1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 192 if (!f2fs_is_atomic_file(inode)) 193 return; 194 195 if (clean) 196 truncate_inode_pages_final(inode->i_mapping); 197 198 release_atomic_write_cnt(inode); 199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED); 200 clear_inode_flag(inode, FI_ATOMIC_REPLACE); 201 clear_inode_flag(inode, FI_ATOMIC_FILE); 202 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) { 203 clear_inode_flag(inode, FI_ATOMIC_DIRTIED); 204 f2fs_mark_inode_dirty_sync(inode, true); 205 } 206 stat_dec_atomic_inode(inode); 207 208 F2FS_I(inode)->atomic_write_task = NULL; 209 210 if (clean) { 211 f2fs_i_size_write(inode, fi->original_i_size); 212 fi->original_i_size = 0; 213 } 214 /* avoid stale dirty inode during eviction */ 215 sync_inode_metadata(inode, 0); 216 } 217 218 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 219 block_t new_addr, block_t *old_addr, bool recover) 220 { 221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 222 struct dnode_of_data dn; 223 struct node_info ni; 224 int err; 225 226 retry: 227 set_new_dnode(&dn, inode, NULL, NULL, 0); 228 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 229 if (err) { 230 if (err == -ENOMEM) { 231 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 232 goto retry; 233 } 234 return err; 235 } 236 237 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 238 if (err) { 239 f2fs_put_dnode(&dn); 240 return err; 241 } 242 243 if (recover) { 244 /* dn.data_blkaddr is always valid */ 245 if (!__is_valid_data_blkaddr(new_addr)) { 246 if (new_addr == NULL_ADDR) 247 dec_valid_block_count(sbi, inode, 1); 248 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 249 f2fs_update_data_blkaddr(&dn, new_addr); 250 } else { 251 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 252 new_addr, ni.version, true, true); 253 } 254 } else { 255 blkcnt_t count = 1; 256 257 err = inc_valid_block_count(sbi, inode, &count, true); 258 if (err) { 259 f2fs_put_dnode(&dn); 260 return err; 261 } 262 263 *old_addr = dn.data_blkaddr; 264 f2fs_truncate_data_blocks_range(&dn, 1); 265 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 266 267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 268 ni.version, true, false); 269 } 270 271 f2fs_put_dnode(&dn); 272 273 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode, 274 index, old_addr ? *old_addr : 0, new_addr, recover); 275 return 0; 276 } 277 278 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 279 bool revoke) 280 { 281 struct revoke_entry *cur, *tmp; 282 pgoff_t start_index = 0; 283 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); 284 285 list_for_each_entry_safe(cur, tmp, head, list) { 286 if (revoke) { 287 __replace_atomic_write_block(inode, cur->index, 288 cur->old_addr, NULL, true); 289 } else if (truncate) { 290 f2fs_truncate_hole(inode, start_index, cur->index); 291 start_index = cur->index + 1; 292 } 293 294 list_del(&cur->list); 295 kmem_cache_free(revoke_entry_slab, cur); 296 } 297 298 if (!revoke && truncate) 299 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false); 300 } 301 302 static int __f2fs_commit_atomic_write(struct inode *inode) 303 { 304 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 305 struct f2fs_inode_info *fi = F2FS_I(inode); 306 struct inode *cow_inode = fi->cow_inode; 307 struct revoke_entry *new; 308 struct list_head revoke_list; 309 block_t blkaddr; 310 struct dnode_of_data dn; 311 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 312 pgoff_t off = 0, blen, index; 313 int ret = 0, i; 314 315 INIT_LIST_HEAD(&revoke_list); 316 317 while (len) { 318 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 319 320 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 321 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 322 if (ret && ret != -ENOENT) { 323 goto out; 324 } else if (ret == -ENOENT) { 325 ret = 0; 326 if (dn.max_level == 0) 327 goto out; 328 goto next; 329 } 330 331 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 332 len); 333 index = off; 334 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 335 blkaddr = f2fs_data_blkaddr(&dn); 336 337 if (!__is_valid_data_blkaddr(blkaddr)) { 338 continue; 339 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 340 DATA_GENERIC_ENHANCE)) { 341 f2fs_put_dnode(&dn); 342 ret = -EFSCORRUPTED; 343 goto out; 344 } 345 346 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 347 true, NULL); 348 349 ret = __replace_atomic_write_block(inode, index, blkaddr, 350 &new->old_addr, false); 351 if (ret) { 352 f2fs_put_dnode(&dn); 353 kmem_cache_free(revoke_entry_slab, new); 354 goto out; 355 } 356 357 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 358 new->index = index; 359 list_add_tail(&new->list, &revoke_list); 360 } 361 f2fs_put_dnode(&dn); 362 next: 363 off += blen; 364 len -= blen; 365 } 366 367 out: 368 if (ret) { 369 sbi->revoked_atomic_block += fi->atomic_write_cnt; 370 } else { 371 sbi->committed_atomic_block += fi->atomic_write_cnt; 372 set_inode_flag(inode, FI_ATOMIC_COMMITTED); 373 if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) { 374 clear_inode_flag(inode, FI_ATOMIC_DIRTIED); 375 f2fs_mark_inode_dirty_sync(inode, true); 376 } 377 } 378 379 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 380 381 return ret; 382 } 383 384 int f2fs_commit_atomic_write(struct inode *inode) 385 { 386 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 387 struct f2fs_inode_info *fi = F2FS_I(inode); 388 int err; 389 390 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 391 if (err) 392 return err; 393 394 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 395 f2fs_lock_op(sbi); 396 397 err = __f2fs_commit_atomic_write(inode); 398 399 f2fs_unlock_op(sbi); 400 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 401 402 return err; 403 } 404 405 /* 406 * This function balances dirty node and dentry pages. 407 * In addition, it controls garbage collection. 408 */ 409 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 410 { 411 if (f2fs_cp_error(sbi)) 412 return; 413 414 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 415 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); 416 417 /* balance_fs_bg is able to be pending */ 418 if (need && excess_cached_nats(sbi)) 419 f2fs_balance_fs_bg(sbi, false); 420 421 if (!f2fs_is_checkpoint_ready(sbi)) 422 return; 423 424 /* 425 * We should do GC or end up with checkpoint, if there are so many dirty 426 * dir/node pages without enough free segments. 427 */ 428 if (has_enough_free_secs(sbi, 0, 0)) 429 return; 430 431 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 432 sbi->gc_thread->f2fs_gc_task) { 433 DEFINE_WAIT(wait); 434 435 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 436 TASK_UNINTERRUPTIBLE); 437 wake_up(&sbi->gc_thread->gc_wait_queue_head); 438 io_schedule(); 439 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 440 } else { 441 struct f2fs_gc_control gc_control = { 442 .victim_segno = NULL_SEGNO, 443 .init_gc_type = BG_GC, 444 .no_bg_gc = true, 445 .should_migrate_blocks = false, 446 .err_gc_skipped = false, 447 .nr_free_secs = 1 }; 448 f2fs_down_write(&sbi->gc_lock); 449 stat_inc_gc_call_count(sbi, FOREGROUND); 450 f2fs_gc(sbi, &gc_control); 451 } 452 } 453 454 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 455 { 456 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 457 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 458 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 459 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 460 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 461 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 462 unsigned int threshold = 463 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD)); 464 unsigned int global_threshold = threshold * 3 / 2; 465 466 if (dents >= threshold || qdata >= threshold || 467 nodes >= threshold || meta >= threshold || 468 imeta >= threshold) 469 return true; 470 return dents + qdata + nodes + meta + imeta > global_threshold; 471 } 472 473 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 474 { 475 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 476 return; 477 478 /* try to shrink extent cache when there is no enough memory */ 479 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) 480 f2fs_shrink_read_extent_tree(sbi, 481 READ_EXTENT_CACHE_SHRINK_NUMBER); 482 483 /* try to shrink age extent cache when there is no enough memory */ 484 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) 485 f2fs_shrink_age_extent_tree(sbi, 486 AGE_EXTENT_CACHE_SHRINK_NUMBER); 487 488 /* check the # of cached NAT entries */ 489 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 490 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 491 492 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 493 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 494 else 495 f2fs_build_free_nids(sbi, false, false); 496 497 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 498 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 499 goto do_sync; 500 501 /* there is background inflight IO or foreground operation recently */ 502 if (is_inflight_io(sbi, REQ_TIME) || 503 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 504 return; 505 506 /* exceed periodical checkpoint timeout threshold */ 507 if (f2fs_time_over(sbi, CP_TIME)) 508 goto do_sync; 509 510 /* checkpoint is the only way to shrink partial cached entries */ 511 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 512 f2fs_available_free_memory(sbi, INO_ENTRIES)) 513 return; 514 515 do_sync: 516 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 517 struct blk_plug plug; 518 519 mutex_lock(&sbi->flush_lock); 520 521 blk_start_plug(&plug); 522 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); 523 blk_finish_plug(&plug); 524 525 mutex_unlock(&sbi->flush_lock); 526 } 527 stat_inc_cp_call_count(sbi, BACKGROUND); 528 f2fs_sync_fs(sbi->sb, 1); 529 } 530 531 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 532 struct block_device *bdev) 533 { 534 int ret = blkdev_issue_flush(bdev); 535 536 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 537 test_opt(sbi, FLUSH_MERGE), ret); 538 if (!ret) 539 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0); 540 return ret; 541 } 542 543 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 544 { 545 int ret = 0; 546 int i; 547 548 if (!f2fs_is_multi_device(sbi)) 549 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 550 551 for (i = 0; i < sbi->s_ndevs; i++) { 552 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 553 continue; 554 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 555 if (ret) 556 break; 557 } 558 return ret; 559 } 560 561 static int issue_flush_thread(void *data) 562 { 563 struct f2fs_sb_info *sbi = data; 564 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 565 wait_queue_head_t *q = &fcc->flush_wait_queue; 566 repeat: 567 if (kthread_should_stop()) 568 return 0; 569 570 if (!llist_empty(&fcc->issue_list)) { 571 struct flush_cmd *cmd, *next; 572 int ret; 573 574 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 575 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 576 577 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 578 579 ret = submit_flush_wait(sbi, cmd->ino); 580 atomic_inc(&fcc->issued_flush); 581 582 llist_for_each_entry_safe(cmd, next, 583 fcc->dispatch_list, llnode) { 584 cmd->ret = ret; 585 complete(&cmd->wait); 586 } 587 fcc->dispatch_list = NULL; 588 } 589 590 wait_event_interruptible(*q, 591 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 592 goto repeat; 593 } 594 595 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 596 { 597 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 598 struct flush_cmd cmd; 599 int ret; 600 601 if (test_opt(sbi, NOBARRIER)) 602 return 0; 603 604 if (!test_opt(sbi, FLUSH_MERGE)) { 605 atomic_inc(&fcc->queued_flush); 606 ret = submit_flush_wait(sbi, ino); 607 atomic_dec(&fcc->queued_flush); 608 atomic_inc(&fcc->issued_flush); 609 return ret; 610 } 611 612 if (atomic_inc_return(&fcc->queued_flush) == 1 || 613 f2fs_is_multi_device(sbi)) { 614 ret = submit_flush_wait(sbi, ino); 615 atomic_dec(&fcc->queued_flush); 616 617 atomic_inc(&fcc->issued_flush); 618 return ret; 619 } 620 621 cmd.ino = ino; 622 init_completion(&cmd.wait); 623 624 llist_add(&cmd.llnode, &fcc->issue_list); 625 626 /* 627 * update issue_list before we wake up issue_flush thread, this 628 * smp_mb() pairs with another barrier in ___wait_event(), see 629 * more details in comments of waitqueue_active(). 630 */ 631 smp_mb(); 632 633 if (waitqueue_active(&fcc->flush_wait_queue)) 634 wake_up(&fcc->flush_wait_queue); 635 636 if (fcc->f2fs_issue_flush) { 637 wait_for_completion(&cmd.wait); 638 atomic_dec(&fcc->queued_flush); 639 } else { 640 struct llist_node *list; 641 642 list = llist_del_all(&fcc->issue_list); 643 if (!list) { 644 wait_for_completion(&cmd.wait); 645 atomic_dec(&fcc->queued_flush); 646 } else { 647 struct flush_cmd *tmp, *next; 648 649 ret = submit_flush_wait(sbi, ino); 650 651 llist_for_each_entry_safe(tmp, next, list, llnode) { 652 if (tmp == &cmd) { 653 cmd.ret = ret; 654 atomic_dec(&fcc->queued_flush); 655 continue; 656 } 657 tmp->ret = ret; 658 complete(&tmp->wait); 659 } 660 } 661 } 662 663 return cmd.ret; 664 } 665 666 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 667 { 668 dev_t dev = sbi->sb->s_bdev->bd_dev; 669 struct flush_cmd_control *fcc; 670 671 if (SM_I(sbi)->fcc_info) { 672 fcc = SM_I(sbi)->fcc_info; 673 if (fcc->f2fs_issue_flush) 674 return 0; 675 goto init_thread; 676 } 677 678 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 679 if (!fcc) 680 return -ENOMEM; 681 atomic_set(&fcc->issued_flush, 0); 682 atomic_set(&fcc->queued_flush, 0); 683 init_waitqueue_head(&fcc->flush_wait_queue); 684 init_llist_head(&fcc->issue_list); 685 SM_I(sbi)->fcc_info = fcc; 686 if (!test_opt(sbi, FLUSH_MERGE)) 687 return 0; 688 689 init_thread: 690 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 691 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 692 if (IS_ERR(fcc->f2fs_issue_flush)) { 693 int err = PTR_ERR(fcc->f2fs_issue_flush); 694 695 fcc->f2fs_issue_flush = NULL; 696 return err; 697 } 698 699 return 0; 700 } 701 702 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 703 { 704 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 705 706 if (fcc && fcc->f2fs_issue_flush) { 707 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 708 709 fcc->f2fs_issue_flush = NULL; 710 kthread_stop(flush_thread); 711 } 712 if (free) { 713 kfree(fcc); 714 SM_I(sbi)->fcc_info = NULL; 715 } 716 } 717 718 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 719 { 720 int ret = 0, i; 721 722 if (!f2fs_is_multi_device(sbi)) 723 return 0; 724 725 if (test_opt(sbi, NOBARRIER)) 726 return 0; 727 728 for (i = 1; i < sbi->s_ndevs; i++) { 729 int count = DEFAULT_RETRY_IO_COUNT; 730 731 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 732 continue; 733 734 do { 735 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 736 if (ret) 737 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 738 } while (ret && --count); 739 740 if (ret) { 741 f2fs_stop_checkpoint(sbi, false, 742 STOP_CP_REASON_FLUSH_FAIL); 743 break; 744 } 745 746 spin_lock(&sbi->dev_lock); 747 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 748 spin_unlock(&sbi->dev_lock); 749 } 750 751 return ret; 752 } 753 754 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 755 enum dirty_type dirty_type) 756 { 757 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 758 759 /* need not be added */ 760 if (IS_CURSEG(sbi, segno)) 761 return; 762 763 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 764 dirty_i->nr_dirty[dirty_type]++; 765 766 if (dirty_type == DIRTY) { 767 struct seg_entry *sentry = get_seg_entry(sbi, segno); 768 enum dirty_type t = sentry->type; 769 770 if (unlikely(t >= DIRTY)) { 771 f2fs_bug_on(sbi, 1); 772 return; 773 } 774 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 775 dirty_i->nr_dirty[t]++; 776 777 if (__is_large_section(sbi)) { 778 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 779 block_t valid_blocks = 780 get_valid_blocks(sbi, segno, true); 781 782 f2fs_bug_on(sbi, 783 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 784 !valid_blocks) || 785 valid_blocks == CAP_BLKS_PER_SEC(sbi)); 786 787 if (!IS_CURSEC(sbi, secno)) 788 set_bit(secno, dirty_i->dirty_secmap); 789 } 790 } 791 } 792 793 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 794 enum dirty_type dirty_type) 795 { 796 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 797 block_t valid_blocks; 798 799 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 800 dirty_i->nr_dirty[dirty_type]--; 801 802 if (dirty_type == DIRTY) { 803 struct seg_entry *sentry = get_seg_entry(sbi, segno); 804 enum dirty_type t = sentry->type; 805 806 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 807 dirty_i->nr_dirty[t]--; 808 809 valid_blocks = get_valid_blocks(sbi, segno, true); 810 if (valid_blocks == 0) { 811 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 812 dirty_i->victim_secmap); 813 #ifdef CONFIG_F2FS_CHECK_FS 814 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 815 #endif 816 } 817 if (__is_large_section(sbi)) { 818 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 819 820 if (!valid_blocks || 821 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 822 clear_bit(secno, dirty_i->dirty_secmap); 823 return; 824 } 825 826 if (!IS_CURSEC(sbi, secno)) 827 set_bit(secno, dirty_i->dirty_secmap); 828 } 829 } 830 } 831 832 /* 833 * Should not occur error such as -ENOMEM. 834 * Adding dirty entry into seglist is not critical operation. 835 * If a given segment is one of current working segments, it won't be added. 