1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 170 { 171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 174 175 if (test_opt(sbi, LFS)) 176 return false; 177 if (sbi->gc_mode == GC_URGENT) 178 return true; 179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 180 return true; 181 182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 184 } 185 186 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 187 { 188 struct inmem_pages *new; 189 190 f2fs_trace_pid(page); 191 192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 193 194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 195 196 /* add atomic page indices to the list */ 197 new->page = page; 198 INIT_LIST_HEAD(&new->list); 199 200 /* increase reference count with clean state */ 201 get_page(page); 202 mutex_lock(&F2FS_I(inode)->inmem_lock); 203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 205 mutex_unlock(&F2FS_I(inode)->inmem_lock); 206 207 trace_f2fs_register_inmem_page(page, INMEM); 208 } 209 210 static int __revoke_inmem_pages(struct inode *inode, 211 struct list_head *head, bool drop, bool recover, 212 bool trylock) 213 { 214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 215 struct inmem_pages *cur, *tmp; 216 int err = 0; 217 218 list_for_each_entry_safe(cur, tmp, head, list) { 219 struct page *page = cur->page; 220 221 if (drop) 222 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 223 224 if (trylock) { 225 /* 226 * to avoid deadlock in between page lock and 227 * inmem_lock. 228 */ 229 if (!trylock_page(page)) 230 continue; 231 } else { 232 lock_page(page); 233 } 234 235 f2fs_wait_on_page_writeback(page, DATA, true, true); 236 237 if (recover) { 238 struct dnode_of_data dn; 239 struct node_info ni; 240 241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 242 retry: 243 set_new_dnode(&dn, inode, NULL, NULL, 0); 244 err = f2fs_get_dnode_of_data(&dn, page->index, 245 LOOKUP_NODE); 246 if (err) { 247 if (err == -ENOMEM) { 248 congestion_wait(BLK_RW_ASYNC, HZ/50); 249 cond_resched(); 250 goto retry; 251 } 252 err = -EAGAIN; 253 goto next; 254 } 255 256 err = f2fs_get_node_info(sbi, dn.nid, &ni); 257 if (err) { 258 f2fs_put_dnode(&dn); 259 return err; 260 } 261 262 if (cur->old_addr == NEW_ADDR) { 263 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 264 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 265 } else 266 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 267 cur->old_addr, ni.version, true, true); 268 f2fs_put_dnode(&dn); 269 } 270 next: 271 /* we don't need to invalidate this in the sccessful status */ 272 if (drop || recover) { 273 ClearPageUptodate(page); 274 clear_cold_data(page); 275 } 276 f2fs_clear_page_private(page); 277 f2fs_put_page(page, 1); 278 279 list_del(&cur->list); 280 kmem_cache_free(inmem_entry_slab, cur); 281 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 282 } 283 return err; 284 } 285 286 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 287 { 288 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 289 struct inode *inode; 290 struct f2fs_inode_info *fi; 291 next: 292 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 293 if (list_empty(head)) { 294 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 295 return; 296 } 297 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 298 inode = igrab(&fi->vfs_inode); 299 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 300 301 if (inode) { 302 if (gc_failure) { 303 if (fi->i_gc_failures[GC_FAILURE_ATOMIC]) 304 goto drop; 305 goto skip; 306 } 307 drop: 308 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 309 f2fs_drop_inmem_pages(inode); 310 iput(inode); 311 } 312 skip: 313 congestion_wait(BLK_RW_ASYNC, HZ/50); 314 cond_resched(); 315 goto next; 316 } 317 318 void f2fs_drop_inmem_pages(struct inode *inode) 319 { 320 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 321 struct f2fs_inode_info *fi = F2FS_I(inode); 322 323 while (!list_empty(&fi->inmem_pages)) { 324 mutex_lock(&fi->inmem_lock); 325 __revoke_inmem_pages(inode, &fi->inmem_pages, 326 true, false, true); 327 mutex_unlock(&fi->inmem_lock); 328 } 329 330 clear_inode_flag(inode, FI_ATOMIC_FILE); 331 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 332 stat_dec_atomic_write(inode); 333 334 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 335 if (!list_empty(&fi->inmem_ilist)) 336 list_del_init(&fi->inmem_ilist); 337 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 338 } 339 340 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 341 { 342 struct f2fs_inode_info *fi = F2FS_I(inode); 343 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 344 struct list_head *head = &fi->inmem_pages; 345 struct inmem_pages *cur = NULL; 346 347 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 348 349 mutex_lock(&fi->inmem_lock); 350 list_for_each_entry(cur, head, list) { 351 if (cur->page == page) 352 break; 353 } 354 355 