1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 191 struct f2fs_inode_info *fi = F2FS_I(inode); 192 193 if (f2fs_is_atomic_file(inode)) { 194 if (clean) 195 truncate_inode_pages_final(inode->i_mapping); 196 clear_inode_flag(fi->cow_inode, FI_ATOMIC_FILE); 197 iput(fi->cow_inode); 198 fi->cow_inode = NULL; 199 clear_inode_flag(inode, FI_ATOMIC_FILE); 200 201 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 202 sbi->atomic_files--; 203 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 204 } 205 } 206 207 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 208 block_t new_addr, block_t *old_addr, bool recover) 209 { 210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 211 struct dnode_of_data dn; 212 struct node_info ni; 213 int err; 214 215 retry: 216 set_new_dnode(&dn, inode, NULL, NULL, 0); 217 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA); 218 if (err) { 219 if (err == -ENOMEM) { 220 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 221 goto retry; 222 } 223 return err; 224 } 225 226 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 227 if (err) { 228 f2fs_put_dnode(&dn); 229 return err; 230 } 231 232 if (recover) { 233 /* dn.data_blkaddr is always valid */ 234 if (!__is_valid_data_blkaddr(new_addr)) { 235 if (new_addr == NULL_ADDR) 236 dec_valid_block_count(sbi, inode, 1); 237 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 238 f2fs_update_data_blkaddr(&dn, new_addr); 239 } else { 240 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 241 new_addr, ni.version, true, true); 242 } 243 } else { 244 blkcnt_t count = 1; 245 246 *old_addr = dn.data_blkaddr; 247 f2fs_truncate_data_blocks_range(&dn, 1); 248 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 249 inc_valid_block_count(sbi, inode, &count); 250 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 251 ni.version, true, false); 252 } 253 254 f2fs_put_dnode(&dn); 255 return 0; 256 } 257 258 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 259 bool revoke) 260 { 261 struct revoke_entry *cur, *tmp; 262 263 list_for_each_entry_safe(cur, tmp, head, list) { 264 if (revoke) 265 __replace_atomic_write_block(inode, cur->index, 266 cur->old_addr, NULL, true); 267 list_del(&cur->list); 268 kmem_cache_free(revoke_entry_slab, cur); 269 } 270 } 271 272 static int __f2fs_commit_atomic_write(struct inode *inode) 273 { 274 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 275 struct f2fs_inode_info *fi = F2FS_I(inode); 276 struct inode *cow_inode = fi->cow_inode; 277 struct revoke_entry *new; 278 struct list_head revoke_list; 279 block_t blkaddr; 280 struct dnode_of_data dn; 281 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 282 pgoff_t off = 0, blen, index; 283 int ret = 0, i; 284 285 INIT_LIST_HEAD(&revoke_list); 286 287 while (len) { 288 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 289 290 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 291 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 292 if (ret && ret != -ENOENT) { 293 goto out; 294 } else if (ret == -ENOENT) { 295 ret = 0; 296 if (dn.max_level == 0) 297 goto out; 298 goto next; 299 } 300 301 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 302 len); 303 index = off; 304 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 305 blkaddr = f2fs_data_blkaddr(&dn); 306 307 if (!__is_valid_data_blkaddr(blkaddr)) { 308 continue; 309 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 310 DATA_GENERIC_ENHANCE)) { 311 f2fs_put_dnode(&dn); 312 ret = -EFSCORRUPTED; 313 goto out; 314 } 315 316 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 317 true, NULL); 318 319 ret = __replace_atomic_write_block(inode, index, blkaddr, 320 &new->old_addr, false); 321 if (ret) { 322 f2fs_put_dnode(&dn); 323 kmem_cache_free(revoke_entry_slab, new); 324 goto out; 325 } 326 327 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 328 new->index = index; 329 list_add_tail(&new->list, &revoke_list); 330 } 331 f2fs_put_dnode(&dn); 332 next: 333 off += blen; 334 len -= blen; 335 } 336 337 out: 338 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 339 340 return ret; 341 } 342 343 int f2fs_commit_atomic_write(struct inode *inode) 344 { 345 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 346 struct f2fs_inode_info *fi = F2FS_I(inode); 347 int err; 348 349 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 350 if (err) 351 return err; 352 353 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 354 f2fs_lock_op(sbi); 355 356 err = __f2fs_commit_atomic_write(inode); 357 358 f2fs_unlock_op(sbi); 359 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 360 361 return err; 362 } 363 364 /* 365 * This function balances dirty node and dentry pages. 366 * In addition, it controls garbage collection. 367 */ 368 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 369 { 370 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 371 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 372 f2fs_stop_checkpoint(sbi, false); 373 } 374 375 /* balance_fs_bg is able to be pending */ 376 if (need && excess_cached_nats(sbi)) 377 f2fs_balance_fs_bg(sbi, false); 378 379 if (!f2fs_is_checkpoint_ready(sbi)) 380 return; 381 382 /* 383 * We should do GC or end up with checkpoint, if there are so many dirty 384 * dir/node pages without enough free segments. 385 */ 386 if (has_not_enough_free_secs(sbi, 0, 0)) { 387 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 388 sbi->gc_thread->f2fs_gc_task) { 389 DEFINE_WAIT(wait); 390 391 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 392 TASK_UNINTERRUPTIBLE); 393 wake_up(&sbi->gc_thread->gc_wait_queue_head); 394 io_schedule(); 395 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 396 } else { 397 struct f2fs_gc_control gc_control = { 398 .victim_segno = NULL_SEGNO, 399 .init_gc_type = BG_GC, 400 .no_bg_gc = true, 401 .should_migrate_blocks = false, 402 .err_gc_skipped = false, 403 .nr_free_secs = 1 }; 404 f2fs_down_write(&sbi->gc_lock); 405 f2fs_gc(sbi, &gc_control); 406 } 407 } 408 } 409 410 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 411 { 412 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 413 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 414 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 415 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 416 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 417 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 418 unsigned int threshold = sbi->blocks_per_seg * factor * 419 DEFAULT_DIRTY_THRESHOLD; 420 unsigned int global_threshold = threshold * 3 / 2; 421 422 if (dents >= threshold || qdata >= threshold || 423 nodes >= threshold || meta >= threshold || 424 imeta >= threshold) 425 return true; 426 return dents + qdata + nodes + meta + imeta > global_threshold; 427 } 428 429 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 430 { 431 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 432 return; 433 434 /* try to shrink extent cache when there is no enough memory */ 435 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 436 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 437 438 /* check the # of cached NAT entries */ 439 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 440 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 441 442 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 443 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 444 else 445 f2fs_build_free_nids(sbi, false, false); 446 447 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 448 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 449 goto do_sync; 450 451 /* there is background inflight IO or foreground operation recently */ 452 if (is_inflight_io(sbi, REQ_TIME) || 453 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 454 return; 455 456 /* exceed periodical checkpoint timeout threshold */ 457 if (f2fs_time_over(sbi, CP_TIME)) 458 goto do_sync; 459 460 /* checkpoint is the only way to shrink partial cached entries */ 461 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 462 f2fs_available_free_memory(sbi, INO_ENTRIES)) 463 return; 464 465 do_sync: 466 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 467 struct blk_plug plug; 468 469 mutex_lock(&sbi->flush_lock); 470 471 blk_start_plug(&plug); 472 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 473 blk_finish_plug(&plug); 474 475 mutex_unlock(&sbi->flush_lock); 476 } 477 f2fs_sync_fs(sbi->sb, true); 478 stat_inc_bg_cp_count(sbi->stat_info); 479 } 480 481 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 482 struct block_device *bdev) 483 { 484 int ret = blkdev_issue_flush(bdev); 485 486 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 487 test_opt(sbi, FLUSH_MERGE), ret); 488 return ret; 489 } 490 491 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 492 { 493 int ret = 0; 494 int i; 495 496 if (!f2fs_is_multi_device(sbi)) 497 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 498 499 for (i = 0; i < sbi->s_ndevs; i++) { 500 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 501 continue; 502 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 503 if (ret) 504 break; 505 } 506 return ret; 507 } 508 509 static int issue_flush_thread(void *data) 510 { 511 struct f2fs_sb_info *sbi = data; 512 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 513 wait_queue_head_t *q = &fcc->flush_wait_queue; 514 repeat: 515 if (kthread_should_stop()) 516 return 0; 517 518 if (!llist_empty(&fcc->issue_list)) { 519 struct flush_cmd *cmd, *next; 520 int ret; 521 522 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 523 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 524 525 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 526 527 ret = submit_flush_wait(sbi, cmd->ino); 528 atomic_inc(&fcc->issued_flush); 529 530 llist_for_each_entry_safe(cmd, next, 531 fcc->dispatch_list, llnode) { 532 cmd->ret = ret; 533 complete(&cmd->wait); 534 } 535 fcc->dispatch_list = NULL; 536 } 537 538 wait_event_interruptible(*q, 539 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 540 goto repeat; 541 } 542 543 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 544 { 545 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 546 struct flush_cmd cmd; 547 int ret; 548 549 if (test_opt(sbi, NOBARRIER)) 550 return 0; 551 552 if (!test_opt(sbi, FLUSH_MERGE)) { 553 atomic_inc(&fcc->queued_flush); 554 ret = submit_flush_wait(sbi, ino); 555 atomic_dec(&fcc->queued_flush); 556 atomic_inc(&fcc->issued_flush); 557 return ret; 558 } 559 560 if (atomic_inc_return(&fcc->queued_flush) == 1 || 561 f2fs_is_multi_device(sbi)) { 562 ret = submit_flush_wait(sbi, ino); 563 atomic_dec(&fcc->queued_flush); 564 565 atomic_inc(&fcc->issued_flush); 566 return ret; 567 } 568 569 cmd.ino = ino; 570 init_completion(&cmd.wait); 571 572 llist_add(&cmd.llnode, &fcc->issue_list); 573 574 /* 575 * update issue_list before we wake up issue_flush thread, this 576 * smp_mb() pairs with another barrier in ___wait_event(), see 577 * more details in comments of waitqueue_active(). 578 */ 579 smp_mb(); 580 581 if (waitqueue_active(&fcc->flush_wait_queue)) 582 wake_up(&fcc->flush_wait_queue); 583 584 if (fcc->f2fs_issue_flush) { 585 wait_for_completion(&cmd.wait); 586 atomic_dec(&fcc->queued_flush); 587 } else { 588 struct llist_node *list; 589 590 list = llist_del_all(&fcc->issue_list); 591 if (!list) { 592 wait_for_completion(&cmd.wait); 593 atomic_dec(&fcc->queued_flush); 594 } else { 595 struct flush_cmd *tmp, *next; 596 597 ret = submit_flush_wait(sbi, ino); 598 599 llist_for_each_entry_safe(tmp, next, list, llnode) { 600 if (tmp == &cmd) { 601 cmd.ret = ret; 602 atomic_dec(&fcc->queued_flush); 603 continue; 604 } 605 tmp->ret = ret; 606 complete(&tmp->wait); 607 } 608 } 609 } 610 611 return cmd.ret; 612 } 613 614 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 615 { 616 dev_t dev = sbi->sb->s_bdev->bd_dev; 617 struct flush_cmd_control *fcc; 618 int err = 0; 619 620 if (SM_I(sbi)->fcc_info) { 621 fcc = SM_I(sbi)->fcc_info; 622 if (fcc->f2fs_issue_flush) 623 return err; 624 goto init_thread; 625 } 626 627 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 628 if (!fcc) 629 return -ENOMEM; 630 atomic_set(&fcc->issued_flush, 0); 631 atomic_set(&fcc->queued_flush, 0); 632 init_waitqueue_head(&fcc->flush_wait_queue); 633 init_llist_head(&fcc->issue_list); 634 SM_I(sbi)->fcc_info = fcc; 635 if (!test_opt(sbi, FLUSH_MERGE)) 636 return err; 637 638 init_thread: 639 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 640 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 641 if (IS_ERR(fcc->f2fs_issue_flush)) { 642 err = PTR_ERR(fcc->f2fs_issue_flush); 643 kfree(fcc); 644 SM_I(sbi)->fcc_info = NULL; 645 return err; 646 } 647 648 return err; 649 } 650 651 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 652 { 653 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 654 655 if (fcc && fcc->f2fs_issue_flush) { 656 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 657 658 fcc->f2fs_issue_flush = NULL; 659 kthread_stop(flush_thread); 660 } 661 if (free) { 662 kfree(fcc); 663 SM_I(sbi)->fcc_info = NULL; 664 } 665 } 666 667 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 668 { 669 int ret = 0, i; 670 671 if (!f2fs_is_multi_device(sbi)) 672 return 0; 673 674 if (test_opt(sbi, NOBARRIER)) 675 return 0; 676 677 for (i = 1; i < sbi->s_ndevs; i++) { 678 int count = DEFAULT_RETRY_IO_COUNT; 679 680 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 681 continue; 682 683 do { 684 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 685 if (ret) 686 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 687 } while (ret && --count); 688 689 if (ret) { 690 f2fs_stop_checkpoint(sbi, false); 691 break; 692 } 693 694 spin_lock(&sbi->dev_lock); 695 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 696 spin_unlock(&sbi->dev_lock); 697 } 698 699 return ret; 700 } 701 702 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 703 enum dirty_type dirty_type) 704 { 705 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 706 707 /* need not be added */ 708 if (IS_CURSEG(sbi, segno)) 709 return; 710 711 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 712 dirty_i->nr_dirty[dirty_type]++; 713 714 if (dirty_type == DIRTY) { 715 struct seg_entry *sentry = get_seg_entry(sbi, segno); 716 enum dirty_type t = sentry->type; 717 718 if (unlikely(t >= DIRTY)) { 719 f2fs_bug_on(sbi, 1); 720 return; 721 } 722 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 723 dirty_i->nr_dirty[t]++; 724 725 if (__is_large_section(sbi)) { 726 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 727 block_t valid_blocks = 728 get_valid_blocks(sbi, segno, true); 729 730 f2fs_bug_on(sbi, unlikely(!valid_blocks || 731 valid_blocks == BLKS_PER_SEC(sbi))); 732 733 if (!IS_CURSEC(sbi, secno)) 734 set_bit(secno, dirty_i->dirty_secmap); 735 } 736 } 737 } 738 739 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 740 enum dirty_type dirty_type) 741 { 742 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 743 block_t valid_blocks; 744 745 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 746 dirty_i->nr_dirty[dirty_type]--; 747 748 if (dirty_type == DIRTY) { 749 struct seg_entry *sentry = get_seg_entry(sbi, segno); 750 enum dirty_type t = sentry->type; 751 752 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 753 dirty_i->nr_dirty[t]--; 754 755 valid_blocks = get_valid_blocks(sbi, segno, true); 756 if (valid_blocks == 0) { 757 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 758 dirty_i->victim_secmap); 759 #ifdef CONFIG_F2FS_CHECK_FS 760 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 761 #endif 762 } 763 if (__is_large_section(sbi)) { 764 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 765 766 if (!valid_blocks || 767 valid_blocks == BLKS_PER_SEC(sbi)) { 768 clear_bit(secno, dirty_i->dirty_secmap); 769 return; 770 } 771 772 if (!IS_CURSEC(sbi, secno)) 773 set_bit(secno, dirty_i->dirty_secmap); 774 } 775 } 776 } 777 778 /* 779 * Should not occur error such as -ENOMEM. 780 * Adding dirty entry into seglist is not critical operation. 781 * If a given segment is one of current working segments, it won't be added. 