836 */ 837 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 838 { 839 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 840 unsigned short valid_blocks, ckpt_valid_blocks; 841 unsigned int usable_blocks; 842 843 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 844 return; 845 846 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 847 mutex_lock(&dirty_i->seglist_lock); 848 849 valid_blocks = get_valid_blocks(sbi, segno, false); 850 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 851 852 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 853 ckpt_valid_blocks == usable_blocks)) { 854 __locate_dirty_segment(sbi, segno, PRE); 855 __remove_dirty_segment(sbi, segno, DIRTY); 856 } else if (valid_blocks < usable_blocks) { 857 __locate_dirty_segment(sbi, segno, DIRTY); 858 } else { 859 /* Recovery routine with SSR needs this */ 860 __remove_dirty_segment(sbi, segno, DIRTY); 861 } 862 863 mutex_unlock(&dirty_i->seglist_lock); 864 } 865 866 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 867 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 868 { 869 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 870 unsigned int segno; 871 872 mutex_lock(&dirty_i->seglist_lock); 873 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 874 if (get_valid_blocks(sbi, segno, false)) 875 continue; 876 if (IS_CURSEG(sbi, segno)) 877 continue; 878 __locate_dirty_segment(sbi, segno, PRE); 879 __remove_dirty_segment(sbi, segno, DIRTY); 880 } 881 mutex_unlock(&dirty_i->seglist_lock); 882 } 883 884 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 885 { 886 int ovp_hole_segs = 887 (overprovision_segments(sbi) - reserved_segments(sbi)); 888 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs); 889 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 890 block_t holes[2] = {0, 0}; /* DATA and NODE */ 891 block_t unusable; 892 struct seg_entry *se; 893 unsigned int segno; 894 895 mutex_lock(&dirty_i->seglist_lock); 896 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 897 se = get_seg_entry(sbi, segno); 898 if (IS_NODESEG(se->type)) 899 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 900 se->valid_blocks; 901 else 902 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 903 se->valid_blocks; 904 } 905 mutex_unlock(&dirty_i->seglist_lock); 906 907 unusable = max(holes[DATA], holes[NODE]); 908 if (unusable > ovp_holes) 909 return unusable - ovp_holes; 910 return 0; 911 } 912 913 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 914 { 915 int ovp_hole_segs = 916 (overprovision_segments(sbi) - reserved_segments(sbi)); 917 918 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 919 return 0; 920 if (unusable > F2FS_OPTION(sbi).unusable_cap) 921 return -EAGAIN; 922 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 923 dirty_segments(sbi) > ovp_hole_segs) 924 return -EAGAIN; 925 if (has_not_enough_free_secs(sbi, 0, 0)) 926 return -EAGAIN; 927 return 0; 928 } 929 930 /* This is only used by SBI_CP_DISABLED */ 931 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 932 { 933 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 934 unsigned int segno = 0; 935 936 mutex_lock(&dirty_i->seglist_lock); 937 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 938 if (get_valid_blocks(sbi, segno, false)) 939 continue; 940 if (get_ckpt_valid_blocks(sbi, segno, false)) 941 continue; 942 mutex_unlock(&dirty_i->seglist_lock); 943 return segno; 944 } 945 mutex_unlock(&dirty_i->seglist_lock); 946 return NULL_SEGNO; 947 } 948 949 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 950 struct block_device *bdev, block_t lstart, 951 block_t start, block_t len) 952 { 953 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 954 struct list_head *pend_list; 955 struct discard_cmd *dc; 956 957 f2fs_bug_on(sbi, !len); 958 959 pend_list = &dcc->pend_list[plist_idx(len)]; 960 961 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 962 INIT_LIST_HEAD(&dc->list); 963 dc->bdev = bdev; 964 dc->di.lstart = lstart; 965 dc->di.start = start; 966 dc->di.len = len; 967 dc->ref = 0; 968 dc->state = D_PREP; 969 dc->queued = 0; 970 dc->error = 0; 971 init_completion(&dc->wait); 972 list_add_tail(&dc->list, pend_list); 973 spin_lock_init(&dc->lock); 974 dc->bio_ref = 0; 975 atomic_inc(&dcc->discard_cmd_cnt); 976 dcc->undiscard_blks += len; 977 978 return dc; 979 } 980 981 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi) 982 { 983 #ifdef CONFIG_F2FS_CHECK_FS 984 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 985 struct rb_node *cur = rb_first_cached(&dcc->root), *next; 986 struct discard_cmd *cur_dc, *next_dc; 987 988 while (cur) { 989 next = rb_next(cur); 990 if (!next) 991 return true; 992 993 cur_dc = rb_entry(cur, struct discard_cmd, rb_node); 994 next_dc = rb_entry(next, struct discard_cmd, rb_node); 995 996 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) { 997 f2fs_info(sbi, "broken discard_rbtree, " 998 "cur(%u, %u) next(%u, %u)", 999 cur_dc->di.lstart, cur_dc->di.len, 1000 next_dc->di.lstart, next_dc->di.len); 1001 return false; 1002 } 1003 cur = next; 1004 } 1005 #endif 1006 return true; 1007 } 1008 1009 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi, 1010 block_t blkaddr) 1011 { 1012 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1013 struct rb_node *node = dcc->root.rb_root.rb_node; 1014 struct discard_cmd *dc; 1015 1016 while (node) { 1017 dc = rb_entry(node, struct discard_cmd, rb_node); 1018 1019 if (blkaddr < dc->di.lstart) 1020 node = node->rb_left; 1021 else if (blkaddr >= dc->di.lstart + dc->di.len) 1022 node = node->rb_right; 1023 else 1024 return dc; 1025 } 1026 return NULL; 1027 } 1028 1029 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root, 1030 block_t blkaddr, 1031 struct discard_cmd **prev_entry, 1032 struct discard_cmd **next_entry, 1033 struct rb_node ***insert_p, 1034 struct rb_node **insert_parent) 1035 { 1036 struct rb_node **pnode = &root->rb_root.rb_node; 1037 struct rb_node *parent = NULL, *tmp_node; 1038 struct discard_cmd *dc; 1039 1040 *insert_p = NULL; 1041 *insert_parent = NULL; 1042 *prev_entry = NULL; 1043 *next_entry = NULL; 1044 1045 if (RB_EMPTY_ROOT(&root->rb_root)) 1046 return NULL; 1047 1048 while (*pnode) { 1049 parent = *pnode; 1050 dc = rb_entry(*pnode, struct discard_cmd, rb_node); 1051 1052 if (blkaddr < dc->di.lstart) 1053 pnode = &(*pnode)->rb_left; 1054 else if (blkaddr >= dc->di.lstart + dc->di.len) 1055 pnode = &(*pnode)->rb_right; 1056 else 1057 goto lookup_neighbors; 1058 } 1059 1060 *insert_p = pnode; 1061 *insert_parent = parent; 1062 1063 dc = rb_entry(parent, struct discard_cmd, rb_node); 1064 tmp_node = parent; 1065 if (parent && blkaddr > dc->di.lstart) 1066 tmp_node = rb_next(parent); 1067 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1068 1069 tmp_node = parent; 1070 if (parent && blkaddr < dc->di.lstart) 1071 tmp_node = rb_prev(parent); 1072 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1073 return NULL; 1074 1075 lookup_neighbors: 1076 /* lookup prev node for merging backward later */ 1077 tmp_node = rb_prev(&dc->rb_node); 1078 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1079 1080 /* lookup next node for merging frontward later */ 1081 tmp_node = rb_next(&dc->rb_node); 1082 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1083 return dc; 1084 } 1085 1086 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1087 struct discard_cmd *dc) 1088 { 1089 if (dc->state == D_DONE) 1090 atomic_sub(dc->queued, &dcc->queued_discard); 1091 1092 list_del(&dc->list); 1093 rb_erase_cached(&dc->rb_node, &dcc->root); 1094 dcc->undiscard_blks -= dc->di.len; 1095 1096 kmem_cache_free(discard_cmd_slab, dc); 1097 1098 atomic_dec(&dcc->discard_cmd_cnt); 1099 } 1100 1101 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1102 struct discard_cmd *dc) 1103 { 1104 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1105 unsigned long flags; 1106 1107 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len); 1108 1109 spin_lock_irqsave(&dc->lock, flags); 1110 if (dc->bio_ref) { 1111 spin_unlock_irqrestore(&dc->lock, flags); 1112 return; 1113 } 1114 spin_unlock_irqrestore(&dc->lock, flags); 1115 1116 f2fs_bug_on(sbi, dc->ref); 1117 1118 if (dc->error == -EOPNOTSUPP) 1119 dc->error = 0; 1120 1121 if (dc->error) 1122 f2fs_info_ratelimited(sbi, 1123 "Issue discard(%u, %u, %u) failed, ret: %d", 1124 dc->di.lstart, dc->di.start, dc->di.len, dc->error); 1125 __detach_discard_cmd(dcc, dc); 1126 } 1127 1128 static void f2fs_submit_discard_endio(struct bio *bio) 1129 { 1130 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1131 unsigned long flags; 1132 1133 spin_lock_irqsave(&dc->lock, flags); 1134 if (!dc->error) 1135 dc->error = blk_status_to_errno(bio->bi_status); 1136 dc->bio_ref--; 1137 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1138 dc->state = D_DONE; 1139 complete_all(&dc->wait); 1140 } 1141 spin_unlock_irqrestore(&dc->lock, flags); 1142 bio_put(bio); 1143 } 1144 1145 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1146 block_t start, block_t end) 1147 { 1148 #ifdef CONFIG_F2FS_CHECK_FS 1149 struct seg_entry *sentry; 1150 unsigned int segno; 1151 block_t blk = start; 1152 unsigned long offset, size, *map; 1153 1154 while (blk < end) { 1155 segno = GET_SEGNO(sbi, blk); 1156 sentry = get_seg_entry(sbi, segno); 1157 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1158 1159 if (end < START_BLOCK(sbi, segno + 1)) 1160 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1161 else 1162 size = BLKS_PER_SEG(sbi); 1163 map = (unsigned long *)(sentry->cur_valid_map); 1164 offset = __find_rev_next_bit(map, size, offset); 1165 f2fs_bug_on(sbi, offset != size); 1166 blk = START_BLOCK(sbi, segno + 1); 1167 } 1168 #endif 1169 } 1170 1171 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1172 struct discard_policy *dpolicy, 1173 int discard_type, unsigned int granularity) 1174 { 1175 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1176 1177 /* common policy */ 1178 dpolicy->type = discard_type; 1179 dpolicy->sync = true; 1180 dpolicy->ordered = false; 1181 dpolicy->granularity = granularity; 1182 1183 dpolicy->max_requests = dcc->max_discard_request; 1184 dpolicy->io_aware_gran = dcc->discard_io_aware_gran; 1185 dpolicy->timeout = false; 1186 1187 if (discard_type == DPOLICY_BG) { 1188 dpolicy->min_interval = dcc->min_discard_issue_time; 1189 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1190 dpolicy->max_interval = dcc->max_discard_issue_time; 1191 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE) 1192 dpolicy->io_aware = true; 1193 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE) 1194 dpolicy->io_aware = false; 1195 dpolicy->sync = false; 1196 dpolicy->ordered = true; 1197 if (utilization(sbi) > dcc->discard_urgent_util) { 1198 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1199 if (atomic_read(&dcc->discard_cmd_cnt)) 1200 dpolicy->max_interval = 1201 dcc->min_discard_issue_time; 1202 } 1203 } else if (discard_type == DPOLICY_FORCE) { 1204 dpolicy->min_interval = dcc->min_discard_issue_time; 1205 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1206 dpolicy->max_interval = dcc->max_discard_issue_time; 1207 dpolicy->io_aware = false; 1208 } else if (discard_type == DPOLICY_FSTRIM) { 1209 dpolicy->io_aware = false; 1210 } else if (discard_type == DPOLICY_UMOUNT) { 1211 dpolicy->io_aware = false; 1212 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1213 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1214 dpolicy->timeout = true; 1215 } 1216 } 1217 1218 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1219 struct block_device *bdev, block_t lstart, 1220 block_t start, block_t len); 1221 1222 #ifdef CONFIG_BLK_DEV_ZONED 1223 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi, 1224 struct discard_cmd *dc, blk_opf_t flag, 1225 struct list_head *wait_list, 1226 unsigned int *issued) 1227 { 1228 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1229 struct block_device *bdev = dc->bdev; 1230 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS); 1231 unsigned long flags; 1232 1233 trace_f2fs_issue_reset_zone(bdev, dc->di.start); 1234 1235 spin_lock_irqsave(&dc->lock, flags); 1236 dc->state = D_SUBMIT; 1237 dc->bio_ref++; 1238 spin_unlock_irqrestore(&dc->lock, flags); 1239 1240 if (issued) 1241 (*issued)++; 1242 1243 atomic_inc(&dcc->queued_discard); 1244 dc->queued++; 1245 list_move_tail(&dc->list, wait_list); 1246 1247 /* sanity check on discard range */ 1248 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len); 1249 1250 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start); 1251 bio->bi_private = dc; 1252 bio->bi_end_io = f2fs_submit_discard_endio; 1253 submit_bio(bio); 1254 1255 atomic_inc(&dcc->issued_discard); 1256 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE); 1257 } 1258 #endif 1259 1260 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1261 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1262 struct discard_policy *dpolicy, 1263 struct discard_cmd *dc, int *issued) 1264 { 1265 struct block_device *bdev = dc->bdev; 1266 unsigned int max_discard_blocks = 1267 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1268 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1269 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1270 &(dcc->fstrim_list) : &(dcc->wait_list); 1271 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1272 block_t lstart, start, len, total_len; 1273 int err = 0; 1274 1275 if (dc->state != D_PREP) 1276 return 0; 1277 1278 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1279 return 0; 1280 1281 #ifdef CONFIG_BLK_DEV_ZONED 1282 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) { 1283 int devi = f2fs_bdev_index(sbi, bdev); 1284 1285 if (devi < 0) 1286 return -EINVAL; 1287 1288 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1289 __submit_zone_reset_cmd(sbi, dc, flag, 1290 wait_list, issued); 1291 return 0; 1292 } 1293 } 1294 #endif 1295 1296 /* 1297 * stop issuing discard for any of below cases: 1298 * 1. device is conventional zone, but it doesn't support discard. 1299 * 2. device is regulare device, after snapshot it doesn't support 1300 * discard. 1301 */ 1302 if (!bdev_max_discard_sectors(bdev)) 1303 return -EOPNOTSUPP; 1304 1305 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len); 1306 1307 lstart = dc->di.lstart; 1308 start = dc->di.start; 1309 len = dc->di.len; 1310 total_len = len; 1311 1312 dc->di.len = 0; 1313 1314 while (total_len && *issued < dpolicy->max_requests && !err) { 1315 struct bio *bio = NULL; 1316 unsigned long flags; 1317 bool last = true; 1318 1319 if (len > max_discard_blocks) { 1320 len = max_discard_blocks; 1321 last = false; 1322 } 1323 1324 (*issued)++; 1325 if (*issued == dpolicy->max_requests) 1326 last = true; 1327 1328 dc->di.len += len; 1329 1330 if (time_to_inject(sbi, FAULT_DISCARD)) { 1331 err = -EIO; 1332 } else { 1333 err = __blkdev_issue_discard(bdev, 1334 SECTOR_FROM_BLOCK(start), 1335 SECTOR_FROM_BLOCK(len), 1336 GFP_NOFS, &bio); 1337 } 1338 if (err) { 1339 spin_lock_irqsave(&dc->lock, flags); 1340 if (dc->state == D_PARTIAL) 1341 dc->state = D_SUBMIT; 1342 spin_unlock_irqrestore(&dc->lock, flags); 1343 1344 break; 1345 } 1346 1347 f2fs_bug_on(sbi, !bio); 1348 1349 /* 1350 * should keep before submission to avoid D_DONE 1351 * right away 1352 */ 1353 spin_lock_irqsave(&dc->lock, flags); 1354 if (last) 1355 dc->state = D_SUBMIT; 1356 else 1357 dc->state = D_PARTIAL; 1358 dc->bio_ref++; 1359 spin_unlock_irqrestore(&dc->lock, flags); 1360 1361 atomic_inc(&dcc->queued_discard); 1362 dc->queued++; 1363 list_move_tail(&dc->list, wait_list); 1364 1365 /* sanity check on discard range */ 1366 __check_sit_bitmap(sbi, lstart, lstart + len); 1367 1368 bio->bi_private = dc; 1369 bio->bi_end_io = f2fs_submit_discard_endio; 1370 bio->bi_opf |= flag; 1371 submit_bio(bio); 1372 1373 atomic_inc(&dcc->issued_discard); 1374 1375 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE); 1376 1377 lstart += len; 1378 start += len; 1379 total_len -= len; 1380 len = total_len; 1381 } 1382 1383 if (!err && len) { 1384 dcc->undiscard_blks -= len; 1385 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1386 } 1387 return err; 1388 } 1389 1390 static void __insert_discard_cmd(struct f2fs_sb_info *sbi, 1391 struct block_device *bdev, block_t lstart, 1392 block_t start, block_t len) 1393 { 1394 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1395 struct rb_node **p = &dcc->root.rb_root.rb_node; 1396 struct rb_node *parent = NULL; 1397 struct discard_cmd *dc; 1398 bool leftmost = true; 1399 1400 /* look up rb tree to find parent node */ 1401 while (*p) { 1402 parent = *p; 1403 dc = rb_entry(parent, struct discard_cmd, rb_node); 1404 1405 if (lstart < dc->di.lstart) { 1406 p = &(*p)->rb_left; 1407 } else if (lstart >= dc->di.lstart + dc->di.len) { 1408 p = &(*p)->rb_right; 1409 leftmost = false; 1410 } else { 1411 /* Let's skip to add, if exists */ 1412 return; 1413 } 1414 } 1415 1416 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1417 1418 rb_link_node(&dc->rb_node, parent, p); 1419 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1420 } 1421 1422 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1423 struct discard_cmd *dc) 1424 { 1425 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]); 1426 } 1427 1428 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1429 struct discard_cmd *dc, block_t blkaddr) 1430 { 1431 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1432 struct discard_info di = dc->di; 1433 bool modified = false; 1434 1435 if (dc->state == D_DONE || dc->di.len == 1) { 1436 __remove_discard_cmd(sbi, dc); 1437 return; 1438 } 1439 1440 dcc->undiscard_blks -= di.len; 1441 1442 if (blkaddr > di.lstart) { 1443 dc->di.len = blkaddr - dc->di.lstart; 1444 dcc->undiscard_blks += dc->di.len; 1445 __relocate_discard_cmd(dcc, dc); 1446 modified = true; 1447 } 1448 1449 if (blkaddr < di.lstart + di.len - 1) { 1450 if (modified) { 1451 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1, 1452 di.start + blkaddr + 1 - di.lstart, 1453 di.lstart + di.len - 1 - blkaddr); 1454 } else { 1455 dc->di.lstart++; 1456 dc->di.len--; 1457 dc->di.start++; 1458 dcc->undiscard_blks += dc->di.len; 1459 __relocate_discard_cmd(dcc, dc); 1460 } 1461 } 1462 } 1463 1464 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1465 struct block_device *bdev, block_t lstart, 1466 block_t start, block_t len) 1467 { 1468 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1469 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1470 struct discard_cmd *dc; 1471 struct discard_info di = {0}; 1472 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1473 unsigned int max_discard_blocks = 1474 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1475 block_t end = lstart + len; 1476 1477 dc = __lookup_discard_cmd_ret(&dcc->root, lstart, 1478 &prev_dc, &next_dc, &insert_p, &insert_parent); 1479 if (dc) 1480 prev_dc = dc; 1481 1482 if (!prev_dc) { 1483 di.lstart = lstart; 1484 di.len = next_dc ? next_dc->di.lstart - lstart : len; 1485 di.len = min(di.len, len); 1486 di.start = start; 1487 } 1488 1489 while (1) { 1490 struct rb_node *node; 1491 bool merged = false; 1492 struct discard_cmd *tdc = NULL; 1493 1494 if (prev_dc) { 1495 di.lstart = prev_dc->di.lstart + prev_dc->di.len; 1496 if (di.lstart < lstart) 1497 di.lstart = lstart; 1498 if (di.lstart >= end) 1499 break; 1500 1501 if (!next_dc || next_dc->di.lstart > end) 1502 di.len = end - di.lstart; 1503 else 1504 di.len = next_dc->di.lstart - di.lstart; 1505 di.start = start + di.lstart - lstart; 1506 } 1507 1508 if (!di.len) 1509 goto next; 1510 1511 if (prev_dc && prev_dc->state == D_PREP && 1512 prev_dc->bdev == bdev && 1513 __is_discard_back_mergeable(&di, &prev_dc->di, 1514 max_discard_blocks)) { 1515 prev_dc->di.len += di.len; 1516 dcc->undiscard_blks += di.len; 1517 __relocate_discard_cmd(dcc, prev_dc); 1518 di = prev_dc->di; 1519 tdc = prev_dc; 1520 merged = true; 1521 } 1522 1523 if (next_dc && next_dc->state == D_PREP && 1524 next_dc->bdev == bdev && 1525 __is_discard_front_mergeable(&di, &next_dc->di, 1526 max_discard_blocks)) { 1527 next_dc->di.lstart = di.lstart; 1528 next_dc->di.len += di.len; 1529 next_dc->di.start = di.start; 1530 dcc->undiscard_blks += di.len; 1531 __relocate_discard_cmd(dcc, next_dc); 1532 if (tdc) 1533 __remove_discard_cmd(sbi, tdc); 1534 merged = true; 1535 } 1536 1537 if (!merged) 1538 __insert_discard_cmd(sbi, bdev, 1539 di.lstart, di.start, di.len); 1540 next: 1541 prev_dc = next_dc; 1542 if (!prev_dc) 1543 break; 1544 1545 node = rb_next(&prev_dc->rb_node); 1546 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1547 } 1548 } 1549 1550 #ifdef CONFIG_BLK_DEV_ZONED 1551 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi, 1552 struct block_device *bdev, block_t blkstart, block_t lblkstart, 1553 block_t blklen) 1554 { 1555 trace_f2fs_queue_reset_zone(bdev, blkstart); 1556 1557 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1558 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen); 1559 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1560 } 1561 #endif 1562 1563 static void __queue_discard_cmd(struct f2fs_sb_info *sbi, 1564 struct block_device *bdev, block_t blkstart, block_t blklen) 1565 { 1566 block_t lblkstart = blkstart; 1567 1568 if (!f2fs_bdev_support_discard(bdev)) 1569 return; 1570 1571 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1572 1573 if (f2fs_is_multi_device(sbi)) { 1574 int devi = f2fs_target_device_index(sbi, blkstart); 1575 1576 blkstart -= FDEV(devi).start_blk; 1577 } 1578 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1579 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1580 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1581 } 1582 1583 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1584 struct discard_policy *dpolicy, int *issued) 1585 { 1586 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1587 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1588 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1589 struct discard_cmd *dc; 1590 struct blk_plug plug; 1591 bool io_interrupted = false; 1592 1593 mutex_lock(&dcc->cmd_lock); 1594 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos, 1595 &prev_dc, &next_dc, &insert_p, &insert_parent); 1596 if (!dc) 1597 dc = next_dc; 1598 1599 blk_start_plug(&plug); 1600 1601 while (dc) { 1602 struct rb_node *node; 1603 int err = 0; 1604 1605 if (dc->state != D_PREP) 1606 goto next; 1607 1608 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1609 io_interrupted = true; 1610 break; 1611 } 1612 1613 dcc->next_pos = dc->di.lstart + dc->di.len; 1614 err = __submit_discard_cmd(sbi, dpolicy, dc, issued); 1615 1616 if (*issued >= dpolicy->max_requests) 1617 break; 1618 next: 1619 node = rb_next(&dc->rb_node); 1620 if (err) 1621 __remove_discard_cmd(sbi, dc); 1622 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1623 } 1624 1625 blk_finish_plug(&plug); 1626 1627 if (!dc) 1628 dcc->next_pos = 0; 1629 1630 mutex_unlock(&dcc->cmd_lock); 1631 1632 if (!