1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 192 if (!f2fs_is_atomic_file(inode)) 193 return; 194 195 if (clean) 196 truncate_inode_pages_final(inode->i_mapping); 197 198 release_atomic_write_cnt(inode); 199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED); 200 clear_inode_flag(inode, FI_ATOMIC_REPLACE); 201 clear_inode_flag(inode, FI_ATOMIC_FILE); 202 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) { 203 clear_inode_flag(inode, FI_ATOMIC_DIRTIED); 204 /* 205 * The vfs inode keeps clean during commit, but the f2fs inode 206 * doesn't. So clear the dirty state after commit and let 207 * f2fs_mark_inode_dirty_sync ensure a consistent dirty state. 208 */ 209 f2fs_inode_synced(inode); 210 f2fs_mark_inode_dirty_sync(inode, true); 211 } 212 stat_dec_atomic_inode(inode); 213 214 F2FS_I(inode)->atomic_write_task = NULL; 215 216 if (clean) { 217 f2fs_i_size_write(inode, fi->original_i_size); 218 fi->original_i_size = 0; 219 } 220 /* avoid stale dirty inode during eviction */ 221 sync_inode_metadata(inode, 0); 222 } 223 224 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 225 block_t new_addr, block_t *old_addr, bool recover) 226 { 227 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 228 struct dnode_of_data dn; 229 struct node_info ni; 230 int err; 231 232 retry: 233 set_new_dnode(&dn, inode, NULL, NULL, 0); 234 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 235 if (err) { 236 if (err == -ENOMEM) { 237 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 238 goto retry; 239 } 240 return err; 241 } 242 243 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 244 if (err) { 245 f2fs_put_dnode(&dn); 246 return err; 247 } 248 249 if (recover) { 250 /* dn.data_blkaddr is always valid */ 251 if (!__is_valid_data_blkaddr(new_addr)) { 252 if (new_addr == NULL_ADDR) 253 dec_valid_block_count(sbi, inode, 1); 254 f2fs_invalidate_blocks(sbi, dn.data_blkaddr, 1); 255 f2fs_update_data_blkaddr(&dn, new_addr); 256 } else { 257 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 258 new_addr, ni.version, true, true); 259 } 260 } else { 261 blkcnt_t count = 1; 262 263 err = inc_valid_block_count(sbi, inode, &count, true); 264 if (err) { 265 f2fs_put_dnode(&dn); 266 return err; 267 } 268 269 *old_addr = dn.data_blkaddr; 270 f2fs_truncate_data_blocks_range(&dn, 1); 271 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 272 273 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 274 ni.version, true, false); 275 } 276 277 f2fs_put_dnode(&dn); 278 279 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode, 280 index, old_addr ? *old_addr : 0, new_addr, recover); 281 return 0; 282 } 283 284 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 285 bool revoke) 286 { 287 struct revoke_entry *cur, *tmp; 288 pgoff_t start_index = 0; 289 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); 290 291 list_for_each_entry_safe(cur, tmp, head, list) { 292 if (revoke) { 293 __replace_atomic_write_block(inode, cur->index, 294 cur->old_addr, NULL, true); 295 } else if (truncate) { 296 f2fs_truncate_hole(inode, start_index, cur->index); 297 start_index = cur->index + 1; 298 } 299 300 list_del(&cur->list); 301 kmem_cache_free(revoke_entry_slab, cur); 302 } 303 304 if (!revoke && truncate) 305 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false); 306 } 307 308 static int __f2fs_commit_atomic_write(struct inode *inode) 309 { 310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 311 struct f2fs_inode_info *fi = F2FS_I(inode); 312 struct inode *cow_inode = fi->cow_inode; 313 struct revoke_entry *new; 314 struct list_head revoke_list; 315 block_t blkaddr; 316 struct dnode_of_data dn; 317 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 318 pgoff_t off = 0, blen, index; 319 int ret = 0, i; 320 321 INIT_LIST_HEAD(&revoke_list); 322 323 while (len) { 324 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 325 326 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 327 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 328 if (ret && ret != -ENOENT) { 329 goto out; 330 } else if (ret == -ENOENT) { 331 ret = 0; 332 if (dn.max_level == 0) 333 goto out; 334 goto next; 335 } 336 337 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 338 len); 339 index = off; 340 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 341 blkaddr = f2fs_data_blkaddr(&dn); 342 343 if (!__is_valid_data_blkaddr(blkaddr)) { 344 continue; 345 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 346 DATA_GENERIC_ENHANCE)) { 347 f2fs_put_dnode(&dn); 348 ret = -EFSCORRUPTED; 349 goto out; 350 } 351 352 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 353 true, NULL); 354 355 ret = __replace_atomic_write_block(inode, index, blkaddr, 356 &new->old_addr, false); 357 if (ret) { 358 f2fs_put_dnode(&dn); 359 kmem_cache_free(revoke_entry_slab, new); 360 goto out; 361 } 362 363 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 364 new->index = index; 365 list_add_tail(&new->list, &revoke_list); 366 } 367 f2fs_put_dnode(&dn); 368 next: 369 off += blen; 370 len -= blen; 371 } 372 373 out: 374 if (ret) { 375 sbi->revoked_atomic_block += fi->atomic_write_cnt; 376 } else { 377 sbi->committed_atomic_block += fi->atomic_write_cnt; 378 set_inode_flag(inode, FI_ATOMIC_COMMITTED); 379 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) { 380 clear_inode_flag(inode, FI_ATOMIC_DIRTIED); 381 f2fs_mark_inode_dirty_sync(inode, true); 382 } 383 } 384 385 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 386 387 return ret; 388 } 389 390 int f2fs_commit_atomic_write(struct inode *inode) 391 { 392 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 393 struct f2fs_inode_info *fi = F2FS_I(inode); 394 int err; 395 396 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 397 if (err) 398 return err; 399 400 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 401 f2fs_lock_op(sbi); 402 403 err = __f2fs_commit_atomic_write(inode); 404 405 f2fs_unlock_op(sbi); 406 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 407 408 return err; 409 } 410 411 /* 412 * This function balances dirty node and dentry pages. 413 * In addition, it controls garbage collection. 414 */ 415 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 416 { 417 if (f2fs_cp_error(sbi)) 418 return; 419 420 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 421 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); 422 423 /* balance_fs_bg is able to be pending */ 424 if (need && excess_cached_nats(sbi)) 425 f2fs_balance_fs_bg(sbi, false); 426 427 if (!f2fs_is_checkpoint_ready(sbi)) 428 return; 429 430 /* 431 * We should do GC or end up with checkpoint, if there are so many dirty 432 * dir/node pages without enough free segments. 433 */ 434 if (has_enough_free_secs(sbi, 0, 0)) 435 return; 436 437 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 438 sbi->gc_thread->f2fs_gc_task) { 439 DEFINE_WAIT(wait); 440 441 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 442 TASK_UNINTERRUPTIBLE); 443 wake_up(&sbi->gc_thread->gc_wait_queue_head); 444 io_schedule(); 445 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 446 } else { 447 struct f2fs_gc_control gc_control = { 448 .victim_segno = NULL_SEGNO, 449 .init_gc_type = BG_GC, 450 .no_bg_gc = true, 451 .should_migrate_blocks = false, 452 .err_gc_skipped = false, 453 .nr_free_secs = 1 }; 454 f2fs_down_write(&sbi->gc_lock); 455 stat_inc_gc_call_count(sbi, FOREGROUND); 456 f2fs_gc(sbi, &gc_control); 457 } 458 } 459 460 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 461 { 462 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 463 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 464 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 465 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 466 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 467 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 468 unsigned int threshold = 469 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD)); 470 unsigned int global_threshold = threshold * 3 / 2; 471 472 if (dents >= threshold || qdata >= threshold || 473 nodes >= threshold || meta >= threshold || 474 imeta >= threshold) 475 return true; 476 return dents + qdata + nodes + meta + imeta > global_threshold; 477 } 478 479 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 480 { 481 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 482 return; 483 484 /* try to shrink extent cache when there is no enough memory */ 485 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) 486 f2fs_shrink_read_extent_tree(sbi, 487 READ_EXTENT_CACHE_SHRINK_NUMBER); 488 489 /* try to shrink age extent cache when there is no enough memory */ 490 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) 491 f2fs_shrink_age_extent_tree(sbi, 492 AGE_EXTENT_CACHE_SHRINK_NUMBER); 493 494 /* check the # of cached NAT entries */ 495 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 496 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 497 498 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 499 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 500 else 501 f2fs_build_free_nids(sbi, false, false); 502 503 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 504 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 505 goto do_sync; 506 507 /* there is background inflight IO or foreground operation recently */ 508 if (is_inflight_io(sbi, REQ_TIME) || 509 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 510 return; 511 512 /* exceed periodical checkpoint timeout threshold */ 513 if (f2fs_time_over(sbi, CP_TIME)) 514 goto do_sync; 515 516 /* checkpoint is the only way to shrink partial cached entries */ 517 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 518 f2fs_available_free_memory(sbi, INO_ENTRIES)) 519 return; 520 521 do_sync: 522 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 523 struct blk_plug plug; 524 525 mutex_lock(&sbi->flush_lock); 526 527 blk_start_plug(&plug); 528 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); 529 blk_finish_plug(&plug); 530 531 mutex_unlock(&sbi->flush_lock); 532 } 533 stat_inc_cp_call_count(sbi, BACKGROUND); 534 f2fs_sync_fs(sbi->sb, 1); 535 } 536 537 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 538 struct block_device *bdev) 539 { 540 int ret = blkdev_issue_flush(bdev); 541 542 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 543 test_opt(sbi, FLUSH_MERGE), ret); 544 if (!ret) 545 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0); 546 return ret; 547 } 548 549 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 550 { 551 int ret = 0; 552 int i; 553 554 if (!f2fs_is_multi_device(sbi)) 555 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 556 557 for (i = 0; i < sbi->s_ndevs; i++) { 558 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 559 continue; 560 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 561 if (ret) 562 break; 563 } 564 return ret; 565 } 566 567 static int issue_flush_thread(void *data) 568 { 569 struct f2fs_sb_info *sbi = data; 570 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 571 wait_queue_head_t *q = &fcc->flush_wait_queue; 572 repeat: 573 if (kthread_should_stop()) 574 return 0; 575 576 if (!llist_empty(&fcc->issue_list)) { 577 struct flush_cmd *cmd, *next; 578 int ret; 579 580 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 581 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 582 583 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 584 585 ret = submit_flush_wait(sbi, cmd->ino); 586 atomic_inc(&fcc->issued_flush); 587 588 llist_for_each_entry_safe(cmd, next, 589 fcc->dispatch_list, llnode) { 590 cmd->ret = ret; 591 complete(&cmd->wait); 592 } 593 fcc->dispatch_list = NULL; 594 } 595 596 wait_event_interruptible(*q, 597 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 598 goto repeat; 599 } 600 601 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 602 { 603 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 604 struct flush_cmd cmd; 605 int ret; 606 607 if (test_opt(sbi, NOBARRIER)) 608 return 0; 609 610 if (!test_opt(sbi, FLUSH_MERGE)) { 611 atomic_inc(&fcc->queued_flush); 612 ret = submit_flush_wait(sbi, ino); 613 atomic_dec(&fcc->queued_flush); 614 atomic_inc(&fcc->issued_flush); 615 return ret; 616 } 617 618 if (atomic_inc_return(&fcc->queued_flush) == 1 || 619 f2fs_is_multi_device(sbi)) { 620 ret = submit_flush_wait(sbi, ino); 621 atomic_dec(&fcc->queued_flush); 622 623 atomic_inc(&fcc->issued_flush); 624 return ret; 625 } 626 627 cmd.ino = ino; 628 init_completion(&cmd.wait); 629 630 llist_add(&cmd.llnode, &fcc->issue_list); 631 632 /* 633 * update issue_list before we wake up issue_flush thread, this 634 * smp_mb() pairs with another barrier in ___wait_event(), see 635 * more details in comments of waitqueue_active(). 636 */ 637 smp_mb(); 638 639 if (waitqueue_active(&fcc->flush_wait_queue)) 640 wake_up(&fcc->flush_wait_queue); 641 642 if (fcc->f2fs_issue_flush) { 643 wait_for_completion(&cmd.wait); 644 atomic_dec(&fcc->queued_flush); 645 } else { 646 struct llist_node *list; 647 648 list = llist_del_all(&fcc->issue_list); 649 if (!list) { 650 wait_for_completion(&cmd.wait); 651 atomic_dec(&fcc->queued_flush); 652 } else { 653 struct flush_cmd *tmp, *next; 654 655 ret = submit_flush_wait(sbi, ino); 656 657 llist_for_each_entry_safe(tmp, next, list, llnode) { 658 if (tmp == &cmd) { 659 cmd.ret = ret; 660 atomic_dec(&fcc->queued_flush); 661 continue; 662 } 663 tmp->ret = ret; 664 complete(&tmp->wait); 665 } 666 } 667 } 668 669 return cmd.ret; 670 } 671 672 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 673 { 674 dev_t dev = sbi->sb->s_bdev->bd_dev; 675 struct flush_cmd_control *fcc; 676 677 if (SM_I(sbi)->fcc_info) { 678 fcc = SM_I(sbi)->fcc_info; 679 if (fcc->f2fs_issue_flush) 680 return 0; 681 goto init_thread; 682 } 683 684 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 685 if (!fcc) 686 return -ENOMEM; 687 atomic_set(&fcc->issued_flush, 0); 688 atomic_set(&fcc->queued_flush, 0); 689 init_waitqueue_head(&fcc->flush_wait_queue); 690 init_llist_head(&fcc->issue_list); 691 SM_I(sbi)->fcc_info = fcc; 692 if (!test_opt(sbi, FLUSH_MERGE)) 693 return 0; 694 695 init_thread: 696 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 697 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 698 if (IS_ERR(fcc->f2fs_issue_flush)) { 699 int err = PTR_ERR(fcc->f2fs_issue_flush); 700 701 fcc->f2fs_issue_flush = NULL; 702 return err; 703 } 704 705 return 0; 706 } 707 708 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 709 { 710 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 711 712 if (fcc && fcc->f2fs_issue_flush) { 713 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 714 715 fcc->f2fs_issue_flush = NULL; 716 kthread_stop(flush_thread); 717 } 718 if (free) { 719 kfree(fcc); 720 SM_I(sbi)->fcc_info = NULL; 721 } 722 } 723 724 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 725 { 726 int ret = 0, i; 727 728 if (!f2fs_is_multi_device(sbi)) 729 return 0; 730 731 if (test_opt(sbi, NOBARRIER)) 732 return 0; 733 734 for (i = 1; i < sbi->s_ndevs; i++) { 735 int count = DEFAULT_RETRY_IO_COUNT; 736 737 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 738 continue; 739 740 do { 741 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 742 if (ret) 743 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 744 } while (ret && --count); 745 746 if (ret) { 747 f2fs_stop_checkpoint(sbi, false, 748 STOP_CP_REASON_FLUSH_FAIL); 749 break; 750 } 751 752 spin_lock(&sbi->dev_lock); 753 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 754 spin_unlock(&sbi->dev_lock); 755 } 756 757 return ret; 758 } 759 760 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 761 enum dirty_type dirty_type) 762 { 763 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 764 765 /* need not be added */ 766 if (IS_CURSEG(sbi, segno)) 767 return; 768 769 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 770 dirty_i->nr_dirty[dirty_type]++; 771 772 if (dirty_type == DIRTY) { 773 struct seg_entry *sentry = get_seg_entry(sbi, segno); 774 enum dirty_type t = sentry->type; 775 776 if (unlikely(t >= DIRTY)) { 777 f2fs_bug_on(sbi, 1); 778 return; 779 } 780 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 781 dirty_i->nr_dirty[t]++; 782 783 if (__is_large_section(sbi)) { 784 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 785 block_t valid_blocks = 786 get_valid_blocks(sbi, segno, true); 787 788 f2fs_bug_on(sbi, 789 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 790 !valid_blocks) || 791 valid_blocks == CAP_BLKS_PER_SEC(sbi)); 792 793 if (!IS_CURSEC(sbi, secno)) 794 set_bit(secno, dirty_i->dirty_secmap); 795 } 796 } 797 } 798 799 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 800 enum dirty_type dirty_type) 801 { 802 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 803 block_t valid_blocks; 804 805 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 806 dirty_i->nr_dirty[dirty_type]--; 807 808 if (dirty_type == DIRTY) { 809 struct seg_entry *sentry = get_seg_entry(sbi, segno); 810 enum dirty_type t = sentry->type; 811 812 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 813 dirty_i->nr_dirty[t]--; 814 815 valid_blocks = get_valid_blocks(sbi, segno, true); 816 if (valid_blocks == 0) { 817 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 818 dirty_i->victim_secmap); 819 #ifdef CONFIG_F2FS_CHECK_FS 820 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 821 #endif 822 } 823 if (__is_large_section(sbi)) { 824 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 825 826 if (!valid_blocks || 827 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 828 clear_bit(secno, dirty_i->dirty_secmap); 829 return; 830 } 831 832 if (!IS_CURSEC(sbi, secno)) 833 set_bit(secno, dirty_i->dirty_secmap); 834 } 835 } 836 } 837 838 /* 839 * Should not occur error such as -ENOMEM. 840 * Adding dirty entry into seglist is not critical operation. 841 * If a given segment is one of current working segments, it won't be added. 