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 356 list_del(&cur->list); 357 mutex_unlock(&fi->inmem_lock); 358 359 dec_page_count(sbi, F2FS_INMEM_PAGES); 360 kmem_cache_free(inmem_entry_slab, cur); 361 362 ClearPageUptodate(page); 363 f2fs_clear_page_private(page); 364 f2fs_put_page(page, 0); 365 366 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 367 } 368 369 static int __f2fs_commit_inmem_pages(struct inode *inode) 370 { 371 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 372 struct f2fs_inode_info *fi = F2FS_I(inode); 373 struct inmem_pages *cur, *tmp; 374 struct f2fs_io_info fio = { 375 .sbi = sbi, 376 .ino = inode->i_ino, 377 .type = DATA, 378 .op = REQ_OP_WRITE, 379 .op_flags = REQ_SYNC | REQ_PRIO, 380 .io_type = FS_DATA_IO, 381 }; 382 struct list_head revoke_list; 383 bool submit_bio = false; 384 int err = 0; 385 386 INIT_LIST_HEAD(&revoke_list); 387 388 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 389 struct page *page = cur->page; 390 391 lock_page(page); 392 if (page->mapping == inode->i_mapping) { 393 trace_f2fs_commit_inmem_page(page, INMEM); 394 395 f2fs_wait_on_page_writeback(page, DATA, true, true); 396 397 set_page_dirty(page); 398 if (clear_page_dirty_for_io(page)) { 399 inode_dec_dirty_pages(inode); 400 f2fs_remove_dirty_inode(inode); 401 } 402 retry: 403 fio.page = page; 404 fio.old_blkaddr = NULL_ADDR; 405 fio.encrypted_page = NULL; 406 fio.need_lock = LOCK_DONE; 407 err = f2fs_do_write_data_page(&fio); 408 if (err) { 409 if (err == -ENOMEM) { 410 congestion_wait(BLK_RW_ASYNC, HZ/50); 411 cond_resched(); 412 goto retry; 413 } 414 unlock_page(page); 415 break; 416 } 417 /* record old blkaddr for revoking */ 418 cur->old_addr = fio.old_blkaddr; 419 submit_bio = true; 420 } 421 unlock_page(page); 422 list_move_tail(&cur->list, &revoke_list); 423 } 424 425 if (submit_bio) 426 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 427 428 if (err) { 429 /* 430 * try to revoke all committed pages, but still we could fail 431 * due to no memory or other reason, if that happened, EAGAIN 432 * will be returned, which means in such case, transaction is 433 * already not integrity, caller should use journal to do the 434 * recovery or rewrite & commit last transaction. For other 435 * error number, revoking was done by filesystem itself. 436 */ 437 err = __revoke_inmem_pages(inode, &revoke_list, 438 false, true, false); 439 440 /* drop all uncommitted pages */ 441 __revoke_inmem_pages(inode, &fi->inmem_pages, 442 true, false, false); 443 } else { 444 __revoke_inmem_pages(inode, &revoke_list, 445 false, false, false); 446 } 447 448 return err; 449 } 450 451 int f2fs_commit_inmem_pages(struct inode *inode) 452 { 453 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 454 struct f2fs_inode_info *fi = F2FS_I(inode); 455 int err; 456 457 f2fs_balance_fs(sbi, true); 458 459 down_write(&fi->i_gc_rwsem[WRITE]); 460 461 f2fs_lock_op(sbi); 462 set_inode_flag(inode, FI_ATOMIC_COMMIT); 463 464 mutex_lock(&fi->inmem_lock); 465 err = __f2fs_commit_inmem_pages(inode); 466 mutex_unlock(&fi->inmem_lock); 467 468 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 469 470 f2fs_unlock_op(sbi); 471 up_write(&fi->i_gc_rwsem[WRITE]); 472 473 return err; 474 } 475 476 /* 477 * This function balances dirty node and dentry pages. 478 * In addition, it controls garbage collection. 479 */ 480 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 481 { 482 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 483 f2fs_show_injection_info(FAULT_CHECKPOINT); 484 f2fs_stop_checkpoint(sbi, false); 485 } 486 487 /* balance_fs_bg is able to be pending */ 488 if (need && excess_cached_nats(sbi)) 489 f2fs_balance_fs_bg(sbi); 490 491 if (!f2fs_is_checkpoint_ready(sbi)) 492 return; 493 494 /* 495 * We should do GC or end up with checkpoint, if there are so many dirty 496 * dir/node pages without enough free segments. 497 */ 498 if (has_not_enough_free_secs(sbi, 0, 0)) { 499 mutex_lock(&sbi->gc_mutex); 500 f2fs_gc(sbi, false, false, NULL_SEGNO); 501 } 502 } 503 504 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 505 { 506 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 507 return; 508 509 /* try to shrink extent cache when there is no enough memory */ 510 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 511 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 512 513 /* check the # of cached NAT entries */ 514 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 515 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 516 517 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 518 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 519 else 520 f2fs_build_free_nids(sbi, false, false); 521 522 if (!is_idle(sbi, REQ_TIME) && 523 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) 524 return; 525 526 /* checkpoint is the only way to shrink partial cached entries */ 527 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 528 