(*issued) && io_interrupted) 1633 *issued = -1; 1634 } 1635 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1636 struct discard_policy *dpolicy); 1637 1638 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1639 struct discard_policy *dpolicy) 1640 { 1641 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1642 struct list_head *pend_list; 1643 struct discard_cmd *dc, *tmp; 1644 struct blk_plug plug; 1645 int i, issued; 1646 bool io_interrupted = false; 1647 1648 if (dpolicy->timeout) 1649 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1650 1651 retry: 1652 issued = 0; 1653 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1654 if (dpolicy->timeout && 1655 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1656 break; 1657 1658 if (i + 1 < dpolicy->granularity) 1659 break; 1660 1661 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) { 1662 __issue_discard_cmd_orderly(sbi, dpolicy, &issued); 1663 return issued; 1664 } 1665 1666 pend_list = &dcc->pend_list[i]; 1667 1668 mutex_lock(&dcc->cmd_lock); 1669 if (list_empty(pend_list)) 1670 goto next; 1671 if (unlikely(dcc->rbtree_check)) 1672 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 1673 blk_start_plug(&plug); 1674 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1675 f2fs_bug_on(sbi, dc->state != D_PREP); 1676 1677 if (dpolicy->timeout && 1678 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1679 break; 1680 1681 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1682 !is_idle(sbi, DISCARD_TIME)) { 1683 io_interrupted = true; 1684 break; 1685 } 1686 1687 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1688 1689 if (issued >= dpolicy->max_requests) 1690 break; 1691 } 1692 blk_finish_plug(&plug); 1693 next: 1694 mutex_unlock(&dcc->cmd_lock); 1695 1696 if (issued >= dpolicy->max_requests || io_interrupted) 1697 break; 1698 } 1699 1700 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1701 __wait_all_discard_cmd(sbi, dpolicy); 1702 goto retry; 1703 } 1704 1705 if (!issued && io_interrupted) 1706 issued = -1; 1707 1708 return issued; 1709 } 1710 1711 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1712 { 1713 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1714 struct list_head *pend_list; 1715 struct discard_cmd *dc, *tmp; 1716 int i; 1717 bool dropped = false; 1718 1719 mutex_lock(&dcc->cmd_lock); 1720 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1721 pend_list = &dcc->pend_list[i]; 1722 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1723 f2fs_bug_on(sbi, dc->state != D_PREP); 1724 __remove_discard_cmd(sbi, dc); 1725 dropped = true; 1726 } 1727 } 1728 mutex_unlock(&dcc->cmd_lock); 1729 1730 return dropped; 1731 } 1732 1733 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1734 { 1735 __drop_discard_cmd(sbi); 1736 } 1737 1738 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1739 struct discard_cmd *dc) 1740 { 1741 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1742 unsigned int len = 0; 1743 1744 wait_for_completion_io(&dc->wait); 1745 mutex_lock(&dcc->cmd_lock); 1746 f2fs_bug_on(sbi, dc->state != D_DONE); 1747 dc->ref--; 1748 if (!dc->ref) { 1749 if (!dc->error) 1750 len = dc->di.len; 1751 __remove_discard_cmd(sbi, dc); 1752 } 1753 mutex_unlock(&dcc->cmd_lock); 1754 1755 return len; 1756 } 1757 1758 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1759 struct discard_policy *dpolicy, 1760 block_t start, block_t end) 1761 { 1762 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1763 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1764 &(dcc->fstrim_list) : &(dcc->wait_list); 1765 struct discard_cmd *dc = NULL, *iter, *tmp; 1766 unsigned int trimmed = 0; 1767 1768 next: 1769 dc = NULL; 1770 1771 mutex_lock(&dcc->cmd_lock); 1772 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1773 if (iter->di.lstart + iter->di.len <= start || 1774 end <= iter->di.lstart) 1775 continue; 1776 if (iter->di.len < dpolicy->granularity) 1777 continue; 1778 if (iter->state == D_DONE && !iter->ref) { 1779 wait_for_completion_io(&iter->wait); 1780 if (!iter->error) 1781 trimmed += iter->di.len; 1782 __remove_discard_cmd(sbi, iter); 1783 } else { 1784 iter->ref++; 1785 dc = iter; 1786 break; 1787 } 1788 } 1789 mutex_unlock(&dcc->cmd_lock); 1790 1791 if (dc) { 1792 trimmed += __wait_one_discard_bio(sbi, dc); 1793 goto next; 1794 } 1795 1796 return trimmed; 1797 } 1798 1799 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1800 struct discard_policy *dpolicy) 1801 { 1802 struct discard_policy dp; 1803 unsigned int discard_blks; 1804 1805 if (dpolicy) 1806 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1807 1808 /* wait all */ 1809 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY); 1810 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1811 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY); 1812 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1813 1814 return discard_blks; 1815 } 1816 1817 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1818 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1819 { 1820 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1821 struct discard_cmd *dc; 1822 bool need_wait = false; 1823 1824 mutex_lock(&dcc->cmd_lock); 1825 dc = __lookup_discard_cmd(sbi, blkaddr); 1826 #ifdef CONFIG_BLK_DEV_ZONED 1827 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) { 1828 int devi = f2fs_bdev_index(sbi, dc->bdev); 1829 1830 if (devi < 0) { 1831 mutex_unlock(&dcc->cmd_lock); 1832 return; 1833 } 1834 1835 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1836 /* force submit zone reset */ 1837 if (dc->state == D_PREP) 1838 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC, 1839 &dcc->wait_list, NULL); 1840 dc->ref++; 1841 mutex_unlock(&dcc->cmd_lock); 1842 /* wait zone reset */ 1843 __wait_one_discard_bio(sbi, dc); 1844 return; 1845 } 1846 } 1847 #endif 1848 if (dc) { 1849 if (dc->state == D_PREP) { 1850 __punch_discard_cmd(sbi, dc, blkaddr); 1851 } else { 1852 dc->ref++; 1853 need_wait = true; 1854 } 1855 } 1856 mutex_unlock(&dcc->cmd_lock); 1857 1858 if (need_wait) 1859 __wait_one_discard_bio(sbi, dc); 1860 } 1861 1862 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1863 { 1864 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1865 1866 if (dcc && dcc->f2fs_issue_discard) { 1867 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1868 1869 dcc->f2fs_issue_discard = NULL; 1870 kthread_stop(discard_thread); 1871 } 1872 } 1873 1874 /** 1875 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT 1876 * @sbi: the f2fs_sb_info data for discard cmd to issue 1877 * 1878 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped 1879 * 1880 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false. 1881 */ 1882 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1883 { 1884 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1885 struct discard_policy dpolicy; 1886 bool dropped; 1887 1888 if (!atomic_read(&dcc->discard_cmd_cnt)) 1889 return true; 1890 1891 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1892 dcc->discard_granularity); 1893 __issue_discard_cmd(sbi, &dpolicy); 1894 dropped = __drop_discard_cmd(sbi); 1895 1896 /* just to make sure there is no pending discard commands */ 1897 __wait_all_discard_cmd(sbi, NULL); 1898 1899 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1900 return !dropped; 1901 } 1902 1903 static int issue_discard_thread(void *data) 1904 { 1905 struct f2fs_sb_info *sbi = data; 1906 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1907 wait_queue_head_t *q = &dcc->discard_wait_queue; 1908 struct discard_policy dpolicy; 1909 unsigned int wait_ms = dcc->min_discard_issue_time; 1910 int issued; 1911 1912 set_freezable(); 1913 1914 do { 1915 wait_event_freezable_timeout(*q, 1916 kthread_should_stop() || dcc->discard_wake, 1917 msecs_to_jiffies(wait_ms)); 1918 1919 if (sbi->gc_mode == GC_URGENT_HIGH || 1920 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1921 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1922 MIN_DISCARD_GRANULARITY); 1923 else 1924 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1925 dcc->discard_granularity); 1926 1927 if (dcc->discard_wake) 1928 dcc->discard_wake = false; 1929 1930 /* clean up pending candidates before going to sleep */ 1931 if (atomic_read(&dcc->queued_discard)) 1932 __wait_all_discard_cmd(sbi, NULL); 1933 1934 if (f2fs_readonly(sbi->sb)) 1935 continue; 1936 if (kthread_should_stop()) 1937 return 0; 1938 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1939 !atomic_read(&dcc->discard_cmd_cnt)) { 1940 wait_ms = dpolicy.max_interval; 1941 continue; 1942 } 1943 1944 sb_start_intwrite(sbi->sb); 1945 1946 issued = __issue_discard_cmd(sbi, &dpolicy); 1947 if (issued > 0) { 1948 __wait_all_discard_cmd(sbi, &dpolicy); 1949 wait_ms = dpolicy.min_interval; 1950 } else if (issued == -1) { 1951 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1952 if (!wait_ms) 1953 wait_ms = dpolicy.mid_interval; 1954 } else { 1955 wait_ms = dpolicy.max_interval; 1956 } 1957 if (!atomic_read(&dcc->discard_cmd_cnt)) 1958 wait_ms = dpolicy.max_interval; 1959 1960 sb_end_intwrite(sbi->sb); 1961 1962 } while (!kthread_should_stop()); 1963 return 0; 1964 } 1965 1966 #ifdef CONFIG_BLK_DEV_ZONED 1967 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1968 struct block_device *bdev, block_t blkstart, block_t blklen) 1969 { 1970 sector_t sector, nr_sects; 1971 block_t lblkstart = blkstart; 1972 int devi = 0; 1973 u64 remainder = 0; 1974 1975 if (f2fs_is_multi_device(sbi)) { 1976 devi = f2fs_target_device_index(sbi, blkstart); 1977 if (blkstart < FDEV(devi).start_blk || 1978 blkstart > FDEV(devi).end_blk) { 1979 f2fs_err(sbi, "Invalid block %x", blkstart); 1980 return -EIO; 1981 } 1982 blkstart -= FDEV(devi).start_blk; 1983 } 1984 1985 /* For sequential zones, reset the zone write pointer */ 1986 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1987 sector = SECTOR_FROM_BLOCK(blkstart); 1988 nr_sects = SECTOR_FROM_BLOCK(blklen); 1989 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder); 1990 1991 if (remainder || nr_sects != bdev_zone_sectors(bdev)) { 1992 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1993 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1994 blkstart, blklen); 1995 return -EIO; 1996 } 1997 1998 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) { 1999 unsigned int nofs_flags; 2000 int ret; 2001 2002 trace_f2fs_issue_reset_zone(bdev, blkstart); 2003 nofs_flags = memalloc_nofs_save(); 2004 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 2005 sector, nr_sects); 2006 memalloc_nofs_restore(nofs_flags); 2007 return ret; 2008 } 2009 2010 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen); 2011 return 0; 2012 } 2013 2014 /* For conventional zones, use regular discard if supported */ 2015 __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 2016 return 0; 2017 } 2018 #endif 2019 2020 static int __issue_discard_async(struct f2fs_sb_info *sbi, 2021 struct block_device *bdev, block_t blkstart, block_t blklen) 2022 { 2023 #ifdef CONFIG_BLK_DEV_ZONED 2024 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 2025 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 2026 #endif 2027 __queue_discard_cmd(sbi, bdev, blkstart, blklen); 2028 return 0; 2029 } 2030 2031 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 2032 block_t blkstart, block_t blklen) 2033 { 2034 sector_t start = blkstart, len = 0; 2035 struct block_device *bdev; 2036 struct seg_entry *se; 2037 unsigned int offset; 2038 block_t i; 2039 int err = 0; 2040 2041 bdev = f2fs_target_device(sbi, blkstart, NULL); 2042 2043 for (i = blkstart; i < blkstart + blklen; i++, len++) { 2044 if (i != start) { 2045 struct block_device *bdev2 = 2046 f2fs_target_device(sbi, i, NULL); 2047 2048 if (bdev2 != bdev) { 2049 err = __issue_discard_async(sbi, bdev, 2050 start, len); 2051 if (err) 2052 return err; 2053 bdev = bdev2; 2054 start = i; 2055 len = 0; 2056 } 2057 } 2058 2059 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 2060 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 2061 2062 if (f2fs_block_unit_discard(sbi) && 2063 !f2fs_test_and_set_bit(offset, se->discard_map)) 2064 sbi->discard_blks--; 2065 } 2066 2067 if (len) 2068 err = __issue_discard_async(sbi, bdev, start, len); 2069 return err; 2070 } 2071 2072 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 2073 bool check_only) 2074 { 2075 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2076 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 2077 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2078 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2079 unsigned long *discard_map = (unsigned long *)se->discard_map; 2080 unsigned long *dmap = SIT_I(sbi)->tmp_map; 2081 unsigned int start = 0, end = -1; 2082 bool force = (cpc->reason & CP_DISCARD); 2083 struct discard_entry *de = NULL; 2084 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 2085 int i; 2086 2087 if (se->valid_blocks == BLKS_PER_SEG(sbi) || 2088 !f2fs_hw_support_discard(sbi) || 2089 !f2fs_block_unit_discard(sbi)) 2090 return false; 2091 2092 if (!force) { 2093 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 2094 SM_I(sbi)->dcc_info->nr_discards >= 2095 SM_I(sbi)->dcc_info->max_discards) 2096 return false; 2097 } 2098 2099 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 2100 for (i = 0; i < entries; i++) 2101 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 2102 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 2103 2104 while (force || SM_I(sbi)->dcc_info->nr_discards <= 2105 SM_I(sbi)->dcc_info->max_discards) { 2106 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1); 2107 if (start >= BLKS_PER_SEG(sbi)) 2108 break; 2109 2110 end = __find_rev_next_zero_bit(dmap, 2111 BLKS_PER_SEG(sbi), start + 1); 2112 if (force && start && end != BLKS_PER_SEG(sbi) && 2113 (end - start) < cpc->trim_minlen) 2114 continue; 2115 2116 if (check_only) 2117 return true; 2118 2119 if (!de) { 2120 de = f2fs_kmem_cache_alloc(discard_entry_slab, 2121 GFP_F2FS_ZERO, true, NULL); 2122 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 2123 list_add_tail(&de->list, head); 2124 } 2125 2126 for (i = start; i < end; i++) 2127 __set_bit_le(i, (void *)de->discard_map); 2128 2129 SM_I(sbi)->dcc_info->nr_discards += end - start; 2130 } 2131 return false; 2132 } 2133 2134 static void release_discard_addr(struct discard_entry *entry) 2135 { 2136 list_del(&entry->list); 2137 kmem_cache_free(discard_entry_slab, entry); 2138 } 2139 2140 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 2141 { 2142 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 2143 struct discard_entry *entry, *this; 2144 2145 /* drop caches */ 2146 list_for_each_entry_safe(entry, this, head, list) 2147 release_discard_addr(entry); 2148 } 2149 2150 /* 2151 * Should call f2fs_clear_prefree_segments after checkpoint is done. 2152 */ 2153 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 2154 { 2155 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2156 unsigned int segno; 2157 2158 mutex_lock(&dirty_i->seglist_lock); 2159 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 2160 __set_test_and_free(sbi, segno, false); 2161 mutex_unlock(&dirty_i->seglist_lock); 2162 } 2163 2164 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2165 struct cp_control *cpc) 2166 { 2167 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2168 struct list_head *head = &dcc->entry_list; 2169 struct discard_entry *entry, *this; 2170 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2171 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2172 unsigned int start = 0, end = -1; 2173 unsigned int secno, start_segno; 2174 bool force = (cpc->reason & CP_DISCARD); 2175 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 2176 DISCARD_UNIT_SECTION; 2177 2178 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 2179 section_alignment = true; 2180 2181 mutex_lock(&dirty_i->seglist_lock); 2182 2183 while (1) { 2184 int i; 2185 2186 if (section_alignment && end != -1) 2187 end--; 2188 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2189 if (start >= MAIN_SEGS(sbi)) 2190 break; 2191 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2192 start + 1); 2193 2194 if (section_alignment) { 2195 start = rounddown(start, SEGS_PER_SEC(sbi)); 2196 end = roundup(end, SEGS_PER_SEC(sbi)); 2197 } 2198 2199 for (i = start; i < end; i++) { 2200 if (test_and_clear_bit(i, prefree_map)) 2201 dirty_i->nr_dirty[PRE]--; 2202 } 2203 2204 if (!f2fs_realtime_discard_enable(sbi)) 2205 continue; 2206 2207 if (force && start >= cpc->trim_start && 2208 (end - 1) <= cpc->trim_end) 2209 continue; 2210 2211 /* Should cover 2MB zoned device for zone-based reset */ 2212 if (!f2fs_sb_has_blkzoned(sbi) && 2213 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) { 2214 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2215 SEGS_TO_BLKS(sbi, end - start)); 2216 continue; 2217 } 2218 next: 2219 secno = GET_SEC_FROM_SEG(sbi, start); 2220 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2221 if (!IS_CURSEC(sbi, secno) && 2222 !get_valid_blocks(sbi, start, true)) 2223 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2224 BLKS_PER_SEC(sbi)); 2225 2226 start = start_segno + SEGS_PER_SEC(sbi); 2227 if (start < end) 2228 goto next; 2229 else 2230 end = start - 1; 2231 } 2232 mutex_unlock(&dirty_i->seglist_lock); 2233 2234 if (!f2fs_block_unit_discard(sbi)) 2235 goto wakeup; 2236 2237 /* send small discards */ 2238 list_for_each_entry_safe(entry, this, head, list) { 2239 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2240 bool is_valid = test_bit_le(0, entry->discard_map); 2241 2242 find_next: 2243 if (is_valid) { 2244 next_pos = find_next_zero_bit_le(entry->discard_map, 2245 BLKS_PER_SEG(sbi), cur_pos); 2246 len = next_pos - cur_pos; 2247 2248 if (f2fs_sb_has_blkzoned(sbi) || 2249 (force && len < cpc->trim_minlen)) 2250 goto skip; 2251 2252 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2253 len); 2254 total_len += len; 2255 } else { 2256 next_pos = find_next_bit_le(entry->discard_map, 2257 BLKS_PER_SEG(sbi), cur_pos); 2258 } 2259 skip: 2260 cur_pos = next_pos; 2261 is_valid = !is_valid; 2262 2263 if (cur_pos < BLKS_PER_SEG(sbi)) 2264 goto find_next; 2265 2266 release_discard_addr(entry); 2267 dcc->nr_discards -= total_len; 2268 } 2269 2270 wakeup: 2271 wake_up_discard_thread(sbi, false); 2272 } 2273 2274 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2275 { 2276 dev_t dev = sbi->sb->s_bdev->bd_dev; 2277 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2278 int err = 0; 2279 2280 if (f2fs_sb_has_readonly(sbi)) { 2281 f2fs_info(sbi, 2282 "Skip to start discard thread for readonly image"); 2283 return 0; 2284 } 2285 2286 if (!f2fs_realtime_discard_enable(sbi)) 2287 return 0; 2288 2289 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2290 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2291 if (IS_ERR(dcc->f2fs_issue_discard)) { 2292 err = PTR_ERR(dcc->f2fs_issue_discard); 2293 dcc->f2fs_issue_discard = NULL; 2294 } 2295 2296 return err; 2297 } 2298 2299 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2300 { 2301 struct discard_cmd_control *dcc; 2302 int err = 0, i; 2303 2304 if (SM_I(sbi)->dcc_info) { 2305 dcc = SM_I(sbi)->dcc_info; 2306 goto init_thread; 2307 } 2308 2309 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2310 if (!dcc) 2311 return -ENOMEM; 2312 2313 dcc->discard_io_aware_gran = MAX_PLIST_NUM; 2314 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2315 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; 