842 */ 843 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 844 { 845 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 846 unsigned short valid_blocks, ckpt_valid_blocks; 847 unsigned int usable_blocks; 848 849 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 850 return; 851 852 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 853 mutex_lock(&dirty_i->seglist_lock); 854 855 valid_blocks = get_valid_blocks(sbi, segno, false); 856 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 857 858 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 859 ckpt_valid_blocks == usable_blocks)) { 860 __locate_dirty_segment(sbi, segno, PRE); 861 __remove_dirty_segment(sbi, segno, DIRTY); 862 } else if (valid_blocks < usable_blocks) { 863 __locate_dirty_segment(sbi, segno, DIRTY); 864 } else { 865 /* Recovery routine with SSR needs this */ 866 __remove_dirty_segment(sbi, segno, DIRTY); 867 } 868 869 mutex_unlock(&dirty_i->seglist_lock); 870 } 871 872 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 873 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 874 { 875 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 876 unsigned int segno; 877 878 mutex_lock(&dirty_i->seglist_lock); 879 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 880 if (get_valid_blocks(sbi, segno, false)) 881 continue; 882 if (IS_CURSEG(sbi, segno)) 883 continue; 884 __locate_dirty_segment(sbi, segno, PRE); 885 __remove_dirty_segment(sbi, segno, DIRTY); 886 } 887 mutex_unlock(&dirty_i->seglist_lock); 888 } 889 890 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 891 { 892 int ovp_hole_segs = 893 (overprovision_segments(sbi) - reserved_segments(sbi)); 894 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs); 895 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 896 block_t holes[2] = {0, 0}; /* DATA and NODE */ 897 block_t unusable; 898 struct seg_entry *se; 899 unsigned int segno; 900 901 mutex_lock(&dirty_i->seglist_lock); 902 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 903 se = get_seg_entry(sbi, segno); 904 if (IS_NODESEG(se->type)) 905 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 906 se->valid_blocks; 907 else 908 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 909 se->valid_blocks; 910 } 911 mutex_unlock(&dirty_i->seglist_lock); 912 913 unusable = max(holes[DATA], holes[NODE]); 914 if (unusable > ovp_holes) 915 return unusable - ovp_holes; 916 return 0; 917 } 918 919 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 920 { 921 int ovp_hole_segs = 922 (overprovision_segments(sbi) - reserved_segments(sbi)); 923 924 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 925 return 0; 926 if (unusable > F2FS_OPTION(sbi).unusable_cap) 927 return -EAGAIN; 928 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 929 dirty_segments(sbi) > ovp_hole_segs) 930 return -EAGAIN; 931 if (has_not_enough_free_secs(sbi, 0, 0)) 932 return -EAGAIN; 933 return 0; 934 } 935 936 /* This is only used by SBI_CP_DISABLED */ 937 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 938 { 939 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 940 unsigned int segno = 0; 941 942 mutex_lock(&dirty_i->seglist_lock); 943 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 944 if (get_valid_blocks(sbi, segno, false)) 945 continue; 946 if (get_ckpt_valid_blocks(sbi, segno, false)) 947 continue; 948 mutex_unlock(&dirty_i->seglist_lock); 949 return segno; 950 } 951 mutex_unlock(&dirty_i->seglist_lock); 952 return NULL_SEGNO; 953 } 954 955 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 956 struct block_device *bdev, block_t lstart, 957 block_t start, block_t len) 958 { 959 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 960 struct list_head *pend_list; 961 struct discard_cmd *dc; 962 963 f2fs_bug_on(sbi, !len); 964 965 pend_list = &dcc->pend_list[plist_idx(len)]; 966 967 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 968 INIT_LIST_HEAD(&dc->list); 969 dc->bdev = bdev; 970 dc->di.lstart = lstart; 971 dc->di.start = start; 972 dc->di.len = len; 973 dc->ref = 0; 974 dc->state = D_PREP; 975 dc->queued = 0; 976 dc->error = 0; 977 init_completion(&dc->wait); 978 list_add_tail(&dc->list, pend_list); 979 spin_lock_init(&dc->lock); 980 dc->bio_ref = 0; 981 atomic_inc(&dcc->discard_cmd_cnt); 982 dcc->undiscard_blks += len; 983 984 return dc; 985 } 986 987 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi) 988 { 989 #ifdef CONFIG_F2FS_CHECK_FS 990 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 991 struct rb_node *cur = rb_first_cached(&dcc->root), *next; 992 struct discard_cmd *cur_dc, *next_dc; 993 994 while (cur) { 995 next = rb_next(cur); 996 if (!next) 997 return true; 998 999 cur_dc = rb_entry(cur, struct discard_cmd, rb_node); 1000 next_dc = rb_entry(next, struct discard_cmd, rb_node); 1001 1002 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) { 1003 f2fs_info(sbi, "broken discard_rbtree, " 1004 "cur(%u, %u) next(%u, %u)", 1005 cur_dc->di.lstart, cur_dc->di.len, 1006 next_dc->di.lstart, next_dc->di.len); 1007 return false; 1008 } 1009 cur = next; 1010 } 1011 #endif 1012 return true; 1013 } 1014 1015 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi, 1016 block_t blkaddr) 1017 { 1018 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1019 struct rb_node *node = dcc->root.rb_root.rb_node; 1020 struct discard_cmd *dc; 1021 1022 while (node) { 1023 dc = rb_entry(node, struct discard_cmd, rb_node); 1024 1025 if (blkaddr < dc->di.lstart) 1026 node = node->rb_left; 1027 else if (blkaddr >= dc->di.lstart + dc->di.len) 1028 node = node->rb_right; 1029 else 1030 return dc; 1031 } 1032 return NULL; 1033 } 1034 1035 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root, 1036 block_t blkaddr, 1037 struct discard_cmd **prev_entry, 1038 struct discard_cmd **next_entry, 1039 struct rb_node ***insert_p, 1040 struct rb_node **insert_parent) 1041 { 1042 struct rb_node **pnode = &root->rb_root.rb_node; 1043 struct rb_node *parent = NULL, *tmp_node; 1044 struct discard_cmd *dc; 1045 1046 *insert_p = NULL; 1047 *insert_parent = NULL; 1048 *prev_entry = NULL; 1049 *next_entry = NULL; 1050 1051 if (RB_EMPTY_ROOT(&root->rb_root)) 1052 return NULL; 1053 1054 while (*pnode) { 1055 parent = *pnode; 1056 dc = rb_entry(*pnode, struct discard_cmd, rb_node); 1057 1058 if (blkaddr < dc->di.lstart) 1059 pnode = &(*pnode)->rb_left; 1060 else if (blkaddr >= dc->di.lstart + dc->di.len) 1061 pnode = &(*pnode)->rb_right; 1062 else 1063 goto lookup_neighbors; 1064 } 1065 1066 *insert_p = pnode; 1067 *insert_parent = parent; 1068 1069 dc = rb_entry(parent, struct discard_cmd, rb_node); 1070 tmp_node = parent; 1071 if (parent && blkaddr > dc->di.lstart) 1072 tmp_node = rb_next(parent); 1073 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1074 1075 tmp_node = parent; 1076 if (parent && blkaddr < dc->di.lstart) 1077 tmp_node = rb_prev(parent); 1078 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1079 return NULL; 1080 1081 lookup_neighbors: 1082 /* lookup prev node for merging backward later */ 1083 tmp_node = rb_prev(&dc->rb_node); 1084 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1085 1086 /* lookup next node for merging frontward later */ 1087 tmp_node = rb_next(&dc->rb_node); 1088 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1089 return dc; 1090 } 1091 1092 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1093 struct discard_cmd *dc) 1094 { 1095 if (dc->state == D_DONE) 1096 atomic_sub(dc->queued, &dcc->queued_discard); 1097 1098 list_del(&dc->list); 1099 rb_erase_cached(&dc->rb_node, &dcc->root); 1100 dcc->undiscard_blks -= dc->di.len; 1101 1102 kmem_cache_free(discard_cmd_slab, dc); 1103 1104 atomic_dec(&dcc->discard_cmd_cnt); 1105 } 1106 1107 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1108 struct discard_cmd *dc) 1109 { 1110 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1111 unsigned long flags; 1112 1113 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len); 1114 1115 spin_lock_irqsave(&dc->lock, flags); 1116 if (dc->bio_ref) { 1117 spin_unlock_irqrestore(&dc->lock, flags); 1118 return; 1119 } 1120 spin_unlock_irqrestore(&dc->lock, flags); 1121 1122 f2fs_bug_on(sbi, dc->ref); 1123 1124 if (dc->error == -EOPNOTSUPP) 1125 dc->error = 0; 1126 1127 if (dc->error) 1128 f2fs_info_ratelimited(sbi, 1129 "Issue discard(%u, %u, %u) failed, ret: %d", 1130 dc->di.lstart, dc->di.start, dc->di.len, dc->error); 1131 __detach_discard_cmd(dcc, dc); 1132 } 1133 1134 static void f2fs_submit_discard_endio(struct bio *bio) 1135 { 1136 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1137 unsigned long flags; 1138 1139 spin_lock_irqsave(&dc->lock, flags); 1140 if (!dc->error) 1141 dc->error = blk_status_to_errno(bio->bi_status); 1142 dc->bio_ref--; 1143 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1144 dc->state = D_DONE; 1145 complete_all(&dc->wait); 1146 } 1147 spin_unlock_irqrestore(&dc->lock, flags); 1148 bio_put(bio); 1149 } 1150 1151 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1152 block_t start, block_t end) 1153 { 1154 #ifdef CONFIG_F2FS_CHECK_FS 1155 struct seg_entry *sentry; 1156 unsigned int segno; 1157 block_t blk = start; 1158 unsigned long offset, size, *map; 1159 1160 while (blk < end) { 1161 segno = GET_SEGNO(sbi, blk); 1162 sentry = get_seg_entry(sbi, segno); 1163 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1164 1165 if (end < START_BLOCK(sbi, segno + 1)) 1166 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1167 else 1168 size = BLKS_PER_SEG(sbi); 1169 map = (unsigned long *)(sentry->cur_valid_map); 1170 offset = __find_rev_next_bit(map, size, offset); 1171 f2fs_bug_on(sbi, offset != size); 1172 blk = START_BLOCK(sbi, segno + 1); 1173 } 1174 #endif 1175 } 1176 1177 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1178 struct discard_policy *dpolicy, 1179 int discard_type, unsigned int granularity) 1180 { 1181 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1182 1183 /* common policy */ 1184 dpolicy->type = discard_type; 1185 dpolicy->sync = true; 1186 dpolicy->ordered = false; 1187 dpolicy->granularity = granularity; 1188 1189 dpolicy->max_requests = dcc->max_discard_request; 1190 dpolicy->io_aware_gran = dcc->discard_io_aware_gran; 1191 dpolicy->timeout = false; 1192 1193 if (discard_type == DPOLICY_BG) { 1194 dpolicy->min_interval = dcc->min_discard_issue_time; 1195 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1196 dpolicy->max_interval = dcc->max_discard_issue_time; 1197 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE) 1198 dpolicy->io_aware = true; 1199 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE) 1200 dpolicy->io_aware = false; 1201 dpolicy->sync = false; 1202 dpolicy->ordered = true; 1203 if (utilization(sbi) > dcc->discard_urgent_util) { 1204 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1205 if (atomic_read(&dcc->discard_cmd_cnt)) 1206 dpolicy->max_interval = 1207 dcc->min_discard_issue_time; 1208 } 1209 } else if (discard_type == DPOLICY_FORCE) { 1210 dpolicy->min_interval = dcc->min_discard_issue_time; 1211 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1212 dpolicy->max_interval = dcc->max_discard_issue_time; 1213 dpolicy->io_aware = false; 1214 } else if (discard_type == DPOLICY_FSTRIM) { 1215 dpolicy->io_aware = false; 1216 } else if (discard_type == DPOLICY_UMOUNT) { 1217 dpolicy->io_aware = false; 1218 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1219 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1220 dpolicy->timeout = true; 1221 } 1222 } 1223 1224 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1225 struct block_device *bdev, block_t lstart, 1226 block_t start, block_t len); 1227 1228 #ifdef CONFIG_BLK_DEV_ZONED 1229 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi, 1230 struct discard_cmd *dc, blk_opf_t flag, 1231 struct list_head *wait_list, 1232 unsigned int *issued) 1233 { 1234 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1235 struct block_device *bdev = dc->bdev; 1236 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS); 1237 unsigned long flags; 1238 1239 trace_f2fs_issue_reset_zone(bdev, dc->di.start); 1240 1241 spin_lock_irqsave(&dc->lock, flags); 1242 dc->state = D_SUBMIT; 1243 dc->bio_ref++; 1244 spin_unlock_irqrestore(&dc->lock, flags); 1245 1246 if (issued) 1247 (*issued)++; 1248 1249 atomic_inc(&dcc->queued_discard); 1250 dc->queued++; 1251 list_move_tail(&dc->list, wait_list); 1252 1253 /* sanity check on discard range */ 1254 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len); 1255 1256 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start); 1257 bio->bi_private = dc; 1258 bio->bi_end_io = f2fs_submit_discard_endio; 1259 submit_bio(bio); 1260 1261 atomic_inc(&dcc->issued_discard); 1262 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE); 1263 } 1264 #endif 1265 1266 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1267 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1268 struct discard_policy *dpolicy, 1269 struct discard_cmd *dc, int *issued) 1270 { 1271 struct block_device *bdev = dc->bdev; 1272 unsigned int max_discard_blocks = 1273 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1274 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1275 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1276 &(dcc->fstrim_list) : &(dcc->wait_list); 1277 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1278 block_t lstart, start, len, total_len; 1279 int err = 0; 1280 1281 if (dc->state != D_PREP) 1282 return 0; 1283 1284 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1285 return 0; 1286 1287 #ifdef CONFIG_BLK_DEV_ZONED 1288 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) { 1289 int devi = f2fs_bdev_index(sbi, bdev); 1290 1291 if (devi < 0) 1292 return -EINVAL; 1293 1294 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1295 __submit_zone_reset_cmd(sbi, dc, flag, 1296 wait_list, issued); 1297 return 0; 1298 } 1299 } 1300 #endif 1301 1302 /* 1303 * stop issuing discard for any of below cases: 1304 * 1. device is conventional zone, but it doesn't support discard. 1305 * 2. device is regulare device, after snapshot it doesn't support 1306 * discard. 1307 */ 1308 if (!bdev_max_discard_sectors(bdev)) 1309 return -EOPNOTSUPP; 1310 1311 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len); 1312 1313 lstart = dc->di.lstart; 1314 start = dc->di.start; 1315 len = dc->di.len; 1316 total_len = len; 1317 1318 dc->di.len = 0; 1319 1320 while (total_len && *issued < dpolicy->max_requests && !err) { 1321 struct bio *bio = NULL; 1322 unsigned long flags; 1323 bool last = true; 1324 1325 if (len > max_discard_blocks) { 1326 len = max_discard_blocks; 1327 last = false; 1328 } 1329 1330 (*issued)++; 1331 if (*issued == dpolicy->max_requests) 1332 last = true; 1333 1334 dc->di.len += len; 1335 1336 if (time_to_inject(sbi, FAULT_DISCARD)) { 1337 err = -EIO; 1338 } else { 1339 err = __blkdev_issue_discard(bdev, 1340 SECTOR_FROM_BLOCK(start), 1341 SECTOR_FROM_BLOCK(len), 1342 GFP_NOFS, &bio); 1343 } 1344 if (err) { 1345 spin_lock_irqsave(&dc->lock, flags); 1346 if (dc->state == D_PARTIAL) 1347 dc->state = D_SUBMIT; 1348 spin_unlock_irqrestore(&dc->lock, flags); 1349 1350 break; 1351 } 1352 1353 f2fs_bug_on(sbi, !bio); 1354 1355 /* 1356 * should keep before submission to avoid D_DONE 1357 * right away 1358 */ 1359 spin_lock_irqsave(&dc->lock, flags); 1360 if (last) 1361 dc->state = D_SUBMIT; 1362 else 1363 dc->state = D_PARTIAL; 1364 dc->bio_ref++; 1365 spin_unlock_irqrestore(&dc->lock, flags); 1366 1367 atomic_inc(&dcc->queued_discard); 1368 dc->queued++; 1369 list_move_tail(&dc->list, wait_list); 1370 1371 /* sanity check on discard range */ 1372 __check_sit_bitmap(sbi, lstart, lstart + len); 1373 1374 bio->bi_private = dc; 1375 bio->bi_end_io = f2fs_submit_discard_endio; 1376 bio->bi_opf |= flag; 1377 submit_bio(bio); 1378 1379 atomic_inc(&dcc->issued_discard); 1380 1381 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE); 1382 1383 lstart += len; 1384 start += len; 1385 total_len -= len; 1386 len = total_len; 1387 } 1388 1389 if (!err && len) { 1390 dcc->undiscard_blks -= len; 1391 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1392 } 1393 return err; 1394 } 1395 1396 static void __insert_discard_cmd(struct f2fs_sb_info *sbi, 1397 struct block_device *bdev, block_t lstart, 1398 block_t start, block_t len) 1399 { 1400 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1401 struct rb_node **p = &dcc->root.rb_root.rb_node; 1402 struct rb_node *parent = NULL; 1403 struct discard_cmd *dc; 1404 bool leftmost = true; 1405 1406 /* look up rb tree to find parent node */ 1407 while (*p) { 1408 parent = *p; 1409 dc = rb_entry(parent, struct discard_cmd, rb_node); 1410 1411 if (lstart < dc->di.lstart) { 1412 p = &(*p)->rb_left; 1413 } else if (lstart >= dc->di.lstart + dc->di.len) { 1414 p = &(*p)->rb_right; 1415 leftmost = false; 1416 } else { 1417 /* Let's skip to add, if exists */ 1418 return; 1419 } 1420 } 1421 1422 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1423 1424 rb_link_node(&dc->rb_node, parent, p); 1425 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1426 } 1427 1428 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1429 struct discard_cmd *dc) 1430 { 1431 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]); 1432 } 1433 1434 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1435 struct discard_cmd *dc, block_t blkaddr) 1436 { 1437 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1438 struct discard_info di = dc->di; 1439 bool modified = false; 1440 1441 if (dc->state == D_DONE || dc->di.len == 1) { 1442 __remove_discard_cmd(sbi, dc); 1443 return; 1444 } 1445 1446 dcc->undiscard_blks -= di.len; 1447 1448 if (blkaddr > di.lstart) { 1449 dc->di.len = blkaddr - dc->di.lstart; 1450 dcc->undiscard_blks += dc->di.len; 1451 __relocate_discard_cmd(dcc, dc); 1452 modified = true; 1453 } 1454 1455 if (blkaddr < di.lstart + di.len - 1) { 1456 if (modified) { 1457 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1, 1458 di.start + blkaddr + 1 - di.lstart, 1459 di.lstart + di.len - 1 - blkaddr); 1460 } else { 1461 dc->di.lstart++; 1462 dc->di.len--; 1463 dc->di.start++; 1464 dcc->undiscard_blks += dc->di.len; 1465 __relocate_discard_cmd(dcc, dc); 1466 } 1467 } 1468 } 1469 1470 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1471 struct block_device *bdev, block_t lstart, 1472 block_t start, block_t len) 1473 { 1474 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1475 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1476 struct discard_cmd *dc; 1477 struct discard_info di = {0}; 1478 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1479 unsigned int max_discard_blocks = 1480 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1481 block_t end = lstart + len; 1482 1483 dc = __lookup_discard_cmd_ret(&dcc->root, lstart, 1484 &prev_dc, &next_dc, &insert_p, &insert_parent); 1485 if (dc) 1486 prev_dc = dc; 1487 1488 if (!prev_dc) { 1489 di.lstart = lstart; 1490 di.len = next_dc ? next_dc->di.lstart - lstart : len; 1491 di.len = min(di.len, len); 1492 di.start = start; 1493 } 1494 1495 while (1) { 1496 struct rb_node *node; 1497 bool merged = false; 1498 struct discard_cmd *tdc = NULL; 1499 1500 if (prev_dc) { 1501 di.lstart = prev_dc->di.lstart + prev_dc->di.len; 1502 if (di.lstart < lstart) 1503 di.lstart = lstart; 1504 if (di.lstart >= end) 1505 break; 1506 1507 if (!next_dc || next_dc->di.lstart > end) 1508 di.len = end - di.lstart; 1509 else 1510 di.len = next_dc->di.lstart - di.lstart; 1511 di.start = start + di.lstart - lstart; 1512 } 1513 1514 if (!di.len) 1515 goto next; 1516 1517 if (prev_dc && prev_dc->state == D_PREP && 1518 prev_dc->bdev == bdev && 1519 __is_discard_back_mergeable(&di, &prev_dc->di, 1520 max_discard_blocks)) { 1521 prev_dc->di.len += di.len; 1522 dcc->undiscard_blks += di.len; 1523 __relocate_discard_cmd(dcc, prev_dc); 1524 di = prev_dc->di; 1525 tdc = prev_dc; 1526 merged = true; 1527 } 1528 1529 if (next_dc && next_dc->state == D_PREP && 1530 next_dc->bdev == bdev && 1531 __is_discard_front_mergeable(&di, &next_dc->di, 1532 max_discard_blocks)) { 1533 next_dc->di.lstart = di.lstart; 1534 next_dc->di.len += di.len; 1535 next_dc->di.start = di.start; 1536 dcc->undiscard_blks += di.len; 1537 __relocate_discard_cmd(dcc, next_dc); 1538 if (tdc) 1539 __remove_discard_cmd(sbi, tdc); 1540 merged = true; 1541 } 1542 1543 if (!merged) 1544 __insert_discard_cmd(sbi, bdev, 1545 di.lstart, di.start, di.len); 1546 next: 1547 prev_dc = next_dc; 1548 if (!prev_dc) 1549 break; 1550 1551 node = rb_next(&prev_dc->rb_node); 1552 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1553 } 1554 } 1555 1556 #ifdef CONFIG_BLK_DEV_ZONED 1557 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi, 1558 struct block_device *bdev, block_t blkstart, block_t lblkstart, 1559 block_t blklen) 1560 { 1561 trace_f2fs_queue_reset_zone(bdev, blkstart); 1562 1563 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1564 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen); 1565 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1566 } 1567 #endif 1568 1569 static void __queue_discard_cmd(struct f2fs_sb_info *sbi, 1570 struct block_device *bdev, block_t blkstart, block_t blklen) 1571 { 1572 block_t lblkstart = blkstart; 1573 1574 if (!f2fs_bdev_support_discard(bdev)) 1575 return; 1576 1577 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1578 1579 if (f2fs_is_multi_device(sbi)) { 1580 int devi = f2fs_target_device_index(sbi, blkstart); 1581 1582 blkstart -= FDEV(devi).start_blk; 1583 } 1584 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1585 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1586 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1587 } 1588 1589 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1590 struct discard_policy *dpolicy, int *issued) 1591 { 1592 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1593 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1594 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1595 struct discard_cmd *dc; 1596 struct blk_plug plug; 1597 bool io_interrupted = false; 1598 1599 mutex_lock(&dcc->cmd_lock); 1600 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos, 1601 &prev_dc, &next_dc, &insert_p, &insert_parent); 1602 if (!dc) 1603 dc = next_dc; 1604 1605 blk_start_plug(&plug); 1606 1607 while (dc) { 1608 struct rb_node *node; 1609 int err = 0; 1610 1611 if (dc->state != D_PREP) 1612 goto next; 1613 1614 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1615 io_interrupted = true; 1616 break; 1617 } 1618 1619 dcc->next_pos = dc->di.lstart + dc->di.len; 1620 err = __submit_discard_cmd(sbi, dpolicy, dc, issued); 1621 1622 if (*issued >= dpolicy->max_requests) 1623 break; 1624 next: 1625 node = rb_next(&dc->rb_node); 1626 if (err) 1627 __remove_discard_cmd(sbi, dc); 1628 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1629 } 1630 1631 blk_finish_plug(&plug); 1632 1633 if (!dc) 1634 dcc->next_pos = 0; 1635 1636 mutex_unlock(&dcc->cmd_lock); 1637 1638 if (!