782 */ 783 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 784 { 785 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 786 unsigned short valid_blocks, ckpt_valid_blocks; 787 unsigned int usable_blocks; 788 789 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 790 return; 791 792 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 793 mutex_lock(&dirty_i->seglist_lock); 794 795 valid_blocks = get_valid_blocks(sbi, segno, false); 796 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 797 798 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 799 ckpt_valid_blocks == usable_blocks)) { 800 __locate_dirty_segment(sbi, segno, PRE); 801 __remove_dirty_segment(sbi, segno, DIRTY); 802 } else if (valid_blocks < usable_blocks) { 803 __locate_dirty_segment(sbi, segno, DIRTY); 804 } else { 805 /* Recovery routine with SSR needs this */ 806 __remove_dirty_segment(sbi, segno, DIRTY); 807 } 808 809 mutex_unlock(&dirty_i->seglist_lock); 810 } 811 812 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 813 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 814 { 815 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 816 unsigned int segno; 817 818 mutex_lock(&dirty_i->seglist_lock); 819 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 820 if (get_valid_blocks(sbi, segno, false)) 821 continue; 822 if (IS_CURSEG(sbi, segno)) 823 continue; 824 __locate_dirty_segment(sbi, segno, PRE); 825 __remove_dirty_segment(sbi, segno, DIRTY); 826 } 827 mutex_unlock(&dirty_i->seglist_lock); 828 } 829 830 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 831 { 832 int ovp_hole_segs = 833 (overprovision_segments(sbi) - reserved_segments(sbi)); 834 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 835 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 836 block_t holes[2] = {0, 0}; /* DATA and NODE */ 837 block_t unusable; 838 struct seg_entry *se; 839 unsigned int segno; 840 841 mutex_lock(&dirty_i->seglist_lock); 842 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 843 se = get_seg_entry(sbi, segno); 844 if (IS_NODESEG(se->type)) 845 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 846 se->valid_blocks; 847 else 848 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 849 se->valid_blocks; 850 } 851 mutex_unlock(&dirty_i->seglist_lock); 852 853 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 854 if (unusable > ovp_holes) 855 return unusable - ovp_holes; 856 return 0; 857 } 858 859 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 860 { 861 int ovp_hole_segs = 862 (overprovision_segments(sbi) - reserved_segments(sbi)); 863 if (unusable > F2FS_OPTION(sbi).unusable_cap) 864 return -EAGAIN; 865 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 866 dirty_segments(sbi) > ovp_hole_segs) 867 return -EAGAIN; 868 return 0; 869 } 870 871 /* This is only used by SBI_CP_DISABLED */ 872 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 873 { 874 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 875 unsigned int segno = 0; 876 877 mutex_lock(&dirty_i->seglist_lock); 878 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 879 if (get_valid_blocks(sbi, segno, false)) 880 continue; 881 if (get_ckpt_valid_blocks(sbi, segno, false)) 882 continue; 883 mutex_unlock(&dirty_i->seglist_lock); 884 return segno; 885 } 886 mutex_unlock(&dirty_i->seglist_lock); 887 return NULL_SEGNO; 888 } 889 890 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 891 struct block_device *bdev, block_t lstart, 892 block_t start, block_t len) 893 { 894 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 895 struct list_head *pend_list; 896 struct discard_cmd *dc; 897 898 f2fs_bug_on(sbi, !len); 899 900 pend_list = &dcc->pend_list[plist_idx(len)]; 901 902 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 903 INIT_LIST_HEAD(&dc->list); 904 dc->bdev = bdev; 905 dc->lstart = lstart; 906 dc->start = start; 907 dc->len = len; 908 dc->ref = 0; 909 dc->state = D_PREP; 910 dc->queued = 0; 911 dc->error = 0; 912 init_completion(&dc->wait); 913 list_add_tail(&dc->list, pend_list); 914 spin_lock_init(&dc->lock); 915 dc->bio_ref = 0; 916 atomic_inc(&dcc->discard_cmd_cnt); 917 dcc->undiscard_blks += len; 918 919 return dc; 920 } 921 922 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 923 struct block_device *bdev, block_t lstart, 924 block_t start, block_t len, 925 struct rb_node *parent, struct rb_node **p, 926 bool leftmost) 927 { 928 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 929 struct discard_cmd *dc; 930 931 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 932 933 rb_link_node(&dc->rb_node, parent, p); 934 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 935 936 return dc; 937 } 938 939 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 940 struct discard_cmd *dc) 941 { 942 if (dc->state == D_DONE) 943 atomic_sub(dc->queued, &dcc->queued_discard); 944 945 list_del(&dc->list); 946 rb_erase_cached(&dc->rb_node, &dcc->root); 947 dcc->undiscard_blks -= dc->len; 948 949 kmem_cache_free(discard_cmd_slab, dc); 950 951 atomic_dec(&dcc->discard_cmd_cnt); 952 } 953 954 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 955 struct discard_cmd *dc) 956 { 957 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 958 unsigned long flags; 959 960 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 961 962 spin_lock_irqsave(&dc->lock, flags); 963 if (dc->bio_ref) { 964 spin_unlock_irqrestore(&dc->lock, flags); 965 return; 966 } 967 spin_unlock_irqrestore(&dc->lock, flags); 968 969 f2fs_bug_on(sbi, dc->ref); 970 971 if (dc->error == -EOPNOTSUPP) 972 dc->error = 0; 973 974 if (dc->error) 975 printk_ratelimited( 976 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 977 KERN_INFO, sbi->sb->s_id, 978 dc->lstart, dc->start, dc->len, dc->error); 979 __detach_discard_cmd(dcc, dc); 980 } 981 982 static void f2fs_submit_discard_endio(struct bio *bio) 983 { 984 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 985 unsigned long flags; 986 987 spin_lock_irqsave(&dc->lock, flags); 988 if (!dc->error) 989 dc->error = blk_status_to_errno(bio->bi_status); 990 dc->bio_ref--; 991 if (!dc->bio_ref && dc->state == D_SUBMIT) { 992 dc->state = D_DONE; 993 complete_all(&dc->wait); 994 } 995 spin_unlock_irqrestore(&dc->lock, flags); 996 bio_put(bio); 997 } 998 999 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1000 block_t start, block_t end) 1001 { 1002 #ifdef CONFIG_F2FS_CHECK_FS 1003 struct seg_entry *sentry; 1004 unsigned int segno; 1005 block_t blk = start; 1006 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1007 unsigned long *map; 1008 1009 while (blk < end) { 1010 segno = GET_SEGNO(sbi, blk); 1011 sentry = get_seg_entry(sbi, segno); 1012 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1013 1014 if (end < START_BLOCK(sbi, segno + 1)) 1015 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1016 else 1017 size = max_blocks; 1018 map = (unsigned long *)(sentry->cur_valid_map); 1019 offset = __find_rev_next_bit(map, size, offset); 1020 f2fs_bug_on(sbi, offset != size); 1021 blk = START_BLOCK(sbi, segno + 1); 1022 } 1023 #endif 1024 } 1025 1026 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1027 struct discard_policy *dpolicy, 1028 int discard_type, unsigned int granularity) 1029 { 1030 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1031 1032 /* common policy */ 1033 dpolicy->type = discard_type; 1034 dpolicy->sync = true; 1035 dpolicy->ordered = false; 1036 dpolicy->granularity = granularity; 1037 1038 dpolicy->max_requests = dcc->max_discard_request; 1039 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1040 dpolicy->timeout = false; 1041 1042 if (discard_type == DPOLICY_BG) { 1043 dpolicy->min_interval = dcc->min_discard_issue_time; 1044 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1045 dpolicy->max_interval = dcc->max_discard_issue_time; 1046 dpolicy->io_aware = true; 1047 dpolicy->sync = false; 1048 dpolicy->ordered = true; 1049 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1050 dpolicy->granularity = 1; 1051 if (atomic_read(&dcc->discard_cmd_cnt)) 1052 dpolicy->max_interval = 1053 dcc->min_discard_issue_time; 1054 } 1055 } else if (discard_type == DPOLICY_FORCE) { 1056 dpolicy->min_interval = dcc->min_discard_issue_time; 1057 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1058 dpolicy->max_interval = dcc->max_discard_issue_time; 1059 dpolicy->io_aware = false; 1060 } else if (discard_type == DPOLICY_FSTRIM) { 1061 dpolicy->io_aware = false; 1062 } else if (discard_type == DPOLICY_UMOUNT) { 1063 dpolicy->io_aware = false; 1064 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1065 dpolicy->granularity = 1; 1066 dpolicy->timeout = true; 1067 } 1068 } 1069 1070 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1071 struct block_device *bdev, block_t lstart, 1072 block_t start, block_t len); 1073 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1074 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1075 struct discard_policy *dpolicy, 1076 struct discard_cmd *dc, 1077 unsigned int *issued) 1078 { 1079 struct block_device *bdev = dc->bdev; 1080 unsigned int max_discard_blocks = 1081 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1082 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1083 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1084 &(dcc->fstrim_list) : &(dcc->wait_list); 1085 int flag = dpolicy->sync ? REQ_SYNC : 0; 1086 block_t lstart, start, len, total_len; 1087 int err = 0; 1088 1089 if (dc->state != D_PREP) 1090 return 0; 1091 1092 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1093 return 0; 1094 1095 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1096 1097 lstart = dc->lstart; 1098 start = dc->start; 1099 len = dc->len; 1100 total_len = len; 1101 1102 dc->len = 0; 1103 1104 while (total_len && *issued < dpolicy->max_requests && !err) { 1105 struct bio *bio = NULL; 1106 unsigned long flags; 1107 bool last = true; 1108 1109 if (len > max_discard_blocks) { 1110 len = max_discard_blocks; 1111 last = false; 1112 } 1113 1114 (*issued)++; 1115 if (*issued == dpolicy->max_requests) 1116 last = true; 1117 1118 dc->len += len; 1119 1120 if (time_to_inject(sbi, FAULT_DISCARD)) { 1121 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1122 err = -EIO; 1123 goto submit; 1124 } 1125 err = __blkdev_issue_discard(bdev, 1126 SECTOR_FROM_BLOCK(start), 1127 SECTOR_FROM_BLOCK(len), 1128 GFP_NOFS, &bio); 1129 submit: 1130 if (err) { 1131 spin_lock_irqsave(&dc->lock, flags); 1132 if (dc->state == D_PARTIAL) 1133 dc->state = D_SUBMIT; 1134 spin_unlock_irqrestore(&dc->lock, flags); 1135 1136 break; 1137 } 1138 1139 f2fs_bug_on(sbi, !bio); 1140 1141 /* 1142 * should keep before submission to avoid D_DONE 1143 * right away 1144 */ 1145 spin_lock_irqsave(&dc->lock, flags); 1146 if (last) 1147 dc->state = D_SUBMIT; 1148 else 1149 dc->state = D_PARTIAL; 1150 dc->bio_ref++; 1151 spin_unlock_irqrestore(&dc->lock, flags); 1152 1153 atomic_inc(&dcc->queued_discard); 1154 dc->queued++; 1155 list_move_tail(&dc->list, wait_list); 1156 1157 /* sanity check on discard range */ 1158 __check_sit_bitmap(sbi, lstart, lstart + len); 1159 1160 bio->bi_private = dc; 1161 bio->bi_end_io = f2fs_submit_discard_endio; 1162 bio->bi_opf |= flag; 1163 submit_bio(bio); 1164 1165 atomic_inc(&dcc->issued_discard); 1166 1167 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1168 1169 lstart += len; 1170 start += len; 1171 total_len -= len; 1172 len = total_len; 1173 } 1174 1175 if (!err && len) { 1176 dcc->undiscard_blks -= len; 1177 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1178 } 1179 return err; 1180 } 1181 1182 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1183 struct block_device *bdev, block_t lstart, 1184 block_t start, block_t len, 1185 struct rb_node **insert_p, 1186 struct rb_node *insert_parent) 1187 { 1188 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1189 struct rb_node **p; 1190 struct rb_node *parent = NULL; 1191 bool leftmost = true; 1192 1193 if (insert_p && insert_parent) { 1194 parent = insert_parent; 1195 p = insert_p; 1196 goto do_insert; 1197 } 1198 1199 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1200 lstart, &leftmost); 1201 do_insert: 1202 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1203 p, leftmost); 1204 } 1205 1206 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1207 struct discard_cmd *dc) 1208 { 1209 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1210 } 1211 1212 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1213 struct discard_cmd *dc, block_t blkaddr) 1214 { 1215 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1216 struct discard_info di = dc->di; 1217 bool modified = false; 1218 1219 if (dc->state == D_DONE || dc->len == 1) { 1220 __remove_discard_cmd(sbi, dc); 1221 return; 1222 } 1223 1224 dcc->undiscard_blks -= di.len; 1225 1226 if (blkaddr > di.lstart) { 1227 dc->len = blkaddr - dc->lstart; 1228 dcc->undiscard_blks += dc->len; 1229 __relocate_discard_cmd(dcc, dc); 1230 modified = true; 1231 } 1232 1233 if (blkaddr < di.lstart + di.len - 1) { 1234 if (modified) { 1235 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1236 di.start + blkaddr + 1 - di.lstart, 1237 di.lstart + di.len - 1 - blkaddr, 1238 NULL, NULL); 1239 } else { 1240 dc->lstart++; 1241 dc->len--; 1242 dc->start++; 1243 dcc->undiscard_blks += dc->len; 1244 __relocate_discard_cmd(dcc, dc); 1245 } 1246 } 1247 } 1248 1249 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1250 struct block_device *bdev, block_t lstart, 1251 block_t start, block_t len) 1252 { 1253 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1254 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1255 struct discard_cmd *dc; 1256 struct discard_info di = {0}; 1257 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1258 unsigned int max_discard_blocks = 1259 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1260 block_t end = lstart + len; 1261 1262 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1263 NULL, lstart, 1264 (struct rb_entry **)&prev_dc, 1265 (struct rb_entry **)&next_dc, 1266 &insert_p, &insert_parent, true, NULL); 1267 if (dc) 1268 prev_dc = dc; 1269 1270 if (!prev_dc) { 1271 di.lstart = lstart; 1272 di.len = next_dc ? next_dc->lstart - lstart : len; 1273 di.len = min(di.len, len); 1274 di.start = start; 1275 } 1276 1277 while (1) { 1278 struct rb_node *node; 1279 bool merged = false; 1280 struct discard_cmd *tdc = NULL; 1281 1282 if (prev_dc) { 1283 di.lstart = prev_dc->lstart + prev_dc->len; 1284 if (di.lstart < lstart) 1285 di.lstart = lstart; 1286 if (di.lstart >= end) 1287 break; 1288 1289 if (!next_dc || next_dc->lstart > end) 1290 di.len = end - di.lstart; 1291 else 1292 di.len = next_dc->lstart - di.lstart; 1293 di.start = start + di.lstart - lstart; 1294 } 1295 1296 if (!di.len) 1297 goto next; 1298 1299 if (prev_dc && prev_dc->state == D_PREP && 1300 prev_dc->bdev == bdev && 1301 __is_discard_back_mergeable(&di, &prev_dc->di, 1302 max_discard_blocks)) { 1303 prev_dc->di.len += di.len; 1304 dcc->undiscard_blks += di.len; 1305 __relocate_discard_cmd(dcc, prev_dc); 1306 di = prev_dc->di; 1307 tdc = prev_dc; 1308 merged = true; 1309 } 1310 1311 if (next_dc && next_dc->state == D_PREP && 1312 next_dc->bdev == bdev && 1313 __is_discard_front_mergeable(&di, &next_dc->di, 1314 max_discard_blocks)) { 1315 next_dc->di.lstart = di.lstart; 1316 next_dc->di.len += di.len; 1317 next_dc->di.start = di.start; 1318 dcc->undiscard_blks += di.len; 1319 __relocate_discard_cmd(dcc, next_dc); 1320 if (tdc) 1321 __remove_discard_cmd(sbi, tdc); 1322 merged = true; 1323 } 1324 1325 if (!merged) { 1326 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1327 di.len, NULL, NULL); 1328 } 1329 next: 1330 prev_dc = next_dc; 1331 if (!prev_dc) 1332 break; 1333 1334 node = rb_next(&prev_dc->rb_node); 1335 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1336 } 1337 } 1338 1339 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1340 struct block_device *bdev, block_t blkstart, block_t blklen) 1341 { 1342 block_t lblkstart = blkstart; 1343 1344 if (!f2fs_bdev_support_discard(bdev)) 1345 return 0; 1346 1347 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1348 1349 if (f2fs_is_multi_device(sbi)) { 1350 int devi = f2fs_target_device_index(sbi, blkstart); 1351 1352 blkstart -= FDEV(devi).start_blk; 1353 } 1354 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1355 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1356 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1357 return 0; 1358 } 1359 1360 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1361 struct discard_policy *dpolicy) 1362 { 1363 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1364 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1365 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1366 struct discard_cmd *dc; 1367 struct blk_plug plug; 1368 unsigned int pos = dcc->next_pos; 1369 unsigned int issued = 0; 1370 bool io_interrupted = false; 1371 1372 mutex_lock(&dcc->cmd_lock); 1373 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1374 NULL, pos, 1375 (struct rb_entry **)&prev_dc, 1376 (struct rb_entry **)&next_dc, 1377 &insert_p, &insert_parent, true, NULL); 1378 if (!dc) 1379 dc = next_dc; 1380 1381 blk_start_plug(&plug); 1382 1383 while (dc) { 1384 struct rb_node *node; 1385 int err = 0; 1386 1387 if (dc->state != D_PREP) 1388 goto next; 1389 1390 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1391 io_interrupted = true; 1392 break; 1393 } 1394 1395 dcc->next_pos = dc->lstart + dc->len; 1396 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1397 1398 if (issued >= dpolicy->max_requests) 1399 break; 1400 next: 1401 node = rb_next(&dc->rb_node); 1402 if (err) 1403 __remove_discard_cmd(sbi, dc); 1404 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1405 } 1406 1407 blk_finish_plug(&plug); 1408 1409 if (!dc) 1410 dcc->next_pos = 0; 1411 1412 mutex_unlock(&dcc->cmd_lock); 1413 1414 if (!issued && io_interrupted) 1415 issued = -1; 1416 1417 return issued; 1418 } 1419 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1420 struct discard_policy *dpolicy); 1421 1422 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1423 struct discard_policy *dpolicy) 1424 { 1425 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1426 struct list_head *pend_list; 1427 struct discard_cmd *dc, *tmp; 1428 struct blk_plug plug; 1429 int i, issued; 1430 bool io_interrupted = false; 1431 1432 if (dpolicy->timeout) 1433 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1434 1435 retry: 1436 issued = 0; 1437 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1438 if (dpolicy->timeout && 1439 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1440 break; 1441 1442 if (i + 1 < dpolicy->granularity) 1443 break; 1444 1445 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1446 return __issue_discard_cmd_orderly(sbi, dpolicy); 1447 1448 pend_list = &dcc->pend_list[i]; 1449 1450 mutex_lock(&dcc->cmd_lock); 1451 if (list_empty(pend_list)) 1452 goto next; 1453 if (unlikely(dcc->rbtree_check)) 1454 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1455 &dcc->root, false)); 1456 blk_start_plug(&plug); 1457 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1458 f2fs_bug_on(sbi, dc->state != D_PREP); 1459 1460 if (dpolicy->timeout && 1461 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1462 break; 1463 1464 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1465 !is_idle(sbi, DISCARD_TIME)) { 1466 io_interrupted = true; 1467 break; 1468 } 1469 1470 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1471 1472 if (issued >= dpolicy->max_requests) 1473 break; 1474 } 1475 blk_finish_plug(&plug); 1476 next: 1477 mutex_unlock(&dcc->cmd_lock); 1478 1479 if (issued >= dpolicy->max_requests || io_interrupted) 1480 break; 1481 } 1482 1483 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1484 __wait_all_discard_cmd(sbi, dpolicy); 1485 goto retry; 1486 } 1487 1488 if (!issued && io_interrupted) 1489 issued = -1; 1490 1491 return issued; 1492 } 1493 1494 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1495 { 1496 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1497 struct list_head *pend_list; 1498 struct discard_cmd *dc, *tmp; 1499 int i; 1500 bool dropped = false; 1501 1502 mutex_lock(&dcc->cmd_lock); 1503 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1504 pend_list = &dcc->pend_list[i]; 1505 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1506 