2316 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE; 2317 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2318 dcc->discard_granularity = BLKS_PER_SEG(sbi); 2319 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2320 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2321 2322 INIT_LIST_HEAD(&dcc->entry_list); 2323 for (i = 0; i < MAX_PLIST_NUM; i++) 2324 INIT_LIST_HEAD(&dcc->pend_list[i]); 2325 INIT_LIST_HEAD(&dcc->wait_list); 2326 INIT_LIST_HEAD(&dcc->fstrim_list); 2327 mutex_init(&dcc->cmd_lock); 2328 atomic_set(&dcc->issued_discard, 0); 2329 atomic_set(&dcc->queued_discard, 0); 2330 atomic_set(&dcc->discard_cmd_cnt, 0); 2331 dcc->nr_discards = 0; 2332 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi)); 2333 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2334 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2335 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2336 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2337 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; 2338 dcc->undiscard_blks = 0; 2339 dcc->next_pos = 0; 2340 dcc->root = RB_ROOT_CACHED; 2341 dcc->rbtree_check = false; 2342 2343 init_waitqueue_head(&dcc->discard_wait_queue); 2344 SM_I(sbi)->dcc_info = dcc; 2345 init_thread: 2346 err = f2fs_start_discard_thread(sbi); 2347 if (err) { 2348 kfree(dcc); 2349 SM_I(sbi)->dcc_info = NULL; 2350 } 2351 2352 return err; 2353 } 2354 2355 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2356 { 2357 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2358 2359 if (!dcc) 2360 return; 2361 2362 f2fs_stop_discard_thread(sbi); 2363 2364 /* 2365 * Recovery can cache discard commands, so in error path of 2366 * fill_super(), it needs to give a chance to handle them. 2367 */ 2368 f2fs_issue_discard_timeout(sbi); 2369 2370 kfree(dcc); 2371 SM_I(sbi)->dcc_info = NULL; 2372 } 2373 2374 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2375 { 2376 struct sit_info *sit_i = SIT_I(sbi); 2377 2378 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2379 sit_i->dirty_sentries++; 2380 return false; 2381 } 2382 2383 return true; 2384 } 2385 2386 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2387 unsigned int segno, int modified) 2388 { 2389 struct seg_entry *se = get_seg_entry(sbi, segno); 2390 2391 se->type = type; 2392 if (modified) 2393 __mark_sit_entry_dirty(sbi, segno); 2394 } 2395 2396 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2397 block_t blkaddr) 2398 { 2399 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2400 2401 if (segno == NULL_SEGNO) 2402 return 0; 2403 return get_seg_entry(sbi, segno)->mtime; 2404 } 2405 2406 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2407 unsigned long long old_mtime) 2408 { 2409 struct seg_entry *se; 2410 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2411 unsigned long long ctime = get_mtime(sbi, false); 2412 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2413 2414 if (segno == NULL_SEGNO) 2415 return; 2416 2417 se = get_seg_entry(sbi, segno); 2418 2419 if (!se->mtime) 2420 se->mtime = mtime; 2421 else 2422 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2423 se->valid_blocks + 1); 2424 2425 if (ctime > SIT_I(sbi)->max_mtime) 2426 SIT_I(sbi)->max_mtime = ctime; 2427 } 2428 2429 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2430 { 2431 struct seg_entry *se; 2432 unsigned int segno, offset; 2433 long int new_vblocks; 2434 bool exist; 2435 #ifdef CONFIG_F2FS_CHECK_FS 2436 bool mir_exist; 2437 #endif 2438 2439 segno = GET_SEGNO(sbi, blkaddr); 2440 if (segno == NULL_SEGNO) 2441 return; 2442 2443 se = get_seg_entry(sbi, segno); 2444 new_vblocks = se->valid_blocks + del; 2445 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2446 2447 f2fs_bug_on(sbi, (new_vblocks < 0 || 2448 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2449 2450 se->valid_blocks = new_vblocks; 2451 2452 /* Update valid block bitmap */ 2453 if (del > 0) { 2454 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2455 #ifdef CONFIG_F2FS_CHECK_FS 2456 mir_exist = f2fs_test_and_set_bit(offset, 2457 se->cur_valid_map_mir); 2458 if (unlikely(exist != mir_exist)) { 2459 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2460 blkaddr, exist); 2461 f2fs_bug_on(sbi, 1); 2462 } 2463 #endif 2464 if (unlikely(exist)) { 2465 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2466 blkaddr); 2467 f2fs_bug_on(sbi, 1); 2468 se->valid_blocks--; 2469 del = 0; 2470 } 2471 2472 if (f2fs_block_unit_discard(sbi) && 2473 !f2fs_test_and_set_bit(offset, se->discard_map)) 2474 sbi->discard_blks--; 2475 2476 /* 2477 * SSR should never reuse block which is checkpointed 2478 * or newly invalidated. 2479 */ 2480 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2481 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2482 se->ckpt_valid_blocks++; 2483 } 2484 } else { 2485 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2486 #ifdef CONFIG_F2FS_CHECK_FS 2487 mir_exist = f2fs_test_and_clear_bit(offset, 2488 se->cur_valid_map_mir); 2489 if (unlikely(exist != mir_exist)) { 2490 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2491 blkaddr, exist); 2492 f2fs_bug_on(sbi, 1); 2493 } 2494 #endif 2495 if (unlikely(!exist)) { 2496 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2497 blkaddr); 2498 f2fs_bug_on(sbi, 1); 2499 se->valid_blocks++; 2500 del = 0; 2501 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2502 /* 2503 * If checkpoints are off, we must not reuse data that 2504 * was used in the previous checkpoint. If it was used 2505 * before, we must track that to know how much space we 2506 * really have. 2507 */ 2508 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2509 spin_lock(&sbi->stat_lock); 2510 sbi->unusable_block_count++; 2511 spin_unlock(&sbi->stat_lock); 2512 } 2513 } 2514 2515 if (f2fs_block_unit_discard(sbi) && 2516 f2fs_test_and_clear_bit(offset, se->discard_map)) 2517 sbi->discard_blks++; 2518 } 2519 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2520 se->ckpt_valid_blocks += del; 2521 2522 __mark_sit_entry_dirty(sbi, segno); 2523 2524 /* update total number of valid blocks to be written in ckpt area */ 2525 SIT_I(sbi)->written_valid_blocks += del; 2526 2527 if (__is_large_section(sbi)) 2528 get_sec_entry(sbi, segno)->valid_blocks += del; 2529 } 2530 2531 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2532 { 2533 unsigned int segno = GET_SEGNO(sbi, addr); 2534 struct sit_info *sit_i = SIT_I(sbi); 2535 2536 f2fs_bug_on(sbi, addr == NULL_ADDR); 2537 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2538 return; 2539 2540 f2fs_invalidate_internal_cache(sbi, addr); 2541 2542 /* add it into sit main buffer */ 2543 down_write(&sit_i->sentry_lock); 2544 2545 update_segment_mtime(sbi, addr, 0); 2546 update_sit_entry(sbi, addr, -1); 2547 2548 /* add it into dirty seglist */ 2549 locate_dirty_segment(sbi, segno); 2550 2551 up_write(&sit_i->sentry_lock); 2552 } 2553 2554 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2555 { 2556 struct sit_info *sit_i = SIT_I(sbi); 2557 unsigned int segno, offset; 2558 struct seg_entry *se; 2559 bool is_cp = false; 2560 2561 if (!__is_valid_data_blkaddr(blkaddr)) 2562 return true; 2563 2564 down_read(&sit_i->sentry_lock); 2565 2566 segno = GET_SEGNO(sbi, blkaddr); 2567 se = get_seg_entry(sbi, segno); 2568 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2569 2570 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2571 is_cp = true; 2572 2573 up_read(&sit_i->sentry_lock); 2574 2575 return is_cp; 2576 } 2577 2578 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type) 2579 { 2580 struct curseg_info *curseg = CURSEG_I(sbi, type); 2581 2582 if (sbi->ckpt->alloc_type[type] == SSR) 2583 return BLKS_PER_SEG(sbi); 2584 return curseg->next_blkoff; 2585 } 2586 2587 /* 2588 * Calculate the number of current summary pages for writing 2589 */ 2590 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2591 { 2592 int valid_sum_count = 0; 2593 int i, sum_in_page; 2594 2595 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2596 if (sbi->ckpt->alloc_type[i] != SSR && for_ra) 2597 valid_sum_count += 2598 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2599 else 2600 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i); 2601 } 2602 2603 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2604 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2605 if (valid_sum_count <= sum_in_page) 2606 return 1; 2607 else if ((valid_sum_count - sum_in_page) <= 2608 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2609 return 2; 2610 return 3; 2611 } 2612 2613 /* 2614 * Caller should put this summary page 2615 */ 2616 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2617 { 2618 if (unlikely(f2fs_cp_error(sbi))) 2619 return ERR_PTR(-EIO); 2620 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2621 } 2622 2623 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2624 void *src, block_t blk_addr) 2625 { 2626 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2627 2628 memcpy(page_address(page), src, PAGE_SIZE); 2629 set_page_dirty(page); 2630 f2fs_put_page(page, 1); 2631 } 2632 2633 static void write_sum_page(struct f2fs_sb_info *sbi, 2634 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2635 { 2636 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2637 } 2638 2639 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2640 int type, block_t blk_addr) 2641 { 2642 struct curseg_info *curseg = CURSEG_I(sbi, type); 2643 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2644 struct f2fs_summary_block *src = curseg->sum_blk; 2645 struct f2fs_summary_block *dst; 2646 2647 dst = (struct f2fs_summary_block *)page_address(page); 2648 memset(dst, 0, PAGE_SIZE); 2649 2650 mutex_lock(&curseg->curseg_mutex); 2651 2652 down_read(&curseg->journal_rwsem); 2653 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2654 up_read(&curseg->journal_rwsem); 2655 2656 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2657 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2658 2659 mutex_unlock(&curseg->curseg_mutex); 2660 2661 set_page_dirty(page); 2662 f2fs_put_page(page, 1); 2663 } 2664 2665 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2666 struct curseg_info *curseg) 2667 { 2668 unsigned int segno = curseg->segno + 1; 2669 struct free_segmap_info *free_i = FREE_I(sbi); 2670 2671 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi)) 2672 return !test_bit(segno, free_i->free_segmap); 2673 return 0; 2674 } 2675 2676 /* 2677 * Find a new segment from the free segments bitmap to right order 2678 * This function should be returned with success, otherwise BUG 2679 */ 2680 static int get_new_segment(struct f2fs_sb_info *sbi, 2681 unsigned int *newseg, bool new_sec, bool pinning) 2682 { 2683 struct free_segmap_info *free_i = FREE_I(sbi); 2684 unsigned int segno, secno, zoneno; 2685 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2686 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2687 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2688 bool init = true; 2689 int i; 2690 int ret = 0; 2691 2692 spin_lock(&free_i->segmap_lock); 2693 2694 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) { 2695 ret = -ENOSPC; 2696 goto out_unlock; 2697 } 2698 2699 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) { 2700 segno = find_next_zero_bit(free_i->free_segmap, 2701 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2702 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2703 goto got_it; 2704 } 2705 2706 #ifdef CONFIG_BLK_DEV_ZONED 2707 /* 2708 * If we format f2fs on zoned storage, let's try to get pinned sections 2709 * from beginning of the storage, which should be a conventional one. 2710 */ 2711 if (f2fs_sb_has_blkzoned(sbi)) { 2712 /* Prioritize writing to conventional zones */ 2713 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning) 2714 segno = 0; 2715 else 2716 segno = max(sbi->first_zoned_segno, *newseg); 2717 hint = GET_SEC_FROM_SEG(sbi, segno); 2718 } 2719 #endif 2720 2721 find_other_zone: 2722 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2723 2724 #ifdef CONFIG_BLK_DEV_ZONED 2725 if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) { 2726 /* Write only to sequential zones */ 2727 if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) { 2728 hint = GET_SEC_FROM_SEG(sbi, sbi->first_zoned_segno); 2729 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2730 } else 2731 secno = find_first_zero_bit(free_i->free_secmap, 2732 MAIN_SECS(sbi)); 2733 if (secno >= MAIN_SECS(sbi)) { 2734 ret = -ENOSPC; 2735 f2fs_bug_on(sbi, 1); 2736 goto out_unlock; 2737 } 2738 } 2739 #endif 2740 2741 if (secno >= MAIN_SECS(sbi)) { 2742 secno = find_first_zero_bit(free_i->free_secmap, 2743 MAIN_SECS(sbi)); 2744 if (secno >= MAIN_SECS(sbi)) { 2745 ret = -ENOSPC; 2746 f2fs_bug_on(sbi, 1); 2747 goto out_unlock; 2748 } 2749 } 2750 segno = GET_SEG_FROM_SEC(sbi, secno); 2751 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2752 2753 /* give up on finding another zone */ 2754 if (!init) 2755 goto got_it; 2756 if (sbi->secs_per_zone == 1) 2757 goto got_it; 2758 if (zoneno == old_zoneno) 2759 goto got_it; 2760 for (i = 0; i < NR_CURSEG_TYPE; i++) 2761 if (CURSEG_I(sbi, i)->zone == zoneno) 2762 break; 2763 2764 if (i < NR_CURSEG_TYPE) { 2765 /* zone is in user, try another */ 2766 if (zoneno + 1 >= total_zones) 2767 hint = 0; 2768 else 2769 hint = (zoneno + 1) * sbi->secs_per_zone; 2770 init = false; 2771 goto find_other_zone; 2772 } 2773 got_it: 2774 /* set it as dirty segment in free segmap */ 2775 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2776 2777 /* no free section in conventional zone */ 2778 if (new_sec && pinning && 2779 !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) { 2780 ret = -EAGAIN; 2781 goto out_unlock; 2782 } 2783 __set_inuse(sbi, segno); 2784 *newseg = segno; 2785 out_unlock: 2786 spin_unlock(&free_i->segmap_lock); 2787 2788 if (ret == -ENOSPC) 2789 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT); 2790 return ret; 2791 } 2792 2793 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2794 { 2795 struct curseg_info *curseg = CURSEG_I(sbi, type); 2796 struct summary_footer *sum_footer; 2797 unsigned short seg_type = curseg->seg_type; 2798 2799 /* only happen when get_new_segment() fails */ 2800 if (curseg->next_segno == NULL_SEGNO) 2801 return; 2802 2803 curseg->inited = true; 2804 curseg->segno = curseg->next_segno; 2805 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2806 curseg->next_blkoff = 0; 2807 curseg->next_segno = NULL_SEGNO; 2808 2809 sum_footer = &(curseg->sum_blk->footer); 2810 memset(sum_footer, 0, sizeof(struct summary_footer)); 2811 2812 sanity_check_seg_type(sbi, seg_type); 2813 2814 if (IS_DATASEG(seg_type)) 2815 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2816 if (IS_NODESEG(seg_type)) 2817 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2818 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2819 } 2820 2821 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2822 { 2823 struct curseg_info *curseg = CURSEG_I(sbi, type); 2824 unsigned short seg_type = curseg->seg_type; 2825 2826 sanity_check_seg_type(sbi, seg_type); 2827 if (__is_large_section(sbi)) { 2828 if (f2fs_need_rand_seg(sbi)) { 2829 unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno); 2830 2831 if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint) 2832 return curseg->segno; 2833 return get_random_u32_inclusive(curseg->segno + 1, 2834 GET_SEG_FROM_SEC(sbi, hint + 1) - 1); 2835 } 2836 return curseg->segno; 2837 } else if (f2fs_need_rand_seg(sbi)) { 2838 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi)); 2839 } 2840 2841 /* inmem log may not locate on any segment after mount */ 2842 if (!curseg->inited) 2843 return 0; 2844 2845 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2846 return 0; 2847 2848 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)) 2849 return 0; 2850 2851 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2852 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2853 2854 /* find segments from 0 to reuse freed segments */ 2855 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2856 return 0; 2857 2858 return curseg->segno; 2859 } 2860 2861 /* 2862 * Allocate a current working segment. 2863 * This function always allocates a free segment in LFS manner. 2864 */ 2865 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2866 { 2867 struct curseg_info *curseg = CURSEG_I(sbi, type); 2868 unsigned int segno = curseg->segno; 2869 bool pinning = type == CURSEG_COLD_DATA_PINNED; 2870 int ret; 2871 2872 if (curseg->inited) 2873 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno)); 2874 2875 segno = __get_next_segno(sbi, type); 2876 ret = get_new_segment(sbi, &segno, new_sec, pinning); 2877 if (ret) { 2878 if (ret == -ENOSPC) 2879 curseg->segno = NULL_SEGNO; 2880 return ret; 2881 } 2882 2883 curseg->next_segno = segno; 2884 reset_curseg(sbi, type, 1); 2885 curseg->alloc_type = LFS; 2886 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2887 curseg->fragment_remained_chunk = 2888 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2889 return 0; 2890 } 2891 2892 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2893 int segno, block_t start) 2894 { 2895 struct seg_entry *se = get_seg_entry(sbi, segno); 2896 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2897 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2898 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2899 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2900 int i; 2901 2902 for (i = 0; i < entries; i++) 2903 target_map[i] = ckpt_map[i] | cur_map[i]; 2904 2905 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start); 2906 } 2907 2908 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi, 2909 struct curseg_info *seg) 2910 { 2911 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1); 2912 } 2913 2914 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2915 { 2916 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi); 2917 } 2918 2919 /* 2920 * This function always allocates a used segment(from dirty seglist) by SSR 2921 * manner, so it should recover the existing segment information of valid blocks 2922 */ 2923 static int change_curseg(struct f2fs_sb_info *sbi, int type) 2924 { 2925 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2926 struct curseg_info *curseg = CURSEG_I(sbi, type); 2927 unsigned int new_segno = curseg->next_segno; 2928 struct f2fs_summary_block *sum_node; 2929 struct page *sum_page; 2930 2931 if (curseg->inited) 2932 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); 2933 2934 __set_test_and_inuse(sbi, new_segno); 2935 2936 mutex_lock(&dirty_i->seglist_lock); 2937 __remove_dirty_segment(sbi, new_segno, PRE); 2938 __remove_dirty_segment(sbi, new_segno, DIRTY); 2939 mutex_unlock(&dirty_i->seglist_lock); 2940 2941 reset_curseg(sbi, type, 1); 2942 curseg->alloc_type = SSR; 2943 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2944 2945 sum_page = f2fs_get_sum_page(sbi, new_segno); 2946 if (IS_ERR(sum_page)) { 2947 /* GC won't be able to use stale summary pages by cp_error */ 2948 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2949 return PTR_ERR(sum_page); 2950 } 2951 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2952 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2953 f2fs_put_page(sum_page, 1); 2954 return 0; 2955 } 2956 2957 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2958 int alloc_mode, unsigned long long age); 2959 2960 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2961 int target_type, int alloc_mode, 2962 unsigned long long age) 2963 { 2964 struct curseg_info *curseg = CURSEG_I(sbi, type); 2965 int ret = 0; 2966 2967 curseg->seg_type = target_type; 2968 2969 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2970 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2971 2972 curseg->seg_type = se->type; 2973 ret = change_curseg(sbi, type); 2974 } else { 2975 /* allocate cold segment by default */ 2976 curseg->seg_type = CURSEG_COLD_DATA; 2977 ret = new_curseg(sbi, type, true); 2978 } 2979 stat_inc_seg_type(sbi, curseg); 