(*issued) && io_interrupted) 1639 *issued = -1; 1640 } 1641 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1642 struct discard_policy *dpolicy); 1643 1644 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1645 struct discard_policy *dpolicy) 1646 { 1647 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1648 struct list_head *pend_list; 1649 struct discard_cmd *dc, *tmp; 1650 struct blk_plug plug; 1651 int i, issued; 1652 bool io_interrupted = false; 1653 1654 if (dpolicy->timeout) 1655 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1656 1657 retry: 1658 issued = 0; 1659 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1660 if (dpolicy->timeout && 1661 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1662 break; 1663 1664 if (i + 1 < dpolicy->granularity) 1665 break; 1666 1667 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) { 1668 __issue_discard_cmd_orderly(sbi, dpolicy, &issued); 1669 return issued; 1670 } 1671 1672 pend_list = &dcc->pend_list[i]; 1673 1674 mutex_lock(&dcc->cmd_lock); 1675 if (list_empty(pend_list)) 1676 goto next; 1677 if (unlikely(dcc->rbtree_check)) 1678 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 1679 blk_start_plug(&plug); 1680 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1681 f2fs_bug_on(sbi, dc->state != D_PREP); 1682 1683 if (dpolicy->timeout && 1684 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1685 break; 1686 1687 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1688 !is_idle(sbi, DISCARD_TIME)) { 1689 io_interrupted = true; 1690 break; 1691 } 1692 1693 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1694 1695 if (issued >= dpolicy->max_requests) 1696 break; 1697 } 1698 blk_finish_plug(&plug); 1699 next: 1700 mutex_unlock(&dcc->cmd_lock); 1701 1702 if (issued >= dpolicy->max_requests || io_interrupted) 1703 break; 1704 } 1705 1706 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1707 __wait_all_discard_cmd(sbi, dpolicy); 1708 goto retry; 1709 } 1710 1711 if (!issued && io_interrupted) 1712 issued = -1; 1713 1714 return issued; 1715 } 1716 1717 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1718 { 1719 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1720 struct list_head *pend_list; 1721 struct discard_cmd *dc, *tmp; 1722 int i; 1723 bool dropped = false; 1724 1725 mutex_lock(&dcc->cmd_lock); 1726 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1727 pend_list = &dcc->pend_list[i]; 1728 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1729 f2fs_bug_on(sbi, dc->state != D_PREP); 1730 __remove_discard_cmd(sbi, dc); 1731 dropped = true; 1732 } 1733 } 1734 mutex_unlock(&dcc->cmd_lock); 1735 1736 return dropped; 1737 } 1738 1739 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1740 { 1741 __drop_discard_cmd(sbi); 1742 } 1743 1744 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1745 struct discard_cmd *dc) 1746 { 1747 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1748 unsigned int len = 0; 1749 1750 wait_for_completion_io(&dc->wait); 1751 mutex_lock(&dcc->cmd_lock); 1752 f2fs_bug_on(sbi, dc->state != D_DONE); 1753 dc->ref--; 1754 if (!dc->ref) { 1755 if (!dc->error) 1756 len = dc->di.len; 1757 __remove_discard_cmd(sbi, dc); 1758 } 1759 mutex_unlock(&dcc->cmd_lock); 1760 1761 return len; 1762 } 1763 1764 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1765 struct discard_policy *dpolicy, 1766 block_t start, block_t end) 1767 { 1768 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1769 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1770 &(dcc->fstrim_list) : &(dcc->wait_list); 1771 struct discard_cmd *dc = NULL, *iter, *tmp; 1772 unsigned int trimmed = 0; 1773 1774 next: 1775 dc = NULL; 1776 1777 mutex_lock(&dcc->cmd_lock); 1778 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1779 if (iter->di.lstart + iter->di.len <= start || 1780 end <= iter->di.lstart) 1781 continue; 1782 if (iter->di.len < dpolicy->granularity) 1783 continue; 1784 if (iter->state == D_DONE && !iter->ref) { 1785 wait_for_completion_io(&iter->wait); 1786 if (!iter->error) 1787 trimmed += iter->di.len; 1788 __remove_discard_cmd(sbi, iter); 1789 } else { 1790 iter->ref++; 1791 dc = iter; 1792 break; 1793 } 1794 } 1795 mutex_unlock(&dcc->cmd_lock); 1796 1797 if (dc) { 1798 trimmed += __wait_one_discard_bio(sbi, dc); 1799 goto next; 1800 } 1801 1802 return trimmed; 1803 } 1804 1805 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1806 struct discard_policy *dpolicy) 1807 { 1808 struct discard_policy dp; 1809 unsigned int discard_blks; 1810 1811 if (dpolicy) 1812 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1813 1814 /* wait all */ 1815 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY); 1816 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1817 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY); 1818 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1819 1820 return discard_blks; 1821 } 1822 1823 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1824 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1825 { 1826 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1827 struct discard_cmd *dc; 1828 bool need_wait = false; 1829 1830 mutex_lock(&dcc->cmd_lock); 1831 dc = __lookup_discard_cmd(sbi, blkaddr); 1832 #ifdef CONFIG_BLK_DEV_ZONED 1833 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) { 1834 int devi = f2fs_bdev_index(sbi, dc->bdev); 1835 1836 if (devi < 0) { 1837 mutex_unlock(&dcc->cmd_lock); 1838 return; 1839 } 1840 1841 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1842 /* force submit zone reset */ 1843 if (dc->state == D_PREP) 1844 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC, 1845 &dcc->wait_list, NULL); 1846 dc->ref++; 1847 mutex_unlock(&dcc->cmd_lock); 1848 /* wait zone reset */ 1849 __wait_one_discard_bio(sbi, dc); 1850 return; 1851 } 1852 } 1853 #endif 1854 if (dc) { 1855 if (dc->state == D_PREP) { 1856 __punch_discard_cmd(sbi, dc, blkaddr); 1857 } else { 1858 dc->ref++; 1859 need_wait = true; 1860 } 1861 } 1862 mutex_unlock(&dcc->cmd_lock); 1863 1864 if (need_wait) 1865 __wait_one_discard_bio(sbi, dc); 1866 } 1867 1868 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1869 { 1870 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1871 1872 if (dcc && dcc->f2fs_issue_discard) { 1873 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1874 1875 dcc->f2fs_issue_discard = NULL; 1876 kthread_stop(discard_thread); 1877 } 1878 } 1879 1880 /** 1881 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT 1882 * @sbi: the f2fs_sb_info data for discard cmd to issue 1883 * 1884 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped 1885 * 1886 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false. 1887 */ 1888 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1889 { 1890 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1891 struct discard_policy dpolicy; 1892 bool dropped; 1893 1894 if (!atomic_read(&dcc->discard_cmd_cnt)) 1895 return true; 1896 1897 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1898 dcc->discard_granularity); 1899 __issue_discard_cmd(sbi, &dpolicy); 1900 dropped = __drop_discard_cmd(sbi); 1901 1902 /* just to make sure there is no pending discard commands */ 1903 __wait_all_discard_cmd(sbi, NULL); 1904 1905 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1906 return !dropped; 1907 } 1908 1909 static int issue_discard_thread(void *data) 1910 { 1911 struct f2fs_sb_info *sbi = data; 1912 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1913 wait_queue_head_t *q = &dcc->discard_wait_queue; 1914 struct discard_policy dpolicy; 1915 unsigned int wait_ms = dcc->min_discard_issue_time; 1916 int issued; 1917 1918 set_freezable(); 1919 1920 do { 1921 wait_event_freezable_timeout(*q, 1922 kthread_should_stop() || dcc->discard_wake, 1923 msecs_to_jiffies(wait_ms)); 1924 1925 if (sbi->gc_mode == GC_URGENT_HIGH || 1926 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1927 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1928 MIN_DISCARD_GRANULARITY); 1929 else 1930 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1931 dcc->discard_granularity); 1932 1933 if (dcc->discard_wake) 1934 dcc->discard_wake = false; 1935 1936 /* clean up pending candidates before going to sleep */ 1937 if (atomic_read(&dcc->queued_discard)) 1938 __wait_all_discard_cmd(sbi, NULL); 1939 1940 if (f2fs_readonly(sbi->sb)) 1941 continue; 1942 if (kthread_should_stop()) 1943 return 0; 1944 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1945 !atomic_read(&dcc->discard_cmd_cnt)) { 1946 wait_ms = dpolicy.max_interval; 1947 continue; 1948 } 1949 1950 sb_start_intwrite(sbi->sb); 1951 1952 issued = __issue_discard_cmd(sbi, &dpolicy); 1953 if (issued > 0) { 1954 __wait_all_discard_cmd(sbi, &dpolicy); 1955 wait_ms = dpolicy.min_interval; 1956 } else if (issued == -1) { 1957 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1958 if (!wait_ms) 1959 wait_ms = dpolicy.mid_interval; 1960 } else { 1961 wait_ms = dpolicy.max_interval; 1962 } 1963 if (!atomic_read(&dcc->discard_cmd_cnt)) 1964 wait_ms = dpolicy.max_interval; 1965 1966 sb_end_intwrite(sbi->sb); 1967 1968 } while (!kthread_should_stop()); 1969 return 0; 1970 } 1971 1972 #ifdef CONFIG_BLK_DEV_ZONED 1973 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1974 struct block_device *bdev, block_t blkstart, block_t blklen) 1975 { 1976 sector_t sector, nr_sects; 1977 block_t lblkstart = blkstart; 1978 int devi = 0; 1979 u64 remainder = 0; 1980 1981 if (f2fs_is_multi_device(sbi)) { 1982 devi = f2fs_target_device_index(sbi, blkstart); 1983 if (blkstart < FDEV(devi).start_blk || 1984 blkstart > FDEV(devi).end_blk) { 1985 f2fs_err(sbi, "Invalid block %x", blkstart); 1986 return -EIO; 1987 } 1988 blkstart -= FDEV(devi).start_blk; 1989 } 1990 1991 /* For sequential zones, reset the zone write pointer */ 1992 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1993 sector = SECTOR_FROM_BLOCK(blkstart); 1994 nr_sects = SECTOR_FROM_BLOCK(blklen); 1995 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder); 1996 1997 if (remainder || nr_sects != bdev_zone_sectors(bdev)) { 1998 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1999 devi, sbi->s_ndevs ? FDEV(devi).path : "", 2000 blkstart, blklen); 2001 return -EIO; 2002 } 2003 2004 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) { 2005 unsigned int nofs_flags; 2006 int ret; 2007 2008 trace_f2fs_issue_reset_zone(bdev, blkstart); 2009 nofs_flags = memalloc_nofs_save(); 2010 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 2011 sector, nr_sects); 2012 memalloc_nofs_restore(nofs_flags); 2013 return ret; 2014 } 2015 2016 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen); 2017 return 0; 2018 } 2019 2020 /* For conventional zones, use regular discard if supported */ 2021 __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 2022 return 0; 2023 } 2024 #endif 2025 2026 static int __issue_discard_async(struct f2fs_sb_info *sbi, 2027 struct block_device *bdev, block_t blkstart, block_t blklen) 2028 { 2029 #ifdef CONFIG_BLK_DEV_ZONED 2030 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 2031 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 2032 #endif 2033 __queue_discard_cmd(sbi, bdev, blkstart, blklen); 2034 return 0; 2035 } 2036 2037 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 2038 block_t blkstart, block_t blklen) 2039 { 2040 sector_t start = blkstart, len = 0; 2041 struct block_device *bdev; 2042 struct seg_entry *se; 2043 unsigned int offset; 2044 block_t i; 2045 int err = 0; 2046 2047 bdev = f2fs_target_device(sbi, blkstart, NULL); 2048 2049 for (i = blkstart; i < blkstart + blklen; i++, len++) { 2050 if (i != start) { 2051 struct block_device *bdev2 = 2052 f2fs_target_device(sbi, i, NULL); 2053 2054 if (bdev2 != bdev) { 2055 err = __issue_discard_async(sbi, bdev, 2056 start, len); 2057 if (err) 2058 return err; 2059 bdev = bdev2; 2060 start = i; 2061 len = 0; 2062 } 2063 } 2064 2065 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 2066 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 2067 2068 if (f2fs_block_unit_discard(sbi) && 2069 !f2fs_test_and_set_bit(offset, se->discard_map)) 2070 sbi->discard_blks--; 2071 } 2072 2073 if (len) 2074 err = __issue_discard_async(sbi, bdev, start, len); 2075 return err; 2076 } 2077 2078 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 2079 bool check_only) 2080 { 2081 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2082 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 2083 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2084 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2085 unsigned long *discard_map = (unsigned long *)se->discard_map; 2086 unsigned long *dmap = SIT_I(sbi)->tmp_map; 2087 unsigned int start = 0, end = -1; 2088 bool force = (cpc->reason & CP_DISCARD); 2089 struct discard_entry *de = NULL; 2090 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 2091 int i; 2092 2093 if (se->valid_blocks == BLKS_PER_SEG(sbi) || 2094 !f2fs_hw_support_discard(sbi) || 2095 !f2fs_block_unit_discard(sbi)) 2096 return false; 2097 2098 if (!force) { 2099 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 2100 SM_I(sbi)->dcc_info->nr_discards >= 2101 SM_I(sbi)->dcc_info->max_discards) 2102 return false; 2103 } 2104 2105 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 2106 for (i = 0; i < entries; i++) 2107 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 2108 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 2109 2110 while (force || SM_I(sbi)->dcc_info->nr_discards <= 2111 SM_I(sbi)->dcc_info->max_discards) { 2112 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1); 2113 if (start >= BLKS_PER_SEG(sbi)) 2114 break; 2115 2116 end = __find_rev_next_zero_bit(dmap, 2117 BLKS_PER_SEG(sbi), start + 1); 2118 if (force && start && end != BLKS_PER_SEG(sbi) && 2119 (end - start) < cpc->trim_minlen) 2120 continue; 2121 2122 if (check_only) 2123 return true; 2124 2125 if (!de) { 2126 de = f2fs_kmem_cache_alloc(discard_entry_slab, 2127 GFP_F2FS_ZERO, true, NULL); 2128 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 2129 list_add_tail(&de->list, head); 2130 } 2131 2132 for (i = start; i < end; i++) 2133 __set_bit_le(i, (void *)de->discard_map); 2134 2135 SM_I(sbi)->dcc_info->nr_discards += end - start; 2136 } 2137 return false; 2138 } 2139 2140 static void release_discard_addr(struct discard_entry *entry) 2141 { 2142 list_del(&entry->list); 2143 kmem_cache_free(discard_entry_slab, entry); 2144 } 2145 2146 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 2147 { 2148 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 2149 struct discard_entry *entry, *this; 2150 2151 /* drop caches */ 2152 list_for_each_entry_safe(entry, this, head, list) 2153 release_discard_addr(entry); 2154 } 2155 2156 /* 2157 * Should call f2fs_clear_prefree_segments after checkpoint is done. 2158 */ 2159 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 2160 { 2161 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2162 unsigned int segno; 2163 2164 mutex_lock(&dirty_i->seglist_lock); 2165 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 2166 __set_test_and_free(sbi, segno, false); 2167 mutex_unlock(&dirty_i->seglist_lock); 2168 } 2169 2170 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2171 struct cp_control *cpc) 2172 { 2173 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2174 struct list_head *head = &dcc->entry_list; 2175 struct discard_entry *entry, *this; 2176 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2177 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2178 unsigned int start = 0, end = -1; 2179 unsigned int secno, start_segno; 2180 bool force = (cpc->reason & CP_DISCARD); 2181 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 2182 DISCARD_UNIT_SECTION; 2183 2184 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 2185 section_alignment = true; 2186 2187 mutex_lock(&dirty_i->seglist_lock); 2188 2189 while (1) { 2190 int i; 2191 2192 if (section_alignment && end != -1) 2193 end--; 2194 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2195 if (start >= MAIN_SEGS(sbi)) 2196 break; 2197 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2198 start + 1); 2199 2200 if (section_alignment) { 2201 start = rounddown(start, SEGS_PER_SEC(sbi)); 2202 end = roundup(end, SEGS_PER_SEC(sbi)); 2203 } 2204 2205 for (i = start; i < end; i++) { 2206 if (test_and_clear_bit(i, prefree_map)) 2207 dirty_i->nr_dirty[PRE]--; 2208 } 2209 2210 if (!f2fs_realtime_discard_enable(sbi)) 2211 continue; 2212 2213 if (force && start >= cpc->trim_start && 2214 (end - 1) <= cpc->trim_end) 2215 continue; 2216 2217 /* Should cover 2MB zoned device for zone-based reset */ 2218 if (!f2fs_sb_has_blkzoned(sbi) && 2219 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) { 2220 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2221 SEGS_TO_BLKS(sbi, end - start)); 2222 continue; 2223 } 2224 next: 2225 secno = GET_SEC_FROM_SEG(sbi, start); 2226 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2227 if (!IS_CURSEC(sbi, secno) && 2228 !get_valid_blocks(sbi, start, true)) 2229 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2230 BLKS_PER_SEC(sbi)); 2231 2232 start = start_segno + SEGS_PER_SEC(sbi); 2233 if (start < end) 2234 goto next; 2235 else 2236 end = start - 1; 2237 } 2238 mutex_unlock(&dirty_i->seglist_lock); 2239 2240 if (!f2fs_block_unit_discard(sbi)) 2241 goto wakeup; 2242 2243 /* send small discards */ 2244 list_for_each_entry_safe(entry, this, head, list) { 2245 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2246 bool is_valid = test_bit_le(0, entry->discard_map); 2247 2248 find_next: 2249 if (is_valid) { 2250 next_pos = find_next_zero_bit_le(entry->discard_map, 2251 BLKS_PER_SEG(sbi), cur_pos); 2252 len = next_pos - cur_pos; 2253 2254 if (f2fs_sb_has_blkzoned(sbi) || 2255 (force && len < cpc->trim_minlen)) 2256 goto skip; 2257 2258 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2259 len); 2260 total_len += len; 2261 } else { 2262 next_pos = find_next_bit_le(entry->discard_map, 2263 BLKS_PER_SEG(sbi), cur_pos); 2264 } 2265 skip: 2266 cur_pos = next_pos; 2267 is_valid = !is_valid; 2268 2269 if (cur_pos < BLKS_PER_SEG(sbi)) 2270 goto find_next; 2271 2272 release_discard_addr(entry); 2273 dcc->nr_discards -= total_len; 2274 } 2275 2276 wakeup: 2277 wake_up_discard_thread(sbi, false); 2278 } 2279 2280 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2281 { 2282 dev_t dev = sbi->sb->s_bdev->bd_dev; 2283 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2284 int err = 0; 2285 2286 if (f2fs_sb_has_readonly(sbi)) { 2287 f2fs_info(sbi, 2288 "Skip to start discard thread for readonly image"); 2289 return 0; 2290 } 2291 2292 if (!f2fs_realtime_discard_enable(sbi)) 2293 return 0; 2294 2295 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2296 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2297 if (IS_ERR(dcc->f2fs_issue_discard)) { 2298 err = PTR_ERR(dcc->f2fs_issue_discard); 2299 dcc->f2fs_issue_discard = NULL; 2300 } 2301 2302 return err; 2303 } 2304 2305 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2306 { 2307 struct discard_cmd_control *dcc; 2308 int err = 0, i; 2309 2310 if (SM_I(sbi)->dcc_info) { 2311 dcc = SM_I(sbi)->dcc_info; 2312 goto init_thread; 2313 } 2314 2315 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2316 if (!dcc) 2317 return -ENOMEM; 2318 2319 dcc->discard_io_aware_gran = MAX_PLIST_NUM; 2320 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2321 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; 2322 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE; 2323 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2324 dcc->discard_granularity = BLKS_PER_SEG(sbi); 2325 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2326 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2327 2328 INIT_LIST_HEAD(&dcc->entry_list); 2329 for (i = 0; i < MAX_PLIST_NUM; i++) 2330 INIT_LIST_HEAD(&dcc->pend_list[i]); 2331 INIT_LIST_HEAD(&dcc->wait_list); 2332 INIT_LIST_HEAD(&dcc->fstrim_list); 2333 mutex_init(&dcc->cmd_lock); 2334 atomic_set(&dcc->issued_discard, 0); 2335 atomic_set(&dcc->queued_discard, 0); 2336 atomic_set(&dcc->discard_cmd_cnt, 0); 2337 dcc->nr_discards = 0; 2338 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi)); 2339 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2340 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2341 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2342 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2343 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; 2344 dcc->undiscard_blks = 0; 2345 dcc->next_pos = 0; 2346 dcc->root = RB_ROOT_CACHED; 2347 dcc->rbtree_check = false; 2348 2349 init_waitqueue_head(&dcc->discard_wait_queue); 2350 SM_I(sbi)->dcc_info = dcc; 2351 init_thread: 2352 err = f2fs_start_discard_thread(sbi); 2353 if (err) { 2354 kfree(dcc); 2355 SM_I(sbi)->dcc_info = NULL; 2356 } 2357 2358 return err; 2359 } 2360 2361 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2362 { 2363 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2364 2365 if (!dcc) 2366 return; 2367 2368 f2fs_stop_discard_thread(sbi); 2369 2370 /* 2371 * Recovery can cache discard commands, so in error path of 2372 * fill_super(), it needs to give a chance to handle them. 2373 */ 2374 f2fs_issue_discard_timeout(sbi); 2375 2376 kfree(dcc); 2377 SM_I(sbi)->dcc_info = NULL; 2378 } 2379 2380 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2381 { 2382 struct sit_info *sit_i = SIT_I(sbi); 2383 2384 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2385 sit_i->dirty_sentries++; 2386 return false; 2387 } 2388 2389 return true; 2390 } 2391 2392 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2393 unsigned int segno, int modified) 2394 { 2395 struct seg_entry *se = get_seg_entry(sbi, segno); 2396 2397 se->type = type; 2398 if (modified) 2399 __mark_sit_entry_dirty(sbi, segno); 2400 } 2401 2402 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2403 block_t blkaddr) 2404 { 2405 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2406 2407 if (segno == NULL_SEGNO) 2408 return 0; 2409 return get_seg_entry(sbi, segno)->mtime; 2410 } 2411 2412 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2413 unsigned long long old_mtime) 2414 { 2415 struct seg_entry *se; 2416 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2417 unsigned long long ctime = get_mtime(sbi, false); 2418 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2419 2420 if (segno == NULL_SEGNO) 2421 return; 2422 2423 se = get_seg_entry(sbi, segno); 2424 2425 if (!se->mtime) 2426 se->mtime = mtime; 2427 else 2428 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2429 se->valid_blocks + 1); 2430 2431 if (ctime > SIT_I(sbi)->max_mtime) 2432 SIT_I(sbi)->max_mtime = ctime; 2433 } 2434 2435 /* 2436 * NOTE: when updating multiple blocks at the same time, please ensure 2437 * that the consecutive input blocks belong to the same segment. 