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 529 excess_prefree_segs(sbi) || 530 excess_dirty_nats(sbi) || 531 excess_dirty_nodes(sbi) || 532 f2fs_time_over(sbi, CP_TIME)) { 533 if (test_opt(sbi, DATA_FLUSH)) { 534 struct blk_plug plug; 535 536 mutex_lock(&sbi->flush_lock); 537 538 blk_start_plug(&plug); 539 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 540 blk_finish_plug(&plug); 541 542 mutex_unlock(&sbi->flush_lock); 543 } 544 f2fs_sync_fs(sbi->sb, true); 545 stat_inc_bg_cp_count(sbi->stat_info); 546 } 547 } 548 549 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 550 struct block_device *bdev) 551 { 552 struct bio *bio; 553 int ret; 554 555 bio = f2fs_bio_alloc(sbi, 0, false); 556 if (!bio) 557 return -ENOMEM; 558 559 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 560 bio_set_dev(bio, bdev); 561 ret = submit_bio_wait(bio); 562 bio_put(bio); 563 564 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 565 test_opt(sbi, FLUSH_MERGE), ret); 566 return ret; 567 } 568 569 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 570 { 571 int ret = 0; 572 int i; 573 574 if (!f2fs_is_multi_device(sbi)) 575 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 576 577 for (i = 0; i < sbi->s_ndevs; i++) { 578 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 579 continue; 580 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 581 if (ret) 582 break; 583 } 584 return ret; 585 } 586 587 static int issue_flush_thread(void *data) 588 { 589 struct f2fs_sb_info *sbi = data; 590 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 591 wait_queue_head_t *q = &fcc->flush_wait_queue; 592 repeat: 593 if (kthread_should_stop()) 594 return 0; 595 596 sb_start_intwrite(sbi->sb); 597 598 if (!llist_empty(&fcc->issue_list)) { 599 struct flush_cmd *cmd, *next; 600 int ret; 601 602 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 603 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 604 605 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 606 607 ret = submit_flush_wait(sbi, cmd->ino); 608 atomic_inc(&fcc->issued_flush); 609 610 llist_for_each_entry_safe(cmd, next, 611 fcc->dispatch_list, llnode) { 612 cmd->ret = ret; 613 complete(&cmd->wait); 614 } 615 fcc->dispatch_list = NULL; 616 } 617 618 sb_end_intwrite(sbi->sb); 619 620 wait_event_interruptible(*q, 621 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 622 goto repeat; 623 } 624 625 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 626 { 627 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 628 struct flush_cmd cmd; 629 int ret; 630 631 if (test_opt(sbi, NOBARRIER)) 632 return 0; 633 634 if (!test_opt(sbi, FLUSH_MERGE)) { 635 atomic_inc(&fcc->queued_flush); 636 ret = submit_flush_wait(sbi, ino); 637 atomic_dec(&fcc->queued_flush); 638 atomic_inc(&fcc->issued_flush); 639 return ret; 640 } 641 642 if (atomic_inc_return(&fcc->queued_flush) == 1 || 643 f2fs_is_multi_device(sbi)) { 644 ret = submit_flush_wait(sbi, ino); 645 atomic_dec(&fcc->queued_flush); 646 647 atomic_inc(&fcc->issued_flush); 648 return ret; 649 } 650 651 cmd.ino = ino; 652 init_completion(&cmd.wait); 653 654 llist_add(&cmd.llnode, &fcc->issue_list); 655 656 /* update issue_list before we wake up issue_flush thread */ 657 smp_mb(); 658 659 if (waitqueue_active(&fcc->flush_wait_queue)) 660 wake_up(&fcc->flush_wait_queue); 661 662 if (fcc->f2fs_issue_flush) { 663 wait_for_completion(&cmd.wait); 664 atomic_dec(&fcc->queued_flush); 665 } else { 666 struct llist_node *list; 667 668 list = llist_del_all(&fcc->issue_list); 669 if (!list) { 670 wait_for_completion(&cmd.wait); 671 atomic_dec(&fcc->queued_flush); 672 } else { 673 struct flush_cmd *tmp, *next; 674 675 ret = submit_flush_wait(sbi, ino); 676 677 llist_for_each_entry_safe(tmp, next, list, llnode) { 678 if (tmp == &cmd) { 679 cmd.ret = ret; 680 atomic_dec(&fcc->queued_flush); 681 continue; 682 } 683 tmp->ret = ret; 684 complete(&tmp->wait); 685 } 686 } 687 } 688 689 return cmd.ret; 690 } 691 692 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 693 { 694 dev_t dev = sbi->sb->s_bdev->bd_dev; 695 struct flush_cmd_control *fcc; 696 int err = 0; 697 698 if (SM_I(sbi)->fcc_info) { 699 fcc = SM_I(sbi)->fcc_info; 700 if (fcc->f2fs_issue_flush) 701 return err; 702 goto init_thread; 703 } 704 705 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 706 if (!fcc) 707 return -ENOMEM; 708 atomic_set(&fcc->issued_flush, 0); 709 atomic_set(&fcc->queued_flush, 0); 710 init_waitqueue_head(&fcc->flush_wait_queue); 711 init_llist_head(&fcc->issue_list); 712 SM_I(sbi)->fcc_info = fcc; 713 if (!test_opt(sbi, FLUSH_MERGE)) 714 return err; 715 716 init_thread: 717 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 718 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 719 if (IS_ERR(fcc->f2fs_issue_flush)) { 720 err = PTR_ERR(fcc->f2fs_issue_flush); 721 kvfree(fcc); 722 SM_I(sbi)->fcc_info = NULL; 723 return err; 724 } 725 726 return