2980 return ret; 2981 } 2982 2983 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force) 2984 { 2985 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2986 int ret = 0; 2987 2988 if (!sbi->am.atgc_enabled && !force) 2989 return 0; 2990 2991 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2992 2993 mutex_lock(&curseg->curseg_mutex); 2994 down_write(&SIT_I(sbi)->sentry_lock); 2995 2996 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, 2997 CURSEG_COLD_DATA, SSR, 0); 2998 2999 up_write(&SIT_I(sbi)->sentry_lock); 3000 mutex_unlock(&curseg->curseg_mutex); 3001 3002 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3003 return ret; 3004 } 3005 3006 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 3007 { 3008 return __f2fs_init_atgc_curseg(sbi, false); 3009 } 3010 3011 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi) 3012 { 3013 int ret; 3014 3015 if (!test_opt(sbi, ATGC)) 3016 return 0; 3017 if (sbi->am.atgc_enabled) 3018 return 0; 3019 if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) < 3020 sbi->am.age_threshold) 3021 return 0; 3022 3023 ret = __f2fs_init_atgc_curseg(sbi, true); 3024 if (!ret) { 3025 sbi->am.atgc_enabled = true; 3026 f2fs_info(sbi, "reenabled age threshold GC"); 3027 } 3028 return ret; 3029 } 3030 3031 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 3032 { 3033 struct curseg_info *curseg = CURSEG_I(sbi, type); 3034 3035 mutex_lock(&curseg->curseg_mutex); 3036 if (!curseg->inited) 3037 goto out; 3038 3039 if (get_valid_blocks(sbi, curseg->segno, false)) { 3040 write_sum_page(sbi, curseg->sum_blk, 3041 GET_SUM_BLOCK(sbi, curseg->segno)); 3042 } else { 3043 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 3044 __set_test_and_free(sbi, curseg->segno, true); 3045 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 3046 } 3047 out: 3048 mutex_unlock(&curseg->curseg_mutex); 3049 } 3050 3051 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 3052 { 3053 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 3054 3055 if (sbi->am.atgc_enabled) 3056 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 3057 } 3058 3059 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 3060 { 3061 struct curseg_info *curseg = CURSEG_I(sbi, type); 3062 3063 mutex_lock(&curseg->curseg_mutex); 3064 if (!curseg->inited) 3065 goto out; 3066 if (get_valid_blocks(sbi, curseg->segno, false)) 3067 goto out; 3068 3069 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 3070 __set_test_and_inuse(sbi, curseg->segno); 3071 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 3072 out: 3073 mutex_unlock(&curseg->curseg_mutex); 3074 } 3075 3076 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 3077 { 3078 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 3079 3080 if (sbi->am.atgc_enabled) 3081 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 3082 } 3083 3084 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 3085 int alloc_mode, unsigned long long age) 3086 { 3087 struct curseg_info *curseg = CURSEG_I(sbi, type); 3088 unsigned segno = NULL_SEGNO; 3089 unsigned short seg_type = curseg->seg_type; 3090 int i, cnt; 3091 bool reversed = false; 3092 3093 sanity_check_seg_type(sbi, seg_type); 3094 3095 /* f2fs_need_SSR() already forces to do this */ 3096 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, 3097 alloc_mode, age, false)) { 3098 curseg->next_segno = segno; 3099 return 1; 3100 } 3101 3102 /* For node segments, let's do SSR more intensively */ 3103 if (IS_NODESEG(seg_type)) { 3104 if (seg_type >= CURSEG_WARM_NODE) { 3105 reversed = true; 3106 i = CURSEG_COLD_NODE; 3107 } else { 3108 i = CURSEG_HOT_NODE; 3109 } 3110 cnt = NR_CURSEG_NODE_TYPE; 3111 } else { 3112 if (seg_type >= CURSEG_WARM_DATA) { 3113 reversed = true; 3114 i = CURSEG_COLD_DATA; 3115 } else { 3116 i = CURSEG_HOT_DATA; 3117 } 3118 cnt = NR_CURSEG_DATA_TYPE; 3119 } 3120 3121 for (; cnt-- > 0; reversed ? i-- : i++) { 3122 if (i == seg_type) 3123 continue; 3124 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, 3125 alloc_mode, age, false)) { 3126 curseg->next_segno = segno; 3127 return 1; 3128 } 3129 } 3130 3131 /* find valid_blocks=0 in dirty list */ 3132 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 3133 segno = get_free_segment(sbi); 3134 if (segno != NULL_SEGNO) { 3135 curseg->next_segno = segno; 3136 return 1; 3137 } 3138 } 3139 return 0; 3140 } 3141 3142 static bool need_new_seg(struct f2fs_sb_info *sbi, int type) 3143 { 3144 struct curseg_info *curseg = CURSEG_I(sbi, type); 3145 3146 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 3147 curseg->seg_type == CURSEG_WARM_NODE) 3148 return true; 3149 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) && 3150 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3151 return true; 3152 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) 3153 return true; 3154 return false; 3155 } 3156 3157 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3158 unsigned int start, unsigned int end) 3159 { 3160 struct curseg_info *curseg = CURSEG_I(sbi, type); 3161 unsigned int segno; 3162 int ret = 0; 3163 3164 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3165 mutex_lock(&curseg->curseg_mutex); 3166 down_write(&SIT_I(sbi)->sentry_lock); 3167 3168 segno = CURSEG_I(sbi, type)->segno; 3169 if (segno < start || segno > end) 3170 goto unlock; 3171 3172 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 3173 ret = change_curseg(sbi, type); 3174 else 3175 ret = new_curseg(sbi, type, true); 3176 3177 stat_inc_seg_type(sbi, curseg); 3178 3179 locate_dirty_segment(sbi, segno); 3180 unlock: 3181 up_write(&SIT_I(sbi)->sentry_lock); 3182 3183 if (segno != curseg->segno) 3184 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 3185 type, segno, curseg->segno); 3186 3187 mutex_unlock(&curseg->curseg_mutex); 3188 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3189 return ret; 3190 } 3191 3192 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 3193 bool new_sec, bool force) 3194 { 3195 struct curseg_info *curseg = CURSEG_I(sbi, type); 3196 unsigned int old_segno; 3197 int err = 0; 3198 3199 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited) 3200 goto allocate; 3201 3202 if (!force && curseg->inited && 3203 !curseg->next_blkoff && 3204 !get_valid_blocks(sbi, curseg->segno, new_sec) && 3205 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 3206 return 0; 3207 3208 allocate: 3209 old_segno = curseg->segno; 3210 err = new_curseg(sbi, type, true); 3211 if (err) 3212 return err; 3213 stat_inc_seg_type(sbi, curseg); 3214 locate_dirty_segment(sbi, old_segno); 3215 return 0; 3216 } 3217 3218 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 3219 { 3220 int ret; 3221 3222 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3223 down_write(&SIT_I(sbi)->sentry_lock); 3224 ret = __allocate_new_segment(sbi, type, true, force); 3225 up_write(&SIT_I(sbi)->sentry_lock); 3226 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3227 3228 return ret; 3229 } 3230 3231 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi) 3232 { 3233 int err; 3234 bool gc_required = true; 3235 3236 retry: 3237 f2fs_lock_op(sbi); 3238 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3239 f2fs_unlock_op(sbi); 3240 3241 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) { 3242 f2fs_down_write(&sbi->gc_lock); 3243 err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), 3244 true, ZONED_PIN_SEC_REQUIRED_COUNT); 3245 f2fs_up_write(&sbi->gc_lock); 3246 3247 gc_required = false; 3248 if (!err) 3249 goto retry; 3250 } 3251 3252 return err; 3253 } 3254 3255 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 3256 { 3257 int i; 3258 int err = 0; 3259 3260 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3261 down_write(&SIT_I(sbi)->sentry_lock); 3262 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 3263 err += __allocate_new_segment(sbi, i, false, false); 3264 up_write(&SIT_I(sbi)->sentry_lock); 3265 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3266 3267 return err; 3268 } 3269 3270 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3271 struct cp_control *cpc) 3272 { 3273 __u64 trim_start = cpc->trim_start; 3274 bool has_candidate = false; 3275 3276 down_write(&SIT_I(sbi)->sentry_lock); 3277 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 3278 if (add_discard_addrs(sbi, cpc, true)) { 3279 has_candidate = true; 3280 break; 3281 } 3282 } 3283 up_write(&SIT_I(sbi)->sentry_lock); 3284 3285 cpc->trim_start = trim_start; 3286 return has_candidate; 3287 } 3288 3289 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3290 struct discard_policy *dpolicy, 3291 unsigned int start, unsigned int end) 3292 { 3293 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3294 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3295 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3296 struct discard_cmd *dc; 3297 struct blk_plug plug; 3298 int issued; 3299 unsigned int trimmed = 0; 3300 3301 next: 3302 issued = 0; 3303 3304 mutex_lock(&dcc->cmd_lock); 3305 if (unlikely(dcc->rbtree_check)) 3306 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 3307 3308 dc = __lookup_discard_cmd_ret(&dcc->root, start, 3309 &prev_dc, &next_dc, &insert_p, &insert_parent); 3310 if (!dc) 3311 dc = next_dc; 3312 3313 blk_start_plug(&plug); 3314 3315 while (dc && dc->di.lstart <= end) { 3316 struct rb_node *node; 3317 int err = 0; 3318 3319 if (dc->di.len < dpolicy->granularity) 3320 goto skip; 3321 3322 if (dc->state != D_PREP) { 3323 list_move_tail(&dc->list, &dcc->fstrim_list); 3324 goto skip; 3325 } 3326 3327 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3328 3329 if (issued >= dpolicy->max_requests) { 3330 start = dc->di.lstart + dc->di.len; 3331 3332 if (err) 3333 __remove_discard_cmd(sbi, dc); 3334 3335 blk_finish_plug(&plug); 3336 mutex_unlock(&dcc->cmd_lock); 3337 trimmed += __wait_all_discard_cmd(sbi, NULL); 3338 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3339 goto next; 3340 } 3341 skip: 3342 node = rb_next(&dc->rb_node); 3343 if (err) 3344 __remove_discard_cmd(sbi, dc); 3345 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3346 3347 if (fatal_signal_pending(current)) 3348 break; 3349 } 3350 3351 blk_finish_plug(&plug); 3352 mutex_unlock(&dcc->cmd_lock); 3353 3354 return trimmed; 3355 } 3356 3357 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3358 { 3359 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3360 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3361 unsigned int start_segno, end_segno; 3362 block_t start_block, end_block; 3363 struct cp_control cpc; 3364 struct discard_policy dpolicy; 3365 unsigned long long trimmed = 0; 3366 int err = 0; 3367 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3368 3369 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3370 return -EINVAL; 3371 3372 if (end < MAIN_BLKADDR(sbi)) 3373 goto out; 3374 3375 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3376 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3377 return -EFSCORRUPTED; 3378 } 3379 3380 /* start/end segment number in main_area */ 3381 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3382 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3383 GET_SEGNO(sbi, end); 3384 if (need_align) { 3385 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi)); 3386 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1; 3387 } 3388 3389 cpc.reason = CP_DISCARD; 3390 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3391 cpc.trim_start = start_segno; 3392 cpc.trim_end = end_segno; 3393 3394 if (sbi->discard_blks == 0) 3395 goto out; 3396 3397 f2fs_down_write(&sbi->gc_lock); 3398 stat_inc_cp_call_count(sbi, TOTAL_CALL); 3399 err = f2fs_write_checkpoint(sbi, &cpc); 3400 f2fs_up_write(&sbi->gc_lock); 3401 if (err) 3402 goto out; 3403 3404 /* 3405 * We filed discard candidates, but actually we don't need to wait for 3406 * all of them, since they'll be issued in idle time along with runtime 3407 * discard option. User configuration looks like using runtime discard 3408 * or periodic fstrim instead of it. 3409 */ 3410 if (f2fs_realtime_discard_enable(sbi)) 3411 goto out; 3412 3413 start_block = START_BLOCK(sbi, start_segno); 3414 end_block = START_BLOCK(sbi, end_segno + 1); 3415 3416 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3417 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3418 start_block, end_block); 3419 3420 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3421 start_block, end_block); 3422 out: 3423 if (!err) 3424 range->len = F2FS_BLK_TO_BYTES(trimmed); 3425 return err; 3426 } 3427 3428 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint) 3429 { 3430 if (F2FS_OPTION(sbi).active_logs == 2) 3431 return CURSEG_HOT_DATA; 3432 else if (F2FS_OPTION(sbi).active_logs == 4) 3433 return CURSEG_COLD_DATA; 3434 3435 /* active_log == 6 */ 3436 switch (hint) { 3437 case WRITE_LIFE_SHORT: 3438 return CURSEG_HOT_DATA; 3439 case WRITE_LIFE_EXTREME: 3440 return CURSEG_COLD_DATA; 3441 default: 3442 return CURSEG_WARM_DATA; 3443 } 3444 } 3445 3446 /* 3447 * This returns write hints for each segment type. This hints will be 3448 * passed down to block layer as below by default. 3449 * 3450 * User F2FS Block 3451 * ---- ---- ----- 3452 * META WRITE_LIFE_NONE|REQ_META 3453 * HOT_NODE WRITE_LIFE_NONE 3454 * WARM_NODE WRITE_LIFE_MEDIUM 3455 * COLD_NODE WRITE_LIFE_LONG 3456 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3457 * extension list " " 3458 * 3459 * -- buffered io 3460 * COLD_DATA WRITE_LIFE_EXTREME 3461 * HOT_DATA WRITE_LIFE_SHORT 3462 * WARM_DATA WRITE_LIFE_NOT_SET 3463 * 3464 * -- direct io 3465 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3466 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3467 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3468 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3469 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3470 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3471 */ 3472 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3473 enum page_type type, enum temp_type temp) 3474 { 3475 switch (type) { 3476 case DATA: 3477 switch (temp) { 3478 case WARM: 3479 return WRITE_LIFE_NOT_SET; 3480 case HOT: 3481 return WRITE_LIFE_SHORT; 3482 case COLD: 3483 return WRITE_LIFE_EXTREME; 3484 default: 3485 return WRITE_LIFE_NONE; 3486 } 3487 case NODE: 3488 switch (temp) { 3489 case WARM: 3490 return WRITE_LIFE_MEDIUM; 3491 case HOT: 3492 return WRITE_LIFE_NONE; 3493 case COLD: 3494 return WRITE_LIFE_LONG; 3495 default: 3496 return WRITE_LIFE_NONE; 3497 } 3498 case META: 3499 return WRITE_LIFE_NONE; 3500 default: 3501 return WRITE_LIFE_NONE; 3502 } 3503 } 3504 3505 static int __get_segment_type_2(struct f2fs_io_info *fio) 3506 { 3507 if (fio->type == DATA) 3508 return CURSEG_HOT_DATA; 3509 else 3510 return CURSEG_HOT_NODE; 3511 } 3512 3513 static int __get_segment_type_4(struct f2fs_io_info *fio) 3514 { 3515 if (fio->type == DATA) { 3516 struct inode *inode = fio->page->mapping->host; 3517 3518 if (S_ISDIR(inode->i_mode)) 3519 return CURSEG_HOT_DATA; 3520 else 3521 return CURSEG_COLD_DATA; 3522 } else { 3523 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3524 return CURSEG_WARM_NODE; 3525 else 3526 return CURSEG_COLD_NODE; 3527 } 3528 } 3529 3530 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) 3531 { 3532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3533 struct extent_info ei = {}; 3534 3535 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { 3536 if (!ei.age) 3537 return NO_CHECK_TYPE; 3538 if (ei.age <= sbi->hot_data_age_threshold) 3539 return CURSEG_HOT_DATA; 3540 if (ei.age <= sbi->warm_data_age_threshold) 3541 return CURSEG_WARM_DATA; 3542 return CURSEG_COLD_DATA; 3543 } 3544 return NO_CHECK_TYPE; 3545 } 3546 3547 static int __get_segment_type_6(struct f2fs_io_info *fio) 3548 { 3549 if (fio->type == DATA) { 3550 struct inode *inode = fio->page->mapping->host; 3551 int type; 3552 3553 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3554 return CURSEG_COLD_DATA_PINNED; 3555 3556 if (page_private_gcing(fio->page)) { 3557 if (fio->sbi->am.atgc_enabled && 3558 (fio->io_type == FS_DATA_IO) && 3559 (fio->sbi->gc_mode != GC_URGENT_HIGH) && 3560 __is_valid_data_blkaddr(fio->old_blkaddr) && 3561 !is_inode_flag_set(inode, FI_OPU_WRITE)) 3562 return CURSEG_ALL_DATA_ATGC; 3563 else 3564 return CURSEG_COLD_DATA; 3565 } 3566 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3567 return CURSEG_COLD_DATA; 3568 3569 type = __get_age_segment_type(inode, 3570 page_folio(fio->page)->index); 3571 if (type != NO_CHECK_TYPE) 3572 return type; 3573 3574 if (file_is_hot(inode) || 3575 is_inode_flag_set(inode, FI_HOT_DATA) || 3576 f2fs_is_cow_file(inode)) 3577 return CURSEG_HOT_DATA; 3578 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode), 3579 inode->i_write_hint); 3580 } else { 3581 if (IS_DNODE(fio->page)) 3582 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3583 CURSEG_HOT_NODE; 3584 return CURSEG_COLD_NODE; 3585 } 3586 } 3587 3588 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi, 3589 enum log_type type) 3590 { 3591 struct curseg_info *curseg = CURSEG_I(sbi, type); 3592 enum temp_type temp = COLD; 3593 3594 switch (curseg->seg_type) { 3595 case CURSEG_HOT_NODE: 3596 case CURSEG_HOT_DATA: 3597 temp = HOT; 3598 break; 3599 case CURSEG_WARM_NODE: 3600 case CURSEG_WARM_DATA: 3601 temp = WARM; 3602 break; 3603 case CURSEG_COLD_NODE: 3604 case CURSEG_COLD_DATA: 3605 temp = COLD; 3606 break; 3607 default: 3608 f2fs_bug_on(sbi, 1); 3609 } 3610 3611 return temp; 3612 } 3613 3614 static int __get_segment_type(struct f2fs_io_info *fio) 3615 { 3616 enum log_type type = CURSEG_HOT_DATA; 3617 3618 switch (F2FS_OPTION(fio->sbi).active_logs) { 3619 case 2: 3620 type = __get_segment_type_2(fio); 3621 break; 3622 case 4: 3623 type = __get_segment_type_4(fio); 3624 break; 3625 case 6: 3626 type = __get_segment_type_6(fio); 3627 break; 3628 default: 3629 f2fs_bug_on(fio->sbi, true); 3630 } 3631 3632 fio->temp = f2fs_get_segment_temp(fio->sbi, type); 3633 3634 return type; 3635 } 3636 3637 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi, 3638 struct curseg_info *seg) 3639 { 3640 /* To allocate block chunks in different sizes, use random number */ 3641 if (--seg->fragment_remained_chunk > 0) 3642 return; 3643 3644 seg->fragment_remained_chunk = 3645 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 3646 seg->next_blkoff += 3647 get_random_u32_inclusive(1, sbi->max_fragment_hole); 3648 } 3649 3650 static void reset_curseg_fields(struct curseg_info *curseg) 3651 { 3652 curseg->inited = false; 3653 curseg->segno = NULL_SEGNO; 3654 curseg->next_segno = 0; 3655 } 3656 3657 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3658 block_t old_blkaddr, block_t *new_blkaddr, 3659 struct f2fs_summary *sum, int type, 3660 struct f2fs_io_info *fio) 3661 { 3662 struct sit_info *sit_i = SIT_I(sbi); 3663 struct curseg_info *curseg = CURSEG_I(sbi, type); 3664 unsigned long long old_mtime; 3665 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3666 struct seg_entry *se = NULL; 3667 bool segment_full = false; 3668 int ret = 0; 3669 3670 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3671 3672 mutex_lock(&curseg->curseg_mutex); 3673 down_write(&sit_i->sentry_lock); 3674 3675 if (curseg->segno == NULL_SEGNO) { 3676 ret = -ENOSPC; 3677 goto out_err; 3678 } 3679 3680 if (from_gc) { 3681 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3682 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3683 sanity_check_seg_type(sbi, se->type); 3684 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3685 } 3686 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3687 3688 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi)); 3689 3690 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3691 3692 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3693 if (curseg->alloc_type == SSR) { 3694 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg); 3695 } else { 3696 curseg->next_blkoff++; 3697 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 3698 f2fs_randomize_chunk(sbi, curseg); 3699 } 3700 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno)) 3701 segment_full = true; 3702 stat_inc_block_count(sbi, curseg); 3703 3704 if (from_gc) { 3705 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3706 } else { 3707 update_segment_mtime(sbi, old_blkaddr, 0); 3708 old_mtime = 0; 3709 } 3710 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3711 3712 /* 3713 * SIT information should be updated before segment allocation, 3714 * since SSR needs latest valid block information. 