2438 */ 2439 static int update_sit_entry_for_release(struct f2fs_sb_info *sbi, struct seg_entry *se, 2440 block_t blkaddr, unsigned int offset, int del) 2441 { 2442 bool exist; 2443 #ifdef CONFIG_F2FS_CHECK_FS 2444 bool mir_exist; 2445 #endif 2446 int i; 2447 int del_count = -del; 2448 2449 f2fs_bug_on(sbi, GET_SEGNO(sbi, blkaddr) != GET_SEGNO(sbi, blkaddr + del_count - 1)); 2450 2451 for (i = 0; i < del_count; i++) { 2452 exist = f2fs_test_and_clear_bit(offset + i, se->cur_valid_map); 2453 #ifdef CONFIG_F2FS_CHECK_FS 2454 mir_exist = f2fs_test_and_clear_bit(offset + i, 2455 se->cur_valid_map_mir); 2456 if (unlikely(exist != mir_exist)) { 2457 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2458 blkaddr + i, exist); 2459 f2fs_bug_on(sbi, 1); 2460 } 2461 #endif 2462 if (unlikely(!exist)) { 2463 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", blkaddr + i); 2464 f2fs_bug_on(sbi, 1); 2465 se->valid_blocks++; 2466 del += 1; 2467 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2468 /* 2469 * If checkpoints are off, we must not reuse data that 2470 * was used in the previous checkpoint. If it was used 2471 * before, we must track that to know how much space we 2472 * really have. 2473 */ 2474 if (f2fs_test_bit(offset + i, se->ckpt_valid_map)) { 2475 spin_lock(&sbi->stat_lock); 2476 sbi->unusable_block_count++; 2477 spin_unlock(&sbi->stat_lock); 2478 } 2479 } 2480 2481 if (f2fs_block_unit_discard(sbi) && 2482 f2fs_test_and_clear_bit(offset + i, se->discard_map)) 2483 sbi->discard_blks++; 2484 2485 if (!f2fs_test_bit(offset + i, se->ckpt_valid_map)) 2486 se->ckpt_valid_blocks -= 1; 2487 } 2488 2489 return del; 2490 } 2491 2492 static int update_sit_entry_for_alloc(struct f2fs_sb_info *sbi, struct seg_entry *se, 2493 block_t blkaddr, unsigned int offset, int del) 2494 { 2495 bool exist; 2496 #ifdef CONFIG_F2FS_CHECK_FS 2497 bool mir_exist; 2498 #endif 2499 2500 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2501 #ifdef CONFIG_F2FS_CHECK_FS 2502 mir_exist = f2fs_test_and_set_bit(offset, 2503 se->cur_valid_map_mir); 2504 if (unlikely(exist != mir_exist)) { 2505 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2506 blkaddr, exist); 2507 f2fs_bug_on(sbi, 1); 2508 } 2509 #endif 2510 if (unlikely(exist)) { 2511 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", blkaddr); 2512 f2fs_bug_on(sbi, 1); 2513 se->valid_blocks--; 2514 del = 0; 2515 } 2516 2517 if (f2fs_block_unit_discard(sbi) && 2518 !f2fs_test_and_set_bit(offset, se->discard_map)) 2519 sbi->discard_blks--; 2520 2521 /* 2522 * SSR should never reuse block which is checkpointed 2523 * or newly invalidated. 2524 */ 2525 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2526 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2527 se->ckpt_valid_blocks++; 2528 } 2529 2530 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2531 se->ckpt_valid_blocks += del; 2532 2533 return del; 2534 } 2535 2536 /* 2537 * If releasing blocks, this function supports updating multiple consecutive blocks 2538 * at one time, but please note that these consecutive blocks need to belong to the 2539 * same segment. 2540 */ 2541 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2542 { 2543 struct seg_entry *se; 2544 unsigned int segno, offset; 2545 long int new_vblocks; 2546 2547 segno = GET_SEGNO(sbi, blkaddr); 2548 if (segno == NULL_SEGNO) 2549 return; 2550 2551 se = get_seg_entry(sbi, segno); 2552 new_vblocks = se->valid_blocks + del; 2553 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2554 2555 f2fs_bug_on(sbi, (new_vblocks < 0 || 2556 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2557 2558 se->valid_blocks = new_vblocks; 2559 2560 /* Update valid block bitmap */ 2561 if (del > 0) { 2562 del = update_sit_entry_for_alloc(sbi, se, blkaddr, offset, del); 2563 } else { 2564 del = update_sit_entry_for_release(sbi, se, blkaddr, offset, del); 2565 } 2566 2567 __mark_sit_entry_dirty(sbi, segno); 2568 2569 /* update total number of valid blocks to be written in ckpt area */ 2570 SIT_I(sbi)->written_valid_blocks += del; 2571 2572 if (__is_large_section(sbi)) 2573 get_sec_entry(sbi, segno)->valid_blocks += del; 2574 } 2575 2576 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr, 2577 unsigned int len) 2578 { 2579 unsigned int segno = GET_SEGNO(sbi, addr); 2580 struct sit_info *sit_i = SIT_I(sbi); 2581 block_t addr_start = addr, addr_end = addr + len - 1; 2582 unsigned int seg_num = GET_SEGNO(sbi, addr_end) - segno + 1; 2583 unsigned int i = 1, max_blocks = sbi->blocks_per_seg, cnt; 2584 2585 f2fs_bug_on(sbi, addr == NULL_ADDR); 2586 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2587 return; 2588 2589 f2fs_invalidate_internal_cache(sbi, addr, len); 2590 2591 /* add it into sit main buffer */ 2592 down_write(&sit_i->sentry_lock); 2593 2594 if (seg_num == 1) 2595 cnt = len; 2596 else 2597 cnt = max_blocks - GET_BLKOFF_FROM_SEG0(sbi, addr); 2598 2599 do { 2600 update_segment_mtime(sbi, addr_start, 0); 2601 update_sit_entry(sbi, addr_start, -cnt); 2602 2603 /* add it into dirty seglist */ 2604 locate_dirty_segment(sbi, segno); 2605 2606 /* update @addr_start and @cnt and @segno */ 2607 addr_start = START_BLOCK(sbi, ++segno); 2608 if (++i == seg_num) 2609 cnt = GET_BLKOFF_FROM_SEG0(sbi, addr_end) + 1; 2610 else 2611 cnt = max_blocks; 2612 } while (i <= seg_num); 2613 2614 up_write(&sit_i->sentry_lock); 2615 } 2616 2617 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2618 { 2619 struct sit_info *sit_i = SIT_I(sbi); 2620 unsigned int segno, offset; 2621 struct seg_entry *se; 2622 bool is_cp = false; 2623 2624 if (!__is_valid_data_blkaddr(blkaddr)) 2625 return true; 2626 2627 down_read(&sit_i->sentry_lock); 2628 2629 segno = GET_SEGNO(sbi, blkaddr); 2630 se = get_seg_entry(sbi, segno); 2631 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2632 2633 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2634 is_cp = true; 2635 2636 up_read(&sit_i->sentry_lock); 2637 2638 return is_cp; 2639 } 2640 2641 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type) 2642 { 2643 struct curseg_info *curseg = CURSEG_I(sbi, type); 2644 2645 if (sbi->ckpt->alloc_type[type] == SSR) 2646 return BLKS_PER_SEG(sbi); 2647 return curseg->next_blkoff; 2648 } 2649 2650 /* 2651 * Calculate the number of current summary pages for writing 2652 */ 2653 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2654 { 2655 int valid_sum_count = 0; 2656 int i, sum_in_page; 2657 2658 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2659 if (sbi->ckpt->alloc_type[i] != SSR && for_ra) 2660 valid_sum_count += 2661 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2662 else 2663 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i); 2664 } 2665 2666 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2667 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2668 if (valid_sum_count <= sum_in_page) 2669 return 1; 2670 else if ((valid_sum_count - sum_in_page) <= 2671 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2672 return 2; 2673 return 3; 2674 } 2675 2676 /* 2677 * Caller should put this summary page 2678 */ 2679 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2680 { 2681 if (unlikely(f2fs_cp_error(sbi))) 2682 return ERR_PTR(-EIO); 2683 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2684 } 2685 2686 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2687 void *src, block_t blk_addr) 2688 { 2689 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2690 2691 memcpy(page_address(page), src, PAGE_SIZE); 2692 set_page_dirty(page); 2693 f2fs_put_page(page, 1); 2694 } 2695 2696 static void write_sum_page(struct f2fs_sb_info *sbi, 2697 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2698 { 2699 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2700 } 2701 2702 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2703 int type, block_t blk_addr) 2704 { 2705 struct curseg_info *curseg = CURSEG_I(sbi, type); 2706 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2707 struct f2fs_summary_block *src = curseg->sum_blk; 2708 struct f2fs_summary_block *dst; 2709 2710 dst = (struct f2fs_summary_block *)page_address(page); 2711 memset(dst, 0, PAGE_SIZE); 2712 2713 mutex_lock(&curseg->curseg_mutex); 2714 2715 down_read(&curseg->journal_rwsem); 2716 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2717 up_read(&curseg->journal_rwsem); 2718 2719 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2720 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2721 2722 mutex_unlock(&curseg->curseg_mutex); 2723 2724 set_page_dirty(page); 2725 f2fs_put_page(page, 1); 2726 } 2727 2728 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2729 struct curseg_info *curseg) 2730 { 2731 unsigned int segno = curseg->segno + 1; 2732 struct free_segmap_info *free_i = FREE_I(sbi); 2733 2734 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi)) 2735 return !test_bit(segno, free_i->free_segmap); 2736 return 0; 2737 } 2738 2739 /* 2740 * Find a new segment from the free segments bitmap to right order 2741 * This function should be returned with success, otherwise BUG 2742 */ 2743 static int get_new_segment(struct f2fs_sb_info *sbi, 2744 unsigned int *newseg, bool new_sec, bool pinning) 2745 { 2746 struct free_segmap_info *free_i = FREE_I(sbi); 2747 unsigned int segno, secno, zoneno; 2748 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2749 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2750 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2751 bool init = true; 2752 int i; 2753 int ret = 0; 2754 2755 spin_lock(&free_i->segmap_lock); 2756 2757 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) { 2758 ret = -ENOSPC; 2759 goto out_unlock; 2760 } 2761 2762 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) { 2763 segno = find_next_zero_bit(free_i->free_segmap, 2764 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2765 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2766 goto got_it; 2767 } 2768 2769 #ifdef CONFIG_BLK_DEV_ZONED 2770 /* 2771 * If we format f2fs on zoned storage, let's try to get pinned sections 2772 * from beginning of the storage, which should be a conventional one. 2773 */ 2774 if (f2fs_sb_has_blkzoned(sbi)) { 2775 /* Prioritize writing to conventional zones */ 2776 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning) 2777 segno = 0; 2778 else 2779 segno = max(sbi->first_zoned_segno, *newseg); 2780 hint = GET_SEC_FROM_SEG(sbi, segno); 2781 } 2782 #endif 2783 2784 find_other_zone: 2785 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2786 2787 #ifdef CONFIG_BLK_DEV_ZONED 2788 if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) { 2789 /* Write only to sequential zones */ 2790 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) { 2791 hint = GET_SEC_FROM_SEG(sbi, sbi->first_zoned_segno); 2792 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2793 } else 2794 secno = find_first_zero_bit(free_i->free_secmap, 2795 MAIN_SECS(sbi)); 2796 if (secno >= MAIN_SECS(sbi)) { 2797 ret = -ENOSPC; 2798 f2fs_bug_on(sbi, 1); 2799 goto out_unlock; 2800 } 2801 } 2802 #endif 2803 2804 if (secno >= MAIN_SECS(sbi)) { 2805 secno = find_first_zero_bit(free_i->free_secmap, 2806 MAIN_SECS(sbi)); 2807 if (secno >= MAIN_SECS(sbi)) { 2808 ret = -ENOSPC; 2809 f2fs_bug_on(sbi, 1); 2810 goto out_unlock; 2811 } 2812 } 2813 segno = GET_SEG_FROM_SEC(sbi, secno); 2814 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2815 2816 /* give up on finding another zone */ 2817 if (!init) 2818 goto got_it; 2819 if (sbi->secs_per_zone == 1) 2820 goto got_it; 2821 if (zoneno == old_zoneno) 2822 goto got_it; 2823 for (i = 0; i < NR_CURSEG_TYPE; i++) 2824 if (CURSEG_I(sbi, i)->zone == zoneno) 2825 break; 2826 2827 if (i < NR_CURSEG_TYPE) { 2828 /* zone is in user, try another */ 2829 if (zoneno + 1 >= total_zones) 2830 hint = 0; 2831 else 2832 hint = (zoneno + 1) * sbi->secs_per_zone; 2833 init = false; 2834 goto find_other_zone; 2835 } 2836 got_it: 2837 /* set it as dirty segment in free segmap */ 2838 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2839 2840 /* no free section in conventional zone */ 2841 if (new_sec && pinning && 2842 !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) { 2843 ret = -EAGAIN; 2844 goto out_unlock; 2845 } 2846 __set_inuse(sbi, segno); 2847 *newseg = segno; 2848 out_unlock: 2849 spin_unlock(&free_i->segmap_lock); 2850 2851 if (ret == -ENOSPC) 2852 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT); 2853 return ret; 2854 } 2855 2856 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2857 { 2858 struct curseg_info *curseg = CURSEG_I(sbi, type); 2859 struct summary_footer *sum_footer; 2860 unsigned short seg_type = curseg->seg_type; 2861 2862 /* only happen when get_new_segment() fails */ 2863 if (curseg->next_segno == NULL_SEGNO) 2864 return; 2865 2866 curseg->inited = true; 2867 curseg->segno = curseg->next_segno; 2868 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2869 curseg->next_blkoff = 0; 2870 curseg->next_segno = NULL_SEGNO; 2871 2872 sum_footer = &(curseg->sum_blk->footer); 2873 memset(sum_footer, 0, sizeof(struct summary_footer)); 2874 2875 sanity_check_seg_type(sbi, seg_type); 2876 2877 if (IS_DATASEG(seg_type)) 2878 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2879 if (IS_NODESEG(seg_type)) 2880 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2881 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2882 } 2883 2884 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2885 { 2886 struct curseg_info *curseg = CURSEG_I(sbi, type); 2887 unsigned short seg_type = curseg->seg_type; 2888 2889 sanity_check_seg_type(sbi, seg_type); 2890 if (__is_large_section(sbi)) { 2891 if (f2fs_need_rand_seg(sbi)) { 2892 unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno); 2893 2894 if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint) 2895 return curseg->segno; 2896 return get_random_u32_inclusive(curseg->segno + 1, 2897 GET_SEG_FROM_SEC(sbi, hint + 1) - 1); 2898 } 2899 return curseg->segno; 2900 } else if (f2fs_need_rand_seg(sbi)) { 2901 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi)); 2902 } 2903 2904 /* inmem log may not locate on any segment after mount */ 2905 if (!curseg->inited) 2906 return 0; 2907 2908 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2909 return 0; 2910 2911 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)) 2912 return 0; 2913 2914 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2915 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2916 2917 /* find segments from 0 to reuse freed segments */ 2918 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2919 return 0; 2920 2921 return curseg->segno; 2922 } 2923 2924 /* 2925 * Allocate a current working segment. 2926 * This function always allocates a free segment in LFS manner. 