_sit_info(struct f2fs_sb_info *sbi) 1802 { 1803 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1804 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1805 struct sit_info *sit_i; 1806 unsigned int sit_segs, start; 1807 char *src_bitmap, *dst_bitmap; 1808 unsigned int bitmap_size; 1809 1810 /* allocate memory for SIT information */ 1811 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 1812 if (!sit_i) 1813 return -ENOMEM; 1814 1815 SM_I(sbi)->sit_info = sit_i; 1816 1817 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry)); 1818 if (!sit_i->sentries) 1819 return -ENOMEM; 1820 1821 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1822 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1823 if (!sit_i->dirty_sentries_bitmap) 1824 return -ENOMEM; 1825 1826 for (start = 0; start < MAIN_SEGS(sbi); start++) { 1827 sit_i->sentries[start].cur_valid_map 1828 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1829 sit_i->sentries[start].ckpt_valid_map 1830 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1831 if (!sit_i->sentries[start].cur_valid_map 1832 || !sit_i->sentries[start].ckpt_valid_map) 1833 return -ENOMEM; 1834 } 1835 1836 if (sbi->segs_per_sec > 1) { 1837 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) * 1838 sizeof(struct sec_entry)); 1839 if (!sit_i->sec_entries) 1840 return -ENOMEM; 1841 } 1842 1843 /* get information related with SIT */ 1844 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 1845 1846 /* setup SIT bitmap from ckeckpoint pack */ 1847 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 1848 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 1849 1850 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 1851 if (!dst_bitmap) 1852 return -ENOMEM; 1853 1854 /* init SIT information */ 1855 sit_i->s_ops = &default_salloc_ops; 1856 1857 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 1858 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 1859 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 1860 sit_i->sit_bitmap = dst_bitmap; 1861 sit_i->bitmap_size = bitmap_size; 1862 sit_i->dirty_sentries = 0; 1863 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 1864 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 1865 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 1866 mutex_init(&sit_i->sentry_lock); 1867 return 0; 1868 } 1869 1870 static int build_free_segmap(struct f2fs_sb_info *sbi) 1871 { 1872 struct free_segmap_info *free_i; 1873 unsigned int bitmap_size, sec_bitmap_size; 1874 1875 /* allocate memory for free segmap information */ 1876 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 1877 if (!free_i) 1878 return -ENOMEM; 1879 1880 SM_I(sbi)->free_info = free_i; 1881 1882 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1883 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); 1884 if (!free_i->free_segmap) 1885 return -ENOMEM; 1886 1887 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 1888 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); 1889 if (!free_i->free_secmap) 1890 return -ENOMEM; 1891 1892 /* set all segments as dirty temporarily */ 1893 memset(free_i->free_segmap, 0xff, bitmap_size); 1894 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 1895 1896 /* init free segmap information */ 1897 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 1898 free_i->free_segments = 0; 1899 free_i->free_sections = 0; 1900 rwlock_init(&free_i->segmap_lock); 1901 return 0; 1902 } 1903 1904 static int build_curseg(struct f2fs_sb_info *sbi) 1905 { 1906 struct curseg_info *array; 1907 int i; 1908 1909 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 1910 if (!array) 1911 return -ENOMEM; 1912 1913 SM_I(sbi)->curseg_array = array; 1914 1915 for (i = 0; i < NR_CURSEG_TYPE; i++) { 1916 mutex_init(&array[i].curseg_mutex); 1917 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 1918 if (!array[i].sum_blk) 1919 return -ENOMEM; 1920 array[i].segno = NULL_SEGNO; 1921 array[i].next_blkoff = 0; 1922 } 1923 return restore_curseg_summaries(sbi); 1924 } 1925 1926 static void build_sit_entries(struct f2fs_sb_info *sbi) 1927 { 1928 struct sit_info *sit_i = SIT_I(sbi); 1929 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1930 struct f2fs_summary_block *sum = curseg->sum_blk; 1931 int sit_blk_cnt = SIT_BLK_CNT(sbi); 1932 unsigned int i, start, end; 1933 unsigned int readed, start_blk = 0; 1934 int nrpages = MAX_BIO_BLOCKS(sbi); 1935 1936 do { 1937 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT); 1938 1939 start = start_blk * sit_i->sents_per_block; 1940 end = (start_blk + readed) * sit_i->sents_per_block; 1941 1942 for (; start < end && start < MAIN_SEGS(sbi); start++) { 1943 