3715 */ 3716 update_sit_entry(sbi, *new_blkaddr, 1); 3717 update_sit_entry(sbi, old_blkaddr, -1); 3718 3719 /* 3720 * If the current segment is full, flush it out and replace it with a 3721 * new segment. 3722 */ 3723 if (segment_full) { 3724 if (type == CURSEG_COLD_DATA_PINNED && 3725 !((curseg->segno + 1) % sbi->segs_per_sec)) { 3726 write_sum_page(sbi, curseg->sum_blk, 3727 GET_SUM_BLOCK(sbi, curseg->segno)); 3728 reset_curseg_fields(curseg); 3729 goto skip_new_segment; 3730 } 3731 3732 if (from_gc) { 3733 ret = get_atssr_segment(sbi, type, se->type, 3734 AT_SSR, se->mtime); 3735 } else { 3736 if (need_new_seg(sbi, type)) 3737 ret = new_curseg(sbi, type, false); 3738 else 3739 ret = change_curseg(sbi, type); 3740 stat_inc_seg_type(sbi, curseg); 3741 } 3742 3743 if (ret) 3744 goto out_err; 3745 } 3746 3747 skip_new_segment: 3748 /* 3749 * segment dirty status should be updated after segment allocation, 3750 * so we just need to update status only one time after previous 3751 * segment being closed. 3752 */ 3753 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3754 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3755 3756 if (IS_DATASEG(curseg->seg_type)) 3757 atomic64_inc(&sbi->allocated_data_blocks); 3758 3759 up_write(&sit_i->sentry_lock); 3760 3761 if (page && IS_NODESEG(curseg->seg_type)) { 3762 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3763 3764 f2fs_inode_chksum_set(sbi, page); 3765 } 3766 3767 if (fio) { 3768 struct f2fs_bio_info *io; 3769 3770 INIT_LIST_HEAD(&fio->list); 3771 fio->in_list = 1; 3772 io = sbi->write_io[fio->type] + fio->temp; 3773 spin_lock(&io->io_lock); 3774 list_add_tail(&fio->list, &io->io_list); 3775 spin_unlock(&io->io_lock); 3776 } 3777 3778 mutex_unlock(&curseg->curseg_mutex); 3779 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3780 return 0; 3781 3782 out_err: 3783 *new_blkaddr = NULL_ADDR; 3784 up_write(&sit_i->sentry_lock); 3785 mutex_unlock(&curseg->curseg_mutex); 3786 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3787 return ret; 3788 } 3789 3790 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3791 block_t blkaddr, unsigned int blkcnt) 3792 { 3793 if (!f2fs_is_multi_device(sbi)) 3794 return; 3795 3796 while (1) { 3797 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3798 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3799 3800 /* update device state for fsync */ 3801 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3802 3803 /* update device state for checkpoint */ 3804 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3805 spin_lock(&sbi->dev_lock); 3806 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3807 spin_unlock(&sbi->dev_lock); 3808 } 3809 3810 if (blkcnt <= blks) 3811 break; 3812 blkcnt -= blks; 3813 blkaddr += blks; 3814 } 3815 } 3816 3817 static int log_type_to_seg_type(enum log_type type) 3818 { 3819 int seg_type = CURSEG_COLD_DATA; 3820 3821 switch (type) { 3822 case CURSEG_HOT_DATA: 3823 case CURSEG_WARM_DATA: 3824 case CURSEG_COLD_DATA: 3825 case CURSEG_HOT_NODE: 3826 case CURSEG_WARM_NODE: 3827 case CURSEG_COLD_NODE: 3828 seg_type = (int)type; 3829 break; 3830 case CURSEG_COLD_DATA_PINNED: 3831 case CURSEG_ALL_DATA_ATGC: 3832 seg_type = CURSEG_COLD_DATA; 3833 break; 3834 default: 3835 break; 3836 } 3837 return seg_type; 3838 } 3839 3840 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3841 { 3842 enum log_type type = __get_segment_type(fio); 3843 int seg_type = log_type_to_seg_type(type); 3844 bool keep_order = (f2fs_lfs_mode(fio->sbi) && 3845 seg_type == CURSEG_COLD_DATA); 3846 3847 if (keep_order) 3848 f2fs_down_read(&fio->sbi->io_order_lock); 3849 3850 if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3851 &fio->new_blkaddr, sum, type, fio)) { 3852 if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host)) 3853 fscrypt_finalize_bounce_page(&fio->encrypted_page); 3854 end_page_writeback(fio->page); 3855 if (f2fs_in_warm_node_list(fio->sbi, fio->page)) 3856 f2fs_del_fsync_node_entry(fio->sbi, fio->page); 3857 goto out; 3858 } 3859 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3860 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr); 3861 3862 /* writeout dirty page into bdev */ 3863 f2fs_submit_page_write(fio); 3864 3865 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3866 out: 3867 if (keep_order) 3868 f2fs_up_read(&fio->sbi->io_order_lock); 3869 } 3870 3871 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio, 3872 enum iostat_type io_type) 3873 { 3874 struct f2fs_io_info fio = { 3875 .sbi = sbi, 3876 .type = META, 3877 .temp = HOT, 3878 .op = REQ_OP_WRITE, 3879 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3880 .old_blkaddr = folio->index, 3881 .new_blkaddr = folio->index, 3882 .page = folio_page(folio, 0), 3883 .encrypted_page = NULL, 3884 .in_list = 0, 3885 }; 3886 3887 if (unlikely(folio->index >= MAIN_BLKADDR(sbi))) 3888 fio.op_flags &= ~REQ_META; 3889 3890 folio_start_writeback(folio); 3891 f2fs_submit_page_write(&fio); 3892 3893 stat_inc_meta_count(sbi, folio->index); 3894 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); 3895 } 3896 3897 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3898 { 3899 struct f2fs_summary sum; 3900 3901 set_summary(&sum, nid, 0, 0); 3902 do_write_page(&sum, fio); 3903 3904 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); 3905 } 3906 3907 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3908 struct f2fs_io_info *fio) 3909 { 3910 struct f2fs_sb_info *sbi = fio->sbi; 3911 struct f2fs_summary sum; 3912 3913 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3914 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) 3915 f2fs_update_age_extent_cache(dn); 3916 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3917 do_write_page(&sum, fio); 3918 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3919 3920 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); 3921 } 3922 3923 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3924 { 3925 int err; 3926 struct f2fs_sb_info *sbi = fio->sbi; 3927 unsigned int segno; 3928 3929 fio->new_blkaddr = fio->old_blkaddr; 3930 /* i/o temperature is needed for passing down write hints */ 3931 __get_segment_type(fio); 3932 3933 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3934 3935 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3936 set_sbi_flag(sbi, SBI_NEED_FSCK); 3937 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3938 __func__, segno); 3939 err = -EFSCORRUPTED; 3940 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 3941 goto drop_bio; 3942 } 3943 3944 if (f2fs_cp_error(sbi)) { 3945 err = -EIO; 3946 goto drop_bio; 3947 } 3948 3949 if (fio->meta_gc) 3950 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1); 3951 3952 stat_inc_inplace_blocks(fio->sbi); 3953 3954 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi)) 3955 err = f2fs_merge_page_bio(fio); 3956 else 3957 err = f2fs_submit_page_bio(fio); 3958 if (!err) { 3959 f2fs_update_device_state(fio->sbi, fio->ino, 3960 fio->new_blkaddr, 1); 3961 f2fs_update_iostat(fio->sbi, fio->page->mapping->host, 3962 fio->io_type, F2FS_BLKSIZE); 3963 } 3964 3965 return err; 3966 drop_bio: 3967 if (fio->bio && *(fio->bio)) { 3968 struct bio *bio = *(fio->bio); 3969 3970 bio->bi_status = BLK_STS_IOERR; 3971 bio_endio(bio); 3972 *(fio->bio) = NULL; 3973 } 3974 return err; 3975 } 3976 3977 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3978 unsigned int segno) 3979 { 3980 int i; 3981 3982 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3983 if (CURSEG_I(sbi, i)->segno == segno) 3984 break; 3985 } 3986 return i; 3987 } 3988 3989 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3990 block_t old_blkaddr, block_t new_blkaddr, 3991 bool recover_curseg, bool recover_newaddr, 3992 bool from_gc) 3993 { 3994 struct sit_info *sit_i = SIT_I(sbi); 3995 struct curseg_info *curseg; 3996 unsigned int segno, old_cursegno; 3997 struct seg_entry *se; 3998 int type; 3999 unsigned short old_blkoff; 4000 unsigned char old_alloc_type; 4001 4002 segno = GET_SEGNO(sbi, new_blkaddr); 4003 se = get_seg_entry(sbi, segno); 4004 type = se->type; 4005 4006 f2fs_down_write(&SM_I(sbi)->curseg_lock); 4007 4008 if (!recover_curseg) { 4009 /* for recovery flow */ 4010 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 4011 if (old_blkaddr == NULL_ADDR) 4012 type = CURSEG_COLD_DATA; 4013 else 4014 type = CURSEG_WARM_DATA; 4015 } 4016 } else { 4017 if (IS_CURSEG(sbi, segno)) { 4018 /* se->type is volatile as SSR allocation */ 4019 type = __f2fs_get_curseg(sbi, segno); 4020 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 4021 } else { 4022 type = CURSEG_WARM_DATA; 4023 } 4024 } 4025 4026 curseg = CURSEG_I(sbi, type); 4027 f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type)); 4028 4029 mutex_lock(&curseg->curseg_mutex); 4030 down_write(&sit_i->sentry_lock); 4031 4032 old_cursegno = curseg->segno; 4033 old_blkoff = curseg->next_blkoff; 4034 old_alloc_type = curseg->alloc_type; 4035 4036 /* change the current segment */ 4037 if (segno != curseg->segno) { 4038 curseg->next_segno = segno; 4039 if (change_curseg(sbi, type)) 4040 goto out_unlock; 4041 } 4042 4043 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 4044 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 4045 4046 if (!recover_curseg || recover_newaddr) { 4047 if (!from_gc) 4048 update_segment_mtime(sbi, new_blkaddr, 0); 4049 update_sit_entry(sbi, new_blkaddr, 1); 4050 } 4051 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 4052 f2fs_invalidate_internal_cache(sbi, old_blkaddr); 4053 if (!from_gc) 4054 update_segment_mtime(sbi, old_blkaddr, 0); 4055 update_sit_entry(sbi, old_blkaddr, -1); 4056 } 4057 4058 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 4059 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 4060 4061 locate_dirty_segment(sbi, old_cursegno); 4062 4063 if (recover_curseg) { 4064 if (old_cursegno != curseg->segno) { 4065 curseg->next_segno = old_cursegno; 4066 if (change_curseg(sbi, type)) 4067 goto out_unlock; 4068 } 4069 curseg->next_blkoff = old_blkoff; 4070 curseg->alloc_type = old_alloc_type; 4071 } 4072 4073 out_unlock: 4074 up_write(&sit_i->sentry_lock); 4075 mutex_unlock(&curseg->curseg_mutex); 4076 f2fs_up_write(&SM_I(sbi)->curseg_lock); 4077 } 4078 4079 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 4080 block_t old_addr, block_t new_addr, 4081 unsigned char version, bool recover_curseg, 4082 bool recover_newaddr) 4083 { 4084 struct f2fs_summary sum; 4085 4086 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 4087 4088 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 4089 recover_curseg, recover_newaddr, false); 4090 4091 f2fs_update_data_blkaddr(dn, new_addr); 4092 } 4093 4094 void f2fs_wait_on_page_writeback(struct page *page, 4095 enum page_type type, bool ordered, bool locked) 4096 { 4097 if (folio_test_writeback(page_folio(page))) { 4098 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 4099 4100 /* submit cached LFS IO */ 4101 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 4102 /* submit cached IPU IO */ 4103 f2fs_submit_merged_ipu_write(sbi, NULL, page); 4104 if (ordered) { 4105 wait_on_page_writeback(page); 4106 f2fs_bug_on(sbi, locked && 4107 folio_test_writeback(page_folio(page))); 4108 } else { 4109 wait_for_stable_page(page); 4110 } 4111 } 4112 } 4113 4114 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 4115 { 4116 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4117 struct page *cpage; 4118 4119 if (!f2fs_meta_inode_gc_required(inode)) 4120 return; 4121 4122 if (!__is_valid_data_blkaddr(blkaddr)) 4123 return; 4124 4125 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 4126 if (cpage) { 4127 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 4128 f2fs_put_page(cpage, 1); 4129 } 4130 } 4131 4132 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 4133 block_t len) 4134 { 4135 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4136 block_t i; 4137 4138 if (!f2fs_meta_inode_gc_required(inode)) 4139 return; 4140 4141 for (i = 0; i < len; i++) 4142 f2fs_wait_on_block_writeback(inode, blkaddr + i); 4143 4144 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len); 4145 } 4146 4147 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 4148 { 4149 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4150 struct curseg_info *seg_i; 4151 unsigned char *kaddr; 4152 struct page *page; 4153 block_t start; 4154 int i, j, offset; 4155 4156 start = start_sum_block(sbi); 4157 4158 page = f2fs_get_meta_page(sbi, start++); 4159 if (IS_ERR(page)) 4160 return PTR_ERR(page); 4161 kaddr = (unsigned char *)page_address(page); 4162 4163 /* Step 1: restore nat cache */ 4164 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4165 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 4166 4167 /* Step 2: restore sit cache */ 4168 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4169 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 4170 offset = 2 * SUM_JOURNAL_SIZE; 4171 4172 /* Step 3: restore summary entries */ 4173 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4174 unsigned short blk_off; 4175 unsigned int segno; 4176 4177 seg_i = CURSEG_I(sbi, i); 4178 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 4179 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 4180 seg_i->next_segno = segno; 4181 reset_curseg(sbi, i, 0); 4182 seg_i->alloc_type = ckpt->alloc_type[i]; 4183 seg_i->next_blkoff = blk_off; 4184 4185 if (seg_i->alloc_type == SSR) 4186 blk_off = BLKS_PER_SEG(sbi); 4187 4188 for (j = 0; j < blk_off; j++) { 4189 struct f2fs_summary *s; 4190 4191 s = (struct f2fs_summary *)(kaddr + offset); 4192 seg_i->sum_blk->entries[j] = *s; 4193 offset += SUMMARY_SIZE; 4194 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 4195 SUM_FOOTER_SIZE) 4196 continue; 4197 4198 f2fs_put_page(page, 1); 4199 page = NULL; 4200 4201 page = f2fs_get_meta_page(sbi, start++); 4202 if (IS_ERR(page)) 4203 return PTR_ERR(page); 4204 kaddr = (unsigned char *)page_address(page); 4205 offset = 0; 4206 } 4207 } 4208 f2fs_put_page(page, 1); 4209 return 0; 4210 } 4211 4212 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 4213 { 4214 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4215 struct f2fs_summary_block *sum; 4216 struct curseg_info *curseg; 4217 struct page *new; 4218 unsigned short blk_off; 4219 unsigned int segno = 0; 4220 block_t blk_addr = 0; 4221 int err = 0; 4222 4223 /* get segment number and block addr */ 4224 if (IS_DATASEG(type)) { 4225 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 4226 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 4227 CURSEG_HOT_DATA]); 4228 if (__exist_node_summaries(sbi)) 4229 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 4230 else 4231 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 4232 } else { 4233 segno = le32_to_cpu(ckpt->cur_node_segno[type - 4234 CURSEG_HOT_NODE]); 4235 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 4236 CURSEG_HOT_NODE]); 4237 if (__exist_node_summaries(sbi)) 4238 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 4239 type - CURSEG_HOT_NODE); 4240 else 4241 blk_addr = GET_SUM_BLOCK(sbi, segno); 4242 } 4243 4244 new = f2fs_get_meta_page(sbi, blk_addr); 4245 if (IS_ERR(new)) 4246 return PTR_ERR(new); 4247 sum = (struct f2fs_summary_block *)page_address(new); 4248 4249 if (IS_NODESEG(type)) { 4250 if (__exist_node_summaries(sbi)) { 4251 struct f2fs_summary *ns = &sum->entries[0]; 4252 int i; 4253 4254 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) { 4255 ns->version = 0; 4256 ns->ofs_in_node = 0; 4257 } 4258 } else { 4259 err = f2fs_restore_node_summary(sbi, segno, sum); 4260 if (err) 4261 goto out; 4262 } 4263 } 4264 4265 /* set uncompleted segment to curseg */ 4266 curseg = CURSEG_I(sbi, type); 4267 mutex_lock(&curseg->curseg_mutex); 4268 4269 /* update journal info */ 4270 down_write(&curseg->journal_rwsem); 4271 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 4272 up_write(&curseg->journal_rwsem); 4273 4274 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 4275 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 4276 curseg->next_segno = segno; 4277 reset_curseg(sbi, type, 0); 4278 curseg->alloc_type = ckpt->alloc_type[type]; 4279 curseg->next_blkoff = blk_off; 4280 mutex_unlock(&curseg->curseg_mutex); 4281 out: 4282 f2fs_put_page(new, 1); 4283 return err; 4284 } 4285 4286 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 4287 { 4288 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 4289 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 4290 int type = CURSEG_HOT_DATA; 4291 int err; 4292 4293 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 4294 int npages = f2fs_npages_for_summary_flush(sbi, true); 4295 4296 if (npages >= 2) 4297 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 4298 META_CP, true); 4299 4300 /* restore for compacted data summary */ 4301 err = read_compacted_summaries(sbi); 4302 if (err) 4303 return err; 4304 type = CURSEG_HOT_NODE; 4305 } 4306 4307 if (__exist_node_summaries(sbi)) 4308 f2fs_ra_meta_pages(sbi, 4309 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 4310 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 4311 4312 for (; type <= CURSEG_COLD_NODE; type++) { 4313 err = read_normal_summaries(sbi, type); 4314 if (err) 4315 return err; 4316 } 4317 4318 /* sanity check for summary blocks */ 4319 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 4320 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 4321 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 4322 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 4323 return -EINVAL; 4324 } 4325 4326 return 0; 4327 } 4328 4329 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 4330 { 4331 struct page *page; 4332 unsigned char *kaddr; 4333 struct f2fs_summary *summary; 4334 struct curseg_info *seg_i; 4335 int written_size = 0; 4336 int i, j; 4337 4338 page = f2fs_grab_meta_page(sbi, blkaddr++); 4339 kaddr = (unsigned char *)page_address(page); 4340 memset(kaddr, 0, PAGE_SIZE); 4341 4342 /* Step 1: write nat cache */ 4343 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4344 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 4345 written_size += SUM_JOURNAL_SIZE; 4346 4347 /* Step 2: write sit cache */ 4348 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4349 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 4350 written_size += SUM_JOURNAL_SIZE; 4351 4352 /* Step 3: write summary entries */ 4353 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4354 seg_i = CURSEG_I(sbi, i); 4355 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) { 4356 if (!page) { 4357 page = f2fs_grab_meta_page(sbi, blkaddr++); 4358 kaddr = (unsigned char *)page_address(page); 4359 memset(kaddr, 0, PAGE_SIZE); 4360 written_size = 0; 4361 } 4362 summary = (struct f2fs_summary *)(kaddr + written_size); 4363 *summary = seg_i->sum_blk->entries[j]; 4364 written_size += SUMMARY_SIZE; 4365 4366 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 4367 SUM_FOOTER_SIZE) 4368 continue; 4369 4370 set_page_dirty(page); 4371 f2fs_put_page(page, 1); 4372 page = NULL; 4373 } 4374 } 4375 if (page) { 4376 set_page_dirty(page); 4377 f2fs_put_page(page, 1); 4378 } 4379 } 4380 4381 static void write_normal_summaries(struct f2fs_sb_info *sbi, 4382 block_t blkaddr, int type) 4383 { 4384 int i, end; 4385 4386 if (IS_DATASEG(type)) 4387 end = type + NR_CURSEG_DATA_TYPE; 4388 else 4389 end = type + NR_CURSEG_NODE_TYPE; 4390 4391 for (i = type; i < end; i++) 4392 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4393 } 4394 4395 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4396 { 4397 