f2fs_bug_on(sbi, dc->state != D_PREP); 1507 __remove_discard_cmd(sbi, dc); 1508 dropped = true; 1509 } 1510 } 1511 mutex_unlock(&dcc->cmd_lock); 1512 1513 return dropped; 1514 } 1515 1516 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1517 { 1518 __drop_discard_cmd(sbi); 1519 } 1520 1521 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1522 struct discard_cmd *dc) 1523 { 1524 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1525 unsigned int len = 0; 1526 1527 wait_for_completion_io(&dc->wait); 1528 mutex_lock(&dcc->cmd_lock); 1529 f2fs_bug_on(sbi, dc->state != D_DONE); 1530 dc->ref--; 1531 if (!dc->ref) { 1532 if (!dc->error) 1533 len = dc->len; 1534 __remove_discard_cmd(sbi, dc); 1535 } 1536 mutex_unlock(&dcc->cmd_lock); 1537 1538 return len; 1539 } 1540 1541 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1542 struct discard_policy *dpolicy, 1543 block_t start, block_t end) 1544 { 1545 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1546 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1547 &(dcc->fstrim_list) : &(dcc->wait_list); 1548 struct discard_cmd *dc = NULL, *iter, *tmp; 1549 unsigned int trimmed = 0; 1550 1551 next: 1552 dc = NULL; 1553 1554 mutex_lock(&dcc->cmd_lock); 1555 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1556 if (iter->lstart + iter->len <= start || end <= iter->lstart) 1557 continue; 1558 if (iter->len < dpolicy->granularity) 1559 continue; 1560 if (iter->state == D_DONE && !iter->ref) { 1561 wait_for_completion_io(&iter->wait); 1562 if (!iter->error) 1563 trimmed += iter->len; 1564 __remove_discard_cmd(sbi, iter); 1565 } else { 1566 iter->ref++; 1567 dc = iter; 1568 break; 1569 } 1570 } 1571 mutex_unlock(&dcc->cmd_lock); 1572 1573 if (dc) { 1574 trimmed += __wait_one_discard_bio(sbi, dc); 1575 goto next; 1576 } 1577 1578 return trimmed; 1579 } 1580 1581 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1582 struct discard_policy *dpolicy) 1583 { 1584 struct discard_policy dp; 1585 unsigned int discard_blks; 1586 1587 if (dpolicy) 1588 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1589 1590 /* wait all */ 1591 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1592 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1593 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1594 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1595 1596 return discard_blks; 1597 } 1598 1599 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1600 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1601 { 1602 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1603 struct discard_cmd *dc; 1604 bool need_wait = false; 1605 1606 mutex_lock(&dcc->cmd_lock); 1607 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1608 NULL, blkaddr); 1609 if (dc) { 1610 if (dc->state == D_PREP) { 1611 __punch_discard_cmd(sbi, dc, blkaddr); 1612 } else { 1613 dc->ref++; 1614 need_wait = true; 1615 } 1616 } 1617 mutex_unlock(&dcc->cmd_lock); 1618 1619 if (need_wait) 1620 __wait_one_discard_bio(sbi, dc); 1621 } 1622 1623 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1624 { 1625 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1626 1627 if (dcc && dcc->f2fs_issue_discard) { 1628 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1629 1630 dcc->f2fs_issue_discard = NULL; 1631 kthread_stop(discard_thread); 1632 } 1633 } 1634 1635 /* This comes from f2fs_put_super */ 1636 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1637 { 1638 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1639 struct discard_policy dpolicy; 1640 bool dropped; 1641 1642 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1643 dcc->discard_granularity); 1644 __issue_discard_cmd(sbi, &dpolicy); 1645 dropped = __drop_discard_cmd(sbi); 1646 1647 /* just to make sure there is no pending discard commands */ 1648 __wait_all_discard_cmd(sbi, NULL); 1649 1650 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1651 return dropped; 1652 } 1653 1654 static int issue_discard_thread(void *data) 1655 { 1656 struct f2fs_sb_info *sbi = data; 1657 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1658 wait_queue_head_t *q = &dcc->discard_wait_queue; 1659 struct discard_policy dpolicy; 1660 unsigned int wait_ms = dcc->min_discard_issue_time; 1661 int issued; 1662 1663 set_freezable(); 1664 1665 do { 1666 if (sbi->gc_mode == GC_URGENT_HIGH || 1667 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1668 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1669 else 1670 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1671 dcc->discard_granularity); 1672 1673 if (!atomic_read(&dcc->discard_cmd_cnt)) 1674 wait_ms = dpolicy.max_interval; 1675 1676 wait_event_interruptible_timeout(*q, 1677 kthread_should_stop() || freezing(current) || 1678 dcc->discard_wake, 1679 msecs_to_jiffies(wait_ms)); 1680 1681 if (dcc->discard_wake) 1682 dcc->discard_wake = 0; 1683 1684 /* clean up pending candidates before going to sleep */ 1685 if (atomic_read(&dcc->queued_discard)) 1686 __wait_all_discard_cmd(sbi, NULL); 1687 1688 if (try_to_freeze()) 1689 continue; 1690 if (f2fs_readonly(sbi->sb)) 1691 continue; 1692 if (kthread_should_stop()) 1693 return 0; 1694 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1695 wait_ms = dpolicy.max_interval; 1696 continue; 1697 } 1698 if (!atomic_read(&dcc->discard_cmd_cnt)) 1699 continue; 1700 1701 sb_start_intwrite(sbi->sb); 1702 1703 issued = __issue_discard_cmd(sbi, &dpolicy); 1704 if (issued > 0) { 1705 __wait_all_discard_cmd(sbi, &dpolicy); 1706 wait_ms = dpolicy.min_interval; 1707 } else if (issued == -1) { 1708 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1709 if (!wait_ms) 1710 wait_ms = dpolicy.mid_interval; 1711 } else { 1712 wait_ms = dpolicy.max_interval; 1713 } 1714 1715 sb_end_intwrite(sbi->sb); 1716 1717 } while (!kthread_should_stop()); 1718 return 0; 1719 } 1720 1721 #ifdef CONFIG_BLK_DEV_ZONED 1722 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1723 struct block_device *bdev, block_t blkstart, block_t blklen) 1724 { 1725 sector_t sector, nr_sects; 1726 block_t lblkstart = blkstart; 1727 int devi = 0; 1728 1729 if (f2fs_is_multi_device(sbi)) { 1730 devi = f2fs_target_device_index(sbi, blkstart); 1731 if (blkstart < FDEV(devi).start_blk || 1732 blkstart > FDEV(devi).end_blk) { 1733 f2fs_err(sbi, "Invalid block %x", blkstart); 1734 return -EIO; 1735 } 1736 blkstart -= FDEV(devi).start_blk; 1737 } 1738 1739 /* For sequential zones, reset the zone write pointer */ 1740 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1741 sector = SECTOR_FROM_BLOCK(blkstart); 1742 nr_sects = SECTOR_FROM_BLOCK(blklen); 1743 1744 if (sector & (bdev_zone_sectors(bdev) - 1) || 1745 nr_sects != bdev_zone_sectors(bdev)) { 1746 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1747 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1748 blkstart, blklen); 1749 return -EIO; 1750 } 1751 trace_f2fs_issue_reset_zone(bdev, blkstart); 1752 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1753 sector, nr_sects, GFP_NOFS); 1754 } 1755 1756 /* For conventional zones, use regular discard if supported */ 1757 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1758 } 1759 #endif 1760 1761 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1762 struct block_device *bdev, block_t blkstart, block_t blklen) 1763 { 1764 #ifdef CONFIG_BLK_DEV_ZONED 1765 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1766 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1767 #endif 1768 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1769 } 1770 1771 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1772 block_t blkstart, block_t blklen) 1773 { 1774 sector_t start = blkstart, len = 0; 1775 struct block_device *bdev; 1776 struct seg_entry *se; 1777 unsigned int offset; 1778 block_t i; 1779 int err = 0; 1780 1781 bdev = f2fs_target_device(sbi, blkstart, NULL); 1782 1783 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1784 if (i != start) { 1785 struct block_device *bdev2 = 1786 f2fs_target_device(sbi, i, NULL); 1787 1788 if (bdev2 != bdev) { 1789 err = __issue_discard_async(sbi, bdev, 1790 start, len); 1791 if (err) 1792 return err; 1793 bdev = bdev2; 1794 start = i; 1795 len = 0; 1796 } 1797 } 1798 1799 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1800 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1801 1802 if (f2fs_block_unit_discard(sbi) && 1803 !f2fs_test_and_set_bit(offset, se->discard_map)) 1804 sbi->discard_blks--; 1805 } 1806 1807 if (len) 1808 err = __issue_discard_async(sbi, bdev, start, len); 1809 return err; 1810 } 1811 1812 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1813 bool check_only) 1814 { 1815 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1816 int max_blocks = sbi->blocks_per_seg; 1817 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1818 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1819 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1820 unsigned long *discard_map = (unsigned long *)se->discard_map; 1821 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1822 unsigned int start = 0, end = -1; 1823 bool force = (cpc->reason & CP_DISCARD); 1824 struct discard_entry *de = NULL; 1825 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1826 int i; 1827 1828 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) || 1829 !f2fs_block_unit_discard(sbi)) 1830 return false; 1831 1832 if (!force) { 1833 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1834 SM_I(sbi)->dcc_info->nr_discards >= 1835 SM_I(sbi)->dcc_info->max_discards) 1836 return false; 1837 } 1838 1839 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1840 for (i = 0; i < entries; i++) 1841 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1842 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1843 1844 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1845 SM_I(sbi)->dcc_info->max_discards) { 1846 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1847 if (start >= max_blocks) 1848 break; 1849 1850 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1851 if (force && start && end != max_blocks 1852 && (end - start) < cpc->trim_minlen) 1853 continue; 1854 1855 if (check_only) 1856 return true; 1857 1858 if (!de) { 1859 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1860 GFP_F2FS_ZERO, true, NULL); 1861 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1862 list_add_tail(&de->list, head); 1863 } 1864 1865 for (i = start; i < end; i++) 1866 __set_bit_le(i, (void *)de->discard_map); 1867 1868 SM_I(sbi)->dcc_info->nr_discards += end - start; 1869 } 1870 return false; 1871 } 1872 1873 static void release_discard_addr(struct discard_entry *entry) 1874 { 1875 list_del(&entry->list); 1876 kmem_cache_free(discard_entry_slab, entry); 1877 } 1878 1879 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1880 { 1881 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1882 struct discard_entry *entry, *this; 1883 1884 /* drop caches */ 1885 list_for_each_entry_safe(entry, this, head, list) 1886 release_discard_addr(entry); 1887 } 1888 1889 /* 1890 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1891 */ 1892 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1893 { 1894 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1895 unsigned int segno; 1896 1897 mutex_lock(&dirty_i->seglist_lock); 1898 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1899 __set_test_and_free(sbi, segno, false); 1900 mutex_unlock(&dirty_i->seglist_lock); 1901 } 1902 1903 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1904 struct cp_control *cpc) 1905 { 1906 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1907 struct list_head *head = &dcc->entry_list; 1908 struct discard_entry *entry, *this; 1909 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1910 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1911 unsigned int start = 0, end = -1; 1912 unsigned int secno, start_segno; 1913 bool force = (cpc->reason & CP_DISCARD); 1914 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 1915 DISCARD_UNIT_SECTION; 1916 1917 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 1918 section_alignment = true; 1919 1920 mutex_lock(&dirty_i->seglist_lock); 1921 1922 while (1) { 1923 int i; 1924 1925 if (section_alignment && end != -1) 1926 end--; 1927 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1928 if (start >= MAIN_SEGS(sbi)) 1929 break; 1930 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1931 start + 1); 1932 1933 if (section_alignment) { 1934 start = rounddown(start, sbi->segs_per_sec); 1935 end = roundup(end, sbi->segs_per_sec); 1936 } 1937 1938 for (i = start; i < end; i++) { 1939 if (test_and_clear_bit(i, prefree_map)) 1940 dirty_i->nr_dirty[PRE]--; 1941 } 1942 1943 if (!f2fs_realtime_discard_enable(sbi)) 1944 continue; 1945 1946 if (force && start >= cpc->trim_start && 1947 (end - 1) <= cpc->trim_end) 1948 continue; 1949 1950 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 1951 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1952 (end - start) << sbi->log_blocks_per_seg); 1953 continue; 1954 } 1955 next: 1956 secno = GET_SEC_FROM_SEG(sbi, start); 1957 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1958 if (!IS_CURSEC(sbi, secno) && 1959 !get_valid_blocks(sbi, start, true)) 1960 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1961 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1962 1963 start = start_segno + sbi->segs_per_sec; 1964 if (start < end) 1965 goto next; 1966 else 1967 end = start - 1; 1968 } 1969 mutex_unlock(&dirty_i->seglist_lock); 1970 1971 if (!f2fs_block_unit_discard(sbi)) 1972 goto wakeup; 1973 1974 /* send small discards */ 1975 list_for_each_entry_safe(entry, this, head, list) { 1976 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1977 bool is_valid = test_bit_le(0, entry->discard_map); 1978 1979 find_next: 1980 if (is_valid) { 1981 next_pos = find_next_zero_bit_le(entry->discard_map, 1982 sbi->blocks_per_seg, cur_pos); 1983 len = next_pos - cur_pos; 1984 1985 if (f2fs_sb_has_blkzoned(sbi) || 1986 (force && len < cpc->trim_minlen)) 1987 goto skip; 1988 1989 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 1990 len); 1991 total_len += len; 1992 } else { 1993 next_pos = find_next_bit_le(entry->discard_map, 1994 sbi->blocks_per_seg, cur_pos); 1995 } 1996 skip: 1997 cur_pos = next_pos; 1998 is_valid = !is_valid; 1999 2000 if (cur_pos < sbi->blocks_per_seg) 2001 goto find_next; 2002 2003 release_discard_addr(entry); 2004 dcc->nr_discards -= total_len; 2005 } 2006 2007 wakeup: 2008 wake_up_discard_thread(sbi, false); 2009 } 2010 2011 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2012 { 2013 dev_t dev = sbi->sb->s_bdev->bd_dev; 2014 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2015 int err = 0; 2016 2017 if (!f2fs_realtime_discard_enable(sbi)) 2018 return 0; 2019 2020 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2021 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2022 if (IS_ERR(dcc->f2fs_issue_discard)) 2023 err = PTR_ERR(dcc->f2fs_issue_discard); 2024 2025 return err; 2026 } 2027 2028 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2029 { 2030 struct discard_cmd_control *dcc; 2031 int err = 0, i; 2032 2033 if (SM_I(sbi)->dcc_info) { 2034 dcc = SM_I(sbi)->dcc_info; 2035 goto init_thread; 2036 } 2037 2038 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2039 if (!dcc) 2040 return -ENOMEM; 2041 2042 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2043 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2044 dcc->discard_granularity = sbi->blocks_per_seg; 2045 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2046 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2047 2048 INIT_LIST_HEAD(&dcc->entry_list); 2049 for (i = 0; i < MAX_PLIST_NUM; i++) 2050 INIT_LIST_HEAD(&dcc->pend_list[i]); 2051 INIT_LIST_HEAD(&dcc->wait_list); 2052 INIT_LIST_HEAD(&dcc->fstrim_list); 2053 mutex_init(&dcc->cmd_lock); 2054 atomic_set(&dcc->issued_discard, 0); 2055 atomic_set(&dcc->queued_discard, 0); 2056 atomic_set(&dcc->discard_cmd_cnt, 0); 2057 dcc->nr_discards = 0; 2058 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2059 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2060 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2061 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2062 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2063 dcc->undiscard_blks = 0; 2064 dcc->next_pos = 0; 2065 dcc->root = RB_ROOT_CACHED; 2066 dcc->rbtree_check = false; 2067 2068 init_waitqueue_head(&dcc->discard_wait_queue); 2069 SM_I(sbi)->dcc_info = dcc; 2070 init_thread: 2071 err = f2fs_start_discard_thread(sbi); 2072 if (err) { 2073 kfree(dcc); 2074 SM_I(sbi)->dcc_info = NULL; 2075 } 2076 2077 return err; 2078 } 2079 2080 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2081 { 2082 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2083 2084 if (!dcc) 2085 return; 2086 2087 f2fs_stop_discard_thread(sbi); 2088 2089 /* 2090 * Recovery can cache discard commands, so in error path of 2091 * fill_super(), it needs to give a chance to handle them. 2092 */ 2093 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2094 f2fs_issue_discard_timeout(sbi); 2095 2096 kfree(dcc); 2097 SM_I(sbi)->dcc_info = NULL; 2098 } 2099 2100 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2101 { 2102 struct sit_info *sit_i = SIT_I(sbi); 2103 2104 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2105 sit_i->dirty_sentries++; 2106 return false; 2107 } 2108 2109 return true; 2110 } 2111 2112 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2113 unsigned int segno, int modified) 2114 { 2115 struct seg_entry *se = get_seg_entry(sbi, segno); 2116 2117 se->type = type; 2118 if (modified) 2119 __mark_sit_entry_dirty(sbi, segno); 2120 } 2121 2122 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2123 block_t blkaddr) 2124 { 2125 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2126 2127 if (segno == NULL_SEGNO) 2128 return 0; 2129 return get_seg_entry(sbi, segno)->mtime; 2130 } 2131 2132 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2133 unsigned long long old_mtime) 2134 { 2135 struct seg_entry *se; 2136 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2137 unsigned long long ctime = get_mtime(sbi, false); 2138 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2139 2140 if (segno == NULL_SEGNO) 2141 return; 2142 2143 se = get_seg_entry(sbi, segno); 2144 2145 if (!se->mtime) 2146 se->mtime = mtime; 2147 else 2148 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2149 se->valid_blocks + 1); 2150 2151 if (ctime > SIT_I(sbi)->max_mtime) 2152 SIT_I(sbi)->max_mtime = ctime; 2153 } 2154 2155 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2156 { 2157 struct seg_entry *se; 2158 unsigned int segno, offset; 2159 long int new_vblocks; 2160 bool exist; 2161 #ifdef CONFIG_F2FS_CHECK_FS 2162 bool mir_exist; 2163 #endif 2164 2165 segno = GET_SEGNO(sbi, blkaddr); 2166 2167 se = get_seg_entry(sbi, segno); 2168 new_vblocks = se->valid_blocks + del; 2169 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2170 2171 f2fs_bug_on(sbi, (new_vblocks < 0 || 2172 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2173 2174 se->valid_blocks = new_vblocks; 2175 2176 /* Update valid block bitmap */ 2177 if (del > 0) { 2178 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2179 #ifdef CONFIG_F2FS_CHECK_FS 2180 mir_exist = f2fs_test_and_set_bit(offset, 2181 se->cur_valid_map_mir); 2182 if (unlikely(exist != mir_exist)) { 2183 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2184 blkaddr, exist); 2185 f2fs_bug_on(sbi, 1); 2186 } 2187 #endif 2188 if (unlikely(exist)) { 2189 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2190 blkaddr); 2191 f2fs_bug_on(sbi, 1); 2192 se->valid_blocks--; 2193 del = 0; 2194 } 2195 2196 if (f2fs_block_unit_discard(sbi) && 2197 !f2fs_test_and_set_bit(offset, se->discard_map)) 2198 sbi->discard_blks--; 2199 2200 /* 2201 * SSR should never reuse block which is checkpointed 2202 * or newly invalidated. 