err; 727 } 728 729 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 730 { 731 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 732 733 if (fcc && fcc->f2fs_issue_flush) { 734 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 735 736 fcc->f2fs_issue_flush = NULL; 737 kthread_stop(flush_thread); 738 } 739 if (free) { 740 kvfree(fcc); 741 SM_I(sbi)->fcc_info = NULL; 742 } 743 } 744 745 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 746 { 747 int ret = 0, i; 748 749 if (!f2fs_is_multi_device(sbi)) 750 return 0; 751 752 for (i = 1; i < sbi->s_ndevs; i++) { 753 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 754 continue; 755 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 756 if (ret) 757 break; 758 759 spin_lock(&sbi->dev_lock); 760 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 761 spin_unlock(&sbi->dev_lock); 762 } 763 764 return ret; 765 } 766 767 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 768 enum dirty_type dirty_type) 769 { 770 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 771 772 /* need not be added */ 773 if (IS_CURSEG(sbi, segno)) 774 return; 775 776 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 777 dirty_i->nr_dirty[dirty_type]++; 778 779 if (dirty_type == DIRTY) { 780 struct seg_entry *sentry = get_seg_entry(sbi, segno); 781 enum dirty_type t = sentry->type; 782 783 if (unlikely(t >= DIRTY)) { 784 f2fs_bug_on(sbi, 1); 785 return; 786 } 787 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 788 dirty_i->nr_dirty[t]++; 789 } 790 } 791 792 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 793 enum dirty_type dirty_type) 794 { 795 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 796 797 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 798 dirty_i->nr_dirty[dirty_type]--; 799 800 if (dirty_type == DIRTY) { 801 struct seg_entry *sentry = get_seg_entry(sbi, segno); 802 enum dirty_type t = sentry->type; 803 804 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 805 dirty_i->nr_dirty[t]--; 806 807 if (get_valid_blocks(sbi, segno, true) == 0) { 808 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 809 dirty_i->victim_secmap); 810 #ifdef CONFIG_F2FS_CHECK_FS 811 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 812 #endif 813 } 814 } 815 } 816 817 /* 818 * Should not occur error such as -ENOMEM. 819 * Adding dirty entry into seglist is not critical operation. 820 * If a given segment is one of current working segments, it won't be added. 821 */ 822 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 823 { 824 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 825 unsigned short valid_blocks, ckpt_valid_blocks; 826 827 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 828 return; 829 830 mutex_lock(&dirty_i->seglist_lock); 831 832 valid_blocks = get_valid_blocks(sbi, segno, false); 833 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 834 835 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 836 ckpt_valid_blocks == sbi->blocks_per_seg)) { 837 __locate_dirty_segment(sbi, segno, PRE); 838 __remove_dirty_segment(sbi, segno, DIRTY); 839 } else if (valid_blocks < sbi->blocks_per_seg) { 840 __locate_dirty_segment(sbi, segno, DIRTY); 841 } else { 842 /* Recovery routine with SSR needs this */ 843 __remove_dirty_segment(sbi, segno, DIRTY); 844 } 845 846 mutex_unlock(&dirty_i->seglist_lock); 847 } 848 849 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 850 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 851 { 852 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 853 unsigned int segno; 854 855 mutex_lock(&dirty_i->seglist_lock); 856 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 857 if (get_valid_blocks(sbi, segno, false)) 858 continue; 859 if (IS_CURSEG(sbi, segno)) 860 continue; 861 __locate_dirty_segment(sbi, segno, PRE); 862 __remove_dirty_segment(sbi, segno, DIRTY); 863 } 864 mutex_unlock(&dirty_i->seglist_lock); 865 } 866 867 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 868 { 869 int ovp_hole_segs = 870 (overprovision_segments(sbi) - reserved_segments(sbi)); 871 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 872 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 873 block_t holes[2] = {0, 0}; /* DATA and NODE */ 874 block_t unusable; 875 struct seg_entry *se; 876 unsigned int segno; 877 878 mutex_lock(&dirty_i->seglist_lock); 879 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 880 se = get_seg_entry(sbi, segno); 881 if (IS_NODESEG(se->type)) 882 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; 883 else 884 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; 885 } 886 mutex_unlock(&dirty_i->seglist_lock); 887 888 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 889 if (unusable > ovp_holes) 890 return unusable - ovp_holes; 891 return 0; 892 } 893 894 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 895 { 896 int ovp_hole_segs = 897 (overprovision_segments(sbi) - reserved_segments(sbi)); 