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4398 write_compacted_summaries(sbi, start_blk); 4399 else 4400 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4401 } 4402 4403 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4404 { 4405 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4406 } 4407 4408 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4409 unsigned int val, int alloc) 4410 { 4411 int i; 4412 4413 if (type == NAT_JOURNAL) { 4414 for (i = 0; i < nats_in_cursum(journal); i++) { 4415 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4416 return i; 4417 } 4418 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4419 return update_nats_in_cursum(journal, 1); 4420 } else if (type == SIT_JOURNAL) { 4421 for (i = 0; i < sits_in_cursum(journal); i++) 4422 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4423 return i; 4424 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4425 return update_sits_in_cursum(journal, 1); 4426 } 4427 return -1; 4428 } 4429 4430 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4431 unsigned int segno) 4432 { 4433 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4434 } 4435 4436 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4437 unsigned int start) 4438 { 4439 struct sit_info *sit_i = SIT_I(sbi); 4440 struct page *page; 4441 pgoff_t src_off, dst_off; 4442 4443 src_off = current_sit_addr(sbi, start); 4444 dst_off = next_sit_addr(sbi, src_off); 4445 4446 page = f2fs_grab_meta_page(sbi, dst_off); 4447 seg_info_to_sit_page(sbi, page, start); 4448 4449 set_page_dirty(page); 4450 set_to_next_sit(sit_i, start); 4451 4452 return page; 4453 } 4454 4455 static struct sit_entry_set *grab_sit_entry_set(void) 4456 { 4457 struct sit_entry_set *ses = 4458 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4459 GFP_NOFS, true, NULL); 4460 4461 ses->entry_cnt = 0; 4462 INIT_LIST_HEAD(&ses->set_list); 4463 return ses; 4464 } 4465 4466 static void release_sit_entry_set(struct sit_entry_set *ses) 4467 { 4468 list_del(&ses->set_list); 4469 kmem_cache_free(sit_entry_set_slab, ses); 4470 } 4471 4472 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4473 struct list_head *head) 4474 { 4475 struct sit_entry_set *next = ses; 4476 4477 if (list_is_last(&ses->set_list, head)) 4478 return; 4479 4480 list_for_each_entry_continue(next, head, set_list) 4481 if (ses->entry_cnt <= next->entry_cnt) { 4482 list_move_tail(&ses->set_list, &next->set_list); 4483 return; 4484 } 4485 4486 list_move_tail(&ses->set_list, head); 4487 } 4488 4489 static void add_sit_entry(unsigned int segno, struct list_head *head) 4490 { 4491 struct sit_entry_set *ses; 4492 unsigned int start_segno = START_SEGNO(segno); 4493 4494 list_for_each_entry(ses, head, set_list) { 4495 if (ses->start_segno == start_segno) { 4496 ses->entry_cnt++; 4497 adjust_sit_entry_set(ses, head); 4498 return; 4499 } 4500 } 4501 4502 ses = grab_sit_entry_set(); 4503 4504 ses->start_segno = start_segno; 4505 ses->entry_cnt++; 4506 list_add(&ses->set_list, head); 4507 } 4508 4509 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4510 { 4511 struct f2fs_sm_info *sm_info = SM_I(sbi); 4512 struct list_head *set_list = &sm_info->sit_entry_set; 4513 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4514 unsigned int segno; 4515 4516 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4517 add_sit_entry(segno, set_list); 4518 } 4519 4520 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4521 { 4522 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4523 struct f2fs_journal *journal = curseg->journal; 4524 int i; 4525 4526 down_write(&curseg->journal_rwsem); 4527 for (i = 0; i < sits_in_cursum(journal); i++) { 4528 unsigned int segno; 4529 bool dirtied; 4530 4531 segno = le32_to_cpu(segno_in_journal(journal, i)); 4532 dirtied = __mark_sit_entry_dirty(sbi, segno); 4533 4534 if (!dirtied) 4535 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4536 } 4537 update_sits_in_cursum(journal, -i); 4538 up_write(&curseg->journal_rwsem); 4539 } 4540 4541 /* 4542 * CP calls this function, which flushes SIT entries including sit_journal, 4543 * and moves prefree segs to free segs. 4544 */ 4545 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4546 { 4547 struct sit_info *sit_i = SIT_I(sbi); 4548 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4549 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4550 struct f2fs_journal *journal = curseg->journal; 4551 struct sit_entry_set *ses, *tmp; 4552 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4553 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4554 struct seg_entry *se; 4555 4556 down_write(&sit_i->sentry_lock); 4557 4558 if (!sit_i->dirty_sentries) 4559 goto out; 4560 4561 /* 4562 * add and account sit entries of dirty bitmap in sit entry 4563 * set temporarily 4564 */ 4565 add_sits_in_set(sbi); 4566 4567 /* 4568 * if there are no enough space in journal to store dirty sit 4569 * entries, remove all entries from journal and add and account 4570 * them in sit entry set. 4571 */ 4572 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4573 !to_journal) 4574 remove_sits_in_journal(sbi); 4575 4576 /* 4577 * there are two steps to flush sit entries: 4578 * #1, flush sit entries to journal in current cold data summary block. 4579 * #2, flush sit entries to sit page. 4580 */ 4581 list_for_each_entry_safe(ses, tmp, head, set_list) { 4582 struct page *page = NULL; 4583 struct f2fs_sit_block *raw_sit = NULL; 4584 unsigned int start_segno = ses->start_segno; 4585 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4586 (unsigned long)MAIN_SEGS(sbi)); 4587 unsigned int segno = start_segno; 4588 4589 if (to_journal && 4590 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4591 to_journal = false; 4592 4593 if (to_journal) { 4594 down_write(&curseg->journal_rwsem); 4595 } else { 4596 page = get_next_sit_page(sbi, start_segno); 4597 raw_sit = page_address(page); 4598 } 4599 4600 /* flush dirty sit entries in region of current sit set */ 4601 for_each_set_bit_from(segno, bitmap, end) { 4602 int offset, sit_offset; 4603 4604 se = get_seg_entry(sbi, segno); 4605 #ifdef CONFIG_F2FS_CHECK_FS 4606 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4607 SIT_VBLOCK_MAP_SIZE)) 4608 f2fs_bug_on(sbi, 1); 4609 #endif 4610 4611 /* add discard candidates */ 4612 if (!(cpc->reason & CP_DISCARD)) { 4613 cpc->trim_start = segno; 4614 add_discard_addrs(sbi, cpc, false); 4615 } 4616 4617 if (to_journal) { 4618 offset = f2fs_lookup_journal_in_cursum(journal, 4619 SIT_JOURNAL, segno, 1); 4620 f2fs_bug_on(sbi, offset < 0); 4621 segno_in_journal(journal, offset) = 4622 cpu_to_le32(segno); 4623 seg_info_to_raw_sit(se, 4624 &sit_in_journal(journal, offset)); 4625 check_block_count(sbi, segno, 4626 &sit_in_journal(journal, offset)); 4627 } else { 4628 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4629 seg_info_to_raw_sit(se, 4630 &raw_sit->entries[sit_offset]); 4631 check_block_count(sbi, segno, 4632 &raw_sit->entries[sit_offset]); 4633 } 4634 4635 __clear_bit(segno, bitmap); 4636 sit_i->dirty_sentries--; 4637 ses->entry_cnt--; 4638 } 4639 4640 if (to_journal) 4641 up_write(&curseg->journal_rwsem); 4642 else 4643 f2fs_put_page(page, 1); 4644 4645 f2fs_bug_on(sbi, ses->entry_cnt); 4646 release_sit_entry_set(ses); 4647 } 4648 4649 f2fs_bug_on(sbi, !list_empty(head)); 4650 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4651 out: 4652 if (cpc->reason & CP_DISCARD) { 4653 __u64 trim_start = cpc->trim_start; 4654 4655 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4656 add_discard_addrs(sbi, cpc, false); 4657 4658 cpc->trim_start = trim_start; 4659 } 4660 up_write(&sit_i->sentry_lock); 4661 4662 set_prefree_as_free_segments(sbi); 4663 } 4664 4665 static int build_sit_info(struct f2fs_sb_info *sbi) 4666 { 4667 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4668 struct sit_info *sit_i; 4669 unsigned int sit_segs, start; 4670 char *src_bitmap, *bitmap; 4671 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4672 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4673 4674 /* allocate memory for SIT information */ 4675 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4676 if (!sit_i) 4677 return -ENOMEM; 4678 4679 SM_I(sbi)->sit_info = sit_i; 4680 4681 sit_i->sentries = 4682 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4683 MAIN_SEGS(sbi)), 4684 GFP_KERNEL); 4685 if (!sit_i->sentries) 4686 return -ENOMEM; 4687 4688 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4689 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4690 GFP_KERNEL); 4691 if (!sit_i->dirty_sentries_bitmap) 4692 return -ENOMEM; 4693 4694 #ifdef CONFIG_F2FS_CHECK_FS 4695 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4696 #else 4697 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4698 #endif 4699 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4700 if (!sit_i->bitmap) 4701 return -ENOMEM; 4702 4703 bitmap = sit_i->bitmap; 4704 4705 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4706 sit_i->sentries[start].cur_valid_map = bitmap; 4707 bitmap += SIT_VBLOCK_MAP_SIZE; 4708 4709 sit_i->sentries[start].ckpt_valid_map = bitmap; 4710 bitmap += SIT_VBLOCK_MAP_SIZE; 4711 4712 #ifdef CONFIG_F2FS_CHECK_FS 4713 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4714 bitmap += SIT_VBLOCK_MAP_SIZE; 4715 #endif 4716 4717 if (discard_map) { 4718 sit_i->sentries[start].discard_map = bitmap; 4719 bitmap += SIT_VBLOCK_MAP_SIZE; 4720 } 4721 } 4722 4723 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4724 if (!sit_i->tmp_map) 4725 return -ENOMEM; 4726 4727 if (__is_large_section(sbi)) { 4728 sit_i->sec_entries = 4729 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4730 MAIN_SECS(sbi)), 4731 GFP_KERNEL); 4732 if (!sit_i->sec_entries) 4733 return -ENOMEM; 4734 } 4735 4736 /* get information related with SIT */ 4737 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4738 4739 /* setup SIT bitmap from ckeckpoint pack */ 4740 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4741 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4742 4743 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4744 if (!sit_i->sit_bitmap) 4745 return -ENOMEM; 4746 4747 #ifdef CONFIG_F2FS_CHECK_FS 4748 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4749 sit_bitmap_size, GFP_KERNEL); 4750 if (!sit_i->sit_bitmap_mir) 4751 return -ENOMEM; 4752 4753 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4754 main_bitmap_size, GFP_KERNEL); 4755 if (!sit_i->invalid_segmap) 4756 return -ENOMEM; 4757 #endif 4758 4759 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4760 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs); 4761 sit_i->written_valid_blocks = 0; 4762 sit_i->bitmap_size = sit_bitmap_size; 4763 sit_i->dirty_sentries = 0; 4764 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4765 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4766 sit_i->mounted_time = ktime_get_boottime_seconds(); 4767 init_rwsem(&sit_i->sentry_lock); 4768 return 0; 4769 } 4770 4771 static int build_free_segmap(struct f2fs_sb_info *sbi) 4772 { 4773 struct free_segmap_info *free_i; 4774 unsigned int bitmap_size, sec_bitmap_size; 4775 4776 /* allocate memory for free segmap information */ 4777 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4778 if (!free_i) 4779 return -ENOMEM; 4780 4781 SM_I(sbi)->free_info = free_i; 4782 4783 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4784 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4785 if (!free_i->free_segmap) 4786 return -ENOMEM; 4787 4788 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4789 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4790 if (!free_i->free_secmap) 4791 return -ENOMEM; 4792 4793 /* set all segments as dirty temporarily */ 4794 memset(free_i->free_segmap, 0xff, bitmap_size); 4795 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4796 4797 /* init free segmap information */ 4798 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4799 free_i->free_segments = 0; 4800 free_i->free_sections = 0; 4801 spin_lock_init(&free_i->segmap_lock); 4802 return 0; 4803 } 4804 4805 static int build_curseg(struct f2fs_sb_info *sbi) 4806 { 4807 struct curseg_info *array; 4808 int i; 4809 4810 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4811 sizeof(*array)), GFP_KERNEL); 4812 if (!array) 4813 return -ENOMEM; 4814 4815 SM_I(sbi)->curseg_array = array; 4816 4817 for (i = 0; i < NO_CHECK_TYPE; i++) { 4818 mutex_init(&array[i].curseg_mutex); 4819 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4820 if (!array[i].sum_blk) 4821 return -ENOMEM; 4822 init_rwsem(&array[i].journal_rwsem); 4823 array[i].journal = f2fs_kzalloc(sbi, 4824 sizeof(struct f2fs_journal), GFP_KERNEL); 4825 if (!array[i].journal) 4826 return -ENOMEM; 4827 array[i].seg_type = log_type_to_seg_type(i); 4828 reset_curseg_fields(&array[i]); 4829 } 4830 return restore_curseg_summaries(sbi); 4831 } 4832 4833 static int build_sit_entries(struct f2fs_sb_info *sbi) 4834 { 4835 struct sit_info *sit_i = SIT_I(sbi); 4836 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4837 struct f2fs_journal *journal = curseg->journal; 4838 struct seg_entry *se; 4839 struct f2fs_sit_entry sit; 4840 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4841 unsigned int i, start, end; 4842 unsigned int readed, start_blk = 0; 4843 int err = 0; 4844 block_t sit_valid_blocks[2] = {0, 0}; 4845 4846 do { 4847 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4848 META_SIT, true); 4849 4850 start = start_blk * sit_i->sents_per_block; 4851 end = (start_blk + readed) * sit_i->sents_per_block; 4852 4853 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4854 struct f2fs_sit_block *sit_blk; 4855 struct page *page; 4856 4857 se = &sit_i->sentries[start]; 4858 page = get_current_sit_page(sbi, start); 4859 if (IS_ERR(page)) 4860 return PTR_ERR(page); 4861 sit_blk = (struct f2fs_sit_block *)page_address(page); 4862 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4863 f2fs_put_page(page, 1); 4864 4865 err = check_block_count(sbi, start, &sit); 4866 if (err) 4867 return err; 4868 seg_info_from_raw_sit(se, &sit); 4869 4870 if (se->type >= NR_PERSISTENT_LOG) { 4871 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4872 se->type, start); 4873 f2fs_handle_error(sbi, 4874 ERROR_INCONSISTENT_SUM_TYPE); 4875 return -EFSCORRUPTED; 4876 } 4877 4878 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4879 4880 if (!f2fs_block_unit_discard(sbi)) 4881 goto init_discard_map_done; 4882 4883 /* build discard map only one time */ 4884 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4885 memset(se->discard_map, 0xff, 4886 SIT_VBLOCK_MAP_SIZE); 4887 goto init_discard_map_done; 4888 } 4889 memcpy(se->discard_map, se->cur_valid_map, 4890 SIT_VBLOCK_MAP_SIZE); 4891 sbi->discard_blks += BLKS_PER_SEG(sbi) - 4892 se->valid_blocks; 4893 init_discard_map_done: 4894 if (__is_large_section(sbi)) 4895 get_sec_entry(sbi, start)->valid_blocks += 4896 se->valid_blocks; 4897 } 4898 start_blk += readed; 4899 } while (start_blk < sit_blk_cnt); 4900 4901 down_read(&curseg->journal_rwsem); 4902 for (i = 0; i < sits_in_cursum(journal); i++) { 4903 unsigned int old_valid_blocks; 4904 4905 start = le32_to_cpu(segno_in_journal(journal, i)); 4906 if (start >= MAIN_SEGS(sbi)) { 4907 f2fs_err(sbi, "Wrong journal entry on segno %u", 4908 start); 4909 err = -EFSCORRUPTED; 4910 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); 4911 break; 4912 } 4913 4914 se = &sit_i->sentries[start]; 4915 sit = sit_in_journal(journal, i); 4916 4917 old_valid_blocks = se->valid_blocks; 4918 4919 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4920 4921 err = check_block_count(sbi, start, &sit); 4922 if (err) 4923 break; 4924 seg_info_from_raw_sit(se, &sit); 4925 4926 if (se->type >= NR_PERSISTENT_LOG) { 4927 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4928 se->type, start); 4929 err = -EFSCORRUPTED; 4930 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4931 break; 4932 } 4933 4934 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4935 4936 if (f2fs_block_unit_discard(sbi)) { 4937 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4938 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4939 } else { 4940 memcpy(se->discard_map, se->cur_valid_map, 4941 SIT_VBLOCK_MAP_SIZE); 4942 sbi->discard_blks += old_valid_blocks; 4943 sbi->discard_blks -= se->valid_blocks; 4944 } 4945 } 4946 4947 if (__is_large_section(sbi)) { 4948 get_sec_entry(sbi, start)->valid_blocks += 4949 se->valid_blocks; 4950 get_sec_entry(sbi, start)->valid_blocks -= 4951 old_valid_blocks; 4952 } 4953 } 4954 up_read(&curseg->journal_rwsem); 4955 4956 if (err) 4957 return err; 4958 4959 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4960 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4961 sit_valid_blocks[NODE], valid_node_count(sbi)); 4962 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); 4963 return -EFSCORRUPTED; 4964 } 4965 4966 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4967 valid_user_blocks(sbi)) { 4968 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4969 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4970 valid_user_blocks(sbi)); 4971 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); 4972 return -EFSCORRUPTED; 4973 } 4974 4975 return 0; 4976 } 4977 4978 static void init_free_segmap(struct f2fs_sb_info *sbi) 4979 { 4980 unsigned int start; 4981 int type; 4982 struct seg_entry *sentry; 4983 4984 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4985 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4986 continue; 4987 sentry = get_seg_entry(sbi, start); 4988 if (!sentry->valid_blocks) 4989 __set_free(sbi, start); 4990 else 4991 SIT_I(sbi)->written_valid_blocks += 4992 sentry->valid_blocks; 4993 } 4994 4995 /* set use the current segments */ 4996 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4997 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4998 4999 __set_test_and_inuse(sbi, curseg_t->segno); 5000 } 5001 } 5002 5003 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 5004 { 5005 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5006 struct free_segmap_info *free_i = FREE_I(sbi); 5007 unsigned int segno = 0, offset = 0, secno; 5008 block_t valid_blocks, usable_blks_in_seg; 5009 5010 while (1) { 5011 /* find dirty segment based on free segmap */ 5012 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 5013 if (segno >= MAIN_SEGS(sbi)) 5014 break; 5015 offset = segno + 1; 5016 valid_blocks = get_valid_blocks(sbi, segno, false); 5017 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 5018 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 5019 continue; 5020 if (valid_blocks > usable_blks_in_seg) { 5021 f2fs_bug_on(sbi, 1); 5022 continue; 5023 } 5024 mutex_lock(&dirty_i->seglist_lock); 5025 __locate_dirty_segment(sbi, segno, DIRTY); 5026 mutex_unlock(&dirty_i->seglist_lock); 5027 } 5028 5029 if (!