2203 */ 2204 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2205 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2206 se->ckpt_valid_blocks++; 2207 } 2208 } else { 2209 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2210 #ifdef CONFIG_F2FS_CHECK_FS 2211 mir_exist = f2fs_test_and_clear_bit(offset, 2212 se->cur_valid_map_mir); 2213 if (unlikely(exist != mir_exist)) { 2214 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2215 blkaddr, exist); 2216 f2fs_bug_on(sbi, 1); 2217 } 2218 #endif 2219 if (unlikely(!exist)) { 2220 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2221 blkaddr); 2222 f2fs_bug_on(sbi, 1); 2223 se->valid_blocks++; 2224 del = 0; 2225 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2226 /* 2227 * If checkpoints are off, we must not reuse data that 2228 * was used in the previous checkpoint. If it was used 2229 * before, we must track that to know how much space we 2230 * really have. 2231 */ 2232 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2233 spin_lock(&sbi->stat_lock); 2234 sbi->unusable_block_count++; 2235 spin_unlock(&sbi->stat_lock); 2236 } 2237 } 2238 2239 if (f2fs_block_unit_discard(sbi) && 2240 f2fs_test_and_clear_bit(offset, se->discard_map)) 2241 sbi->discard_blks++; 2242 } 2243 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2244 se->ckpt_valid_blocks += del; 2245 2246 __mark_sit_entry_dirty(sbi, segno); 2247 2248 /* update total number of valid blocks to be written in ckpt area */ 2249 SIT_I(sbi)->written_valid_blocks += del; 2250 2251 if (__is_large_section(sbi)) 2252 get_sec_entry(sbi, segno)->valid_blocks += del; 2253 } 2254 2255 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2256 { 2257 unsigned int segno = GET_SEGNO(sbi, addr); 2258 struct sit_info *sit_i = SIT_I(sbi); 2259 2260 f2fs_bug_on(sbi, addr == NULL_ADDR); 2261 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2262 return; 2263 2264 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2265 f2fs_invalidate_compress_page(sbi, addr); 2266 2267 /* add it into sit main buffer */ 2268 down_write(&sit_i->sentry_lock); 2269 2270 update_segment_mtime(sbi, addr, 0); 2271 update_sit_entry(sbi, addr, -1); 2272 2273 /* add it into dirty seglist */ 2274 locate_dirty_segment(sbi, segno); 2275 2276 up_write(&sit_i->sentry_lock); 2277 } 2278 2279 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2280 { 2281 struct sit_info *sit_i = SIT_I(sbi); 2282 unsigned int segno, offset; 2283 struct seg_entry *se; 2284 bool is_cp = false; 2285 2286 if (!__is_valid_data_blkaddr(blkaddr)) 2287 return true; 2288 2289 down_read(&sit_i->sentry_lock); 2290 2291 segno = GET_SEGNO(sbi, blkaddr); 2292 se = get_seg_entry(sbi, segno); 2293 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2294 2295 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2296 is_cp = true; 2297 2298 up_read(&sit_i->sentry_lock); 2299 2300 return is_cp; 2301 } 2302 2303 /* 2304 * This function should be resided under the curseg_mutex lock 2305 */ 2306 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2307 struct f2fs_summary *sum) 2308 { 2309 struct curseg_info *curseg = CURSEG_I(sbi, type); 2310 void *addr = curseg->sum_blk; 2311 2312 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2313 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2314 } 2315 2316 /* 2317 * Calculate the number of current summary pages for writing 2318 */ 2319 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2320 { 2321 int valid_sum_count = 0; 2322 int i, sum_in_page; 2323 2324 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2325 if (sbi->ckpt->alloc_type[i] == SSR) 2326 valid_sum_count += sbi->blocks_per_seg; 2327 else { 2328 if (for_ra) 2329 valid_sum_count += le16_to_cpu( 2330 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2331 else 2332 valid_sum_count += curseg_blkoff(sbi, i); 2333 } 2334 } 2335 2336 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2337 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2338 if (valid_sum_count <= sum_in_page) 2339 return 1; 2340 else if ((valid_sum_count - sum_in_page) <= 2341 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2342 return 2; 2343 return 3; 2344 } 2345 2346 /* 2347 * Caller should put this summary page 2348 */ 2349 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2350 { 2351 if (unlikely(f2fs_cp_error(sbi))) 2352 return ERR_PTR(-EIO); 2353 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2354 } 2355 2356 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2357 void *src, block_t blk_addr) 2358 { 2359 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2360 2361 memcpy(page_address(page), src, PAGE_SIZE); 2362 set_page_dirty(page); 2363 f2fs_put_page(page, 1); 2364 } 2365 2366 static void write_sum_page(struct f2fs_sb_info *sbi, 2367 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2368 { 2369 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2370 } 2371 2372 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2373 int type, block_t blk_addr) 2374 { 2375 struct curseg_info *curseg = CURSEG_I(sbi, type); 2376 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2377 struct f2fs_summary_block *src = curseg->sum_blk; 2378 struct f2fs_summary_block *dst; 2379 2380 dst = (struct f2fs_summary_block *)page_address(page); 2381 memset(dst, 0, PAGE_SIZE); 2382 2383 mutex_lock(&curseg->curseg_mutex); 2384 2385 down_read(&curseg->journal_rwsem); 2386 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2387 up_read(&curseg->journal_rwsem); 2388 2389 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2390 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2391 2392 mutex_unlock(&curseg->curseg_mutex); 2393 2394 set_page_dirty(page); 2395 f2fs_put_page(page, 1); 2396 } 2397 2398 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2399 struct curseg_info *curseg, int type) 2400 { 2401 unsigned int segno = curseg->segno + 1; 2402 struct free_segmap_info *free_i = FREE_I(sbi); 2403 2404 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2405 return !test_bit(segno, free_i->free_segmap); 2406 return 0; 2407 } 2408 2409 /* 2410 * Find a new segment from the free segments bitmap to right order 2411 * This function should be returned with success, otherwise BUG 2412 */ 2413 static void get_new_segment(struct f2fs_sb_info *sbi, 2414 unsigned int *newseg, bool new_sec, int dir) 2415 { 2416 struct free_segmap_info *free_i = FREE_I(sbi); 2417 unsigned int segno, secno, zoneno; 2418 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2419 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2420 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2421 unsigned int left_start = hint; 2422 bool init = true; 2423 int go_left = 0; 2424 int i; 2425 2426 spin_lock(&free_i->segmap_lock); 2427 2428 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2429 segno = find_next_zero_bit(free_i->free_segmap, 2430 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2431 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2432 goto got_it; 2433 } 2434 find_other_zone: 2435 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2436 if (secno >= MAIN_SECS(sbi)) { 2437 if (dir == ALLOC_RIGHT) { 2438 secno = find_first_zero_bit(free_i->free_secmap, 2439 MAIN_SECS(sbi)); 2440 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2441 } else { 2442 go_left = 1; 2443 left_start = hint - 1; 2444 } 2445 } 2446 if (go_left == 0) 2447 goto skip_left; 2448 2449 while (test_bit(left_start, free_i->free_secmap)) { 2450 if (left_start > 0) { 2451 left_start--; 2452 continue; 2453 } 2454 left_start = find_first_zero_bit(free_i->free_secmap, 2455 MAIN_SECS(sbi)); 2456 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2457 break; 2458 } 2459 secno = left_start; 2460 skip_left: 2461 segno = GET_SEG_FROM_SEC(sbi, secno); 2462 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2463 2464 /* give up on finding another zone */ 2465 if (!init) 2466 goto got_it; 2467 if (sbi->secs_per_zone == 1) 2468 goto got_it; 2469 if (zoneno == old_zoneno) 2470 goto got_it; 2471 if (dir == ALLOC_LEFT) { 2472 if (!go_left && zoneno + 1 >= total_zones) 2473 goto got_it; 2474 if (go_left && zoneno == 0) 2475 goto got_it; 2476 } 2477 for (i = 0; i < NR_CURSEG_TYPE; i++) 2478 if (CURSEG_I(sbi, i)->zone == zoneno) 2479 break; 2480 2481 if (i < NR_CURSEG_TYPE) { 2482 /* zone is in user, try another */ 2483 if (go_left) 2484 hint = zoneno * sbi->secs_per_zone - 1; 2485 else if (zoneno + 1 >= total_zones) 2486 hint = 0; 2487 else 2488 hint = (zoneno + 1) * sbi->secs_per_zone; 2489 init = false; 2490 goto find_other_zone; 2491 } 2492 got_it: 2493 /* set it as dirty segment in free segmap */ 2494 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2495 __set_inuse(sbi, segno); 2496 *newseg = segno; 2497 spin_unlock(&free_i->segmap_lock); 2498 } 2499 2500 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2501 { 2502 struct curseg_info *curseg = CURSEG_I(sbi, type); 2503 struct summary_footer *sum_footer; 2504 unsigned short seg_type = curseg->seg_type; 2505 2506 curseg->inited = true; 2507 curseg->segno = curseg->next_segno; 2508 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2509 curseg->next_blkoff = 0; 2510 curseg->next_segno = NULL_SEGNO; 2511 2512 sum_footer = &(curseg->sum_blk->footer); 2513 memset(sum_footer, 0, sizeof(struct summary_footer)); 2514 2515 sanity_check_seg_type(sbi, seg_type); 2516 2517 if (IS_DATASEG(seg_type)) 2518 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2519 if (IS_NODESEG(seg_type)) 2520 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2521 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2522 } 2523 2524 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2525 { 2526 struct curseg_info *curseg = CURSEG_I(sbi, type); 2527 unsigned short seg_type = curseg->seg_type; 2528 2529 sanity_check_seg_type(sbi, seg_type); 2530 if (f2fs_need_rand_seg(sbi)) 2531 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec); 2532 2533 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2534 if (__is_large_section(sbi)) 2535 return curseg->segno; 2536 2537 /* inmem log may not locate on any segment after mount */ 2538 if (!curseg->inited) 2539 return 0; 2540 2541 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2542 return 0; 2543 2544 if (test_opt(sbi, NOHEAP) && 2545 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2546 return 0; 2547 2548 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2549 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2550 2551 /* find segments from 0 to reuse freed segments */ 2552 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2553 return 0; 2554 2555 return curseg->segno; 2556 } 2557 2558 /* 2559 * Allocate a current working segment. 2560 * This function always allocates a free segment in LFS manner. 2561 */ 2562 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2563 { 2564 struct curseg_info *curseg = CURSEG_I(sbi, type); 2565 unsigned short seg_type = curseg->seg_type; 2566 unsigned int segno = curseg->segno; 2567 int dir = ALLOC_LEFT; 2568 2569 if (curseg->inited) 2570 write_sum_page(sbi, curseg->sum_blk, 2571 GET_SUM_BLOCK(sbi, segno)); 2572 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2573 dir = ALLOC_RIGHT; 2574 2575 if (test_opt(sbi, NOHEAP)) 2576 dir = ALLOC_RIGHT; 2577 2578 segno = __get_next_segno(sbi, type); 2579 get_new_segment(sbi, &segno, new_sec, dir); 2580 curseg->next_segno = segno; 2581 reset_curseg(sbi, type, 1); 2582 curseg->alloc_type = LFS; 2583 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2584 curseg->fragment_remained_chunk = 2585 prandom_u32() % sbi->max_fragment_chunk + 1; 2586 } 2587 2588 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2589 int segno, block_t start) 2590 { 2591 struct seg_entry *se = get_seg_entry(sbi, segno); 2592 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2593 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2594 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2595 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2596 int i; 2597 2598 for (i = 0; i < entries; i++) 2599 target_map[i] = ckpt_map[i] | cur_map[i]; 2600 2601 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2602 } 2603 2604 /* 2605 * If a segment is written by LFS manner, next block offset is just obtained 2606 * by increasing the current block offset. However, if a segment is written by 2607 * SSR manner, next block offset obtained by calling __next_free_blkoff 2608 */ 2609 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2610 struct curseg_info *seg) 2611 { 2612 if (seg->alloc_type == SSR) { 2613 seg->next_blkoff = 2614 __next_free_blkoff(sbi, seg->segno, 2615 seg->next_blkoff + 1); 2616 } else { 2617 seg->next_blkoff++; 2618 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) { 2619 /* To allocate block chunks in different sizes, use random number */ 2620 if (--seg->fragment_remained_chunk <= 0) { 2621 seg->fragment_remained_chunk = 2622 prandom_u32() % sbi->max_fragment_chunk + 1; 2623 seg->next_blkoff += 2624 prandom_u32() % sbi->max_fragment_hole + 1; 2625 } 2626 } 2627 } 2628 } 2629 2630 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2631 { 2632 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; 2633 } 2634 2635 /* 2636 * This function always allocates a used segment(from dirty seglist) by SSR 2637 * manner, so it should recover the existing segment information of valid blocks 2638 */ 2639 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush) 2640 { 2641 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2642 struct curseg_info *curseg = CURSEG_I(sbi, type); 2643 unsigned int new_segno = curseg->next_segno; 2644 struct f2fs_summary_block *sum_node; 2645 struct page *sum_page; 2646 2647 if (flush) 2648 write_sum_page(sbi, curseg->sum_blk, 2649 GET_SUM_BLOCK(sbi, curseg->segno)); 2650 2651 __set_test_and_inuse(sbi, new_segno); 2652 2653 mutex_lock(&dirty_i->seglist_lock); 2654 __remove_dirty_segment(sbi, new_segno, PRE); 2655 __remove_dirty_segment(sbi, new_segno, DIRTY); 2656 mutex_unlock(&dirty_i->seglist_lock); 2657 2658 reset_curseg(sbi, type, 1); 2659 curseg->alloc_type = SSR; 2660 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2661 2662 sum_page = f2fs_get_sum_page(sbi, new_segno); 2663 if (IS_ERR(sum_page)) { 2664 /* GC won't be able to use stale summary pages by cp_error */ 2665 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2666 return; 2667 } 2668 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2669 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2670 f2fs_put_page(sum_page, 1); 2671 } 2672 2673 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2674 int alloc_mode, unsigned long long age); 2675 2676 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2677 int target_type, int alloc_mode, 2678 unsigned long long age) 2679 { 2680 struct curseg_info *curseg = CURSEG_I(sbi, type); 2681 2682 curseg->seg_type = target_type; 2683 2684 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2685 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2686 2687 curseg->seg_type = se->type; 2688 change_curseg(sbi, type, true); 2689 } else { 2690 /* allocate cold segment by default */ 2691 curseg->seg_type = CURSEG_COLD_DATA; 2692 new_curseg(sbi, type, true); 2693 } 2694 stat_inc_seg_type(sbi, curseg); 2695 } 2696 2697 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2698 { 2699 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2700 2701 if (!sbi->am.atgc_enabled) 2702 return; 2703 2704 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2705 2706 mutex_lock(&curseg->curseg_mutex); 2707 down_write(&SIT_I(sbi)->sentry_lock); 2708 2709 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2710 2711 up_write(&SIT_I(sbi)->sentry_lock); 2712 mutex_unlock(&curseg->curseg_mutex); 2713 2714 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2715 2716 } 2717 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2718 { 2719 __f2fs_init_atgc_curseg(sbi); 2720 } 2721 2722 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2723 { 2724 struct curseg_info *curseg = CURSEG_I(sbi, type); 2725 2726 mutex_lock(&curseg->curseg_mutex); 2727 if (!curseg->inited) 2728 goto out; 2729 2730 if (get_valid_blocks(sbi, curseg->segno, false)) { 2731 write_sum_page(sbi, curseg->sum_blk, 2732 GET_SUM_BLOCK(sbi, curseg->segno)); 2733 } else { 2734 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2735 __set_test_and_free(sbi, curseg->segno, true); 2736 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2737 } 2738 out: 2739 mutex_unlock(&curseg->curseg_mutex); 2740 } 2741 2742 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2743 { 2744 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2745 2746 if (sbi->am.atgc_enabled) 2747 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2748 } 2749 2750 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2751 { 2752 struct curseg_info *curseg = CURSEG_I(sbi, type); 2753 2754 mutex_lock(&curseg->curseg_mutex); 2755 if (!curseg->inited) 2756 goto out; 2757 if (get_valid_blocks(sbi, curseg->segno, false)) 2758 goto out; 2759 2760 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2761 __set_test_and_inuse(sbi, curseg->segno); 2762 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2763 out: 2764 mutex_unlock(&curseg->curseg_mutex); 2765 } 2766 2767 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2768 { 2769 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2770 2771 if (sbi->am.atgc_enabled) 2772 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2773 } 2774 2775 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2776 int alloc_mode, unsigned long long age) 2777 { 2778 struct curseg_info *curseg = CURSEG_I(sbi, type); 2779 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2780 unsigned segno = NULL_SEGNO; 2781 unsigned short seg_type = curseg->seg_type; 2782 int i, cnt; 2783 bool reversed = false; 2784 2785 sanity_check_seg_type(sbi, seg_type); 2786 2787 /* f2fs_need_SSR() already forces to do this */ 2788 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2789 curseg->next_segno = segno; 2790 return 1; 2791 } 2792 2793 /* For node segments, let's do SSR more intensively */ 2794 if (IS_NODESEG(seg_type)) { 2795 if (seg_type >= CURSEG_WARM_NODE) { 2796 reversed = true; 2797 i = CURSEG_COLD_NODE; 2798 } else { 2799 i = CURSEG_HOT_NODE; 2800 } 2801 cnt = NR_CURSEG_NODE_TYPE; 2802 } else { 2803 if (seg_type >= CURSEG_WARM_DATA) { 2804 reversed = true; 2805 i = CURSEG_COLD_DATA; 2806 } else { 2807 i = CURSEG_HOT_DATA; 2808 } 2809 cnt = NR_CURSEG_DATA_TYPE; 2810 } 2811 2812 for (; cnt-- > 0; reversed ? i-- : i++) { 2813 if (i == seg_type) 2814 continue; 2815 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2816 curseg->next_segno = segno; 2817 return 1; 2818 } 2819 } 2820 2821 /* find valid_blocks=0 in dirty list */ 2822 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2823 segno = get_free_segment(sbi); 2824 if (segno != NULL_SEGNO) { 2825 curseg->next_segno = segno; 2826 return 1; 2827 } 2828 } 2829 return 0; 2830 } 2831 2832 /* 2833 * flush out current segment and replace it with new segment 2834 * This function should be returned with success, otherwise BUG 2835 */ 2836 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2837 int type, bool force) 2838 { 2839 struct curseg_info *curseg = CURSEG_I(sbi, type); 2840 2841 if (force) 2842 new_curseg(sbi, type, true); 2843 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2844 curseg->seg_type == CURSEG_WARM_NODE) 2845 new_curseg(sbi, type, false); 2846 else if (curseg->alloc_type == LFS && 2847 is_next_segment_free(sbi, curseg, type) && 2848 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2849 new_curseg(sbi, type, false); 2850 else if (f2fs_need_SSR(sbi) && 2851 get_ssr_segment(sbi, type, SSR, 0)) 2852 change_curseg(sbi, type, true); 2853 else 2854 new_curseg(sbi, type, false); 2855 2856 stat_inc_seg_type(sbi, curseg); 2857 } 2858 2859 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2860 unsigned int start, unsigned int end) 2861 { 2862 struct curseg_info *curseg = CURSEG_I(sbi, type); 2863 unsigned int segno; 2864 2865 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2866 mutex_lock(&curseg->curseg_mutex); 2867 down_write(&SIT_I(sbi)->sentry_lock); 2868 2869 segno = CURSEG_I(sbi, type)->segno; 2870 if (segno < start || segno > end) 2871 goto unlock; 2872 2873 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 2874 change_curseg(sbi, type, true); 2875 else 2876 new_curseg(sbi, type, true); 2877 2878 stat_inc_seg_type(sbi, curseg); 2879 2880 locate_dirty_segment(sbi, segno); 2881 unlock: 2882 up_write(&SIT_I(sbi)->sentry_lock); 2883 2884 if (segno != curseg->segno) 2885 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2886 type, segno, curseg->segno); 2887 2888 mutex_unlock(&curseg->curseg_mutex); 2889 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2890 } 2891 2892 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 2893 bool new_sec, bool force) 2894 { 2895 struct curseg_info *curseg = CURSEG_I(sbi, type); 2896 unsigned int old_segno; 2897 2898 if (!curseg->inited) 2899 goto alloc; 2900 2901 if (force || curseg->next_blkoff || 2902 get_valid_blocks(sbi, curseg->segno, new_sec)) 2903 goto alloc; 2904 2905 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 2906 return; 2907 alloc: 2908 old_segno = curseg->segno; 2909 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 2910 locate_dirty_segment(sbi, old_segno); 2911 } 2912 2913 static void __allocate_new_section(struct f2fs_sb_info *sbi, 2914 int type, bool force) 2915 { 2916 __allocate_new_segment(sbi, type, true, force); 2917 } 2918 2919 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 2920 { 2921 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2922 down_write(&SIT_I(sbi)->sentry_lock); 2923 __allocate_new_section(sbi, type, force); 2924 up_write(&SIT_I(sbi)->sentry_lock); 2925 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2926 } 2927 2928 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2929 { 2930 int i; 2931 2932 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2933 down_write(&SIT_I(sbi)->sentry_lock); 2934 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 2935 __allocate_new_segment(sbi, i, false, false); 2936 up_write(&SIT_I(sbi)->sentry_lock); 2937 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2938 } 2939 2940 static const struct segment_allocation default_salloc_ops = { 2941 .allocate_segment = allocate_segment_by_default, 2942 }; 2943 2944 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2945 struct cp_control *cpc) 2946 { 2947 __u64 trim_start = cpc->trim_start; 2948 bool has_candidate = false; 2949 2950 down_write(&SIT_I(sbi)->sentry_lock); 2951 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2952 if (add_discard_addrs(sbi, cpc, true)) { 2953 has_candidate = true; 2954 break; 2955 } 2956 } 2957 up_write(&SIT_I(sbi)->sentry_lock); 2958 2959 cpc->trim_start = trim_start; 2960 return has_candidate; 2961 } 2962 2963 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2964 struct discard_policy *dpolicy, 2965 unsigned int start, unsigned int end) 2966 { 2967 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2968 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2969 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2970 struct discard_cmd *dc; 2971 struct blk_plug plug; 2972 int issued; 2973 unsigned int trimmed = 0; 2974 2975 next: 2976 issued = 0; 2977 2978 mutex_lock(&dcc->cmd_lock); 2979 if (unlikely(dcc->rbtree_check)) 2980 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2981 &dcc->root, false)); 2982 2983 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2984 NULL, start, 2985 (struct rb_entry **)&prev_dc, 2986 (struct rb_entry **)&next_dc, 2987 &insert_p, &insert_parent, true, NULL); 2988 if (!dc) 2989 dc = next_dc; 2990 2991 blk_start_plug(&plug); 2992 2993 while (dc && dc->lstart <= end) { 2994 struct rb_node *node; 2995 int err = 0; 2996 2997 if (dc->len < dpolicy->granularity) 2998 goto skip; 2999 3000 if (dc->state != D_PREP) { 3001 list_move_tail(&dc->list, &dcc->fstrim_list); 3002 goto skip; 3003 } 3004 3005 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3006 3007 if (issued >= dpolicy->max_requests) { 3008 start = dc->lstart + dc->len; 3009 3010 if (err) 3011 __remove_discard_cmd(sbi, dc); 3012 3013 blk_finish_plug(&plug); 3014 mutex_unlock(&dcc->cmd_lock); 3015 trimmed += __wait_all_discard_cmd(sbi, NULL); 3016 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3017 goto next; 3018 } 3019 skip: 3020 node = rb_next(&dc->rb_node); 3021 if (err) 3022 __remove_discard_cmd(sbi, dc); 3023 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3024 3025 if (fatal_signal_pending(current)) 3026 break; 3027 } 3028 3029 blk_finish_plug(&plug); 3030 mutex_unlock(&dcc->cmd_lock); 3031 3032 return trimmed; 3033 } 3034 3035 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3036 { 3037 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3038 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3039 unsigned int start_segno, end_segno; 3040 block_t start_block, end_block; 3041 struct cp_control cpc; 3042 struct discard_policy dpolicy; 3043 unsigned long long trimmed = 0; 3044 int err = 0; 3045 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3046 3047 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3048 return -EINVAL; 3049 3050 if (end < MAIN_BLKADDR(sbi)) 3051 goto out; 3052 3053 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3054 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3055 return -EFSCORRUPTED; 3056 } 3057 3058 /* start/end segment number in main_area */ 3059 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3060 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3061 GET_SEGNO(sbi, end); 3062 if (need_align) { 3063 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3064 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3065 } 3066 3067 cpc.reason = CP_DISCARD; 3068 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3069 cpc.trim_start = start_segno; 3070 cpc.trim_end = end_segno; 3071 3072 if (sbi->discard_blks == 0) 3073 goto out; 3074 3075 f2fs_down_write(&sbi->gc_lock); 3076 err = f2fs_write_checkpoint(sbi, &cpc); 3077 f2fs_up_write(&sbi->gc_lock); 3078 if (err) 3079 goto out; 3080 3081 /* 3082 * We filed discard candidates, but actually we don't need to wait for 3083 * all of them, since they'll be issued in idle time along with runtime 3084 * discard option. User configuration looks like using runtime discard 3085 * or periodic fstrim instead of it. 3086 */ 3087 if (f2fs_realtime_discard_enable(sbi)) 3088 goto out; 3089 3090 start_block = START_BLOCK(sbi, start_segno); 3091 end_block = START_BLOCK(sbi, end_segno + 1); 3092 3093 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3094 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3095 start_block, end_block); 3096 3097 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3098 start_block, end_block); 3099 out: 3100 if (!err) 3101 range->len = F2FS_BLK_TO_BYTES(trimmed); 3102 return err; 3103 } 3104 3105 static bool __has_curseg_space(struct f2fs_sb_info *sbi, 3106 struct curseg_info *curseg) 3107 { 3108 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi, 3109 curseg->segno); 3110 } 3111 3112 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3113 { 3114 switch (hint) { 3115 case WRITE_LIFE_SHORT: 3116 return CURSEG_HOT_DATA; 3117 case WRITE_LIFE_EXTREME: 3118 return CURSEG_COLD_DATA; 3119 default: 3120 return CURSEG_WARM_DATA; 3121 } 3122 } 3123 3124 static int __get_segment_type_2(struct f2fs_io_info *fio) 3125 { 3126 if (fio->type == DATA) 3127 return CURSEG_HOT_DATA; 3128 else 3129 return CURSEG_HOT_NODE; 3130 } 3131 3132 static int __get_segment_type_4(struct f2fs_io_info *fio) 3133 { 3134 if (fio->type == DATA) { 3135 struct inode *inode = fio->page->mapping->host; 3136 3137 if (S_ISDIR(inode->i_mode)) 3138 return CURSEG_HOT_DATA; 3139 else 3140 return CURSEG_COLD_DATA; 3141 } else { 3142 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3143 return CURSEG_WARM_NODE; 3144 else 3145 return CURSEG_COLD_NODE; 3146 } 3147 } 3148 3149 static int __get_segment_type_6(struct f2fs_io_info *fio) 3150 { 3151 if (fio->type == DATA) { 3152 struct inode *inode = fio->page->mapping->host; 3153 3154 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3155 return CURSEG_COLD_DATA_PINNED; 3156 3157 if (page_private_gcing(fio->page)) { 3158 if (fio->sbi->am.atgc_enabled && 3159 (fio->io_type == FS_DATA_IO) && 3160 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3161 return CURSEG_ALL_DATA_ATGC; 3162 else 3163 return CURSEG_COLD_DATA; 3164 } 3165 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3166 return CURSEG_COLD_DATA; 3167 if (file_is_hot(inode) || 3168 is_inode_flag_set(inode, FI_HOT_DATA) || 3169 f2fs_is_atomic_file(inode)) 3170 return CURSEG_HOT_DATA; 3171 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3172 } else { 3173 if (IS_DNODE(fio->page)) 3174 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3175 CURSEG_HOT_NODE; 3176 return CURSEG_COLD_NODE; 3177 } 3178 } 3179 3180 static int __get_segment_type(struct f2fs_io_info *fio) 3181 { 3182 int type = 0; 3183 3184 switch (F2FS_OPTION(fio->sbi).active_logs) { 3185 case 2: 3186 type = __get_segment_type_2(fio); 3187 break; 3188 case 4: 3189 type = __get_segment_type_4(fio); 3190 break; 3191 case 6: 3192 type = __get_segment_type_6(fio); 3193 break; 3194 default: 3195 f2fs_bug_on(fio->sbi, true); 3196 } 3197 3198 if (IS_HOT(type)) 3199 fio->temp = HOT; 3200 else if (IS_WARM(type)) 3201 fio->temp = WARM; 3202 else 3203 fio->temp = COLD; 3204 return type; 3205 } 3206 3207 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3208 block_t old_blkaddr, block_t *new_blkaddr, 3209 struct f2fs_summary *sum, int type, 3210 struct f2fs_io_info *fio) 3211 { 3212 struct sit_info *sit_i = SIT_I(sbi); 3213 struct curseg_info *curseg = CURSEG_I(sbi, type); 3214 unsigned long long old_mtime; 3215 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3216 struct seg_entry *se = NULL; 3217 3218 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3219 3220 mutex_lock(&curseg->curseg_mutex); 3221 down_write(&sit_i->sentry_lock); 3222 3223 if (from_gc) { 3224 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3225 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3226 sanity_check_seg_type(sbi, se->type); 3227 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3228 } 3229 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3230 3231 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3232 3233 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3234 3235 /* 3236 * __add_sum_entry should be resided under the curseg_mutex 3237 * because, this function updates a summary entry in the 3238 * current summary block. 3239 */ 3240 __add_sum_entry(sbi, type, sum); 3241 3242 __refresh_next_blkoff(sbi, curseg); 3243 3244 stat_inc_block_count(sbi, curseg); 3245 3246 if (from_gc) { 3247 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3248 } else { 3249 update_segment_mtime(sbi, old_blkaddr, 0); 3250 old_mtime = 0; 3251 } 3252 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3253 3254 /* 3255 * SIT information should be updated before segment allocation, 3256 * since SSR needs latest valid block information. 3257 */ 3258 update_sit_entry(sbi, *new_blkaddr, 1); 3259 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3260 update_sit_entry(sbi, old_blkaddr, -1); 3261 3262 if (!__has_curseg_space(sbi, curseg)) { 3263 if (from_gc) 3264 get_atssr_segment(sbi, type, se->type, 3265 AT_SSR, se->mtime); 3266 else 3267 sit_i->s_ops->allocate_segment(sbi, type, false); 3268 } 3269 /* 3270 * segment dirty status should be updated after segment allocation, 3271 * so we just need to update status only one time after previous 3272 * segment being closed. 3273 */ 3274 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3275 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3276 3277 up_write(&sit_i->sentry_lock); 3278 3279 if (page && IS_NODESEG(type)) { 3280 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3281 3282 f2fs_inode_chksum_set(sbi, page); 3283 } 3284 3285 if (fio) { 3286 struct f2fs_bio_info *io; 3287 3288 if (F2FS_IO_ALIGNED(sbi)) 3289 fio->retry = false; 3290 3291 INIT_LIST_HEAD(&fio->list); 3292 fio->in_list = true; 3293 io = sbi->write_io[fio->type] + fio->temp; 3294 spin_lock(&io->io_lock); 3295 list_add_tail(&fio->list, &io->io_list); 3296 spin_unlock(&io->io_lock); 3297 } 3298 3299 mutex_unlock(&curseg->curseg_mutex); 3300 3301 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3302 } 3303 3304 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3305 block_t blkaddr, unsigned int blkcnt) 3306 { 3307 if (!f2fs_is_multi_device(sbi)) 3308 return; 3309 3310 while (1) { 3311 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3312 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3313 3314 /* update device state for fsync */ 3315 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3316 3317 /* update device state for checkpoint */ 3318 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3319 spin_lock(&sbi->dev_lock); 3320 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3321 spin_unlock(&sbi->dev_lock); 3322 } 3323 3324 if (blkcnt <= blks) 3325 break; 3326 blkcnt -= blks; 3327 blkaddr += blks; 3328 } 3329 } 3330 3331 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3332 { 3333 int type = __get_segment_type(fio); 3334 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3335 3336 if (keep_order) 3337 f2fs_down_read(&fio->sbi->io_order_lock); 3338 reallocate: 3339 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3340 &fio->new_blkaddr, sum, type, fio); 3341 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) { 3342 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3343 fio->old_blkaddr, fio->old_blkaddr); 3344 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr); 3345 } 3346 3347 /* writeout dirty page into bdev */ 3348 f2fs_submit_page_write(fio); 3349 if (fio->retry) { 3350 fio->old_blkaddr = fio->new_blkaddr; 3351 goto reallocate; 3352 } 3353 3354 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3355 3356 if (keep_order) 3357 f2fs_up_read(&fio->sbi->io_order_lock); 3358 } 3359 3360 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3361 enum iostat_type io_type) 3362 { 3363 struct f2fs_io_info fio = { 3364 .sbi = sbi, 3365 .type = META, 3366 .temp = HOT, 3367 .op = REQ_OP_WRITE, 3368 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3369 .old_blkaddr = page->index, 3370 .new_blkaddr = page->index, 3371 .page = page, 3372 .encrypted_page = NULL, 3373 .in_list = false, 3374 }; 3375 3376 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3377 fio.op_flags &= ~REQ_META; 3378 3379 set_page_writeback(page); 3380 ClearPageError(page); 3381 f2fs_submit_page_write(&fio); 3382 3383 