898 if (unusable > F2FS_OPTION(sbi).unusable_cap) 899 return -EAGAIN; 900 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 901 dirty_segments(sbi) > ovp_hole_segs) 902 return -EAGAIN; 903 return 0; 904 } 905 906 /* This is only used by SBI_CP_DISABLED */ 907 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 908 { 909 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 910 unsigned int segno = 0; 911 912 mutex_lock(&dirty_i->seglist_lock); 913 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 914 if (get_valid_blocks(sbi, segno, false)) 915 continue; 916 if (get_ckpt_valid_blocks(sbi, segno)) 917 continue; 918 mutex_unlock(&dirty_i->seglist_lock); 919 return segno; 920 } 921 mutex_unlock(&dirty_i->seglist_lock); 922 return NULL_SEGNO; 923 } 924 925 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 926 struct block_device *bdev, block_t lstart, 927 block_t start, block_t len) 928 { 929 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 930 struct list_head *pend_list; 931 struct discard_cmd *dc; 932 933 f2fs_bug_on(sbi, !len); 934 935 pend_list = &dcc->pend_list[plist_idx(len)]; 936 937 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 938 INIT_LIST_HEAD(&dc->list); 939 dc->bdev = bdev; 940 dc->lstart = lstart; 941 dc->start = start; 942 dc->len = len; 943 dc->ref = 0; 944 dc->state = D_PREP; 945 dc->queued = 0; 946 dc->error = 0; 947 init_completion(&dc->wait); 948 list_add_tail(&dc->list, pend_list); 949 spin_lock_init(&dc->lock); 950 dc->bio_ref = 0; 951 atomic_inc(&dcc->discard_cmd_cnt); 952 dcc->undiscard_blks += len; 953 954 return dc; 955 } 956 957 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 958 struct block_device *bdev, block_t lstart, 959 block_t start, block_t len, 960 struct rb_node *parent, struct rb_node **p, 961 bool leftmost) 962 { 963 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 964 struct discard_cmd *dc; 965 966 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 967 968 rb_link_node(&dc->rb_node, parent, p); 969 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 970 971 return dc; 972 } 973 974 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 975 struct discard_cmd *dc) 976 { 977 if (dc->state == D_DONE) 978 atomic_sub(dc->queued, &dcc->queued_discard); 979 980 list_del(&dc->list); 981 rb_erase_cached(&dc->rb_node, &dcc->root); 982 dcc->undiscard_blks -= dc->len; 983 984 kmem_cache_free(discard_cmd_slab, dc); 985 986 atomic_dec(&dcc->discard_cmd_cnt); 987 } 988 989 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 990 struct discard_cmd *dc) 991 { 992 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 993 unsigned long flags; 994 995 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 996 997 spin_lock_irqsave(&dc->lock, flags); 998 if (dc->bio_ref) { 999 spin_unlock_irqrestore(&dc->lock, flags); 1000 return; 1001 } 1002 spin_unlock_irqrestore(&dc->lock, flags); 1003 1004 f2fs_bug_on(sbi, dc->ref); 1005 1006 if (dc->error == -EOPNOTSUPP) 1007 dc->error = 0; 1008 1009 if (dc->error) 1010 printk_ratelimited( 1011 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d", 1012 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error); 1013 __detach_discard_cmd(dcc, dc); 1014 } 1015 1016 static void f2fs_submit_discard_endio(struct bio *bio) 1017 { 1018 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1019 unsigned long flags; 1020 1021 dc->error = blk_status_to_errno(bio->bi_status); 1022 1023 spin_lock_irqsave(&dc->lock, flags); 1024 dc->bio_ref--; 1025 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1026 dc->state = D_DONE; 1027 complete_all(&dc->wait); 1028 } 1029 spin_unlock_irqrestore(&dc->lock, flags); 1030 bio_put(bio); 1031 } 1032 1033 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1034 block_t start, block_t end) 1035 { 1036 #ifdef CONFIG_F2FS_CHECK_FS 1037 struct seg_entry *sentry; 1038 unsigned int segno; 1039 block_t blk = start; 1040 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1041 unsigned long *map; 1042 1043 while (blk < end) { 1044 segno = GET_SEGNO(sbi, blk); 1045 sentry = get_seg_entry(sbi, segno); 1046 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1047 1048 if (end < START_BLOCK(sbi, segno + 1)) 1049 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1050 else 1051 size = max_blocks; 1052 map = (unsigned long *)(sentry->cur_valid_map); 1053 offset = __find_rev_next_bit(map, size, offset); 1054 f2fs_bug_on(sbi, offset != size); 1055 blk = START_BLOCK(sbi, segno + 1); 1056 } 1057 #endif 1058 } 1059 1060 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1061 struct discard_policy *dpolicy, 1062 int discard_type, unsigned int granularity) 1063 { 1064 /* common policy */ 1065 dpolicy->type = discard_type; 1066 dpolicy->sync = true; 1067 dpolicy->ordered = false; 1068 dpolicy->granularity = granularity; 1069 1070 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1071 