__is_large_section(sbi)) 5030 return; 5031 5032 mutex_lock(&dirty_i->seglist_lock); 5033 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { 5034 valid_blocks = get_valid_blocks(sbi, segno, true); 5035 secno = GET_SEC_FROM_SEG(sbi, segno); 5036 5037 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 5038 continue; 5039 if (IS_CURSEC(sbi, secno)) 5040 continue; 5041 set_bit(secno, dirty_i->dirty_secmap); 5042 } 5043 mutex_unlock(&dirty_i->seglist_lock); 5044 } 5045 5046 static int init_victim_secmap(struct f2fs_sb_info *sbi) 5047 { 5048 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5049 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 5050 5051 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 5052 if (!dirty_i->victim_secmap) 5053 return -ENOMEM; 5054 5055 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 5056 if (!dirty_i->pinned_secmap) 5057 return -ENOMEM; 5058 5059 dirty_i->pinned_secmap_cnt = 0; 5060 dirty_i->enable_pin_section = true; 5061 return 0; 5062 } 5063 5064 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 5065 { 5066 struct dirty_seglist_info *dirty_i; 5067 unsigned int bitmap_size, i; 5068 5069 /* allocate memory for dirty segments list information */ 5070 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 5071 GFP_KERNEL); 5072 if (!dirty_i) 5073 return -ENOMEM; 5074 5075 SM_I(sbi)->dirty_info = dirty_i; 5076 mutex_init(&dirty_i->seglist_lock); 5077 5078 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 5079 5080 for (i = 0; i < NR_DIRTY_TYPE; i++) { 5081 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 5082 GFP_KERNEL); 5083 if (!dirty_i->dirty_segmap[i]) 5084 return -ENOMEM; 5085 } 5086 5087 if (__is_large_section(sbi)) { 5088 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 5089 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 5090 bitmap_size, GFP_KERNEL); 5091 if (!dirty_i->dirty_secmap) 5092 return -ENOMEM; 5093 } 5094 5095 init_dirty_segmap(sbi); 5096 return init_victim_secmap(sbi); 5097 } 5098 5099 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 5100 { 5101 int i; 5102 5103 /* 5104 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 5105 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 5106 */ 5107 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5108 struct curseg_info *curseg = CURSEG_I(sbi, i); 5109 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 5110 unsigned int blkofs = curseg->next_blkoff; 5111 5112 if (f2fs_sb_has_readonly(sbi) && 5113 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 5114 continue; 5115 5116 sanity_check_seg_type(sbi, curseg->seg_type); 5117 5118 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 5119 f2fs_err(sbi, 5120 "Current segment has invalid alloc_type:%d", 5121 curseg->alloc_type); 5122 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 5123 return -EFSCORRUPTED; 5124 } 5125 5126 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 5127 goto out; 5128 5129 if (curseg->alloc_type == SSR) 5130 continue; 5131 5132 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) { 5133 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 5134 continue; 5135 out: 5136 f2fs_err(sbi, 5137 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 5138 i, curseg->segno, curseg->alloc_type, 5139 curseg->next_blkoff, blkofs); 5140 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 5141 return -EFSCORRUPTED; 5142 } 5143 } 5144 return 0; 5145 } 5146 5147 #ifdef CONFIG_BLK_DEV_ZONED 5148 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 5149 struct f2fs_dev_info *fdev, 5150 struct blk_zone *zone) 5151 { 5152 unsigned int zone_segno; 5153 block_t zone_block, valid_block_cnt; 5154 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 5155 int ret; 5156 unsigned int nofs_flags; 5157 5158 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5159 return 0; 5160 5161 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 5162 zone_segno = GET_SEGNO(sbi, zone_block); 5163 5164 /* 5165 * Skip check of zones cursegs point to, since 5166 * fix_curseg_write_pointer() checks them. 5167 */ 5168 if (zone_segno >= MAIN_SEGS(sbi)) 5169 return 0; 5170 5171 /* 5172 * Get # of valid block of the zone. 5173 */ 5174 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true); 5175 if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) { 5176 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]", 5177 zone_segno, valid_block_cnt, 5178 blk_zone_cond_str(zone->cond)); 5179 return 0; 5180 } 5181 5182 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) || 5183 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL)) 5184 return 0; 5185 5186 if (!valid_block_cnt) { 5187 f2fs_notice(sbi, "Zone without valid block has non-zero write " 5188 "pointer. Reset the write pointer: cond[%s]", 5189 blk_zone_cond_str(zone->cond)); 5190 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 5191 zone->len >> log_sectors_per_block); 5192 if (ret) 5193 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5194 fdev->path, ret); 5195 return ret; 5196 } 5197 5198 /* 5199 * If there are valid blocks and the write pointer doesn't match 5200 * with them, we need to report the inconsistency and fill 5201 * the zone till the end to close the zone. This inconsistency 5202 * does not cause write error because the zone will not be 5203 * selected for write operation until it get discarded. 5204 */ 5205 f2fs_notice(sbi, "Valid blocks are not aligned with write " 5206 "pointer: valid block[0x%x,0x%x] cond[%s]", 5207 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond)); 5208 5209 nofs_flags = memalloc_nofs_save(); 5210 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH, 5211 zone->start, zone->len); 5212 memalloc_nofs_restore(nofs_flags); 5213 if (ret == -EOPNOTSUPP) { 5214 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp, 5215 zone->len - (zone->wp - zone->start), 5216 GFP_NOFS, 0); 5217 if (ret) 5218 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)", 5219 fdev->path, ret); 5220 } else if (ret) { 5221 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)", 5222 fdev->path, ret); 5223 } 5224 5225 return ret; 5226 } 5227 5228 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 5229 block_t zone_blkaddr) 5230 { 5231 int i; 5232 5233 for (i = 0; i < sbi->s_ndevs; i++) { 5234 if (!bdev_is_zoned(FDEV(i).bdev)) 5235 continue; 5236 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 5237 zone_blkaddr <= FDEV(i).end_blk)) 5238 return &FDEV(i); 5239 } 5240 5241 return NULL; 5242 } 5243 5244 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 5245 void *data) 5246 { 5247 memcpy(data, zone, sizeof(struct blk_zone)); 5248 return 0; 5249 } 5250 5251 static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 5252 { 5253 struct curseg_info *cs = CURSEG_I(sbi, type); 5254 struct f2fs_dev_info *zbd; 5255 struct blk_zone zone; 5256 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 5257 block_t cs_zone_block, wp_block; 5258 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 5259 sector_t zone_sector; 5260 int err; 5261 5262 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5263 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5264 5265 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5266 if (!zbd) 5267 return 0; 5268 5269 /* report zone for the sector the curseg points to */ 5270 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5271 << log_sectors_per_block; 5272 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5273 report_one_zone_cb, &zone); 5274 if (err != 1) { 5275 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5276 zbd->path, err); 5277 return err; 5278 } 5279 5280 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5281 return 0; 5282 5283 /* 5284 * When safely unmounted in the previous mount, we could use current 5285 * segments. Otherwise, allocate new sections. 5286 */ 5287 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 5288 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 5289 wp_segno = GET_SEGNO(sbi, wp_block); 5290 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 5291 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 5292 5293 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 5294 wp_sector_off == 0) 5295 return 0; 5296 5297 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 5298 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno, 5299 cs->next_blkoff, wp_segno, wp_blkoff); 5300 } 5301 5302 /* Allocate a new section if it's not new. */ 5303 if (cs->next_blkoff || 5304 cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) { 5305 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff; 5306 5307 f2fs_allocate_new_section(sbi, type, true); 5308 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 5309 "[0x%x,0x%x] -> [0x%x,0x%x]", 5310 type, old_segno, old_blkoff, 5311 cs->segno, cs->next_blkoff); 5312 } 5313 5314 /* check consistency of the zone curseg pointed to */ 5315 if (check_zone_write_pointer(sbi, zbd, &zone)) 5316 return -EIO; 5317 5318 /* check newly assigned zone */ 5319 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5320 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5321 5322 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5323 if (!zbd) 5324 return 0; 5325 5326 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5327 << log_sectors_per_block; 5328 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5329 report_one_zone_cb, &zone); 5330 if (err != 1) { 5331 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5332 zbd->path, err); 5333 return err; 5334 } 5335 5336 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5337 return 0; 5338 5339 if (zone.wp != zone.start) { 5340 f2fs_notice(sbi, 5341 "New zone for curseg[%d] is not yet discarded. " 5342 "Reset the zone: curseg[0x%x,0x%x]", 5343 type, cs->segno, cs->next_blkoff); 5344 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block, 5345 zone.len >> log_sectors_per_block); 5346 if (err) { 5347 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5348 zbd->path, err); 5349 return err; 5350 } 5351 } 5352 5353 return 0; 5354 } 5355 5356 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5357 { 5358 int i, ret; 5359 5360 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5361 ret = do_fix_curseg_write_pointer(sbi, i); 5362 if (ret) 5363 return ret; 5364 } 5365 5366 return 0; 5367 } 5368 5369 struct check_zone_write_pointer_args { 5370 struct f2fs_sb_info *sbi; 5371 struct f2fs_dev_info *fdev; 5372 }; 5373 5374 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 5375 void *data) 5376 { 5377 struct check_zone_write_pointer_args *args; 5378 5379 args = (struct check_zone_write_pointer_args *)data; 5380 5381 return check_zone_write_pointer(args->sbi, args->fdev, zone); 5382 } 5383 5384 static int check_write_pointer(struct f2fs_sb_info *sbi) 5385 { 5386 int i, ret; 5387 struct check_zone_write_pointer_args args; 5388 5389 for (i = 0; i < sbi->s_ndevs; i++) { 5390 if (!bdev_is_zoned(FDEV(i).bdev)) 5391 continue; 5392 5393 args.sbi = sbi; 5394 args.fdev = &FDEV(i); 5395 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 5396 check_zone_write_pointer_cb, &args); 5397 if (ret < 0) 5398 return ret; 5399 } 5400 5401 return 0; 5402 } 5403 5404 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi) 5405 { 5406 int ret; 5407 5408 if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb)) 5409 return 0; 5410 5411 f2fs_notice(sbi, "Checking entire write pointers"); 5412 ret = fix_curseg_write_pointer(sbi); 5413 if (!ret) 5414 ret = check_write_pointer(sbi); 5415 return ret; 5416 } 5417 5418 /* 5419 * Return the number of usable blocks in a segment. The number of blocks 5420 * returned is always equal to the number of blocks in a segment for 5421 * segments fully contained within a sequential zone capacity or a 5422 * conventional zone. For segments partially contained in a sequential 5423 * zone capacity, the number of usable blocks up to the zone capacity 5424 * is returned. 0 is returned in all other cases. 5425 */ 5426 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5427 struct f2fs_sb_info *sbi, unsigned int segno) 5428 { 5429 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5430 unsigned int secno; 5431 5432 if (!sbi->unusable_blocks_per_sec) 5433 return BLKS_PER_SEG(sbi); 5434 5435 secno = GET_SEC_FROM_SEG(sbi, segno); 5436 seg_start = START_BLOCK(sbi, segno); 5437 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5438 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 5439 5440 /* 5441 * If segment starts before zone capacity and spans beyond 5442 * zone capacity, then usable blocks are from seg start to 5443 * zone capacity. If the segment starts after the zone capacity, 5444 * then there are no usable blocks. 5445 */ 5446 if (seg_start >= sec_cap_blkaddr) 5447 return 0; 5448 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr) 5449 return sec_cap_blkaddr - seg_start; 5450 5451 return BLKS_PER_SEG(sbi); 5452 } 5453 #else 5454 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi) 5455 { 5456 return 0; 5457 } 5458 5459 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5460 unsigned int segno) 5461 { 5462 return 0; 5463 } 5464 5465 #endif 5466 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5467 unsigned int segno) 5468 { 5469 if (f2fs_sb_has_blkzoned(sbi)) 5470 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5471 5472 return BLKS_PER_SEG(sbi); 5473 } 5474 5475 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi) 5476 { 5477 if (f2fs_sb_has_blkzoned(sbi)) 5478 return CAP_SEGS_PER_SEC(sbi); 5479 5480 return SEGS_PER_SEC(sbi); 5481 } 5482 5483 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi, 5484 unsigned int segno) 5485 { 5486 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi); 5487 unsigned int secno = 0, start = 0; 5488 unsigned int total_valid_blocks = 0; 5489 unsigned long long mtime = 0; 5490 unsigned int i = 0; 5491 5492 secno = GET_SEC_FROM_SEG(sbi, segno); 5493 start = GET_SEG_FROM_SEC(sbi, secno); 5494 5495 if (!__is_large_section(sbi)) 5496 return get_seg_entry(sbi, start + i)->mtime; 5497 5498 for (i = 0; i < usable_segs_per_sec; i++) { 5499 /* for large section, only check the mtime of valid segments */ 5500 struct seg_entry *se = get_seg_entry(sbi, start+i); 5501 5502 mtime += se->mtime * se->valid_blocks; 5503 total_valid_blocks += se->valid_blocks; 5504 } 5505 5506 if (total_valid_blocks == 0) 5507 return INVALID_MTIME; 5508 5509 return div_u64(mtime, total_valid_blocks); 5510 } 5511 5512 /* 5513 * Update min, max modified time for cost-benefit GC algorithm 5514 */ 5515 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5516 { 5517 struct sit_info *sit_i = SIT_I(sbi); 5518 unsigned int segno; 5519 5520 down_write(&sit_i->sentry_lock); 5521 5522 sit_i->min_mtime = ULLONG_MAX; 5523 5524 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { 5525 unsigned long long mtime = 0; 5526 5527 mtime = f2fs_get_section_mtime(sbi, segno); 5528 5529 if (sit_i->min_mtime > mtime) 5530 sit_i->min_mtime = mtime; 5531 } 5532 sit_i->max_mtime = get_mtime(sbi, false); 5533 sit_i->dirty_max_mtime = 0; 5534 up_write(&sit_i->sentry_lock); 5535 } 5536 5537 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5538 { 5539 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5540 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5541 struct f2fs_sm_info *sm_info; 5542 int err; 5543 5544 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5545 if (!sm_info) 5546 return -ENOMEM; 5547 5548 /* init sm info */ 5549 sbi->sm_info = sm_info; 5550 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5551 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5552 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5553 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5554 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5555 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5556 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5557 sm_info->rec_prefree_segments = sm_info->main_segments * 5558 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5559 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5560 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5561 5562 if (!f2fs_lfs_mode(sbi)) 5563 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC); 5564 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5565 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5566 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi); 5567 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5568 sm_info->min_ssr_sections = reserved_sections(sbi); 5569 5570 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5571 5572 init_f2fs_rwsem(&sm_info->curseg_lock); 5573 5574 err = f2fs_create_flush_cmd_control(sbi); 5575 if (err) 5576 return err; 5577 5578 err = create_discard_cmd_control(sbi); 5579 if (err) 5580 return err; 5581 5582 err = build_sit_info(sbi); 5583 if (err) 5584 return err; 5585 err = build_free_segmap(sbi); 5586 if (err) 5587 return err; 5588 err = build_curseg(sbi); 5589 if (err) 5590 return err; 5591 5592 /* reinit free segmap based on SIT */ 5593 err = build_sit_entries(sbi); 5594 if (err) 5595 return err; 5596 5597 init_free_segmap(sbi); 5598 err = build_dirty_segmap(sbi); 5599 if (err) 5600 return err; 5601 5602 err = sanity_check_curseg(sbi); 5603 if (err) 5604 return err; 5605 5606 init_min_max_mtime(sbi); 5607 return 0; 5608 } 5609 5610 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5611 enum dirty_type dirty_type) 5612 { 5613 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5614 5615 mutex_lock(&dirty_i->seglist_lock); 5616 kvfree(dirty_i->dirty_segmap[dirty_type]); 5617 dirty_i->nr_dirty[dirty_type] = 0; 5618 mutex_unlock(&dirty_i->seglist_lock); 5619 } 5620 5621 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5622 { 5623 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5624 5625 kvfree(dirty_i->pinned_secmap); 5626 kvfree(dirty_i->victim_secmap); 5627 } 5628 5629 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5630 { 5631 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5632 int i; 5633 5634 if (!dirty_i) 5635 return; 5636 5637 /* discard pre-free/dirty segments list */ 5638 for (i = 0; i < NR_DIRTY_TYPE; i++) 5639 discard_dirty_segmap(sbi, i); 5640 5641 if (__is_large_section(sbi)) { 5642 mutex_lock(&dirty_i->seglist_lock); 5643 kvfree(dirty_i->dirty_secmap); 5644 mutex_unlock(&dirty_i->seglist_lock); 5645 } 5646 5647 destroy_victim_secmap(sbi); 5648 SM_I(sbi)->dirty_info = NULL; 5649 kfree(dirty_i); 5650 } 5651 5652 static void destroy_curseg(struct f2fs_sb_info *sbi) 5653 { 5654 struct curseg_info *array = SM_I(sbi)->curseg_array; 5655 int i; 5656 5657 if (!array) 5658 return; 5659 SM_I(sbi)->curseg_array = NULL; 5660 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5661 kfree(array[i].sum_blk); 5662 kfree(array[i].journal); 5663 } 5664 kfree(array); 5665 } 5666 5667 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5668 { 5669 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5670 5671 if (!free_i) 5672 return; 5673 SM_I(sbi)->free_info = NULL; 5674 kvfree(free_i->free_segmap); 5675 kvfree(free_i->free_secmap); 5676 kfree(free_i); 5677 } 5678 5679 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5680 { 5681 struct sit_info *sit_i = SIT_I(sbi); 5682 5683 if (!sit_i) 5684 return; 5685 5686 if (sit_i->sentries) 5687 kvfree(sit_i->bitmap); 5688 kfree(sit_i->tmp_map); 5689 5690 kvfree(sit_i->sentries); 5691 kvfree(sit_i->sec_entries); 5692 kvfree(sit_i->dirty_sentries_bitmap); 5693 5694 SM_I(sbi)->sit_info = NULL; 5695 kvfree(sit_i->sit_bitmap); 5696 #ifdef CONFIG_F2FS_CHECK_FS 5697 kvfree(sit_i->sit_bitmap_mir); 5698 kvfree(sit_i->invalid_segmap); 5699 #endif 5700 kfree(sit_i); 5701 } 5702 5703 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5704 { 5705 struct f2fs_sm_info *sm_info = SM_I(sbi); 5706 5707 if (!sm_info) 5708 return; 5709 f2fs_destroy_flush_cmd_control(sbi, true); 5710 destroy_discard_cmd_control(sbi); 5711 destroy_dirty_segmap(sbi); 5712 destroy_curseg(sbi); 5713 destroy_free_segmap(sbi); 5714 destroy_sit_info(sbi); 5715 sbi->sm_info = NULL; 5716 kfree(sm_info); 5717 } 5718 5719 int __init f2fs_create_segment_manager_caches(void) 5720 { 5721 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5722 sizeof(struct discard_entry)); 5723 if (!discard_entry_slab) 5724 goto fail; 5725 5726 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5727 sizeof(struct discard_cmd)); 5728 if (!discard_cmd_slab) 5729 goto destroy_discard_entry; 5730 5731 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5732 sizeof(struct sit_entry_set)); 5733 if (!sit_entry_set_slab) 5734 goto destroy_discard_cmd; 5735 5736 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5737 sizeof(struct revoke_entry)); 5738 if (!revoke_entry_slab) 5739 goto destroy_sit_entry_set; 5740 return 0; 5741 5742 destroy_sit_entry_set: 5743 kmem_cache_destroy(sit_entry_set_slab); 5744 destroy_discard_cmd: 5745 kmem_cache_destroy(discard_cmd_slab); 5746 destroy_discard_entry: 5747 kmem_cache_destroy(discard_entry_slab); 5748 fail: 5749 return -ENOMEM; 5750 } 5751 5752 void f2fs_destroy_segment_manager_caches(void) 5753 { 5754 kmem_cache_destroy(sit_entry_set_slab); 5755 kmem_cache_destroy(discard_cmd_slab); 5756 kmem_cache_destroy(discard_entry_slab); 5757 kmem_cache_destroy(revoke_entry_slab); 5758 } 5759