2927 */ 2928 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2929 { 2930 struct curseg_info *curseg = CURSEG_I(sbi, type); 2931 unsigned int segno = curseg->segno; 2932 bool pinning = type == CURSEG_COLD_DATA_PINNED; 2933 int ret; 2934 2935 if (curseg->inited) 2936 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno)); 2937 2938 segno = __get_next_segno(sbi, type); 2939 ret = get_new_segment(sbi, &segno, new_sec, pinning); 2940 if (ret) { 2941 if (ret == -ENOSPC) 2942 curseg->segno = NULL_SEGNO; 2943 return ret; 2944 } 2945 2946 curseg->next_segno = segno; 2947 reset_curseg(sbi, type, 1); 2948 curseg->alloc_type = LFS; 2949 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2950 curseg->fragment_remained_chunk = 2951 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2952 return 0; 2953 } 2954 2955 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2956 int segno, block_t start) 2957 { 2958 struct seg_entry *se = get_seg_entry(sbi, segno); 2959 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2960 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2961 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2962 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2963 int i; 2964 2965 for (i = 0; i < entries; i++) 2966 target_map[i] = ckpt_map[i] | cur_map[i]; 2967 2968 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start); 2969 } 2970 2971 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi, 2972 struct curseg_info *seg) 2973 { 2974 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1); 2975 } 2976 2977 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2978 { 2979 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi); 2980 } 2981 2982 /* 2983 * This function always allocates a used segment(from dirty seglist) by SSR 2984 * manner, so it should recover the existing segment information of valid blocks 2985 */ 2986 static int change_curseg(struct f2fs_sb_info *sbi, int type) 2987 { 2988 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2989 struct curseg_info *curseg = CURSEG_I(sbi, type); 2990 unsigned int new_segno = curseg->next_segno; 2991 struct f2fs_summary_block *sum_node; 2992 struct page *sum_page; 2993 2994 if (curseg->inited) 2995 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); 2996 2997 __set_test_and_inuse(sbi, new_segno); 2998 2999 mutex_lock(&dirty_i->seglist_lock); 3000 __remove_dirty_segment(sbi, new_segno, PRE); 3001 __remove_dirty_segment(sbi, new_segno, DIRTY); 3002 mutex_unlock(&dirty_i->seglist_lock); 3003 3004 reset_curseg(sbi, type, 1); 3005 curseg->alloc_type = SSR; 3006 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 3007 3008 sum_page = f2fs_get_sum_page(sbi, new_segno); 3009 if (IS_ERR(sum_page)) { 3010 /* GC won't be able to use stale summary pages by cp_error */ 3011 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 3012 return PTR_ERR(sum_page); 3013 } 3014 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 3015 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 3016 f2fs_put_page(sum_page, 1); 3017 return 0; 3018 } 3019 3020 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 3021 int alloc_mode, unsigned long long age); 3022 3023 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type, 3024 int target_type, int alloc_mode, 3025 unsigned long long age) 3026 { 3027 struct curseg_info *curseg = CURSEG_I(sbi, type); 3028 int ret = 0; 3029 3030 curseg->seg_type = target_type; 3031 3032 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 3033 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 3034 3035 curseg->seg_type = se->type; 3036 ret = change_curseg(sbi, type); 3037 } else { 3038 /* allocate cold segment by default */ 3039 curseg->seg_type = CURSEG_COLD_DATA; 3040 ret = new_curseg(sbi, type, true); 3041 } 3042 stat_inc_seg_type(sbi, curseg); 3043 return ret; 3044 } 3045 3046 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force) 3047 { 3048 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 3049 int ret = 0; 3050 3051 if (!sbi->am.atgc_enabled && !force) 3052 return 0; 3053 3054 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3055 3056 mutex_lock(&curseg->curseg_mutex); 3057 down_write(&SIT_I(sbi)->sentry_lock); 3058 3059 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, 3060 CURSEG_COLD_DATA, SSR, 0); 3061 3062 up_write(&SIT_I(sbi)->sentry_lock); 3063 mutex_unlock(&curseg->curseg_mutex); 3064 3065 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3066 return ret; 3067 } 3068 3069 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 3070 { 3071 return __f2fs_init_atgc_curseg(sbi, false); 3072 } 3073 3074 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi) 3075 { 3076 int ret; 3077 3078 if (!test_opt(sbi, ATGC)) 3079 return 0; 3080 if (sbi->am.atgc_enabled) 3081 return 0; 3082 if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) < 3083 sbi->am.age_threshold) 3084 return 0; 3085 3086 ret = __f2fs_init_atgc_curseg(sbi, true); 3087 if (!ret) { 3088 sbi->am.atgc_enabled = true; 3089 f2fs_info(sbi, "reenabled age threshold GC"); 3090 } 3091 return ret; 3092 } 3093 3094 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 3095 { 3096 struct curseg_info *curseg = CURSEG_I(sbi, type); 3097 3098 mutex_lock(&curseg->curseg_mutex); 3099 if (!curseg->inited) 3100 goto out; 3101 3102 if (get_valid_blocks(sbi, curseg->segno, false)) { 3103 write_sum_page(sbi, curseg->sum_blk, 3104 GET_SUM_BLOCK(sbi, curseg->segno)); 3105 } else { 3106 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 3107 __set_test_and_free(sbi, curseg->segno, true); 3108 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 3109 } 3110 out: 3111 mutex_unlock(&curseg->curseg_mutex); 3112 } 3113 3114 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 3115 { 3116 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 3117 3118 if (sbi->am.atgc_enabled) 3119 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 3120 } 3121 3122 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 3123 { 3124 struct curseg_info *curseg = CURSEG_I(sbi, type); 3125 3126 mutex_lock(&curseg->curseg_mutex); 3127 if (!curseg->inited) 3128 goto out; 3129 if (get_valid_blocks(sbi, curseg->segno, false)) 3130 goto out; 3131 3132 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 3133 __set_test_and_inuse(sbi, curseg->segno); 3134 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 3135 out: 3136 mutex_unlock(&curseg->curseg_mutex); 3137 } 3138 3139 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 3140 { 3141 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 3142 3143 if (sbi->am.atgc_enabled) 3144 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 3145 } 3146 3147 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 3148 int alloc_mode, unsigned long long age) 3149 { 3150 struct curseg_info *curseg = CURSEG_I(sbi, type); 3151 unsigned segno = NULL_SEGNO; 3152 unsigned short seg_type = curseg->seg_type; 3153 int i, cnt; 3154 bool reversed = false; 3155 3156 sanity_check_seg_type(sbi, seg_type); 3157 3158 /* f2fs_need_SSR() already forces to do this */ 3159 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, 3160 alloc_mode, age, false)) { 3161 curseg->next_segno = segno; 3162 return 1; 3163 } 3164 3165 /* For node segments, let's do SSR more intensively */ 3166 if (IS_NODESEG(seg_type)) { 3167 if (seg_type >= CURSEG_WARM_NODE) { 3168 reversed = true; 3169 i = CURSEG_COLD_NODE; 3170 } else { 3171 i = CURSEG_HOT_NODE; 3172 } 3173 cnt = NR_CURSEG_NODE_TYPE; 3174 } else { 3175 if (seg_type >= CURSEG_WARM_DATA) { 3176 reversed = true; 3177 i = CURSEG_COLD_DATA; 3178 } else { 3179 i = CURSEG_HOT_DATA; 3180 } 3181 cnt = NR_CURSEG_DATA_TYPE; 3182 } 3183 3184 for (; cnt-- > 0; reversed ? i-- : i++) { 3185 if (i == seg_type) 3186 continue; 3187 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, 3188 alloc_mode, age, false)) { 3189 curseg->next_segno = segno; 3190 return 1; 3191 } 3192 } 3193 3194 /* find valid_blocks=0 in dirty list */ 3195 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 3196 segno = get_free_segment(sbi); 3197 if (segno != NULL_SEGNO) { 3198 curseg->next_segno = segno; 3199 return 1; 3200 } 3201 } 3202 return 0; 3203 } 3204 3205 static bool need_new_seg(struct f2fs_sb_info *sbi, int type) 3206 { 3207 struct curseg_info *curseg = CURSEG_I(sbi, type); 3208 3209 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 3210 curseg->seg_type == CURSEG_WARM_NODE) 3211 return true; 3212 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) && 3213 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3214 return true; 3215 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) 3216 return true; 3217 return false; 3218 } 3219 3220 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3221 unsigned int start, unsigned int end) 3222 { 3223 struct curseg_info *curseg = CURSEG_I(sbi, type); 3224 unsigned int segno; 3225 int ret = 0; 3226 3227 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3228 mutex_lock(&curseg->curseg_mutex); 3229 down_write(&SIT_I(sbi)->sentry_lock); 3230 3231 segno = CURSEG_I(sbi, type)->segno; 3232 if (segno < start || segno > end) 3233 goto unlock; 3234 3235 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 3236 ret = change_curseg(sbi, type); 3237 else 3238 ret = new_curseg(sbi, type, true); 3239 3240 stat_inc_seg_type(sbi, curseg); 3241 3242 locate_dirty_segment(sbi, segno); 3243 unlock: 3244 up_write(&SIT_I(sbi)->sentry_lock); 3245 3246 if (segno != curseg->segno) 3247 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 3248 type, segno, curseg->segno); 3249 3250 mutex_unlock(&curseg->curseg_mutex); 3251 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3252 return ret; 3253 } 3254 3255 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 3256 bool new_sec, bool force) 3257 { 3258 struct curseg_info *curseg = CURSEG_I(sbi, type); 3259 unsigned int old_segno; 3260 int err = 0; 3261 3262 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited) 3263 goto allocate; 3264 3265 if (!force && curseg->inited && 3266 !curseg->next_blkoff && 3267 !get_valid_blocks(sbi, curseg->segno, new_sec) && 3268 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 3269 return 0; 3270 3271 allocate: 3272 old_segno = curseg->segno; 3273 err = new_curseg(sbi, type, true); 3274 if (err) 3275 return err; 3276 stat_inc_seg_type(sbi, curseg); 3277 locate_dirty_segment(sbi, old_segno); 3278 return 0; 3279 } 3280 3281 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 3282 { 3283 int ret; 3284 3285 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3286 down_write(&SIT_I(sbi)->sentry_lock); 3287 ret = __allocate_new_segment(sbi, type, true, force); 3288 up_write(&SIT_I(sbi)->sentry_lock); 3289 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3290 3291 return ret; 3292 } 3293 3294 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi) 3295 { 3296 int err; 3297 bool gc_required = true; 3298 3299 retry: 3300 f2fs_lock_op(sbi); 3301 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3302 f2fs_unlock_op(sbi); 3303 3304 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) { 3305 f2fs_down_write(&sbi->gc_lock); 3306 err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), 3307 true, ZONED_PIN_SEC_REQUIRED_COUNT); 3308 f2fs_up_write(&sbi->gc_lock); 3309 3310 gc_required = false; 3311 if (!err) 3312 goto retry; 3313 } 3314 3315 return err; 3316 } 3317 3318 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 3319 { 3320 int i; 3321 int err = 0; 3322 3323 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3324 down_write(&SIT_I(sbi)->sentry_lock); 3325 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 3326 err += __allocate_new_segment(sbi, i, false, false); 3327 up_write(&SIT_I(sbi)->sentry_lock); 3328 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3329 3330 return err; 3331 } 3332 3333 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3334 struct cp_control *cpc) 3335 { 3336 __u64 trim_start = cpc->trim_start; 3337 bool has_candidate = false; 3338 3339 down_write(&SIT_I(sbi)->sentry_lock); 3340 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 3341 if (add_discard_addrs(sbi, cpc, true)) { 3342 has_candidate = true; 3343 break; 3344 } 3345 } 3346 up_write(&SIT_I(sbi)->sentry_lock); 3347 3348 cpc->trim_start = trim_start; 3349 return has_candidate; 3350 } 3351 3352 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3353 struct discard_policy *dpolicy, 3354 unsigned int start, unsigned int end) 3355 { 3356 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3357 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3358 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3359 struct discard_cmd *dc; 3360 struct blk_plug plug; 3361 int issued; 3362 unsigned int trimmed = 0; 3363 3364 next: 3365 issued = 0; 3366 3367 mutex_lock(&dcc->cmd_lock); 3368 if (unlikely(dcc->rbtree_check)) 3369 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 3370 3371 dc = __lookup_discard_cmd_ret(&dcc->root, start, 3372 &prev_dc, &next_dc, &insert_p, &insert_parent); 3373 if (!dc) 3374 dc = next_dc; 3375 3376 blk_start_plug(&plug); 3377 3378 while (dc && dc->di.lstart <= end) { 3379 struct rb_node *node; 3380 int err = 0; 3381 3382 if (dc->di.len < dpolicy->granularity) 3383 goto skip; 3384 3385 if (dc->state != D_PREP) { 3386 list_move_tail(&dc->list, &dcc->fstrim_list); 3387 goto skip; 3388 } 3389 3390 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3391 3392 if (issued >= dpolicy->max_requests) { 3393 start = dc->di.lstart + dc->di.len; 3394 3395 if (err) 3396 __remove_discard_cmd(sbi, dc); 3397 3398 blk_finish_plug(&plug); 3399 mutex_unlock(&dcc->cmd_lock); 3400 trimmed += __wait_all_discard_cmd(sbi, NULL); 3401 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3402 goto next; 3403 } 3404 skip: 3405 node = rb_next(&dc->rb_node); 3406 if (err) 3407 __remove_discard_cmd(sbi, dc); 3408 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3409 3410 if (fatal_signal_pending(current)) 3411 break; 3412 } 3413 3414 blk_finish_plug(&plug); 3415 mutex_unlock(&dcc->cmd_lock); 3416 3417 return trimmed; 3418 } 3419 3420 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3421 { 3422 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3423 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3424 unsigned int start_segno, end_segno; 3425 block_t start_block, end_block; 3426 struct cp_control cpc; 3427 struct discard_policy dpolicy; 3428 unsigned long long trimmed = 0; 3429 int err = 0; 3430 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3431 3432 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3433 return -EINVAL; 3434 3435 if (end < MAIN_BLKADDR(sbi)) 3436 goto out; 3437 3438 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3439 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3440 return -EFSCORRUPTED; 3441 } 3442 3443 /* start/end segment number in main_area */ 3444 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3445 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3446 GET_SEGNO(sbi, end); 3447 if (need_align) { 3448 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi)); 3449 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1; 3450 } 3451 3452 cpc.reason = CP_DISCARD; 3453 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3454 cpc.trim_start = start_segno; 3455 cpc.trim_end = end_segno; 3456 3457 if (sbi->discard_blks == 0) 3458 goto out; 3459 3460 f2fs_down_write(&sbi->gc_lock); 3461 stat_inc_cp_call_count(sbi, TOTAL_CALL); 3462 err = f2fs_write_checkpoint(sbi, &cpc); 3463 f2fs_up_write(&sbi->gc_lock); 3464 if (err) 3465 goto out; 3466 3467 /* 3468 * We filed discard candidates, but actually we don't need to wait for 3469 * all of them, since they'll be issued in idle time along with runtime 3470 * discard option. User configuration looks like using runtime discard 3471 * or periodic fstrim instead of it. 3472 */ 3473 if (f2fs_realtime_discard_enable(sbi)) 3474 goto out; 3475 3476 start_block = START_BLOCK(sbi, start_segno); 3477 end_block = START_BLOCK(sbi, end_segno + 1); 3478 3479 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3480 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3481 start_block, end_block); 3482 3483 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3484 start_block, end_block); 3485 out: 3486 if (!err) 3487 range->len = F2FS_BLK_TO_BYTES(trimmed); 3488 return err; 3489 } 3490 3491 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint) 3492 { 3493 if (F2FS_OPTION(sbi).active_logs == 2) 3494 return CURSEG_HOT_DATA; 3495 else if (F2FS_OPTION(sbi).active_logs == 4) 3496 return CURSEG_COLD_DATA; 3497 3498 /* active_log == 6 */ 3499 switch (hint) { 3500 case WRITE_LIFE_SHORT: 3501 return CURSEG_HOT_DATA; 3502 case WRITE_LIFE_EXTREME: 3503 return CURSEG_COLD_DATA; 3504 default: 3505 return CURSEG_WARM_DATA; 3506 } 3507 } 3508 3509 /* 3510 * This returns write hints for each segment type. This hints will be 3511 * passed down to block layer as below by default. 3512 * 3513 * User F2FS Block 3514 * ---- ---- ----- 3515 * META WRITE_LIFE_NONE|REQ_META 3516 * HOT_NODE WRITE_LIFE_NONE 3517 * WARM_NODE WRITE_LIFE_MEDIUM 3518 * COLD_NODE WRITE_LIFE_LONG 3519 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3520 * extension list " " 3521 * 3522 * -- buffered io 3523 * COLD_DATA WRITE_LIFE_EXTREME 3524 * HOT_DATA WRITE_LIFE_SHORT 3525 * WARM_DATA WRITE_LIFE_NOT_SET 3526 * 3527 * -- direct io 3528 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3529 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3530 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3531 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3532 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3533 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3534 */ 3535 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3536 enum page_type type, enum temp_type temp) 3537 { 3538 switch (type) { 3539 case DATA: 3540 switch (temp) { 3541 case WARM: 3542 return WRITE_LIFE_NOT_SET; 3543 case HOT: 3544 return WRITE_LIFE_SHORT; 3545 case COLD: 3546 return WRITE_LIFE_EXTREME; 3547 default: 3548 return WRITE_LIFE_NONE; 3549 } 3550 case NODE: 3551 switch (temp) { 3552 case WARM: 3553 return WRITE_LIFE_MEDIUM; 3554 case HOT: 3555 return WRITE_LIFE_NONE; 3556 case COLD: 3557 return WRITE_LIFE_LONG; 3558 default: 3559 return WRITE_LIFE_NONE; 3560 } 3561 case META: 3562 return WRITE_LIFE_NONE; 3563 default: 3564 return WRITE_LIFE_NONE; 3565 } 3566 } 3567 3568 static int __get_segment_type_2(struct f2fs_io_info *fio) 3569 { 3570 if (fio->type == DATA) 3571 return CURSEG_HOT_DATA; 3572 else 3573 return CURSEG_HOT_NODE; 3574 } 3575 3576 static int __get_segment_type_4(struct f2fs_io_info *fio) 3577 { 3578 if (fio->type == DATA) { 3579 struct inode *inode = fio->page->mapping->host; 3580 3581 if (S_ISDIR(inode->i_mode)) 3582 return CURSEG_HOT_DATA; 3583 else 3584 return CURSEG_COLD_DATA; 3585 } else { 3586 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3587 return CURSEG_WARM_NODE; 3588 else 3589 return CURSEG_COLD_NODE; 3590 } 3591 } 3592 3593 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) 3594 { 3595 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3596 struct extent_info ei = {}; 3597 3598 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { 3599 if (!ei.age) 3600 return NO_CHECK_TYPE; 3601 if (ei.age <= sbi->hot_data_age_threshold) 3602 return CURSEG_HOT_DATA; 3603 if (ei.age <= sbi->warm_data_age_threshold) 3604 return CURSEG_WARM_DATA; 3605 return CURSEG_COLD_DATA; 3606 } 3607 return NO_CHECK_TYPE; 3608 } 3609 3610 static int __get_segment_type_6(struct f2fs_io_info *fio) 3611 { 3612 if (fio->type == DATA) { 3613 struct inode *inode = fio->page->mapping->host; 3614 int type; 3615 3616 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3617 return CURSEG_COLD_DATA_PINNED; 3618 3619 if (page_private_gcing(fio->page)) { 3620 if (fio->sbi->am.atgc_enabled && 3621 (fio->io_type == FS_DATA_IO) && 3622 (fio->sbi->gc_mode != GC_URGENT_HIGH) && 3623 __is_valid_data_blkaddr(fio->old_blkaddr) && 3624 !is_inode_flag_set(inode, FI_OPU_WRITE)) 3625 return CURSEG_ALL_DATA_ATGC; 3626 else 3627 return CURSEG_COLD_DATA; 3628 } 3629 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3630 return CURSEG_COLD_DATA; 3631 3632 type = __get_age_segment_type(inode, 3633 page_folio(fio->page)->index); 3634 if (type != NO_CHECK_TYPE) 3635 return type; 3636 3637 if (file_is_hot(inode) || 3638 is_inode_flag_set(inode, FI_HOT_DATA) || 3639 f2fs_is_cow_file(inode)) 3640 return CURSEG_HOT_DATA; 3641 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode), 3642 inode->i_write_hint); 3643 } else { 3644 if (IS_DNODE(fio->page)) 3645 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3646 CURSEG_HOT_NODE; 3647 return CURSEG_COLD_NODE; 3648 } 3649 } 3650 3651 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi, 3652 enum log_type type) 3653 { 3654 struct curseg_info *curseg = CURSEG_I(sbi, type); 3655 enum temp_type temp = COLD; 3656 3657 switch (curseg->seg_type) { 3658 case CURSEG_HOT_NODE: 3659 case CURSEG_HOT_DATA: 3660 temp = HOT; 3661 break; 3662 case CURSEG_WARM_NODE: 3663 case CURSEG_WARM_DATA: 3664 temp = WARM; 3665 break; 3666 case CURSEG_COLD_NODE: 3667 case CURSEG_COLD_DATA: 3668 temp = COLD; 3669 break; 3670 default: 3671 f2fs_bug_on(sbi, 1); 3672 } 3673 3674 return temp; 3675 } 3676 3677 static int __get_segment_type(struct f2fs_io_info *fio) 3678 { 3679 enum log_type type = CURSEG_HOT_DATA; 3680 3681 switch (F2FS_OPTION(fio->sbi).active_logs) { 3682 case 2: 3683 type = __get_segment_type_2(fio); 3684 break; 3685 case 4: 3686 type = __get_segment_type_4(fio); 3687 break; 3688 case 6: 3689 type = __get_segment_type_6(fio); 3690 break; 3691 default: 3692 f2fs_bug_on(fio->sbi, true); 3693 } 3694 3695 fio->temp = f2fs_get_segment_temp(fio->sbi, type); 3696 3697 return type; 3698 } 3699 3700 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi, 3701 struct curseg_info *seg) 3702 { 3703 /* To allocate block chunks in different sizes, use random number */ 3704 if (--seg->fragment_remained_chunk > 0) 3705 return; 3706 3707 seg->fragment_remained_chunk = 3708 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 3709 seg->next_blkoff += 3710 get_random_u32_inclusive(1, sbi->max_fragment_hole); 3711 } 3712 3713 static void reset_curseg_fields(struct curseg_info *curseg) 3714 { 3715 curseg->inited = false; 3716 curseg->segno = NULL_SEGNO; 3717 curseg->next_segno = 0; 3718 } 3719 3720 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3721 block_t old_blkaddr, block_t *new_blkaddr, 3722 struct f2fs_summary *sum, int type, 3723 struct f2fs_io_info *fio) 3724 { 3725 struct sit_info *sit_i = SIT_I(sbi); 3726 struct curseg_info *curseg = CURSEG_I(sbi, type); 3727 unsigned long long old_mtime; 3728 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3729 struct seg_entry *se = NULL; 3730 bool segment_full = false; 3731 int ret = 0; 3732 3733 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3734 3735 mutex_lock(&curseg->curseg_mutex); 3736 down_write(&sit_i->sentry_lock); 3737 3738 if (curseg->segno == NULL_SEGNO) { 3739 ret = -ENOSPC; 3740 goto out_err; 3741 } 3742 3743 if (from_gc) { 3744 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3745 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3746 sanity_check_seg_type(sbi, se->type); 3747 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3748 } 3749 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3750 3751 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi)); 3752 3753 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3754 3755 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3756 if (curseg->alloc_type == SSR) { 3757 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg); 3758 } else { 3759 curseg->next_blkoff++; 3760 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 3761 f2fs_randomize_chunk(sbi, curseg); 3762 } 3763 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno)) 3764 segment_full = true; 3765 stat_inc_block_count(sbi, curseg); 3766 3767 if (from_gc) { 3768 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3769 } else { 3770 update_segment_mtime(sbi, old_blkaddr, 0); 3771 old_mtime = 0; 3772 } 3773 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3774 3775 /* 3776 * SIT information should be updated before segment allocation, 3777 * since SSR needs latest valid block information. 