struct seg_entry *se = &sit_i->sentries[start]; 1944 struct f2fs_sit_block *sit_blk; 1945 struct f2fs_sit_entry sit; 1946 struct page *page; 1947 1948 mutex_lock(&curseg->curseg_mutex); 1949 for (i = 0; i < sits_in_cursum(sum); i++) { 1950 if (le32_to_cpu(segno_in_journal(sum, i)) 1951 == start) { 1952 sit = sit_in_journal(sum, i); 1953 mutex_unlock(&curseg->curseg_mutex); 1954 goto got_it; 1955 } 1956 } 1957 mutex_unlock(&curseg->curseg_mutex); 1958 1959 page = get_current_sit_page(sbi, start); 1960 sit_blk = (struct f2fs_sit_block *)page_address(page); 1961 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 1962 f2fs_put_page(page, 1); 1963 got_it: 1964 check_block_count(sbi, start, &sit); 1965 seg_info_from_raw_sit(se, &sit); 1966 if (sbi->segs_per_sec > 1) { 1967 struct sec_entry *e = get_sec_entry(sbi, start); 1968 e->valid_blocks += se->valid_blocks; 1969 } 1970 } 1971 start_blk += readed; 1972 } while (start_blk < sit_blk_cnt); 1973 } 1974 1975 static void init_free_segmap(struct f2fs_sb_info *sbi) 1976 { 1977 unsigned int start; 1978 int type; 1979 1980 for (start = 0; start < MAIN_SEGS(sbi); start++) { 1981 struct seg_entry *sentry = get_seg_entry(sbi, start); 1982 if (!sentry->valid_blocks) 1983 __set_free(sbi, start); 1984 } 1985 1986 /* set use the current segments */ 1987 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 1988 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 1989 __set_test_and_inuse(sbi, curseg_t->segno); 1990 } 1991 } 1992 1993 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 1994 { 1995 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1996 struct free_segmap_info *free_i = FREE_I(sbi); 1997 unsigned int segno = 0, offset = 0; 1998 unsigned short valid_blocks; 1999 2000 while (1) { 2001 /* find dirty segment based on free segmap */ 2002 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2003 if (segno >= MAIN_SEGS(sbi)) 2004 break; 2005 offset = segno + 1; 2006 valid_blocks = get_valid_blocks(sbi, segno, 0); 2007 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2008 continue; 2009 if (valid_blocks > sbi->blocks_per_seg) { 2010 f2fs_bug_on(sbi, 1); 2011 continue; 2012 } 2013 mutex_lock(&dirty_i->seglist_lock); 2014 __locate_dirty_segment(sbi, segno, DIRTY); 2015 mutex_unlock(&dirty_i->seglist_lock); 2016 } 2017 } 2018 2019 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2020 { 2021 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2022 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2023 2024 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL); 2025 if (!dirty_i->victim_secmap) 2026 return -ENOMEM; 2027 return 0; 2028 } 2029 2030 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2031 { 2032 struct dirty_seglist_info *dirty_i; 2033 unsigned int bitmap_size, i; 2034 2035 /* allocate memory for dirty segments list information */ 2036 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2037 if (!dirty_i) 2038 return -ENOMEM; 2039 2040 SM_I(sbi)->dirty_info = dirty_i; 2041 mutex_init(&dirty_i->seglist_lock); 2042 2043 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2044 2045 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2046 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); 2047 if (!dirty_i->dirty_segmap[i]) 2048 return -ENOMEM; 2049 } 2050 2051 init_dirty_segmap(sbi); 2052 return init_victim_secmap(sbi); 2053 } 2054 2055 /* 2056 * Update min, max modified time for cost-benefit GC algorithm 2057 */ 2058 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2059 { 2060 struct sit_info *sit_i = SIT_I(sbi); 2061 unsigned int segno; 2062 2063 mutex_lock(&sit_i->sentry_lock); 2064 2065 sit_i->min_mtime = LLONG_MAX; 2066 2067 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2068 unsigned int i; 2069 unsigned long long mtime = 0; 2070 2071 for (i = 0; i < sbi->segs_per_sec; i++) 2072 mtime += get_seg_entry(sbi, segno + i)->mtime; 2073 2074 mtime = div_u64(mtime, sbi->segs_per_sec); 2075 2076 if (sit_i->min_mtime > mtime) 2077 sit_i->min_mtime = mtime; 2078 } 2079 sit_i->max_mtime = get_mtime(sbi); 2080 mutex_unlock(&sit_i->sentry_lock); 2081 } 2082 2083 int build_segment_manager(struct f2fs_sb_info *sbi) 2084 { 2085 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2086 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2087 struct f2fs_sm_info *sm_info; 2088 int err; 2089 2090 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2091 if (!sm_info) 2092 return -ENOMEM; 2093 2094 /* init sm info */ 2095 sbi->sm_info = sm_info; 2096 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2097 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2098 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2099 