stat_inc_meta_count(sbi, page->index); 3384 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3385 } 3386 3387 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3388 { 3389 struct f2fs_summary sum; 3390 3391 set_summary(&sum, nid, 0, 0); 3392 do_write_page(&sum, fio); 3393 3394 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3395 } 3396 3397 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3398 struct f2fs_io_info *fio) 3399 { 3400 struct f2fs_sb_info *sbi = fio->sbi; 3401 struct f2fs_summary sum; 3402 3403 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3404 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3405 do_write_page(&sum, fio); 3406 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3407 3408 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3409 } 3410 3411 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3412 { 3413 int err; 3414 struct f2fs_sb_info *sbi = fio->sbi; 3415 unsigned int segno; 3416 3417 fio->new_blkaddr = fio->old_blkaddr; 3418 /* i/o temperature is needed for passing down write hints */ 3419 __get_segment_type(fio); 3420 3421 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3422 3423 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3424 set_sbi_flag(sbi, SBI_NEED_FSCK); 3425 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3426 __func__, segno); 3427 err = -EFSCORRUPTED; 3428 goto drop_bio; 3429 } 3430 3431 if (f2fs_cp_error(sbi)) { 3432 err = -EIO; 3433 goto drop_bio; 3434 } 3435 3436 invalidate_mapping_pages(META_MAPPING(sbi), 3437 fio->new_blkaddr, fio->new_blkaddr); 3438 3439 stat_inc_inplace_blocks(fio->sbi); 3440 3441 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3442 err = f2fs_merge_page_bio(fio); 3443 else 3444 err = f2fs_submit_page_bio(fio); 3445 if (!err) { 3446 f2fs_update_device_state(fio->sbi, fio->ino, 3447 fio->new_blkaddr, 1); 3448 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3449 } 3450 3451 return err; 3452 drop_bio: 3453 if (fio->bio && *(fio->bio)) { 3454 struct bio *bio = *(fio->bio); 3455 3456 bio->bi_status = BLK_STS_IOERR; 3457 bio_endio(bio); 3458 *(fio->bio) = NULL; 3459 } 3460 return err; 3461 } 3462 3463 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3464 unsigned int segno) 3465 { 3466 int i; 3467 3468 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3469 if (CURSEG_I(sbi, i)->segno == segno) 3470 break; 3471 } 3472 return i; 3473 } 3474 3475 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3476 block_t old_blkaddr, block_t new_blkaddr, 3477 bool recover_curseg, bool recover_newaddr, 3478 bool from_gc) 3479 { 3480 struct sit_info *sit_i = SIT_I(sbi); 3481 struct curseg_info *curseg; 3482 unsigned int segno, old_cursegno; 3483 struct seg_entry *se; 3484 int type; 3485 unsigned short old_blkoff; 3486 unsigned char old_alloc_type; 3487 3488 segno = GET_SEGNO(sbi, new_blkaddr); 3489 se = get_seg_entry(sbi, segno); 3490 type = se->type; 3491 3492 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3493 3494 if (!recover_curseg) { 3495 /* for recovery flow */ 3496 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3497 if (old_blkaddr == NULL_ADDR) 3498 type = CURSEG_COLD_DATA; 3499 else 3500 type = CURSEG_WARM_DATA; 3501 } 3502 } else { 3503 if (IS_CURSEG(sbi, segno)) { 3504 /* se->type is volatile as SSR allocation */ 3505 type = __f2fs_get_curseg(sbi, segno); 3506 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3507 } else { 3508 type = CURSEG_WARM_DATA; 3509 } 3510 } 3511 3512 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3513 curseg = CURSEG_I(sbi, type); 3514 3515 mutex_lock(&curseg->curseg_mutex); 3516 down_write(&sit_i->sentry_lock); 3517 3518 old_cursegno = curseg->segno; 3519 old_blkoff = curseg->next_blkoff; 3520 old_alloc_type = curseg->alloc_type; 3521 3522 /* change the current segment */ 3523 if (segno != curseg->segno) { 3524 curseg->next_segno = segno; 3525 change_curseg(sbi, type, true); 3526 } 3527 3528 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3529 __add_sum_entry(sbi, type, sum); 3530 3531 if (!recover_curseg || recover_newaddr) { 3532 if (!from_gc) 3533 update_segment_mtime(sbi, new_blkaddr, 0); 3534 update_sit_entry(sbi, new_blkaddr, 1); 3535 } 3536 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3537 invalidate_mapping_pages(META_MAPPING(sbi), 3538 old_blkaddr, old_blkaddr); 3539 f2fs_invalidate_compress_page(sbi, old_blkaddr); 3540 if (!from_gc) 3541 update_segment_mtime(sbi, old_blkaddr, 0); 3542 update_sit_entry(sbi, old_blkaddr, -1); 3543 } 3544 3545 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3546 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3547 3548 locate_dirty_segment(sbi, old_cursegno); 3549 3550 if (recover_curseg) { 3551 if (old_cursegno != curseg->segno) { 3552 curseg->next_segno = old_cursegno; 3553 change_curseg(sbi, type, true); 3554 } 3555 curseg->next_blkoff = old_blkoff; 3556 curseg->alloc_type = old_alloc_type; 3557 } 3558 3559 up_write(&sit_i->sentry_lock); 3560 mutex_unlock(&curseg->curseg_mutex); 3561 f2fs_up_write(&SM_I(sbi)->curseg_lock); 3562 } 3563 3564 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3565 block_t old_addr, block_t new_addr, 3566 unsigned char version, bool recover_curseg, 3567 bool recover_newaddr) 3568 { 3569 struct f2fs_summary sum; 3570 3571 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3572 3573 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3574 recover_curseg, recover_newaddr, false); 3575 3576 f2fs_update_data_blkaddr(dn, new_addr); 3577 } 3578 3579 void f2fs_wait_on_page_writeback(struct page *page, 3580 enum page_type type, bool ordered, bool locked) 3581 { 3582 if (PageWriteback(page)) { 3583 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3584 3585 /* submit cached LFS IO */ 3586 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3587 /* sbumit cached IPU IO */ 3588 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3589 if (ordered) { 3590 wait_on_page_writeback(page); 3591 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3592 } else { 3593 wait_for_stable_page(page); 3594 } 3595 } 3596 } 3597 3598 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3599 { 3600 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3601 struct page *cpage; 3602 3603 if (!f2fs_post_read_required(inode)) 3604 return; 3605 3606 if (!__is_valid_data_blkaddr(blkaddr)) 3607 return; 3608 3609 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3610 if (cpage) { 3611 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3612 f2fs_put_page(cpage, 1); 3613 } 3614 } 3615 3616 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3617 block_t len) 3618 { 3619 block_t i; 3620 3621 for (i = 0; i < len; i++) 3622 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3623 } 3624 3625 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3626 { 3627 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3628 struct curseg_info *seg_i; 3629 unsigned char *kaddr; 3630 struct page *page; 3631 block_t start; 3632 int i, j, offset; 3633 3634 start = start_sum_block(sbi); 3635 3636 page = f2fs_get_meta_page(sbi, start++); 3637 if (IS_ERR(page)) 3638 return PTR_ERR(page); 3639 kaddr = (unsigned char *)page_address(page); 3640 3641 /* Step 1: restore nat cache */ 3642 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3643 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3644 3645 /* Step 2: restore sit cache */ 3646 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3647 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3648 offset = 2 * SUM_JOURNAL_SIZE; 3649 3650 /* Step 3: restore summary entries */ 3651 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3652 unsigned short blk_off; 3653 unsigned int segno; 3654 3655 seg_i = CURSEG_I(sbi, i); 3656 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3657 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3658 seg_i->next_segno = segno; 3659 reset_curseg(sbi, i, 0); 3660 seg_i->alloc_type = ckpt->alloc_type[i]; 3661 seg_i->next_blkoff = blk_off; 3662 3663 if (seg_i->alloc_type == SSR) 3664 blk_off = sbi->blocks_per_seg; 3665 3666 for (j = 0; j < blk_off; j++) { 3667 struct f2fs_summary *s; 3668 3669 s = (struct f2fs_summary *)(kaddr + offset); 3670 seg_i->sum_blk->entries[j] = *s; 3671 offset += SUMMARY_SIZE; 3672 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3673 SUM_FOOTER_SIZE) 3674 continue; 3675 3676 f2fs_put_page(page, 1); 3677 page = NULL; 3678 3679 page = f2fs_get_meta_page(sbi, start++); 3680 if (IS_ERR(page)) 3681 return PTR_ERR(page); 3682 kaddr = (unsigned char *)page_address(page); 3683 offset = 0; 3684 } 3685 } 3686 f2fs_put_page(page, 1); 3687 return 0; 3688 } 3689 3690 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3691 { 3692 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3693 struct f2fs_summary_block *sum; 3694 struct curseg_info *curseg; 3695 struct page *new; 3696 unsigned short blk_off; 3697 unsigned int segno = 0; 3698 block_t blk_addr = 0; 3699 int err = 0; 3700 3701 /* get segment number and block addr */ 3702 if (IS_DATASEG(type)) { 3703 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3704 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3705 CURSEG_HOT_DATA]); 3706 if (__exist_node_summaries(sbi)) 3707 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3708 else 3709 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3710 } else { 3711 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3712 CURSEG_HOT_NODE]); 3713 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3714 CURSEG_HOT_NODE]); 3715 if (__exist_node_summaries(sbi)) 3716 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3717 type - CURSEG_HOT_NODE); 3718 else 3719 blk_addr = GET_SUM_BLOCK(sbi, segno); 3720 } 3721 3722 new = f2fs_get_meta_page(sbi, blk_addr); 3723 if (IS_ERR(new)) 3724 return PTR_ERR(new); 3725 sum = (struct f2fs_summary_block *)page_address(new); 3726 3727 if (IS_NODESEG(type)) { 3728 if (__exist_node_summaries(sbi)) { 3729 struct f2fs_summary *ns = &sum->entries[0]; 3730 int i; 3731 3732 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3733 ns->version = 0; 3734 ns->ofs_in_node = 0; 3735 } 3736 } else { 3737 err = f2fs_restore_node_summary(sbi, segno, sum); 3738 if (err) 3739 goto out; 3740 } 3741 } 3742 3743 /* set uncompleted segment to curseg */ 3744 curseg = CURSEG_I(sbi, type); 3745 mutex_lock(&curseg->curseg_mutex); 3746 3747 /* update journal info */ 3748 down_write(&curseg->journal_rwsem); 3749 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3750 up_write(&curseg->journal_rwsem); 3751 3752 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3753 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3754 curseg->next_segno = segno; 3755 reset_curseg(sbi, type, 0); 3756 curseg->alloc_type = ckpt->alloc_type[type]; 3757 curseg->next_blkoff = blk_off; 3758 mutex_unlock(&curseg->curseg_mutex); 3759 out: 3760 f2fs_put_page(new, 1); 3761 return err; 3762 } 3763 3764 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3765 { 3766 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3767 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3768 int type = CURSEG_HOT_DATA; 3769 int err; 3770 3771 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3772 int npages = f2fs_npages_for_summary_flush(sbi, true); 3773 3774 if (npages >= 2) 3775 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3776 META_CP, true); 3777 3778 /* restore for compacted data summary */ 3779 err = read_compacted_summaries(sbi); 3780 if (err) 3781 return err; 3782 type = CURSEG_HOT_NODE; 3783 } 3784 3785 if (__exist_node_summaries(sbi)) 3786 f2fs_ra_meta_pages(sbi, 3787 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 3788 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 3789 3790 for (; type <= CURSEG_COLD_NODE; type++) { 3791 err = read_normal_summaries(sbi, type); 3792 if (err) 3793 return err; 3794 } 3795 3796 /* sanity check for summary blocks */ 3797 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3798 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3799 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 3800 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3801 return -EINVAL; 3802 } 3803 3804 return 0; 3805 } 3806 3807 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3808 { 3809 struct page *page; 3810 unsigned char *kaddr; 3811 struct f2fs_summary *summary; 3812 struct curseg_info *seg_i; 3813 int written_size = 0; 3814 int i, j; 3815 3816 page = f2fs_grab_meta_page(sbi, blkaddr++); 3817 kaddr = (unsigned char *)page_address(page); 3818 memset(kaddr, 0, PAGE_SIZE); 3819 3820 /* Step 1: write nat cache */ 3821 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3822 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3823 written_size += SUM_JOURNAL_SIZE; 3824 3825 /* Step 2: write sit cache */ 3826 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3827 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3828 written_size += SUM_JOURNAL_SIZE; 3829 3830 /* Step 3: write summary entries */ 3831 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3832 unsigned short blkoff; 3833 3834 seg_i = CURSEG_I(sbi, i); 3835 if (sbi->ckpt->alloc_type[i] == SSR) 3836 blkoff = sbi->blocks_per_seg; 3837 else 3838 blkoff = curseg_blkoff(sbi, i); 3839 3840 for (j = 0; j < blkoff; j++) { 3841 if (!page) { 3842 page = f2fs_grab_meta_page(sbi, blkaddr++); 3843 kaddr = (unsigned char *)page_address(page); 3844 memset(kaddr, 0, PAGE_SIZE); 3845 written_size = 0; 3846 } 3847 summary = (struct f2fs_summary *)(kaddr + written_size); 3848 *summary = seg_i->sum_blk->entries[j]; 3849 written_size += SUMMARY_SIZE; 3850 3851 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3852 SUM_FOOTER_SIZE) 3853 continue; 3854 3855 set_page_dirty(page); 3856 f2fs_put_page(page, 1); 3857 page = NULL; 3858 } 3859 } 3860 if (page) { 3861 set_page_dirty(page); 3862 f2fs_put_page(page, 1); 3863 } 3864 } 3865 3866 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3867 block_t blkaddr, int type) 3868 { 3869 int i, end; 3870 3871 if (IS_DATASEG(type)) 3872 end = type + NR_CURSEG_DATA_TYPE; 3873 else 3874 end = type + NR_CURSEG_NODE_TYPE; 3875 3876 for (i = type; i < end; i++) 3877 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3878 } 3879 3880 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3881 { 3882 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3883 write_compacted_summaries(sbi, start_blk); 3884 else 3885 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3886 } 3887 3888 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3889 { 3890 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3891 } 3892 3893 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3894 unsigned int val, int alloc) 3895 { 3896 int i; 3897 3898 if (type == NAT_JOURNAL) { 3899 for (i = 0; i < nats_in_cursum(journal); i++) { 3900 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3901 return i; 3902 } 3903 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3904 return update_nats_in_cursum(journal, 1); 3905 } else if (type == SIT_JOURNAL) { 3906 for (i = 0; i < sits_in_cursum(journal); i++) 3907 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3908 return i; 3909 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3910 return update_sits_in_cursum(journal, 1); 3911 } 3912 return -1; 3913 } 3914 3915 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3916 unsigned int segno) 3917 { 3918 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 3919 } 3920 3921 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3922 unsigned int start) 3923 { 3924 struct sit_info *sit_i = SIT_I(sbi); 3925 struct page *page; 3926 pgoff_t src_off, dst_off; 3927 3928 src_off = current_sit_addr(sbi, start); 3929 dst_off = next_sit_addr(sbi, src_off); 3930 3931 page = f2fs_grab_meta_page(sbi, dst_off); 3932 seg_info_to_sit_page(sbi, page, start); 3933 3934 set_page_dirty(page); 3935 set_to_next_sit(sit_i, start); 3936 3937 return page; 3938 } 3939 3940 static struct sit_entry_set *grab_sit_entry_set(void) 3941 { 3942 struct sit_entry_set *ses = 3943 f2fs_kmem_cache_alloc(sit_entry_set_slab, 3944 GFP_NOFS, true, NULL); 3945 3946 ses->entry_cnt = 0; 3947 INIT_LIST_HEAD(&ses->set_list); 3948 return ses; 3949 } 3950 3951 static void release_sit_entry_set(struct sit_entry_set *ses) 3952 { 3953 list_del(&ses->set_list); 3954 kmem_cache_free(sit_entry_set_slab, ses); 3955 } 3956 3957 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3958 struct list_head *head) 3959 { 3960 struct sit_entry_set *next = ses; 3961 3962 if (list_is_last(&ses->set_list, head)) 3963 return; 3964 3965 list_for_each_entry_continue(next, head, set_list) 3966 if (ses->entry_cnt <= next->entry_cnt) { 3967 list_move_tail(&ses->set_list, &next->set_list); 3968 return; 3969 } 3970 3971 list_move_tail(&ses->set_list, head); 3972 } 3973 3974 static void add_sit_entry(unsigned int segno, struct list_head *head) 3975 { 3976 struct sit_entry_set *ses; 3977 unsigned int start_segno = START_SEGNO(segno); 3978 3979 list_for_each_entry(ses, head, set_list) { 3980 if (ses->start_segno == start_segno) { 3981 ses->entry_cnt++; 3982 adjust_sit_entry_set(ses, head); 3983 return; 3984 } 3985 } 3986 3987 ses = grab_sit_entry_set(); 3988 3989 ses->start_segno = start_segno; 3990 ses->entry_cnt++; 3991 list_add(&ses->set_list, head); 3992 } 3993 3994 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3995 { 3996 struct f2fs_sm_info *sm_info = SM_I(sbi); 3997 struct list_head *set_list = &sm_info->sit_entry_set; 3998 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3999 unsigned int segno; 4000 4001 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4002 add_sit_entry(segno, set_list); 4003 } 4004 4005 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4006 { 4007 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4008 struct f2fs_journal *journal = curseg->journal; 4009 int i; 4010 4011 down_write(&curseg->journal_rwsem); 4012 for (i = 0; i < sits_in_cursum(journal); i++) { 4013 unsigned int segno; 4014 bool dirtied; 4015 4016 segno = le32_to_cpu(segno_in_journal(journal, i)); 4017 dirtied = __mark_sit_entry_dirty(sbi, segno); 4018 4019 if (!dirtied) 4020 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4021 } 4022 update_sits_in_cursum(journal, -i); 4023 up_write(&curseg->journal_rwsem); 4024 } 4025 4026 /* 4027 * CP calls this function, which flushes SIT entries including sit_journal, 4028 * and moves prefree segs to free segs. 4029 */ 4030 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4031 { 4032 struct sit_info *sit_i = SIT_I(sbi); 4033 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4034 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4035 struct f2fs_journal *journal = curseg->journal; 4036 struct sit_entry_set *ses, *tmp; 4037 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4038 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4039 struct seg_entry *se; 4040 4041 down_write(&sit_i->sentry_lock); 4042 4043 if (!sit_i->dirty_sentries) 4044 goto out; 4045 4046 /* 4047 * add and account sit entries of dirty bitmap in sit entry 4048 * set temporarily 4049 */ 4050 add_sits_in_set(sbi); 4051 4052 /* 4053 * if there are no enough space in journal to store dirty sit 4054 * entries, remove all entries from journal and add and account 4055 * them in sit entry set. 4056 */ 4057 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4058 !to_journal) 4059 remove_sits_in_journal(sbi); 4060 4061 /* 4062 * there are two steps to flush sit entries: 4063 * #1, flush sit entries to journal in current cold data summary block. 