3778 */ 3779 update_sit_entry(sbi, *new_blkaddr, 1); 3780 update_sit_entry(sbi, old_blkaddr, -1); 3781 3782 /* 3783 * If the current segment is full, flush it out and replace it with a 3784 * new segment. 3785 */ 3786 if (segment_full) { 3787 if (type == CURSEG_COLD_DATA_PINNED && 3788 !((curseg->segno + 1) % sbi->segs_per_sec)) { 3789 write_sum_page(sbi, curseg->sum_blk, 3790 GET_SUM_BLOCK(sbi, curseg->segno)); 3791 reset_curseg_fields(curseg); 3792 goto skip_new_segment; 3793 } 3794 3795 if (from_gc) { 3796 ret = get_atssr_segment(sbi, type, se->type, 3797 AT_SSR, se->mtime); 3798 } else { 3799 if (need_new_seg(sbi, type)) 3800 ret = new_curseg(sbi, type, false); 3801 else 3802 ret = change_curseg(sbi, type); 3803 stat_inc_seg_type(sbi, curseg); 3804 } 3805 3806 if (ret) 3807 goto out_err; 3808 } 3809 3810 skip_new_segment: 3811 /* 3812 * segment dirty status should be updated after segment allocation, 3813 * so we just need to update status only one time after previous 3814 * segment being closed. 3815 */ 3816 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3817 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3818 3819 if (IS_DATASEG(curseg->seg_type)) 3820 atomic64_inc(&sbi->allocated_data_blocks); 3821 3822 up_write(&sit_i->sentry_lock); 3823 3824 if (page && IS_NODESEG(curseg->seg_type)) { 3825 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3826 3827 f2fs_inode_chksum_set(sbi, page); 3828 } 3829 3830 if (fio) { 3831 struct f2fs_bio_info *io; 3832 3833 INIT_LIST_HEAD(&fio->list); 3834 fio->in_list = 1; 3835 io = sbi->write_io[fio->type] + fio->temp; 3836 spin_lock(&io->io_lock); 3837 list_add_tail(&fio->list, &io->io_list); 3838 spin_unlock(&io->io_lock); 3839 } 3840 3841 mutex_unlock(&curseg->curseg_mutex); 3842 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3843 return 0; 3844 3845 out_err: 3846 *new_blkaddr = NULL_ADDR; 3847 up_write(&sit_i->sentry_lock); 3848 mutex_unlock(&curseg->curseg_mutex); 3849 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3850 return ret; 3851 } 3852 3853 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3854 block_t blkaddr, unsigned int blkcnt) 3855 { 3856 if (!f2fs_is_multi_device(sbi)) 3857 return; 3858 3859 while (1) { 3860 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3861 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3862 3863 /* update device state for fsync */ 3864 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3865 3866 /* update device state for checkpoint */ 3867 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3868 spin_lock(&sbi->dev_lock); 3869 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3870 spin_unlock(&sbi->dev_lock); 3871 } 3872 3873 if (blkcnt <= blks) 3874 break; 3875 blkcnt -= blks; 3876 blkaddr += blks; 3877 } 3878 } 3879 3880 static int log_type_to_seg_type(enum log_type type) 3881 { 3882 int seg_type = CURSEG_COLD_DATA; 3883 3884 switch (type) { 3885 case CURSEG_HOT_DATA: 3886 case CURSEG_WARM_DATA: 3887 case CURSEG_COLD_DATA: 3888 case CURSEG_HOT_NODE: 3889 case CURSEG_WARM_NODE: 3890 case CURSEG_COLD_NODE: 3891 seg_type = (int)type; 3892 break; 3893 case CURSEG_COLD_DATA_PINNED: 3894 case CURSEG_ALL_DATA_ATGC: 3895 seg_type = CURSEG_COLD_DATA; 3896 break; 3897 default: 3898 break; 3899 } 3900 return seg_type; 3901 } 3902 3903 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3904 { 3905 enum log_type type = __get_segment_type(fio); 3906 int seg_type = log_type_to_seg_type(type); 3907 bool keep_order = (f2fs_lfs_mode(fio->sbi) && 3908 seg_type == CURSEG_COLD_DATA); 3909 3910 if (keep_order) 3911 f2fs_down_read(&fio->sbi->io_order_lock); 3912 3913 if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3914 &fio->new_blkaddr, sum, type, fio)) { 3915 if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host)) 3916 fscrypt_finalize_bounce_page(&fio->encrypted_page); 3917 end_page_writeback(fio->page); 3918 if (f2fs_in_warm_node_list(fio->sbi, fio->page)) 3919 f2fs_del_fsync_node_entry(fio->sbi, fio->page); 3920 goto out; 3921 } 3922 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3923 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr, 1); 3924 3925 /* writeout dirty page into bdev */ 3926 f2fs_submit_page_write(fio); 3927 3928 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3929 out: 3930 if (keep_order) 3931 f2fs_up_read(&fio->sbi->io_order_lock); 3932 } 3933 3934 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio, 3935 enum iostat_type io_type) 3936 { 3937 struct f2fs_io_info fio = { 3938 .sbi = sbi, 3939 .type = META, 3940 .temp = HOT, 3941 .op = REQ_OP_WRITE, 3942 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3943 .old_blkaddr = folio->index, 3944 .new_blkaddr = folio->index, 3945 .page = folio_page(folio, 0), 3946 .encrypted_page = NULL, 3947 .in_list = 0, 3948 }; 3949 3950 if (unlikely(folio->index >= MAIN_BLKADDR(sbi))) 3951 fio.op_flags &= ~REQ_META; 3952 3953 folio_start_writeback(folio); 3954 f2fs_submit_page_write(&fio); 3955 3956 stat_inc_meta_count(sbi, folio->index); 3957 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); 3958 } 3959 3960 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3961 { 3962 struct f2fs_summary sum; 3963 3964 set_summary(&sum, nid, 0, 0); 3965 do_write_page(&sum, fio); 3966 3967 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); 3968 } 3969 3970 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3971 struct f2fs_io_info *fio) 3972 { 3973 struct f2fs_sb_info *sbi = fio->sbi; 3974 struct f2fs_summary sum; 3975 3976 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3977 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) 3978 f2fs_update_age_extent_cache(dn); 3979 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3980 do_write_page(&sum, fio); 3981 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3982 3983 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); 3984 } 3985 3986 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3987 { 3988 int err; 3989 struct f2fs_sb_info *sbi = fio->sbi; 3990 unsigned int segno; 3991 3992 fio->new_blkaddr = fio->old_blkaddr; 3993 /* i/o temperature is needed for passing down write hints */ 3994 __get_segment_type(fio); 3995 3996 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3997 3998 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3999 set_sbi_flag(sbi, SBI_NEED_FSCK); 4000 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 4001 __func__, segno); 4002 err = -EFSCORRUPTED; 4003 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4004 goto drop_bio; 4005 } 4006 4007 if (f2fs_cp_error(sbi)) { 4008 err = -EIO; 4009 goto drop_bio; 4010 } 4011 4012 if (fio->meta_gc) 4013 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1); 4014 4015 stat_inc_inplace_blocks(fio->sbi); 4016 4017 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi)) 4018 err = f2fs_merge_page_bio(fio); 4019 else 4020 err = f2fs_submit_page_bio(fio); 4021 if (!err) { 4022 f2fs_update_device_state(fio->sbi, fio->ino, 4023 fio->new_blkaddr, 1); 4024 f2fs_update_iostat(fio->sbi, fio->page->mapping->host, 4025 fio->io_type, F2FS_BLKSIZE); 4026 } 4027 4028 return err; 4029 drop_bio: 4030 if (fio->bio && *(fio->bio)) { 4031 struct bio *bio = *(fio->bio); 4032 4033 bio->bi_status = BLK_STS_IOERR; 4034 bio_endio(bio); 4035 *(fio->bio) = NULL; 4036 } 4037 return err; 4038 } 4039 4040 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 4041 unsigned int segno) 4042 { 4043 int i; 4044 4045 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 4046 if (CURSEG_I(sbi, i)->segno == segno) 4047 break; 4048 } 4049 return i; 4050 } 4051 4052 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 4053 block_t old_blkaddr, block_t new_blkaddr, 4054 bool recover_curseg, bool recover_newaddr, 4055 bool from_gc) 4056 { 4057 struct sit_info *sit_i = SIT_I(sbi); 4058 struct curseg_info *curseg; 4059 unsigned int segno, old_cursegno; 4060 struct seg_entry *se; 4061 int type; 4062 unsigned short old_blkoff; 4063 unsigned char old_alloc_type; 4064 4065 segno = GET_SEGNO(sbi, new_blkaddr); 4066 se = get_seg_entry(sbi, segno); 4067 type = se->type; 4068 4069 f2fs_down_write(&SM_I(sbi)->curseg_lock); 4070 4071 if (!recover_curseg) { 4072 /* for recovery flow */ 4073 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 4074 if (old_blkaddr == NULL_ADDR) 4075 type = CURSEG_COLD_DATA; 4076 else 4077 type = CURSEG_WARM_DATA; 4078 } 4079 } else { 4080 if (IS_CURSEG(sbi, segno)) { 4081 /* se->type is volatile as SSR allocation */ 4082 type = __f2fs_get_curseg(sbi, segno); 4083 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 4084 } else { 4085 type = CURSEG_WARM_DATA; 4086 } 4087 } 4088 4089 curseg = CURSEG_I(sbi, type); 4090 f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type)); 4091 4092 mutex_lock(&curseg->curseg_mutex); 4093 down_write(&sit_i->sentry_lock); 4094 4095 old_cursegno = curseg->segno; 4096 old_blkoff = curseg->next_blkoff; 4097 old_alloc_type = curseg->alloc_type; 4098 4099 /* change the current segment */ 4100 if (segno != curseg->segno) { 4101 curseg->next_segno = segno; 4102 if (change_curseg(sbi, type)) 4103 goto out_unlock; 4104 } 4105 4106 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 4107 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 4108 4109 if (!recover_curseg || recover_newaddr) { 4110 if (!from_gc) 4111 update_segment_mtime(sbi, new_blkaddr, 0); 4112 update_sit_entry(sbi, new_blkaddr, 1); 4113 } 4114 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 4115 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1); 4116 if (!from_gc) 4117 update_segment_mtime(sbi, old_blkaddr, 0); 4118 update_sit_entry(sbi, old_blkaddr, -1); 4119 } 4120 4121 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 4122 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 4123 4124 locate_dirty_segment(sbi, old_cursegno); 4125 4126 if (recover_curseg) { 4127 if (old_cursegno != curseg->segno) { 4128 curseg->next_segno = old_cursegno; 4129 if (change_curseg(sbi, type)) 4130 goto out_unlock; 4131 } 4132 curseg->next_blkoff = old_blkoff; 4133 curseg->alloc_type = old_alloc_type; 4134 } 4135 4136 out_unlock: 4137 up_write(&sit_i->sentry_lock); 4138 mutex_unlock(&curseg->curseg_mutex); 4139 f2fs_up_write(&SM_I(sbi)->curseg_lock); 4140 } 4141 4142 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 4143 block_t old_addr, block_t new_addr, 4144 unsigned char version, bool recover_curseg, 4145 bool recover_newaddr) 4146 { 4147 struct f2fs_summary sum; 4148 4149 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 4150 4151 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 4152 recover_curseg, recover_newaddr, false); 4153 4154 f2fs_update_data_blkaddr(dn, new_addr); 4155 } 4156 4157 void f2fs_wait_on_page_writeback(struct page *page, 4158 enum page_type type, bool ordered, bool locked) 4159 { 4160 if (folio_test_writeback(page_folio(page))) { 4161 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 4162 4163 /* submit cached LFS IO */ 4164 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 4165 /* submit cached IPU IO */ 4166 f2fs_submit_merged_ipu_write(sbi, NULL, page); 4167 if (ordered) { 4168 wait_on_page_writeback(page); 4169 f2fs_bug_on(sbi, locked && 4170 folio_test_writeback(page_folio(page))); 4171 } else { 4172 wait_for_stable_page(page); 4173 } 4174 } 4175 } 4176 4177 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 4178 { 4179 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4180 struct page *cpage; 4181 4182 if (!f2fs_meta_inode_gc_required(inode)) 4183 return; 4184 4185 if (!__is_valid_data_blkaddr(blkaddr)) 4186 return; 4187 4188 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 4189 if (cpage) { 4190 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 4191 f2fs_put_page(cpage, 1); 4192 } 4193 } 4194 4195 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 4196 block_t len) 4197 { 4198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4199 block_t i; 4200 4201 if (!f2fs_meta_inode_gc_required(inode)) 4202 return; 4203 4204 for (i = 0; i < len; i++) 4205 f2fs_wait_on_block_writeback(inode, blkaddr + i); 4206 4207 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len); 4208 } 4209 4210 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 4211 { 4212 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4213 struct curseg_info *seg_i; 4214 unsigned char *kaddr; 4215 struct page *page; 4216 block_t start; 4217 int i, j, offset; 4218 4219 start = start_sum_block(sbi); 4220 4221 page = f2fs_get_meta_page(sbi, start++); 4222 if (IS_ERR(page)) 4223 return PTR_ERR(page); 4224 kaddr = (unsigned char *)page_address(page); 4225 4226 /* Step 1: restore nat cache */ 4227 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4228 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 4229 4230 /* Step 2: restore sit cache */ 4231 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4232 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 4233 offset = 2 * SUM_JOURNAL_SIZE; 4234 4235 /* Step 3: restore summary entries */ 4236 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4237 unsigned short blk_off; 4238 unsigned int segno; 4239 4240 seg_i = CURSEG_I(sbi, i); 4241 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 4242 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 4243 seg_i->next_segno = segno; 4244 reset_curseg(sbi, i, 0); 4245 seg_i->alloc_type = ckpt->alloc_type[i]; 4246 seg_i->next_blkoff = blk_off; 4247 4248 if (seg_i->alloc_type == SSR) 4249 blk_off = BLKS_PER_SEG(sbi); 4250 4251 for (j = 0; j < blk_off; j++) { 4252 struct f2fs_summary *s; 4253 4254 s = (struct f2fs_summary *)(kaddr + offset); 4255 seg_i->sum_blk->entries[j] = *s; 4256 offset += SUMMARY_SIZE; 4257 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 4258 SUM_FOOTER_SIZE) 4259 continue; 4260 4261 f2fs_put_page(page, 1); 4262 page = NULL; 4263 4264 page = f2fs_get_meta_page(sbi, start++); 4265 if (IS_ERR(page)) 4266 return PTR_ERR(page); 4267 kaddr = (unsigned char *)page_address(page); 4268 offset = 0; 4269 } 4270 } 4271 f2fs_put_page(page, 1); 4272 return 0; 4273 } 4274 4275 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 4276 { 4277 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4278 struct f2fs_summary_block *sum; 4279 struct curseg_info *curseg; 4280 struct page *new; 4281 unsigned short blk_off; 4282 unsigned int segno = 0; 4283 block_t blk_addr = 0; 4284 int err = 0; 4285 4286 /* get segment number and block addr */ 4287 if (IS_DATASEG(type)) { 4288 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 4289 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 4290 CURSEG_HOT_DATA]); 4291 if (__exist_node_summaries(sbi)) 4292 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 4293 else 4294 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 4295 } else { 4296 segno = le32_to_cpu(ckpt->cur_node_segno[type - 4297 CURSEG_HOT_NODE]); 4298 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 4299 CURSEG_HOT_NODE]); 4300 if (__exist_node_summaries(sbi)) 4301 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 4302 type - CURSEG_HOT_NODE); 4303 else 4304 blk_addr = GET_SUM_BLOCK(sbi, segno); 4305 } 4306 4307 new = f2fs_get_meta_page(sbi, blk_addr); 4308 if (IS_ERR(new)) 4309 return PTR_ERR(new); 4310 sum = (struct f2fs_summary_block *)page_address(new); 4311 4312 if (IS_NODESEG(type)) { 4313 if (__exist_node_summaries(sbi)) { 4314 struct f2fs_summary *ns = &sum->entries[0]; 4315 int i; 4316 4317 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) { 4318 ns->version = 0; 4319 ns->ofs_in_node = 0; 4320 } 4321 } else { 4322 err = f2fs_restore_node_summary(sbi, segno, sum); 4323 if (err) 4324 goto out; 4325 } 4326 } 4327 4328 /* set uncompleted segment to curseg */ 4329 curseg = CURSEG_I(sbi, type); 4330 mutex_lock(&curseg->curseg_mutex); 4331 4332 /* update journal info */ 4333 down_write(&curseg->journal_rwsem); 4334 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 4335 up_write(&curseg->journal_rwsem); 4336 4337 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 4338 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 4339 curseg->next_segno = segno; 4340 reset_curseg(sbi, type, 0); 4341 curseg->alloc_type = ckpt->alloc_type[type]; 4342 curseg->next_blkoff = blk_off; 4343 mutex_unlock(&curseg->curseg_mutex); 4344 out: 4345 f2fs_put_page(new, 1); 4346 return err; 4347 } 4348 4349 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 4350 { 4351 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 4352 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 4353 int type = CURSEG_HOT_DATA; 4354 int err; 4355 4356 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 4357 int npages = f2fs_npages_for_summary_flush(sbi, true); 4358 4359 if (npages >= 2) 4360 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 4361 META_CP, true); 4362 4363 /* restore for compacted data summary */ 4364 err = read_compacted_summaries(sbi); 4365 if (err) 4366 return err; 4367 type = CURSEG_HOT_NODE; 4368 } 4369 4370 if (__exist_node_summaries(sbi)) 4371 f2fs_ra_meta_pages(sbi, 4372 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 4373 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 4374 4375 for (; type <= CURSEG_COLD_NODE; type++) { 4376 err = read_normal_summaries(sbi, type); 4377 if (err) 4378 return err; 4379 } 4380 4381 /* sanity check for summary blocks */ 4382 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 4383 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 4384 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 4385 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 4386 return -EINVAL; 4387 } 4388 4389 return 0; 4390 } 4391 4392 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 4393 { 4394 struct page *page; 4395 unsigned char *kaddr; 4396 struct f2fs_summary *summary; 4397 struct curseg_info *seg_i; 4398 int written_size = 0; 4399 int i, j; 4400 4401 page = f2fs_grab_meta_page(sbi, blkaddr++); 4402 kaddr = (unsigned char *)page_address(page); 4403 memset(kaddr, 0, PAGE_SIZE); 4404 4405 /* Step 1: write nat cache */ 4406 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4407 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 4408 written_size += SUM_JOURNAL_SIZE; 4409 4410 /* Step 2: write sit cache */ 4411 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4412 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 4413 written_size += SUM_JOURNAL_SIZE; 4414 4415 /* Step 3: write summary entries */ 4416 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4417 seg_i = CURSEG_I(sbi, i); 4418 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) { 4419 if (!page) { 4420 page = f2fs_grab_meta_page(sbi, blkaddr++); 4421 kaddr = (unsigned char *)page_address(page); 4422 memset(kaddr, 0, PAGE_SIZE); 4423 written_size = 0; 4424 } 4425 summary = (struct f2fs_summary *)(kaddr + written_size); 4426 *summary = seg_i->sum_blk->entries[j]; 4427 written_size += SUMMARY_SIZE; 4428 4429 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 4430 SUM_FOOTER_SIZE) 4431 continue; 4432 4433 set_page_dirty(page); 4434 f2fs_put_page(page, 1); 4435 page = NULL; 4436 } 4437 } 4438 if (page) { 4439 set_page_dirty(page); 4440 f2fs_put_page(page, 1); 4441 } 4442 } 4443 4444 static void