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2100 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2101 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2102 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2103 sm_info->rec_prefree_segments = sm_info->main_segments * 2104 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2105 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2106 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2107 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2108 2109 INIT_LIST_HEAD(&sm_info->discard_list); 2110 sm_info->nr_discards = 0; 2111 sm_info->max_discards = 0; 2112 2113 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2114 2115 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2116 err = create_flush_cmd_control(sbi); 2117 if (err) 2118 return err; 2119 } 2120 2121 err = build_sit_info(sbi); 2122 if (err) 2123 return err; 2124 err = build_free_segmap(sbi); 2125 if (err) 2126 return err; 2127 err = build_curseg(sbi); 2128 if (err) 2129 return err; 2130 2131 /* reinit free segmap based on SIT */ 2132 build_sit_entries(sbi); 2133 2134 init_free_segmap(sbi); 2135 err = build_dirty_segmap(sbi); 2136 if (err) 2137 return err; 2138 2139 init_min_max_mtime(sbi); 2140 return 0; 2141 } 2142 2143 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2144 enum dirty_type dirty_type) 2145 { 2146 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2147 2148 mutex_lock(&dirty_i->seglist_lock); 2149 kfree(dirty_i->dirty_segmap[dirty_type]); 2150 dirty_i->nr_dirty[dirty_type] = 0; 2151 mutex_unlock(&dirty_i->seglist_lock); 2152 } 2153 2154 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2155 { 2156 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2157 kfree(dirty_i->victim_secmap); 2158 } 2159 2160 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2161 { 2162 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2163 int i; 2164 2165 if (!dirty_i) 2166 return; 2167 2168 /* discard pre-free/dirty segments list */ 2169 for (i = 0; i < NR_DIRTY_TYPE; i++) 2170 discard_dirty_segmap(sbi, i); 2171 2172 destroy_victim_secmap(sbi); 2173 SM_I(sbi)->dirty_info = NULL; 2174 kfree(dirty_i); 2175 } 2176 2177 static void destroy_curseg(struct f2fs_sb_info *sbi) 2178 { 2179 struct curseg_info *array = SM_I(sbi)->curseg_array; 2180 int i; 2181 2182 if (!array) 2183 return; 2184 SM_I(sbi)->curseg_array = NULL; 2185 for (i = 0; i < NR_CURSEG_TYPE; i++) 2186 kfree(array[i].sum_blk); 2187 kfree(array); 2188 } 2189 2190 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2191 { 2192 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2193 if (!free_i) 2194 return; 2195 SM_I(sbi)->free_info = NULL; 2196 kfree(free_i->free_segmap); 2197 kfree(free_i->free_secmap); 2198 kfree(free_i); 2199 } 2200 2201 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2202 { 2203 struct sit_info *sit_i = SIT_I(sbi); 2204 unsigned int start; 2205 2206 if (!sit_i) 2207 return; 2208 2209 if (sit_i->sentries) { 2210 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2211 kfree(sit_i->sentries[start].cur_valid_map); 2212 kfree(sit_i->sentries[start].ckpt_valid_map); 2213 } 2214 } 2215 vfree(sit_i->sentries); 2216 vfree(sit_i->sec_entries); 2217 kfree(sit_i->dirty_sentries_bitmap); 2218 2219 SM_I(sbi)->sit_info = NULL; 2220 kfree(sit_i->sit_bitmap); 2221 kfree(sit_i); 2222 } 2223 2224 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2225 { 2226 struct f2fs_sm_info *sm_info = SM_I(sbi); 2227 2228 if (!sm_info) 2229 return; 2230 destroy_flush_cmd_control(sbi); 2231 destroy_dirty_segmap(sbi); 2232 destroy_curseg(sbi); 2233 destroy_free_segmap(sbi); 2234 destroy_sit_info(sbi); 2235 sbi->sm_info = NULL; 2236 kfree(sm_info); 2237 } 2238 2239 int __init create_segment_manager_caches(void) 2240 { 2241 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2242 sizeof(struct discard_entry)); 2243 if (!discard_entry_slab) 2244 goto fail; 2245 2246 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2247 sizeof(struct sit_entry_set)); 2248 if (!sit_entry_set_slab) 2249 goto destory_discard_entry; 2250 2251 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2252 sizeof(struct inmem_pages)); 2253 if (!inmem_entry_slab) 2254 goto destroy_sit_entry_set; 2255 return 0; 2256 2257 destroy_sit_entry_set: 2258 kmem_cache_destroy(sit_entry_set_slab); 2259 destory_discard_entry: 2260 kmem_cache_destroy(discard_entry_slab); 2261 fail: 2262 return -ENOMEM; 2263 } 2264 2265 void destroy_segment_manager_caches(void) 2266 { 2267 kmem_cache_destroy(sit_entry_set_slab); 2268 kmem_cache_destroy(discard_entry_slab); 2269 kmem_cache_destroy(inmem_entry_slab); 2270 } 2271