4064 * #2, flush sit entries to sit page. 4065 */ 4066 list_for_each_entry_safe(ses, tmp, head, set_list) { 4067 struct page *page = NULL; 4068 struct f2fs_sit_block *raw_sit = NULL; 4069 unsigned int start_segno = ses->start_segno; 4070 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4071 (unsigned long)MAIN_SEGS(sbi)); 4072 unsigned int segno = start_segno; 4073 4074 if (to_journal && 4075 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4076 to_journal = false; 4077 4078 if (to_journal) { 4079 down_write(&curseg->journal_rwsem); 4080 } else { 4081 page = get_next_sit_page(sbi, start_segno); 4082 raw_sit = page_address(page); 4083 } 4084 4085 /* flush dirty sit entries in region of current sit set */ 4086 for_each_set_bit_from(segno, bitmap, end) { 4087 int offset, sit_offset; 4088 4089 se = get_seg_entry(sbi, segno); 4090 #ifdef CONFIG_F2FS_CHECK_FS 4091 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4092 SIT_VBLOCK_MAP_SIZE)) 4093 f2fs_bug_on(sbi, 1); 4094 #endif 4095 4096 /* add discard candidates */ 4097 if (!(cpc->reason & CP_DISCARD)) { 4098 cpc->trim_start = segno; 4099 add_discard_addrs(sbi, cpc, false); 4100 } 4101 4102 if (to_journal) { 4103 offset = f2fs_lookup_journal_in_cursum(journal, 4104 SIT_JOURNAL, segno, 1); 4105 f2fs_bug_on(sbi, offset < 0); 4106 segno_in_journal(journal, offset) = 4107 cpu_to_le32(segno); 4108 seg_info_to_raw_sit(se, 4109 &sit_in_journal(journal, offset)); 4110 check_block_count(sbi, segno, 4111 &sit_in_journal(journal, offset)); 4112 } else { 4113 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4114 seg_info_to_raw_sit(se, 4115 &raw_sit->entries[sit_offset]); 4116 check_block_count(sbi, segno, 4117 &raw_sit->entries[sit_offset]); 4118 } 4119 4120 __clear_bit(segno, bitmap); 4121 sit_i->dirty_sentries--; 4122 ses->entry_cnt--; 4123 } 4124 4125 if (to_journal) 4126 up_write(&curseg->journal_rwsem); 4127 else 4128 f2fs_put_page(page, 1); 4129 4130 f2fs_bug_on(sbi, ses->entry_cnt); 4131 release_sit_entry_set(ses); 4132 } 4133 4134 f2fs_bug_on(sbi, !list_empty(head)); 4135 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4136 out: 4137 if (cpc->reason & CP_DISCARD) { 4138 __u64 trim_start = cpc->trim_start; 4139 4140 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4141 add_discard_addrs(sbi, cpc, false); 4142 4143 cpc->trim_start = trim_start; 4144 } 4145 up_write(&sit_i->sentry_lock); 4146 4147 set_prefree_as_free_segments(sbi); 4148 } 4149 4150 static int build_sit_info(struct f2fs_sb_info *sbi) 4151 { 4152 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4153 struct sit_info *sit_i; 4154 unsigned int sit_segs, start; 4155 char *src_bitmap, *bitmap; 4156 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4157 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4158 4159 /* allocate memory for SIT information */ 4160 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4161 if (!sit_i) 4162 return -ENOMEM; 4163 4164 SM_I(sbi)->sit_info = sit_i; 4165 4166 sit_i->sentries = 4167 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4168 MAIN_SEGS(sbi)), 4169 GFP_KERNEL); 4170 if (!sit_i->sentries) 4171 return -ENOMEM; 4172 4173 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4174 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4175 GFP_KERNEL); 4176 if (!sit_i->dirty_sentries_bitmap) 4177 return -ENOMEM; 4178 4179 #ifdef CONFIG_F2FS_CHECK_FS 4180 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4181 #else 4182 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4183 #endif 4184 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4185 if (!sit_i->bitmap) 4186 return -ENOMEM; 4187 4188 bitmap = sit_i->bitmap; 4189 4190 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4191 sit_i->sentries[start].cur_valid_map = bitmap; 4192 bitmap += SIT_VBLOCK_MAP_SIZE; 4193 4194 sit_i->sentries[start].ckpt_valid_map = bitmap; 4195 bitmap += SIT_VBLOCK_MAP_SIZE; 4196 4197 #ifdef CONFIG_F2FS_CHECK_FS 4198 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4199 bitmap += SIT_VBLOCK_MAP_SIZE; 4200 #endif 4201 4202 if (discard_map) { 4203 sit_i->sentries[start].discard_map = bitmap; 4204 bitmap += SIT_VBLOCK_MAP_SIZE; 4205 } 4206 } 4207 4208 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4209 if (!sit_i->tmp_map) 4210 return -ENOMEM; 4211 4212 if (__is_large_section(sbi)) { 4213 sit_i->sec_entries = 4214 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4215 MAIN_SECS(sbi)), 4216 GFP_KERNEL); 4217 if (!sit_i->sec_entries) 4218 return -ENOMEM; 4219 } 4220 4221 /* get information related with SIT */ 4222 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4223 4224 /* setup SIT bitmap from ckeckpoint pack */ 4225 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4226 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4227 4228 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4229 if (!sit_i->sit_bitmap) 4230 return -ENOMEM; 4231 4232 #ifdef CONFIG_F2FS_CHECK_FS 4233 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4234 sit_bitmap_size, GFP_KERNEL); 4235 if (!sit_i->sit_bitmap_mir) 4236 return -ENOMEM; 4237 4238 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4239 main_bitmap_size, GFP_KERNEL); 4240 if (!sit_i->invalid_segmap) 4241 return -ENOMEM; 4242 #endif 4243 4244 /* init SIT information */ 4245 sit_i->s_ops = &default_salloc_ops; 4246 4247 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4248 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4249 sit_i->written_valid_blocks = 0; 4250 sit_i->bitmap_size = sit_bitmap_size; 4251 sit_i->dirty_sentries = 0; 4252 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4253 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4254 sit_i->mounted_time = ktime_get_boottime_seconds(); 4255 init_rwsem(&sit_i->sentry_lock); 4256 return 0; 4257 } 4258 4259 static int build_free_segmap(struct f2fs_sb_info *sbi) 4260 { 4261 struct free_segmap_info *free_i; 4262 unsigned int bitmap_size, sec_bitmap_size; 4263 4264 /* allocate memory for free segmap information */ 4265 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4266 if (!free_i) 4267 return -ENOMEM; 4268 4269 SM_I(sbi)->free_info = free_i; 4270 4271 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4272 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4273 if (!free_i->free_segmap) 4274 return -ENOMEM; 4275 4276 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4277 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4278 if (!free_i->free_secmap) 4279 return -ENOMEM; 4280 4281 /* set all segments as dirty temporarily */ 4282 memset(free_i->free_segmap, 0xff, bitmap_size); 4283 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4284 4285 /* init free segmap information */ 4286 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4287 free_i->free_segments = 0; 4288 free_i->free_sections = 0; 4289 spin_lock_init(&free_i->segmap_lock); 4290 return 0; 4291 } 4292 4293 static int build_curseg(struct f2fs_sb_info *sbi) 4294 { 4295 struct curseg_info *array; 4296 int i; 4297 4298 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4299 sizeof(*array)), GFP_KERNEL); 4300 if (!array) 4301 return -ENOMEM; 4302 4303 SM_I(sbi)->curseg_array = array; 4304 4305 for (i = 0; i < NO_CHECK_TYPE; i++) { 4306 mutex_init(&array[i].curseg_mutex); 4307 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4308 if (!array[i].sum_blk) 4309 return -ENOMEM; 4310 init_rwsem(&array[i].journal_rwsem); 4311 array[i].journal = f2fs_kzalloc(sbi, 4312 sizeof(struct f2fs_journal), GFP_KERNEL); 4313 if (!array[i].journal) 4314 return -ENOMEM; 4315 if (i < NR_PERSISTENT_LOG) 4316 array[i].seg_type = CURSEG_HOT_DATA + i; 4317 else if (i == CURSEG_COLD_DATA_PINNED) 4318 array[i].seg_type = CURSEG_COLD_DATA; 4319 else if (i == CURSEG_ALL_DATA_ATGC) 4320 array[i].seg_type = CURSEG_COLD_DATA; 4321 array[i].segno = NULL_SEGNO; 4322 array[i].next_blkoff = 0; 4323 array[i].inited = false; 4324 } 4325 return restore_curseg_summaries(sbi); 4326 } 4327 4328 static int build_sit_entries(struct f2fs_sb_info *sbi) 4329 { 4330 struct sit_info *sit_i = SIT_I(sbi); 4331 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4332 struct f2fs_journal *journal = curseg->journal; 4333 struct seg_entry *se; 4334 struct f2fs_sit_entry sit; 4335 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4336 unsigned int i, start, end; 4337 unsigned int readed, start_blk = 0; 4338 int err = 0; 4339 block_t sit_valid_blocks[2] = {0, 0}; 4340 4341 do { 4342 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4343 META_SIT, true); 4344 4345 start = start_blk * sit_i->sents_per_block; 4346 end = (start_blk + readed) * sit_i->sents_per_block; 4347 4348 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4349 struct f2fs_sit_block *sit_blk; 4350 struct page *page; 4351 4352 se = &sit_i->sentries[start]; 4353 page = get_current_sit_page(sbi, start); 4354 if (IS_ERR(page)) 4355 return PTR_ERR(page); 4356 sit_blk = (struct f2fs_sit_block *)page_address(page); 4357 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4358 f2fs_put_page(page, 1); 4359 4360 err = check_block_count(sbi, start, &sit); 4361 if (err) 4362 return err; 4363 seg_info_from_raw_sit(se, &sit); 4364 4365 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4366 4367 if (f2fs_block_unit_discard(sbi)) { 4368 /* build discard map only one time */ 4369 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4370 memset(se->discard_map, 0xff, 4371 SIT_VBLOCK_MAP_SIZE); 4372 } else { 4373 memcpy(se->discard_map, 4374 se->cur_valid_map, 4375 SIT_VBLOCK_MAP_SIZE); 4376 sbi->discard_blks += 4377 sbi->blocks_per_seg - 4378 se->valid_blocks; 4379 } 4380 } 4381 4382 if (__is_large_section(sbi)) 4383 get_sec_entry(sbi, start)->valid_blocks += 4384 se->valid_blocks; 4385 } 4386 start_blk += readed; 4387 } while (start_blk < sit_blk_cnt); 4388 4389 down_read(&curseg->journal_rwsem); 4390 for (i = 0; i < sits_in_cursum(journal); i++) { 4391 unsigned int old_valid_blocks; 4392 4393 start = le32_to_cpu(segno_in_journal(journal, i)); 4394 if (start >= MAIN_SEGS(sbi)) { 4395 f2fs_err(sbi, "Wrong journal entry on segno %u", 4396 start); 4397 err = -EFSCORRUPTED; 4398 break; 4399 } 4400 4401 se = &sit_i->sentries[start]; 4402 sit = sit_in_journal(journal, i); 4403 4404 old_valid_blocks = se->valid_blocks; 4405 4406 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4407 4408 err = check_block_count(sbi, start, &sit); 4409 if (err) 4410 break; 4411 seg_info_from_raw_sit(se, &sit); 4412 4413 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4414 4415 if (f2fs_block_unit_discard(sbi)) { 4416 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4417 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4418 } else { 4419 memcpy(se->discard_map, se->cur_valid_map, 4420 SIT_VBLOCK_MAP_SIZE); 4421 sbi->discard_blks += old_valid_blocks; 4422 sbi->discard_blks -= se->valid_blocks; 4423 } 4424 } 4425 4426 if (__is_large_section(sbi)) { 4427 get_sec_entry(sbi, start)->valid_blocks += 4428 se->valid_blocks; 4429 get_sec_entry(sbi, start)->valid_blocks -= 4430 old_valid_blocks; 4431 } 4432 } 4433 up_read(&curseg->journal_rwsem); 4434 4435 if (err) 4436 return err; 4437 4438 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4439 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4440 sit_valid_blocks[NODE], valid_node_count(sbi)); 4441 return -EFSCORRUPTED; 4442 } 4443 4444 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4445 valid_user_blocks(sbi)) { 4446 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4447 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4448 valid_user_blocks(sbi)); 4449 return -EFSCORRUPTED; 4450 } 4451 4452 return 0; 4453 } 4454 4455 static void init_free_segmap(struct f2fs_sb_info *sbi) 4456 { 4457 unsigned int start; 4458 int type; 4459 struct seg_entry *sentry; 4460 4461 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4462 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4463 continue; 4464 sentry = get_seg_entry(sbi, start); 4465 if (!sentry->valid_blocks) 4466 __set_free(sbi, start); 4467 else 4468 SIT_I(sbi)->written_valid_blocks += 4469 sentry->valid_blocks; 4470 } 4471 4472 /* set use the current segments */ 4473 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4474 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4475 4476 __set_test_and_inuse(sbi, curseg_t->segno); 4477 } 4478 } 4479 4480 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4481 { 4482 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4483 struct free_segmap_info *free_i = FREE_I(sbi); 4484 unsigned int segno = 0, offset = 0, secno; 4485 block_t valid_blocks, usable_blks_in_seg; 4486 block_t blks_per_sec = BLKS_PER_SEC(sbi); 4487 4488 while (1) { 4489 /* find dirty segment based on free segmap */ 4490 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4491 if (segno >= MAIN_SEGS(sbi)) 4492 break; 4493 offset = segno + 1; 4494 valid_blocks = get_valid_blocks(sbi, segno, false); 4495 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4496 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4497 continue; 4498 if (valid_blocks > usable_blks_in_seg) { 4499 f2fs_bug_on(sbi, 1); 4500 continue; 4501 } 4502 mutex_lock(&dirty_i->seglist_lock); 4503 __locate_dirty_segment(sbi, segno, DIRTY); 4504 mutex_unlock(&dirty_i->seglist_lock); 4505 } 4506 4507 if (!__is_large_section(sbi)) 4508 return; 4509 4510 mutex_lock(&dirty_i->seglist_lock); 4511 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4512 valid_blocks = get_valid_blocks(sbi, segno, true); 4513 secno = GET_SEC_FROM_SEG(sbi, segno); 4514 4515 if (!valid_blocks || valid_blocks == blks_per_sec) 4516 continue; 4517 if (IS_CURSEC(sbi, secno)) 4518 continue; 4519 set_bit(secno, dirty_i->dirty_secmap); 4520 } 4521 mutex_unlock(&dirty_i->seglist_lock); 4522 } 4523 4524 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4525 { 4526 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4527 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4528 4529 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4530 if (!dirty_i->victim_secmap) 4531 return -ENOMEM; 4532 4533 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4534 if (!dirty_i->pinned_secmap) 4535 return -ENOMEM; 4536 4537 dirty_i->pinned_secmap_cnt = 0; 4538 dirty_i->enable_pin_section = true; 4539 return 0; 4540 } 4541 4542 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4543 { 4544 struct dirty_seglist_info *dirty_i; 4545 unsigned int bitmap_size, i; 4546 4547 /* allocate memory for dirty segments list information */ 4548 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4549 GFP_KERNEL); 4550 if (!dirty_i) 4551 return -ENOMEM; 4552 4553 SM_I(sbi)->dirty_info = dirty_i; 4554 mutex_init(&dirty_i->seglist_lock); 4555 4556 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4557 4558 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4559 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4560 GFP_KERNEL); 4561 if (!dirty_i->dirty_segmap[i]) 4562 return -ENOMEM; 4563 } 4564 4565 if (__is_large_section(sbi)) { 4566 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4567 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4568 bitmap_size, GFP_KERNEL); 4569 if (!dirty_i->dirty_secmap) 4570 return -ENOMEM; 4571 } 4572 4573 init_dirty_segmap(sbi); 4574 return init_victim_secmap(sbi); 4575 } 4576 4577 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4578 { 4579 int i; 4580 4581 /* 4582 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4583 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4584 */ 4585 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4586 struct curseg_info *curseg = CURSEG_I(sbi, i); 4587 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4588 unsigned int blkofs = curseg->next_blkoff; 4589 4590 if (f2fs_sb_has_readonly(sbi) && 4591 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4592 continue; 4593 4594 sanity_check_seg_type(sbi, curseg->seg_type); 4595 4596 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 4597 f2fs_err(sbi, 4598 "Current segment has invalid alloc_type:%d", 4599 curseg->alloc_type); 4600 return -EFSCORRUPTED; 4601 } 4602 4603 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4604 goto out; 4605 4606 if (curseg->alloc_type == SSR) 4607 continue; 4608 4609 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4610 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4611 continue; 4612 out: 4613 f2fs_err(sbi, 4614 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4615 i, curseg->segno, curseg->alloc_type, 4616 curseg->next_blkoff, blkofs); 4617 return -EFSCORRUPTED; 4618 } 4619 } 4620 return 0; 4621 } 4622 4623 #ifdef CONFIG_BLK_DEV_ZONED 4624 4625 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4626 struct f2fs_dev_info *fdev, 4627 struct blk_zone *zone) 4628 { 4629 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4630 block_t zone_block, wp_block, last_valid_block; 4631 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4632 int i, s, b, ret; 4633 struct seg_entry *se; 4634 4635 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4636 return 0; 4637 4638 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4639 wp_segno = GET_SEGNO(sbi, wp_block); 4640 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4641 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4642 zone_segno = GET_SEGNO(sbi, zone_block); 4643 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4644 4645 if (zone_segno >= MAIN_SEGS(sbi)) 4646 return 0; 4647 4648 /* 4649 * Skip check of zones cursegs point to, since 4650 * fix_curseg_write_pointer() checks them. 4651 */ 4652 for (i = 0; i < NO_CHECK_TYPE; i++) 4653 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4654 CURSEG_I(sbi, i)->segno)) 4655 return 0; 4656 4657 /* 4658 * Get last valid block of the zone. 4659 */ 4660 last_valid_block = zone_block - 1; 4661 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4662 segno = zone_segno + s; 4663 se = get_seg_entry(sbi, segno); 4664 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4665 if (f2fs_test_bit(b, se->cur_valid_map)) { 4666 last_valid_block = START_BLOCK(sbi, segno) + b; 4667 break; 4668 } 4669 if (last_valid_block >= zone_block) 4670 break; 4671 } 4672 4673 /* 4674 * If last valid block is beyond the write pointer, report the 4675 * inconsistency. This inconsistency does not cause write error 4676 * because the zone will not be selected for write operation until 4677 * it get discarded. Just report it. 4678 */ 4679 if (last_valid_block >= wp_block) { 4680 f2fs_notice(sbi, "Valid block beyond write pointer: " 4681 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4682 GET_SEGNO(sbi, last_valid_block), 4683 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4684 wp_segno, wp_blkoff); 4685 return 0; 4686 } 4687 4688 /* 4689 * If there is no valid block in the zone and if write pointer is 4690 * not at zone start, reset the write pointer. 