write_normal_summaries(struct f2fs_sb_info *sbi, 4445 block_t blkaddr, int type) 4446 { 4447 int i, end; 4448 4449 if (IS_DATASEG(type)) 4450 end = type + NR_CURSEG_DATA_TYPE; 4451 else 4452 end = type + NR_CURSEG_NODE_TYPE; 4453 4454 for (i = type; i < end; i++) 4455 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4456 } 4457 4458 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4459 { 4460 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4461 write_compacted_summaries(sbi, start_blk); 4462 else 4463 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4464 } 4465 4466 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4467 { 4468 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4469 } 4470 4471 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4472 unsigned int val, int alloc) 4473 { 4474 int i; 4475 4476 if (type == NAT_JOURNAL) { 4477 for (i = 0; i < nats_in_cursum(journal); i++) { 4478 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4479 return i; 4480 } 4481 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4482 return update_nats_in_cursum(journal, 1); 4483 } else if (type == SIT_JOURNAL) { 4484 for (i = 0; i < sits_in_cursum(journal); i++) 4485 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4486 return i; 4487 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4488 return update_sits_in_cursum(journal, 1); 4489 } 4490 return -1; 4491 } 4492 4493 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4494 unsigned int segno) 4495 { 4496 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4497 } 4498 4499 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4500 unsigned int start) 4501 { 4502 struct sit_info *sit_i = SIT_I(sbi); 4503 struct page *page; 4504 pgoff_t src_off, dst_off; 4505 4506 src_off = current_sit_addr(sbi, start); 4507 dst_off = next_sit_addr(sbi, src_off); 4508 4509 page = f2fs_grab_meta_page(sbi, dst_off); 4510 seg_info_to_sit_page(sbi, page, start); 4511 4512 set_page_dirty(page); 4513 set_to_next_sit(sit_i, start); 4514 4515 return page; 4516 } 4517 4518 static struct sit_entry_set *grab_sit_entry_set(void) 4519 { 4520 struct sit_entry_set *ses = 4521 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4522 GFP_NOFS, true, NULL); 4523 4524 ses->entry_cnt = 0; 4525 INIT_LIST_HEAD(&ses->set_list); 4526 return ses; 4527 } 4528 4529 static void release_sit_entry_set(struct sit_entry_set *ses) 4530 { 4531 list_del(&ses->set_list); 4532 kmem_cache_free(sit_entry_set_slab, ses); 4533 } 4534 4535 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4536 struct list_head *head) 4537 { 4538 struct sit_entry_set *next = ses; 4539 4540 if (list_is_last(&ses->set_list, head)) 4541 return; 4542 4543 list_for_each_entry_continue(next, head, set_list) 4544 if (ses->entry_cnt <= next->entry_cnt) { 4545 list_move_tail(&ses->set_list, &next->set_list); 4546 return; 4547 } 4548 4549 list_move_tail(&ses->set_list, head); 4550 } 4551 4552 static void add_sit_entry(unsigned int segno, struct list_head *head) 4553 { 4554 struct sit_entry_set *ses; 4555 unsigned int start_segno = START_SEGNO(segno); 4556 4557 list_for_each_entry(ses, head, set_list) { 4558 if (ses->start_segno == start_segno) { 4559 ses->entry_cnt++; 4560 adjust_sit_entry_set(ses, head); 4561 return; 4562 } 4563 } 4564 4565 ses = grab_sit_entry_set(); 4566 4567 ses->start_segno = start_segno; 4568 ses->entry_cnt++; 4569 list_add(&ses->set_list, head); 4570 } 4571 4572 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4573 { 4574 struct f2fs_sm_info *sm_info = SM_I(sbi); 4575 struct list_head *set_list = &sm_info->sit_entry_set; 4576 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4577 unsigned int segno; 4578 4579 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4580 add_sit_entry(segno, set_list); 4581 } 4582 4583 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4584 { 4585 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4586 struct f2fs_journal *journal = curseg->journal; 4587 int i; 4588 4589 down_write(&curseg->journal_rwsem); 4590 for (i = 0; i < sits_in_cursum(journal); i++) { 4591 unsigned int segno; 4592 bool dirtied; 4593 4594 segno = le32_to_cpu(segno_in_journal(journal, i)); 4595 dirtied = __mark_sit_entry_dirty(sbi, segno); 4596 4597 if (!dirtied) 4598 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4599 } 4600 update_sits_in_cursum(journal, -i); 4601 up_write(&curseg->journal_rwsem); 4602 } 4603 4604 /* 4605 * CP calls this function, which flushes SIT entries including sit_journal, 4606 * and moves prefree segs to free segs. 4607 */ 4608 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4609 { 4610 struct sit_info *sit_i = SIT_I(sbi); 4611 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4612 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4613 struct f2fs_journal *journal = curseg->journal; 4614 struct sit_entry_set *ses, *tmp; 4615 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4616 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4617 struct seg_entry *se; 4618 4619 down_write(&sit_i->sentry_lock); 4620 4621 if (!sit_i->dirty_sentries) 4622 goto out; 4623 4624 /* 4625 * add and account sit entries of dirty bitmap in sit entry 4626 * set temporarily 4627 */ 4628 add_sits_in_set(sbi); 4629 4630 /* 4631 * if there are no enough space in journal to store dirty sit 4632 * entries, remove all entries from journal and add and account 4633 * them in sit entry set. 4634 */ 4635 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4636 !to_journal) 4637 remove_sits_in_journal(sbi); 4638 4639 /* 4640 * there are two steps to flush sit entries: 4641 * #1, flush sit entries to journal in current cold data summary block. 4642 * #2, flush sit entries to sit page. 4643 */ 4644 list_for_each_entry_safe(ses, tmp, head, set_list) { 4645 struct page *page = NULL; 4646 struct f2fs_sit_block *raw_sit = NULL; 4647 unsigned int start_segno = ses->start_segno; 4648 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4649 (unsigned long)MAIN_SEGS(sbi)); 4650 unsigned int segno = start_segno; 4651 4652 if (to_journal && 4653 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4654 to_journal = false; 4655 4656 if (to_journal) { 4657 down_write(&curseg->journal_rwsem); 4658 } else { 4659 page = get_next_sit_page(sbi, start_segno); 4660 raw_sit = page_address(page); 4661 } 4662 4663 /* flush dirty sit entries in region of current sit set */ 4664 for_each_set_bit_from(segno, bitmap, end) { 4665 int offset, sit_offset; 4666 4667 se = get_seg_entry(sbi, segno); 4668 #ifdef CONFIG_F2FS_CHECK_FS 4669 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4670 SIT_VBLOCK_MAP_SIZE)) 4671 f2fs_bug_on(sbi, 1); 4672 #endif 4673 4674 /* add discard candidates */ 4675 if (!(cpc->reason & CP_DISCARD)) { 4676 cpc->trim_start = segno; 4677 add_discard_addrs(sbi, cpc, false); 4678 } 4679 4680 if (to_journal) { 4681 offset = f2fs_lookup_journal_in_cursum(journal, 4682 SIT_JOURNAL, segno, 1); 4683 f2fs_bug_on(sbi, offset < 0); 4684 segno_in_journal(journal, offset) = 4685 cpu_to_le32(segno); 4686 seg_info_to_raw_sit(se, 4687 &sit_in_journal(journal, offset)); 4688 check_block_count(sbi, segno, 4689 &sit_in_journal(journal, offset)); 4690 } else { 4691 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4692 seg_info_to_raw_sit(se, 4693 &raw_sit->entries[sit_offset]); 4694 check_block_count(sbi, segno, 4695 &raw_sit->entries[sit_offset]); 4696 } 4697 4698 __clear_bit(segno, bitmap); 4699 sit_i->dirty_sentries--; 4700 ses->entry_cnt--; 4701 } 4702 4703 if (to_journal) 4704 up_write(&curseg->journal_rwsem); 4705 else 4706 f2fs_put_page(page, 1); 4707 4708 f2fs_bug_on(sbi, ses->entry_cnt); 4709 release_sit_entry_set(ses); 4710 } 4711 4712 f2fs_bug_on(sbi, !list_empty(head)); 4713 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4714 out: 4715 if (cpc->reason & CP_DISCARD) { 4716 __u64 trim_start = cpc->trim_start; 4717 4718 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4719 add_discard_addrs(sbi, cpc, false); 4720 4721 cpc->trim_start = trim_start; 4722 } 4723 up_write(&sit_i->sentry_lock); 4724 4725 set_prefree_as_free_segments(sbi); 4726 } 4727 4728 static int build_sit_info(struct f2fs_sb_info *sbi) 4729 { 4730 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4731 struct sit_info *sit_i; 4732 unsigned int sit_segs, start; 4733 char *src_bitmap, *bitmap; 4734 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4735 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4736 4737 /* allocate memory for SIT information */ 4738 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4739 if (!sit_i) 4740 return -ENOMEM; 4741 4742 SM_I(sbi)->sit_info = sit_i; 4743 4744 sit_i->sentries = 4745 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4746 MAIN_SEGS(sbi)), 4747 GFP_KERNEL); 4748 if (!sit_i->sentries) 4749 return -ENOMEM; 4750 4751 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4752 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4753 GFP_KERNEL); 4754 if (!sit_i->dirty_sentries_bitmap) 4755 return -ENOMEM; 4756 4757 #ifdef CONFIG_F2FS_CHECK_FS 4758 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4759 #else 4760 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4761 #endif 4762 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4763 if (!sit_i->bitmap) 4764 return -ENOMEM; 4765 4766 bitmap = sit_i->bitmap; 4767 4768 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4769 sit_i->sentries[start].cur_valid_map = bitmap; 4770 bitmap += SIT_VBLOCK_MAP_SIZE; 4771 4772 sit_i->sentries[start].ckpt_valid_map = bitmap; 4773 bitmap += SIT_VBLOCK_MAP_SIZE; 4774 4775 #ifdef CONFIG_F2FS_CHECK_FS 4776 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4777 bitmap += SIT_VBLOCK_MAP_SIZE; 4778 #endif 4779 4780 if (discard_map) { 4781 sit_i->sentries[start].discard_map = bitmap; 4782 bitmap += SIT_VBLOCK_MAP_SIZE; 4783 } 4784 } 4785 4786 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4787 if (!sit_i->tmp_map) 4788 return -ENOMEM; 4789 4790 if (__is_large_section(sbi)) { 4791 sit_i->sec_entries = 4792 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4793 MAIN_SECS(sbi)), 4794 GFP_KERNEL); 4795 if (!sit_i->sec_entries) 4796 return -ENOMEM; 4797 } 4798 4799 /* get information related with SIT */ 4800 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4801 4802 /* setup SIT bitmap from ckeckpoint pack */ 4803 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4804 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4805 4806 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4807 if (!sit_i->sit_bitmap) 4808 return -ENOMEM; 4809 4810 #ifdef CONFIG_F2FS_CHECK_FS 4811 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4812 sit_bitmap_size, GFP_KERNEL); 4813 if (!sit_i->sit_bitmap_mir) 4814 return -ENOMEM; 4815 4816 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4817 main_bitmap_size, GFP_KERNEL); 4818 if (!sit_i->invalid_segmap) 4819 return -ENOMEM; 4820 #endif 4821 4822 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4823 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs); 4824 sit_i->written_valid_blocks = 0; 4825 sit_i->bitmap_size = sit_bitmap_size; 4826 sit_i->dirty_sentries = 0; 4827 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4828 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4829 sit_i->mounted_time = ktime_get_boottime_seconds(); 4830 init_rwsem(&sit_i->sentry_lock); 4831 return 0; 4832 } 4833 4834 static int build_free_segmap(struct f2fs_sb_info *sbi) 4835 { 4836 struct free_segmap_info *free_i; 4837 unsigned int bitmap_size, sec_bitmap_size; 4838 4839 /* allocate memory for free segmap information */ 4840 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4841 if (!free_i) 4842 return -ENOMEM; 4843 4844 SM_I(sbi)->free_info = free_i; 4845 4846 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4847 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4848 if (!free_i->free_segmap) 4849 return -ENOMEM; 4850 4851 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4852 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4853 if (!free_i->free_secmap) 4854 return -ENOMEM; 4855 4856 /* set all segments as dirty temporarily */ 4857 memset(free_i->free_segmap, 0xff, bitmap_size); 4858 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4859 4860 /* init free segmap information */ 4861 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4862 free_i->free_segments = 0; 4863 free_i->free_sections = 0; 4864 spin_lock_init(&free_i->segmap_lock); 4865 return 0; 4866 } 4867 4868 static int build_curseg(struct f2fs_sb_info *sbi) 4869 { 4870 struct curseg_info *array; 4871 int i; 4872 4873 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4874 sizeof(*array)), GFP_KERNEL); 4875 if (!array) 4876 return -ENOMEM; 4877 4878 SM_I(sbi)->curseg_array = array; 4879 4880 for (i = 0; i < NO_CHECK_TYPE; i++) { 4881 mutex_init(&array[i].curseg_mutex); 4882 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4883 if (!array[i].sum_blk) 4884 return -ENOMEM; 4885 init_rwsem(&array[i].journal_rwsem); 4886 array[i].journal = f2fs_kzalloc(sbi, 4887 sizeof(struct f2fs_journal), GFP_KERNEL); 4888 if (!array[i].journal) 4889 return -ENOMEM; 4890 array[i].seg_type = log_type_to_seg_type(i); 4891 reset_curseg_fields(&array[i]); 4892 } 4893 return restore_curseg_summaries(sbi); 4894 } 4895 4896 static int build_sit_entries(struct f2fs_sb_info *sbi) 4897 { 4898 struct sit_info *sit_i = SIT_I(sbi); 4899 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4900 struct f2fs_journal *journal = curseg->journal; 4901 struct seg_entry *se; 4902 struct f2fs_sit_entry sit; 4903 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4904 unsigned int i, start, end; 4905 unsigned int readed, start_blk = 0; 4906 int err = 0; 4907 block_t sit_valid_blocks[2] = {0, 0}; 4908 4909 do { 4910 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4911 META_SIT, true); 4912 4913 start = start_blk * sit_i->sents_per_block; 4914 end = (start_blk + readed) * sit_i->sents_per_block; 4915 4916 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4917 struct f2fs_sit_block *sit_blk; 4918 struct page *page; 4919 4920 se = &sit_i->sentries[start]; 4921 page = get_current_sit_page(sbi, start); 4922 if (IS_ERR(page)) 4923 return PTR_ERR(page); 4924 sit_blk = (struct f2fs_sit_block *)page_address(page); 4925 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4926 f2fs_put_page(page, 1); 4927 4928 err = check_block_count(sbi, start, &sit); 4929 if (err) 4930 return err; 4931 seg_info_from_raw_sit(se, &sit); 4932 4933 if (se->type >= NR_PERSISTENT_LOG) { 4934 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4935 se->type, start); 4936 f2fs_handle_error(sbi, 4937 ERROR_INCONSISTENT_SUM_TYPE); 4938 return -EFSCORRUPTED; 4939 } 4940 4941 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4942 4943 if (!f2fs_block_unit_discard(sbi)) 4944 goto init_discard_map_done; 4945 4946 /* build discard map only one time */ 4947 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4948 memset(se->discard_map, 0xff, 4949 SIT_VBLOCK_MAP_SIZE); 4950 goto init_discard_map_done; 4951 } 4952 memcpy(se->discard_map, se->cur_valid_map, 4953 SIT_VBLOCK_MAP_SIZE); 4954 sbi->discard_blks += BLKS_PER_SEG(sbi) - 4955 se->valid_blocks; 4956 init_discard_map_done: 4957 if (__is_large_section(sbi)) 4958 get_sec_entry(sbi, start)->valid_blocks += 4959 se->valid_blocks; 4960 } 4961 start_blk += readed; 4962 } while (start_blk < sit_blk_cnt); 4963 4964 down_read(&curseg->journal_rwsem); 4965 for (i = 0; i < sits_in_cursum(journal); i++) { 4966 unsigned int old_valid_blocks; 4967 4968 start = le32_to_cpu(segno_in_journal(journal, i)); 4969 if (start >= MAIN_SEGS(sbi)) { 4970 f2fs_err(sbi, "Wrong journal entry on segno %u", 4971 start); 4972 err = -EFSCORRUPTED; 4973 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); 4974 break; 4975 } 4976 4977 se = &sit_i->sentries[start]; 4978 sit = sit_in_journal(journal, i); 4979 4980 old_valid_blocks = se->valid_blocks; 4981 4982 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4983 4984 err = check_block_count(sbi, start, &sit); 4985 if (err) 4986 break; 4987 seg_info_from_raw_sit(se, &sit); 4988 4989 if (se->type >= NR_PERSISTENT_LOG) { 4990 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4991 se->type, start); 4992 err = -EFSCORRUPTED; 4993 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4994 break; 4995 } 4996 4997 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4998 4999 if (f2fs_block_unit_discard(sbi)) { 5000 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 5001 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 5002 } else { 5003 memcpy(se->discard_map, se->cur_valid_map, 5004 SIT_VBLOCK_MAP_SIZE); 5005 sbi->discard_blks += old_valid_blocks; 5006 sbi->discard_blks -= se->valid_blocks; 5007 } 5008 } 5009 5010 if (__is_large_section(sbi)) { 5011 get_sec_entry(sbi, start)->valid_blocks += 5012 se->valid_blocks; 5013 get_sec_entry(sbi, start)->valid_blocks -= 5014 old_valid_blocks; 5015 } 5016 } 5017 up_read(&curseg->journal_rwsem); 5018 5019 if (err) 5020 return err; 5021 5022 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 5023 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 5024 sit_valid_blocks[NODE], valid_node_count(sbi)); 5025 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); 5026 return -EFSCORRUPTED; 5027 } 5028 5029 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 5030 valid_user_blocks(sbi)) { 5031 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 5032 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 5033 valid_user_blocks(sbi)); 5034 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); 5035 return -EFSCORRUPTED; 5036 } 5037 5038 return 0; 5039 } 5040 5041 static void init_free_segmap(struct f2fs_sb_info *sbi) 5042 { 5043 unsigned int start; 5044 int type; 5045 struct seg_entry *sentry; 5046 5047 for (start = 0; start < MAIN_SEGS(sbi); start++) { 5048 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 5049 continue; 5050 sentry = get_seg_entry(sbi, start); 5051 if (!sentry->valid_blocks) 5052 __set_free(sbi, start); 5053 else 5054 SIT_I(sbi)->written_valid_blocks += 5055 sentry->valid_blocks; 5056 } 5057 5058 /* set use the current segments */ 5059 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 5060 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 5061 5062 __set_test_and_inuse(sbi, curseg_t->segno); 5063 } 5064 } 5065 5066 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 5067 { 5068 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5069 struct free_segmap_info *free_i = FREE_I(sbi); 5070 unsigned int segno = 0, offset = 0, secno; 5071 block_t valid_blocks, usable_blks_in_seg; 5072 5073 while (1) { 5074 /* find dirty segment based on free segmap */ 5075 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 5076 if (segno >= MAIN_SEGS(sbi)) 5077 break; 5078 offset = segno + 1; 5079 valid_blocks = get_valid_blocks(sbi, segno, false); 5080 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 5081 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 5082 continue; 5083 if (valid_blocks > usable_blks_in_seg) { 5084 f2fs_bug_on(sbi, 1); 5085 continue; 5086 } 5087 mutex_lock(&dirty_i->seglist_lock); 5088 __locate_dirty_segment(sbi, segno, DIRTY); 5089 mutex_unlock(&dirty_i->seglist_lock); 5090 } 5091 5092 if (!