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1072 dpolicy->timeout = 0; 1073 1074 if (discard_type == DPOLICY_BG) { 1075 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1076 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1077 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1078 dpolicy->io_aware = true; 1079 dpolicy->sync = false; 1080 dpolicy->ordered = true; 1081 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1082 dpolicy->granularity = 1; 1083 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1084 } 1085 } else if (discard_type == DPOLICY_FORCE) { 1086 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1087 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1088 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1089 dpolicy->io_aware = false; 1090 } else if (discard_type == DPOLICY_FSTRIM) { 1091 dpolicy->io_aware = false; 1092 } else if (discard_type == DPOLICY_UMOUNT) { 1093 dpolicy->max_requests = UINT_MAX; 1094 dpolicy->io_aware = false; 1095 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1096 dpolicy->granularity = 1; 1097 } 1098 } 1099 1100 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1101 struct block_device *bdev, block_t lstart, 1102 block_t start, block_t len); 1103 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1104 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1105 struct discard_policy *dpolicy, 1106 struct discard_cmd *dc, 1107 unsigned int *issued) 1108 { 1109 struct block_device *bdev = dc->bdev; 1110 struct request_queue *q = bdev_get_queue(bdev); 1111 unsigned int max_discard_blocks = 1112 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1113 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1114 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1115 &(dcc->fstrim_list) : &(dcc->wait_list); 1116 int flag = dpolicy->sync ? REQ_SYNC : 0; 1117 block_t lstart, start, len, total_len; 1118 int err = 0; 1119 1120 if (dc->state != D_PREP) 1121 return 0; 1122 1123 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1124 return 0; 1125 1126 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1127 1128 lstart = dc->lstart; 1129 start = dc->start; 1130 len = dc->len; 1131 total_len = len; 1132 1133 dc->len = 0; 1134 1135 while (total_len && *issued < dpolicy->max_requests && !err) { 1136 struct bio *bio = NULL; 1137 unsigned long flags; 1138 bool last = true; 1139 1140 if (len > max_discard_blocks) { 1141 len = max_discard_blocks; 1142 last = false; 1143 } 1144 1145 (*issued)++; 1146 if (*issued == dpolicy->max_requests) 1147 last = true; 1148 1149 dc->len += len; 1150 1151 if (time_to_inject(sbi, FAULT_DISCARD)) { 1152 f2fs_show_injection_info(FAULT_DISCARD); 1153 err = -EIO; 1154 goto submit; 1155 } 1156 err = __blkdev_issue_discard(bdev, 1157 SECTOR_FROM_BLOCK(start), 1158 SECTOR_FROM_BLOCK(len), 1159 GFP_NOFS, 0, &bio); 1160 submit: 1161 if (err) { 1162 spin_lock_irqsave(&dc->lock, flags); 1163 if (dc->state == D_PARTIAL) 1164 dc->state = D_SUBMIT; 1165 spin_unlock_irqrestore(&dc->lock, flags); 1166 1167 break; 1168 } 1169 1170 f2fs_bug_on(sbi, !bio); 1171 1172 /* 1173 * should keep before submission to avoid D_DONE 1174 * right away 1175 */ 1176 spin_lock_irqsave(&dc->lock, flags); 1177 if (last) 1178 dc->state = D_SUBMIT; 1179 else 1180 dc->state = D_PARTIAL; 1181 dc->bio_ref++; 1182 spin_unlock_irqrestore(&dc->lock, flags); 1183 1184 atomic_inc(&dcc->queued_discard); 1185 dc->queued++; 1186 list_move_tail(&dc->list, wait_list); 1187 1188 /* sanity check on discard range */ 1189 __check_sit_bitmap(sbi, lstart, lstart + len); 1190 1191 bio->bi_private = dc; 1192 bio->bi_end_io = f2fs_submit_discard_endio; 1193 bio->bi_opf |= flag; 1194 submit_bio(bio); 1195 1196 atomic_inc(&dcc->issued_discard); 1197 1198 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1199 1200 lstart += len; 1201 start += len; 1202 total_len -= len; 1203 len = total_len; 1204 } 1205 1206 if (!err && len) 1207 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1208 return err; 1209 } 1210 1211 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 1212 struct block_device *bdev, block_t lstart, 1213 block_t start, block_t len, 1214 struct rb_node **insert_p, 1215 struct rb_node *insert_parent) 1216 { 1217 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1218 struct rb_node **p; 1219 struct rb_node *parent = NULL; 1220 struct discard_cmd *dc = NULL; 1221 bool leftmost = true; 1222 1223 if (insert_p && insert_parent) { 1224 parent = insert_parent; 1225 p = insert_p; 1226 goto do_insert; 1227 } 1228 1229 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1230 lstart, &leftmost); 1231 do_insert: 1232 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1233 p, leftmost); 1234 if (!dc) 1235 return NULL; 1236 1237 return dc; 1238 } 1239 1240 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1241 struct discard_cmd *dc) 1242 { 1243 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1244 } 1245 1246 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1247 struct discard_cmd *dc, block_t blkaddr) 1248 { 1249 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1250 struct discard_info di = dc->di; 1251 bool modified = false; 1252 1253 if (dc->state == D_DONE || dc->len == 1) { 1254 __remove_discard_cmd(sbi, dc); 1255 return; 1256 } 1257 1258 dcc->undiscard_blks -= di.len; 1259 1260 if (blkaddr > di.lstart) { 1261 dc->len = blkaddr - dc->lstart; 1262 dcc->undiscard_blks += dc->len; 1263 __relocate_discard_cmd(dcc, dc); 1264 modified = true; 1265 } 1266 1267 if (blkaddr < di.lstart + di.len - 1) { 1268 if (modified) { 1269 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1270 di.start + blkaddr + 1 - di.lstart, 1271 di.lstart + di.len - 1 - blkaddr, 1272 NULL, NULL); 1273 } else { 1274 dc->lstart++; 1275 dc->len--; 1276 dc->start++; 1277 dcc->undiscard_blks += dc->len; 1278 __relocate_discard_cmd(dcc, dc); 1279 } 1280 } 1281 } 1282 1283 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1284 struct block_device *bdev, block_t lstart, 1285 block_t start, block_t len) 1286 { 1287 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1288 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1289 struct discard_cmd *dc; 1290 struct discard_info di = {0}; 1291 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1292 struct request_queue *q = bdev_get_queue(bdev); 1293 unsigned int max_discard_blocks = 1294 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1295 block_t end = lstart + len; 1296 1297 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1298 NULL, lstart, 1299 (struct rb_entry **)&prev_dc, 1300 (struct rb_entry **)&next_dc, 1301 &insert_p, &insert_parent, true, NULL); 1302 if (dc) 1303 prev_dc = dc; 1304 1305 if (!prev_dc) { 1306 di.lstart = lstart; 1307 di.len = next_dc ? next_dc->lstart - lstart : len; 1308 di.len = min(di.len, len); 1309 di.start = start; 1310 } 1311 1312 while (1) { 1313 struct rb_node *node; 1314 bool merged = false; 1315 struct discard_cmd *tdc = NULL; 1316 1317 if (prev_dc) { 1318 di.lstart = prev_dc->lstart + prev_dc->len; 1319 if (di.lstart < lstart) 1320 di.lstart = lstart; 1321 if (di.lstart >= end) 1322 break; 1323 1324 if (!next_dc || next_dc->lstart > end) 1325 di.len = end - di.lstart; 1326 else 1327 di.len = next_dc->lstart - di.lstart; 1328 di.start = start + di.lstart - lstart; 1329 } 1330 1331 if (!di.len) 1332 goto next; 1333 1334 if (prev_dc && prev_dc->state == D_PREP && 1335 prev_dc->bdev == bdev && 1336 __is_discard_back_mergeable(&di, &prev_dc->di, 1337 max_discard_blocks)) { 1338 prev_dc->di.len += di.len; 1339 dcc->undiscard_blks += di.len; 1340 __relocate_discard_cmd(dcc, prev_dc); 1341 di = prev_dc->di; 1342 tdc = prev_dc; 1343 merged = true; 1344 } 1345 1346 if (next_dc && next_dc->state == D_PREP && 1347 next_dc->bdev == bdev && 1348 __is_discard_front_mergeable(&di, &next_dc->di, 1349 max_discard_blocks)) { 1350 next_dc->di.lstart = di.lstart; 1351 next_dc->di.len += di.len; 1352 next_dc->di.start = di.start; 1353 dcc->undiscard_blks += di.len; 1354 __relocate_discard_cmd(dcc, next_dc); 1355 if (tdc) 1356 __remove_discard_cmd(sbi, tdc); 1357 merged = true; 1358 } 1359 1360 if (!merged) { 1361 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1362 di.len, NULL, NULL); 1363 } 1364 next: 1365 prev_dc = next_dc; 1366 if (!prev_dc) 1367 break; 1368 1369 node = rb_next(&prev_dc->rb_node); 1370 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1371 } 1372 } 1373 1374 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1375 struct block_device *bdev, block_t blkstart, block_t blklen) 1376 { 1377 block_t lblkstart = blkstart; 1378 1379 if (!f2fs_bdev_support_discard(bdev)) 1380 return 0; 1381 1382 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1383 1384 if (f2fs_is_multi_device(sbi)) { 1385 int devi = f2fs_target_device_index(sbi, blkstart); 1386 1387 blkstart -= FDEV(devi).start_blk; 1388 } 1389 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1390 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1391 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1392 return 0; 1393 } 1394 1395 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1396 struct discard_policy *dpolicy) 1397 { 1398 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1399 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1400 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1401 struct discard_cmd *dc; 1402 struct blk_plug plug; 1403 unsigned int pos = dcc->next_pos; 1404 unsigned int issued = 0; 1405 bool io_interrupted = false; 1406 1407 mutex_lock(&dcc->cmd_lock); 1408 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1409 NULL, pos, 1410 (struct rb_entry **)&prev_dc, 1411 (struct rb_entry **)&next_dc, 1412 &insert_p, &insert_parent, true, NULL); 1413 if (!dc) 1414 dc = next_dc; 1415 1416 blk_start_plug(&plug); 1417 1418 while (dc) { 1419 