4691 */ 4692 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4693 f2fs_notice(sbi, 4694 "Zone without valid block has non-zero write " 4695 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4696 wp_segno, wp_blkoff); 4697 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4698 zone->len >> log_sectors_per_block); 4699 if (ret) { 4700 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4701 fdev->path, ret); 4702 return ret; 4703 } 4704 } 4705 4706 return 0; 4707 } 4708 4709 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4710 block_t zone_blkaddr) 4711 { 4712 int i; 4713 4714 for (i = 0; i < sbi->s_ndevs; i++) { 4715 if (!bdev_is_zoned(FDEV(i).bdev)) 4716 continue; 4717 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4718 zone_blkaddr <= FDEV(i).end_blk)) 4719 return &FDEV(i); 4720 } 4721 4722 return NULL; 4723 } 4724 4725 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4726 void *data) 4727 { 4728 memcpy(data, zone, sizeof(struct blk_zone)); 4729 return 0; 4730 } 4731 4732 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4733 { 4734 struct curseg_info *cs = CURSEG_I(sbi, type); 4735 struct f2fs_dev_info *zbd; 4736 struct blk_zone zone; 4737 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4738 block_t cs_zone_block, wp_block; 4739 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4740 sector_t zone_sector; 4741 int err; 4742 4743 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4744 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4745 4746 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4747 if (!zbd) 4748 return 0; 4749 4750 /* report zone for the sector the curseg points to */ 4751 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4752 << log_sectors_per_block; 4753 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4754 report_one_zone_cb, &zone); 4755 if (err != 1) { 4756 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4757 zbd->path, err); 4758 return err; 4759 } 4760 4761 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4762 return 0; 4763 4764 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4765 wp_segno = GET_SEGNO(sbi, wp_block); 4766 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4767 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4768 4769 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4770 wp_sector_off == 0) 4771 return 0; 4772 4773 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4774 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4775 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4776 4777 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4778 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4779 4780 f2fs_allocate_new_section(sbi, type, true); 4781 4782 /* check consistency of the zone curseg pointed to */ 4783 if (check_zone_write_pointer(sbi, zbd, &zone)) 4784 return -EIO; 4785 4786 /* check newly assigned zone */ 4787 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4788 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4789 4790 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4791 if (!zbd) 4792 return 0; 4793 4794 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4795 << log_sectors_per_block; 4796 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4797 report_one_zone_cb, &zone); 4798 if (err != 1) { 4799 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4800 zbd->path, err); 4801 return err; 4802 } 4803 4804 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4805 return 0; 4806 4807 if (zone.wp != zone.start) { 4808 f2fs_notice(sbi, 4809 "New zone for curseg[%d] is not yet discarded. " 4810 "Reset the zone: curseg[0x%x,0x%x]", 4811 type, cs->segno, cs->next_blkoff); 4812 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 4813 zone_sector >> log_sectors_per_block, 4814 zone.len >> log_sectors_per_block); 4815 if (err) { 4816 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4817 zbd->path, err); 4818 return err; 4819 } 4820 } 4821 4822 return 0; 4823 } 4824 4825 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4826 { 4827 int i, ret; 4828 4829 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4830 ret = fix_curseg_write_pointer(sbi, i); 4831 if (ret) 4832 return ret; 4833 } 4834 4835 return 0; 4836 } 4837 4838 struct check_zone_write_pointer_args { 4839 struct f2fs_sb_info *sbi; 4840 struct f2fs_dev_info *fdev; 4841 }; 4842 4843 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4844 void *data) 4845 { 4846 struct check_zone_write_pointer_args *args; 4847 4848 args = (struct check_zone_write_pointer_args *)data; 4849 4850 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4851 } 4852 4853 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4854 { 4855 int i, ret; 4856 struct check_zone_write_pointer_args args; 4857 4858 for (i = 0; i < sbi->s_ndevs; i++) { 4859 if (!bdev_is_zoned(FDEV(i).bdev)) 4860 continue; 4861 4862 args.sbi = sbi; 4863 args.fdev = &FDEV(i); 4864 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 4865 check_zone_write_pointer_cb, &args); 4866 if (ret < 0) 4867 return ret; 4868 } 4869 4870 return 0; 4871 } 4872 4873 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx, 4874 unsigned int dev_idx) 4875 { 4876 if (!bdev_is_zoned(FDEV(dev_idx).bdev)) 4877 return true; 4878 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq); 4879 } 4880 4881 /* Return the zone index in the given device */ 4882 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno, 4883 int dev_idx) 4884 { 4885 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4886 4887 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >> 4888 sbi->log_blocks_per_blkz; 4889 } 4890 4891 /* 4892 * Return the usable segments in a section based on the zone's 4893 * corresponding zone capacity. Zone is equal to a section. 4894 */ 4895 static inline unsigned int f2fs_usable_zone_segs_in_sec( 4896 struct f2fs_sb_info *sbi, unsigned int segno) 4897 { 4898 unsigned int dev_idx, zone_idx, unusable_segs_in_sec; 4899 4900 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno)); 4901 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx); 4902 4903 /* Conventional zone's capacity is always equal to zone size */ 4904 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4905 return sbi->segs_per_sec; 4906 4907 /* 4908 * If the zone_capacity_blocks array is NULL, then zone capacity 4909 * is equal to the zone size for all zones 4910 */ 4911 if (!FDEV(dev_idx).zone_capacity_blocks) 4912 return sbi->segs_per_sec; 4913 4914 /* Get the segment count beyond zone capacity block */ 4915 unusable_segs_in_sec = (sbi->blocks_per_blkz - 4916 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >> 4917 sbi->log_blocks_per_seg; 4918 return sbi->segs_per_sec - unusable_segs_in_sec; 4919 } 4920 4921 /* 4922 * Return the number of usable blocks in a segment. The number of blocks 4923 * returned is always equal to the number of blocks in a segment for 4924 * segments fully contained within a sequential zone capacity or a 4925 * conventional zone. For segments partially contained in a sequential 4926 * zone capacity, the number of usable blocks up to the zone capacity 4927 * is returned. 0 is returned in all other cases. 4928 */ 4929 static inline unsigned int f2fs_usable_zone_blks_in_seg( 4930 struct f2fs_sb_info *sbi, unsigned int segno) 4931 { 4932 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 4933 unsigned int zone_idx, dev_idx, secno; 4934 4935 secno = GET_SEC_FROM_SEG(sbi, segno); 4936 seg_start = START_BLOCK(sbi, segno); 4937 dev_idx = f2fs_target_device_index(sbi, seg_start); 4938 zone_idx = get_zone_idx(sbi, secno, dev_idx); 4939 4940 /* 4941 * Conventional zone's capacity is always equal to zone size, 4942 * so, blocks per segment is unchanged. 4943 */ 4944 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4945 return sbi->blocks_per_seg; 4946 4947 if (!FDEV(dev_idx).zone_capacity_blocks) 4948 return sbi->blocks_per_seg; 4949 4950 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4951 sec_cap_blkaddr = sec_start_blkaddr + 4952 FDEV(dev_idx).zone_capacity_blocks[zone_idx]; 4953 4954 /* 4955 * If segment starts before zone capacity and spans beyond 4956 * zone capacity, then usable blocks are from seg start to 4957 * zone capacity. If the segment starts after the zone capacity, 4958 * then there are no usable blocks. 4959 */ 4960 if (seg_start >= sec_cap_blkaddr) 4961 return 0; 4962 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 4963 return sec_cap_blkaddr - seg_start; 4964 4965 return sbi->blocks_per_seg; 4966 } 4967 #else 4968 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4969 { 4970 return 0; 4971 } 4972 4973 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4974 { 4975 return 0; 4976 } 4977 4978 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 4979 unsigned int segno) 4980 { 4981 return 0; 4982 } 4983 4984 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi, 4985 unsigned int segno) 4986 { 4987 return 0; 4988 } 4989 #endif 4990 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 4991 unsigned int segno) 4992 { 4993 if (f2fs_sb_has_blkzoned(sbi)) 4994 return f2fs_usable_zone_blks_in_seg(sbi, segno); 4995 4996 return sbi->blocks_per_seg; 4997 } 4998 4999 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5000 unsigned int segno) 5001 { 5002 if (f2fs_sb_has_blkzoned(sbi)) 5003 return f2fs_usable_zone_segs_in_sec(sbi, segno); 5004 5005 return sbi->segs_per_sec; 5006 } 5007 5008 /* 5009 * Update min, max modified time for cost-benefit GC algorithm 5010 */ 5011 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5012 { 5013 struct sit_info *sit_i = SIT_I(sbi); 5014 unsigned int segno; 5015 5016 down_write(&sit_i->sentry_lock); 5017 5018 sit_i->min_mtime = ULLONG_MAX; 5019 5020 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5021 unsigned int i; 5022 unsigned long long mtime = 0; 5023 5024 for (i = 0; i < sbi->segs_per_sec; i++) 5025 mtime += get_seg_entry(sbi, segno + i)->mtime; 5026 5027 mtime = div_u64(mtime, sbi->segs_per_sec); 5028 5029 if (sit_i->min_mtime > mtime) 5030 sit_i->min_mtime = mtime; 5031 } 5032 sit_i->max_mtime = get_mtime(sbi, false); 5033 sit_i->dirty_max_mtime = 0; 5034 up_write(&sit_i->sentry_lock); 5035 } 5036 5037 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5038 { 5039 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5040 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5041 struct f2fs_sm_info *sm_info; 5042 int err; 5043 5044 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5045 if (!sm_info) 5046 return -ENOMEM; 5047 5048 /* init sm info */ 5049 sbi->sm_info = sm_info; 5050 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5051 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5052 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5053 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5054 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5055 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5056 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5057 sm_info->rec_prefree_segments = sm_info->main_segments * 5058 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5059 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5060 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5061 5062 if (!f2fs_lfs_mode(sbi)) 5063 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 5064 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5065 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5066 sm_info->min_seq_blocks = sbi->blocks_per_seg; 5067 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5068 sm_info->min_ssr_sections = reserved_sections(sbi); 5069 5070 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5071 5072 init_f2fs_rwsem(&sm_info->curseg_lock); 5073 5074 if (!f2fs_readonly(sbi->sb)) { 5075 err = f2fs_create_flush_cmd_control(sbi); 5076 if (err) 5077 return err; 5078 } 5079 5080 err = create_discard_cmd_control(sbi); 5081 if (err) 5082 return err; 5083 5084 err = build_sit_info(sbi); 5085 if (err) 5086 return err; 5087 err = build_free_segmap(sbi); 5088 if (err) 5089 return err; 5090 err = build_curseg(sbi); 5091 if (err) 5092 return err; 5093 5094 /* reinit free segmap based on SIT */ 5095 err = build_sit_entries(sbi); 5096 if (err) 5097 return err; 5098 5099 init_free_segmap(sbi); 5100 err = build_dirty_segmap(sbi); 5101 if (err) 5102 return err; 5103 5104 err = sanity_check_curseg(sbi); 5105 if (err) 5106 return err; 5107 5108 init_min_max_mtime(sbi); 5109 return 0; 5110 } 5111 5112 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5113 enum dirty_type dirty_type) 5114 { 5115 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5116 5117 mutex_lock(&dirty_i->seglist_lock); 5118 kvfree(dirty_i->dirty_segmap[dirty_type]); 5119 dirty_i->nr_dirty[dirty_type] = 0; 5120 mutex_unlock(&dirty_i->seglist_lock); 5121 } 5122 5123 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5124 { 5125 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5126 5127 kvfree(dirty_i->pinned_secmap); 5128 kvfree(dirty_i->victim_secmap); 5129 } 5130 5131 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5132 { 5133 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5134 int i; 5135 5136 if (!dirty_i) 5137 return; 5138 5139 /* discard pre-free/dirty segments list */ 5140 for (i = 0; i < NR_DIRTY_TYPE; i++) 5141 discard_dirty_segmap(sbi, i); 5142 5143 if (__is_large_section(sbi)) { 5144 mutex_lock(&dirty_i->seglist_lock); 5145 kvfree(dirty_i->dirty_secmap); 5146 mutex_unlock(&dirty_i->seglist_lock); 5147 } 5148 5149 destroy_victim_secmap(sbi); 5150 SM_I(sbi)->dirty_info = NULL; 5151 kfree(dirty_i); 5152 } 5153 5154 static void destroy_curseg(struct f2fs_sb_info *sbi) 5155 { 5156 struct curseg_info *array = SM_I(sbi)->curseg_array; 5157 int i; 5158 5159 if (!array) 5160 return; 5161 SM_I(sbi)->curseg_array = NULL; 5162 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5163 kfree(array[i].sum_blk); 5164 kfree(array[i].journal); 5165 } 5166 kfree(array); 5167 } 5168 5169 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5170 { 5171 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5172 5173 if (!free_i) 5174 return; 5175 SM_I(sbi)->free_info = NULL; 5176 kvfree(free_i->free_segmap); 5177 kvfree(free_i->free_secmap); 5178 kfree(free_i); 5179 } 5180 5181 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5182 { 5183 struct sit_info *sit_i = SIT_I(sbi); 5184 5185 if (!sit_i) 5186 return; 5187 5188 if (sit_i->sentries) 5189 kvfree(sit_i->bitmap); 5190 kfree(sit_i->tmp_map); 5191 5192 kvfree(sit_i->sentries); 5193 kvfree(sit_i->sec_entries); 5194 kvfree(sit_i->dirty_sentries_bitmap); 5195 5196 SM_I(sbi)->sit_info = NULL; 5197 kvfree(sit_i->sit_bitmap); 5198 #ifdef CONFIG_F2FS_CHECK_FS 5199 kvfree(sit_i->sit_bitmap_mir); 5200 kvfree(sit_i->invalid_segmap); 5201 #endif 5202 kfree(sit_i); 5203 } 5204 5205 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5206 { 5207 struct f2fs_sm_info *sm_info = SM_I(sbi); 5208 5209 if (!sm_info) 5210 return; 5211 f2fs_destroy_flush_cmd_control(sbi, true); 5212 destroy_discard_cmd_control(sbi); 5213 destroy_dirty_segmap(sbi); 5214 destroy_curseg(sbi); 5215 destroy_free_segmap(sbi); 5216 destroy_sit_info(sbi); 5217 sbi->sm_info = NULL; 5218 kfree(sm_info); 5219 } 5220 5221 int __init f2fs_create_segment_manager_caches(void) 5222 { 5223 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5224 sizeof(struct discard_entry)); 5225 if (!discard_entry_slab) 5226 goto fail; 5227 5228 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5229 sizeof(struct discard_cmd)); 5230 if (!discard_cmd_slab) 5231 goto destroy_discard_entry; 5232 5233 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5234 sizeof(struct sit_entry_set)); 5235 if (!sit_entry_set_slab) 5236 goto destroy_discard_cmd; 5237 5238 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5239 sizeof(struct revoke_entry)); 5240 if (!revoke_entry_slab) 5241 goto destroy_sit_entry_set; 5242 return 0; 5243 5244 destroy_sit_entry_set: 5245 kmem_cache_destroy(sit_entry_set_slab); 5246 destroy_discard_cmd: 5247 kmem_cache_destroy(discard_cmd_slab); 5248 destroy_discard_entry: 5249 kmem_cache_destroy(discard_entry_slab); 5250 fail: 5251 return -ENOMEM; 5252 } 5253 5254 void f2fs_destroy_segment_manager_caches(void) 5255 { 5256 kmem_cache_destroy(sit_entry_set_slab); 5257 kmem_cache_destroy(discard_cmd_slab); 5258 kmem_cache_destroy(discard_entry_slab); 5259 kmem_cache_destroy(revoke_entry_slab); 5260 } 5261