__is_large_section(sbi)) 5093 return; 5094 5095 mutex_lock(&dirty_i->seglist_lock); 5096 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { 5097 valid_blocks = get_valid_blocks(sbi, segno, true); 5098 secno = GET_SEC_FROM_SEG(sbi, segno); 5099 5100 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 5101 continue; 5102 if (IS_CURSEC(sbi, secno)) 5103 continue; 5104 set_bit(secno, dirty_i->dirty_secmap); 5105 } 5106 mutex_unlock(&dirty_i->seglist_lock); 5107 } 5108 5109 static int init_victim_secmap(struct f2fs_sb_info *sbi) 5110 { 5111 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5112 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 5113 5114 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 5115 if (!dirty_i->victim_secmap) 5116 return -ENOMEM; 5117 5118 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 5119 if (!dirty_i->pinned_secmap) 5120 return -ENOMEM; 5121 5122 dirty_i->pinned_secmap_cnt = 0; 5123 dirty_i->enable_pin_section = true; 5124 return 0; 5125 } 5126 5127 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 5128 { 5129 struct dirty_seglist_info *dirty_i; 5130 unsigned int bitmap_size, i; 5131 5132 /* allocate memory for dirty segments list information */ 5133 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 5134 GFP_KERNEL); 5135 if (!dirty_i) 5136 return -ENOMEM; 5137 5138 SM_I(sbi)->dirty_info = dirty_i; 5139 mutex_init(&dirty_i->seglist_lock); 5140 5141 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 5142 5143 for (i = 0; i < NR_DIRTY_TYPE; i++) { 5144 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 5145 GFP_KERNEL); 5146 if (!dirty_i->dirty_segmap[i]) 5147 return -ENOMEM; 5148 } 5149 5150 if (__is_large_section(sbi)) { 5151 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 5152 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 5153 bitmap_size, GFP_KERNEL); 5154 if (!dirty_i->dirty_secmap) 5155 return -ENOMEM; 5156 } 5157 5158 init_dirty_segmap(sbi); 5159 return init_victim_secmap(sbi); 5160 } 5161 5162 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 5163 { 5164 int i; 5165 5166 /* 5167 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 5168 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 5169 */ 5170 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5171 struct curseg_info *curseg = CURSEG_I(sbi, i); 5172 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 5173 unsigned int blkofs = curseg->next_blkoff; 5174 5175 if (f2fs_sb_has_readonly(sbi) && 5176 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 5177 continue; 5178 5179 sanity_check_seg_type(sbi, curseg->seg_type); 5180 5181 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 5182 f2fs_err(sbi, 5183 "Current segment has invalid alloc_type:%d", 5184 curseg->alloc_type); 5185 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 5186 return -EFSCORRUPTED; 5187 } 5188 5189 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 5190 goto out; 5191 5192 if (curseg->alloc_type == SSR) 5193 continue; 5194 5195 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) { 5196 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 5197 continue; 5198 out: 5199 f2fs_err(sbi, 5200 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 5201 i, curseg->segno, curseg->alloc_type, 5202 curseg->next_blkoff, blkofs); 5203 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 5204 return -EFSCORRUPTED; 5205 } 5206 } 5207 return 0; 5208 } 5209 5210 #ifdef CONFIG_BLK_DEV_ZONED 5211 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 5212 struct f2fs_dev_info *fdev, 5213 struct blk_zone *zone) 5214 { 5215 unsigned int zone_segno; 5216 block_t zone_block, valid_block_cnt; 5217 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 5218 int ret; 5219 unsigned int nofs_flags; 5220 5221 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5222 return 0; 5223 5224 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 5225 zone_segno = GET_SEGNO(sbi, zone_block); 5226 5227 /* 5228 * Skip check of zones cursegs point to, since 5229 * fix_curseg_write_pointer() checks them. 5230 */ 5231 if (zone_segno >= MAIN_SEGS(sbi)) 5232 return 0; 5233 5234 /* 5235 * Get # of valid block of the zone. 5236 */ 5237 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true); 5238 if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) { 5239 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]", 5240 zone_segno, valid_block_cnt, 5241 blk_zone_cond_str(zone->cond)); 5242 return 0; 5243 } 5244 5245 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) || 5246 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL)) 5247 return 0; 5248 5249 if (!valid_block_cnt) { 5250 f2fs_notice(sbi, "Zone without valid block has non-zero write " 5251 "pointer. Reset the write pointer: cond[%s]", 5252 blk_zone_cond_str(zone->cond)); 5253 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 5254 zone->len >> log_sectors_per_block); 5255 if (ret) 5256 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5257 fdev->path, ret); 5258 return ret; 5259 } 5260 5261 /* 5262 * If there are valid blocks and the write pointer doesn't match 5263 * with them, we need to report the inconsistency and fill 5264 * the zone till the end to close the zone. This inconsistency 5265 * does not cause write error because the zone will not be 5266 * selected for write operation until it get discarded. 5267 */ 5268 f2fs_notice(sbi, "Valid blocks are not aligned with write " 5269 "pointer: valid block[0x%x,0x%x] cond[%s]", 5270 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond)); 5271 5272 nofs_flags = memalloc_nofs_save(); 5273 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH, 5274 zone->start, zone->len); 5275 memalloc_nofs_restore(nofs_flags); 5276 if (ret == -EOPNOTSUPP) { 5277 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp, 5278 zone->len - (zone->wp - zone->start), 5279 GFP_NOFS, 0); 5280 if (ret) 5281 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)", 5282 fdev->path, ret); 5283 } else if (ret) { 5284 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)", 5285 fdev->path, ret); 5286 } 5287 5288 return ret; 5289 } 5290 5291 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 5292 block_t zone_blkaddr) 5293 { 5294 int i; 5295 5296 for (i = 0; i < sbi->s_ndevs; i++) { 5297 if (!bdev_is_zoned(FDEV(i).bdev)) 5298 continue; 5299 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 5300 zone_blkaddr <= FDEV(i).end_blk)) 5301 return &FDEV(i); 5302 } 5303 5304 return NULL; 5305 } 5306 5307 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 5308 void *data) 5309 { 5310 memcpy(data, zone, sizeof(struct blk_zone)); 5311 return 0; 5312 } 5313 5314 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 5315 { 5316 struct curseg_info *cs = CURSEG_I(sbi, type); 5317 struct f2fs_dev_info *zbd; 5318 struct blk_zone zone; 5319 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 5320 block_t cs_zone_block, wp_block; 5321 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 5322 sector_t zone_sector; 5323 int err; 5324 5325 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5326 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5327 5328 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5329 if (!zbd) 5330 return 0; 5331 5332 /* report zone for the sector the curseg points to */ 5333 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5334 << log_sectors_per_block; 5335 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5336 report_one_zone_cb, &zone); 5337 if (err != 1) { 5338 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5339 zbd->path, err); 5340 return err; 5341 } 5342 5343 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5344 return 0; 5345 5346 /* 5347 * When safely unmounted in the previous mount, we could use current 5348 * segments. Otherwise, allocate new sections. 5349 */ 5350 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 5351 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 5352 wp_segno = GET_SEGNO(sbi, wp_block); 5353 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 5354 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 5355 5356 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 5357 wp_sector_off == 0) 5358 return 0; 5359 5360 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 5361 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno, 5362 cs->next_blkoff, wp_segno, wp_blkoff); 5363 } 5364 5365 /* Allocate a new section if it's not new. */ 5366 if (cs->next_blkoff || 5367 cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) { 5368 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff; 5369 5370 f2fs_allocate_new_section(sbi, type, true); 5371 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 5372 "[0x%x,0x%x] -> [0x%x,0x%x]", 5373 type, old_segno, old_blkoff, 5374 cs->segno, cs->next_blkoff); 5375 } 5376 5377 /* check consistency of the zone curseg pointed to */ 5378 if (check_zone_write_pointer(sbi, zbd, &zone)) 5379 return -EIO; 5380 5381 /* check newly assigned zone */ 5382 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5383 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5384 5385 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5386 if (!zbd) 5387 return 0; 5388 5389 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5390 << log_sectors_per_block; 5391 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5392 report_one_zone_cb, &zone); 5393 if (err != 1) { 5394 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5395 zbd->path, err); 5396 return err; 5397 } 5398 5399 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5400 return 0; 5401 5402 if (zone.wp != zone.start) { 5403 f2fs_notice(sbi, 5404 "New zone for curseg[%d] is not yet discarded. " 5405 "Reset the zone: curseg[0x%x,0x%x]", 5406 type, cs->segno, cs->next_blkoff); 5407 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block, 5408 zone.len >> log_sectors_per_block); 5409 if (err) { 5410 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5411 zbd->path, err); 5412 return err; 5413 } 5414 } 5415 5416 return 0; 5417 } 5418 5419 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5420 { 5421 int i, ret; 5422 5423 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5424 ret = do_fix_curseg_write_pointer(sbi, i); 5425 if (ret) 5426 return ret; 5427 } 5428 5429 return 0; 5430 } 5431 5432 struct check_zone_write_pointer_args { 5433 struct f2fs_sb_info *sbi; 5434 struct f2fs_dev_info *fdev; 5435 }; 5436 5437 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 5438 void *data) 5439 { 5440 struct check_zone_write_pointer_args *args; 5441 5442 args = (struct check_zone_write_pointer_args *)data; 5443 5444 return check_zone_write_pointer(args->sbi, args->fdev, zone); 5445 } 5446 5447 static int check_write_pointer(struct f2fs_sb_info *sbi) 5448 { 5449 int i, ret; 5450 struct check_zone_write_pointer_args args; 5451 5452 for (i = 0; i < sbi->s_ndevs; i++) { 5453 if (!bdev_is_zoned(FDEV(i).bdev)) 5454 continue; 5455 5456 args.sbi = sbi; 5457 args.fdev = &FDEV(i); 5458 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 5459 check_zone_write_pointer_cb, &args); 5460 if (ret < 0) 5461 return ret; 5462 } 5463 5464 return 0; 5465 } 5466 5467 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi) 5468 { 5469 int ret; 5470 5471 if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb) || 5472 f2fs_hw_is_readonly(sbi)) 5473 return 0; 5474 5475 f2fs_notice(sbi, "Checking entire write pointers"); 5476 ret = fix_curseg_write_pointer(sbi); 5477 if (!ret) 5478 ret = check_write_pointer(sbi); 5479 return ret; 5480 } 5481 5482 /* 5483 * Return the number of usable blocks in a segment. The number of blocks 5484 * returned is always equal to the number of blocks in a segment for 5485 * segments fully contained within a sequential zone capacity or a 5486 * conventional zone. For segments partially contained in a sequential 5487 * zone capacity, the number of usable blocks up to the zone capacity 5488 * is returned. 0 is returned in all other cases. 5489 */ 5490 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5491 struct f2fs_sb_info *sbi, unsigned int segno) 5492 { 5493 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5494 unsigned int secno; 5495 5496 if (!sbi->unusable_blocks_per_sec) 5497 return BLKS_PER_SEG(sbi); 5498 5499 secno = GET_SEC_FROM_SEG(sbi, segno); 5500 seg_start = START_BLOCK(sbi, segno); 5501 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5502 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 5503 5504 /* 5505 * If segment starts before zone capacity and spans beyond 5506 * zone capacity, then usable blocks are from seg start to 5507 * zone capacity. If the segment starts after the zone capacity, 5508 * then there are no usable blocks. 5509 */ 5510 if (seg_start >= sec_cap_blkaddr) 5511 return 0; 5512 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr) 5513 return sec_cap_blkaddr - seg_start; 5514 5515 return BLKS_PER_SEG(sbi); 5516 } 5517 #else 5518 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi) 5519 { 5520 return 0; 5521 } 5522 5523 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5524 unsigned int segno) 5525 { 5526 return 0; 5527 } 5528 5529 #endif 5530 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5531 unsigned int segno) 5532 { 5533 if (f2fs_sb_has_blkzoned(sbi)) 5534 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5535 5536 return BLKS_PER_SEG(sbi); 5537 } 5538 5539 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi) 5540 { 5541 if (f2fs_sb_has_blkzoned(sbi)) 5542 return CAP_SEGS_PER_SEC(sbi); 5543 5544 return SEGS_PER_SEC(sbi); 5545 } 5546 5547 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi, 5548 unsigned int segno) 5549 { 5550 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi); 5551 unsigned int secno = 0, start = 0; 5552 unsigned int total_valid_blocks = 0; 5553 unsigned long long mtime = 0; 5554 unsigned int i = 0; 5555 5556 secno = GET_SEC_FROM_SEG(sbi, segno); 5557 start = GET_SEG_FROM_SEC(sbi, secno); 5558 5559 if (!__is_large_section(sbi)) { 5560 mtime = get_seg_entry(sbi, start + i)->mtime; 5561 goto out; 5562 } 5563 5564 for (i = 0; i < usable_segs_per_sec; i++) { 5565 /* for large section, only check the mtime of valid segments */ 5566 struct seg_entry *se = get_seg_entry(sbi, start+i); 5567 5568 mtime += se->mtime * se->valid_blocks; 5569 total_valid_blocks += se->valid_blocks; 5570 } 5571 5572 if (total_valid_blocks == 0) 5573 return INVALID_MTIME; 5574 5575 mtime = div_u64(mtime, total_valid_blocks); 5576 out: 5577 if (unlikely(mtime == INVALID_MTIME)) 5578 mtime -= 1; 5579 return mtime; 5580 } 5581 5582 /* 5583 * Update min, max modified time for cost-benefit GC algorithm 5584 */ 5585 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5586 { 5587 struct sit_info *sit_i = SIT_I(sbi); 5588 unsigned int segno; 5589 5590 down_write(&sit_i->sentry_lock); 5591 5592 sit_i->min_mtime = ULLONG_MAX; 5593 5594 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { 5595 unsigned long long mtime = 0; 5596 5597 mtime = f2fs_get_section_mtime(sbi, segno); 5598 5599 if (sit_i->min_mtime > mtime) 5600 sit_i->min_mtime = mtime; 5601 } 5602 sit_i->max_mtime = get_mtime(sbi, false); 5603 sit_i->dirty_max_mtime = 0; 5604 up_write(&sit_i->sentry_lock); 5605 } 5606 5607 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5608 { 5609 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5610 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5611 struct f2fs_sm_info *sm_info; 5612 int err; 5613 5614 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5615 if (!sm_info) 5616 return -ENOMEM; 5617 5618 /* init sm info */ 5619 sbi->sm_info = sm_info; 5620 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5621 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5622 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5623 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5624 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5625 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5626 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5627 sm_info->rec_prefree_segments = sm_info->main_segments * 5628 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5629 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5630 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5631 5632 if (!f2fs_lfs_mode(sbi)) 5633 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC); 5634 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5635 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5636 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi); 5637 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5638 sm_info->min_ssr_sections = reserved_sections(sbi); 5639 5640 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5641 5642 init_f2fs_rwsem(&sm_info->curseg_lock); 5643 5644 err = f2fs_create_flush_cmd_control(sbi); 5645 if (err) 5646 return err; 5647 5648 err = create_discard_cmd_control(sbi); 5649 if (err) 5650 return err; 5651 5652 err = build_sit_info(sbi); 5653 if (err) 5654 return err; 5655 err = build_free_segmap(sbi); 5656 if (err) 5657 return err; 5658 err = build_curseg(sbi); 5659 if (err) 5660 return err; 5661 5662 /* reinit free segmap based on SIT */ 5663 err = build_sit_entries(sbi); 5664 if (err) 5665 return err; 5666 5667 init_free_segmap(sbi); 5668 err = build_dirty_segmap(sbi); 5669 if (err) 5670 return err; 5671 5672 err = sanity_check_curseg(sbi); 5673 if (err) 5674 return err; 5675 5676 init_min_max_mtime(sbi); 5677 return 0; 5678 } 5679 5680 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5681 enum dirty_type dirty_type) 5682 { 5683 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5684 5685 mutex_lock(&dirty_i->seglist_lock); 5686 kvfree(dirty_i->dirty_segmap[dirty_type]); 5687 dirty_i->nr_dirty[dirty_type] = 0; 5688 mutex_unlock(&dirty_i->seglist_lock); 5689 } 5690 5691 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5692 { 5693 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5694 5695 kvfree(dirty_i->pinned_secmap); 5696 kvfree(dirty_i->victim_secmap); 5697 } 5698 5699 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5700 { 5701 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5702 int i; 5703 5704 if (!dirty_i) 5705 return; 5706 5707 /* discard pre-free/dirty segments list */ 5708 for (i = 0; i < NR_DIRTY_TYPE; i++) 5709 discard_dirty_segmap(sbi, i); 5710 5711 if (__is_large_section(sbi)) { 5712 mutex_lock(&dirty_i->seglist_lock); 5713 kvfree(dirty_i->dirty_secmap); 5714 mutex_unlock(&dirty_i->seglist_lock); 5715 } 5716 5717 destroy_victim_secmap(sbi); 5718 SM_I(sbi)->dirty_info = NULL; 5719 kfree(dirty_i); 5720 } 5721 5722 static void destroy_curseg(struct f2fs_sb_info *sbi) 5723 { 5724 struct curseg_info *array = SM_I(sbi)->curseg_array; 5725 int i; 5726 5727 if (!array) 5728 return; 5729 SM_I(sbi)->curseg_array = NULL; 5730 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5731 kfree(array[i].sum_blk); 5732 kfree(array[i].journal); 5733 } 5734 kfree(array); 5735 } 5736 5737 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5738 { 5739 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5740 5741 if (!free_i) 5742 return; 5743 SM_I(sbi)->free_info = NULL; 5744 kvfree(free_i->free_segmap); 5745 kvfree(free_i->free_secmap); 5746 kfree(free_i); 5747 } 5748 5749 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5750 { 5751 struct sit_info *sit_i = SIT_I(sbi); 5752 5753 if (!sit_i) 5754 return; 5755 5756 if (sit_i->sentries) 5757 kvfree(sit_i->bitmap); 5758 kfree(sit_i->tmp_map); 5759 5760 kvfree(sit_i->sentries); 5761 kvfree(sit_i->sec_entries); 5762 kvfree(sit_i->dirty_sentries_bitmap); 5763 5764 SM_I(sbi)->sit_info = NULL; 5765 kvfree(sit_i->sit_bitmap); 5766 #ifdef CONFIG_F2FS_CHECK_FS 5767 kvfree(sit_i->sit_bitmap_mir); 5768 kvfree(sit_i->invalid_segmap); 5769 #endif 5770 kfree(sit_i); 5771 } 5772 5773 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5774 { 5775 struct f2fs_sm_info *sm_info = SM_I(sbi); 5776 5777 if (!sm_info) 5778 return; 5779 f2fs_destroy_flush_cmd_control(sbi, true); 5780 destroy_discard_cmd_control(sbi); 5781 destroy_dirty_segmap(sbi); 5782 destroy_curseg(sbi); 5783 destroy_free_segmap(sbi); 5784 destroy_sit_info(sbi); 5785 sbi->sm_info = NULL; 5786 kfree(sm_info); 5787 } 5788 5789 int __init f2fs_create_segment_manager_caches(void) 5790 { 5791 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5792 sizeof(struct discard_entry)); 5793 if (!discard_entry_slab) 5794 goto fail; 5795 5796 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5797 sizeof(struct discard_cmd)); 5798 if (!discard_cmd_slab) 5799 goto destroy_discard_entry; 5800 5801 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5802 sizeof(struct sit_entry_set)); 5803 if (!sit_entry_set_slab) 5804 goto destroy_discard_cmd; 5805 5806 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5807 sizeof(struct revoke_entry)); 5808 if (!revoke_entry_slab) 5809 goto destroy_sit_entry_set; 5810 return 0; 5811 5812 destroy_sit_entry_set: 5813 kmem_cache_destroy(sit_entry_set_slab); 5814 destroy_discard_cmd: 5815 kmem_cache_destroy(discard_cmd_slab); 5816 destroy_discard_entry: 5817 kmem_cache_destroy(discard_entry_slab); 5818 fail: 5819 return -ENOMEM; 5820 } 5821 5822 void f2fs_destroy_segment_manager_caches(void) 5823 { 5824 kmem_cache_destroy(sit_entry_set_slab); 5825 kmem_cache_destroy(discard_cmd_slab); 5826 kmem_cache_destroy(discard_entry_slab); 5827 kmem_cache_destroy(revoke_entry_slab); 5828 } 5829