struct rb_node *node; 1420 int err = 0; 1421 1422 if (dc->state != D_PREP) 1423 goto next; 1424 1425 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1426 io_interrupted = true; 1427 break; 1428 } 1429 1430 dcc->next_pos = dc->lstart + dc->len; 1431 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1432 1433 if (issued >= dpolicy->max_requests) 1434 break; 1435 next: 1436 node = rb_next(&dc->rb_node); 1437 if (err) 1438 __remove_discard_cmd(sbi, dc); 1439 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1440 } 1441 1442 blk_finish_plug(&plug); 1443 1444 if (!dc) 1445 dcc->next_pos = 0; 1446 1447 mutex_unlock(&dcc->cmd_lock); 1448 1449 if (!issued && io_interrupted) 1450 issued = -1; 1451 1452 return issued; 1453 } 1454 1455 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1456 struct discard_policy *dpolicy) 1457 { 1458 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1459 struct list_head *pend_list; 1460 struct discard_cmd *dc, *tmp; 1461 struct blk_plug plug; 1462 int i, issued = 0; 1463 bool io_interrupted = false; 1464 1465 if (dpolicy->timeout != 0) 1466 f2fs_update_time(sbi, dpolicy->timeout); 1467 1468 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1469 if (dpolicy->timeout != 0 && 1470 f2fs_time_over(sbi, dpolicy->timeout)) 1471 break; 1472 1473 if (i + 1 < dpolicy->granularity) 1474 break; 1475 1476 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1477 return __issue_discard_cmd_orderly(sbi, dpolicy); 1478 1479 pend_list = &dcc->pend_list[i]; 1480 1481 mutex_lock(&dcc->cmd_lock); 1482 if (list_empty(pend_list)) 1483 goto next; 1484 if (unlikely(dcc->rbtree_check)) 1485 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1486 &dcc->root)); 1487 blk_start_plug(&plug); 1488 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1489 f2fs_bug_on(sbi, dc->state != D_PREP); 1490 1491 if (dpolicy->timeout != 0 && 1492 f2fs_time_over(sbi, dpolicy->timeout)) 1493 break; 1494 1495 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1496 !is_idle(sbi, DISCARD_TIME)) { 1497 io_interrupted = true; 1498 break; 1499 } 1500 1501 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1502 1503 if (issued >= dpolicy->max_requests) 1504 break; 1505 } 1506 blk_finish_plug(&plug); 1507 next: 1508 mutex_unlock(&dcc->cmd_lock); 1509 1510 if (issued >= dpolicy->max_requests || io_interrupted) 1511 break; 1512 } 1513 1514 if (!issued && io_interrupted) 1515 issued = -1; 1516 1517 return issued; 1518 } 1519 1520 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1521 { 1522 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1523 struct list_head *pend_list; 1524 struct discard_cmd *dc, *tmp; 1525 int i; 1526 bool dropped = false; 1527 1528 mutex_lock(&dcc->cmd_lock); 1529 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1530 pend_list = &dcc->pend_list[i]; 1531 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1532 f2fs_bug_on(sbi, dc->state != D_PREP); 1533 __remove_discard_cmd(sbi, dc); 1534 dropped = true; 1535 } 1536 } 1537 mutex_unlock(&dcc->cmd_lock); 1538 1539 return dropped; 1540 } 1541 1542 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1543 { 1544 __drop_discard_cmd(sbi); 1545 } 1546 1547 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1548 struct discard_cmd *dc) 1549 { 1550 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1551 unsigned int len = 0; 1552 1553 wait_for_completion_io(&dc->wait); 1554 mutex_lock(&dcc->cmd_lock); 1555 f2fs_bug_on(sbi, dc->state != D_DONE); 1556 dc->ref--; 1557 if (!dc->ref) { 1558 if (!dc->error) 1559 len = dc->len; 1560 __remove_discard_cmd(sbi, dc); 1561 } 1562 mutex_unlock(&dcc->cmd_lock); 1563 1564 return len; 1565 } 1566 1567 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1568 struct discard_policy *dpolicy, 1569 block_t start, block_t end) 1570 { 1571 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1572 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1573 &(dcc->fstrim_list) : &(dcc->wait_list); 1574 struct discard_cmd *dc, *tmp; 1575 bool need_wait; 1576 unsigned int trimmed = 0; 1577 1578 next: 1579 need_wait = false; 1580 1581 mutex_lock(&dcc->cmd_lock); 1582 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1583 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1584 continue; 1585 if (dc->len < dpolicy->granularity) 1586 continue; 1587 if (dc->state == D_DONE && !dc->ref) { 1588 wait_for_completion_io(&dc->wait); 1589 if (!dc->error) 1590 trimmed += dc->len; 1591 __remove_discard_cmd(sbi, dc); 1592 } else { 1593 dc->ref++; 1594 need_wait = true; 1595 break; 1596 } 1597 } 1598 mutex_unlock(&dcc->cmd_lock); 1599 1600 if (need_wait) { 1601 trimmed += __wait_one_discard_bio(sbi, dc); 1602 goto next; 1603 } 1604 1605 return trimmed; 1606 } 1607 1608 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1609 struct discard_policy *dpolicy) 1610 { 1611 struct discard_policy dp; 1612 unsigned int discard_blks; 1613 1614 if (dpolicy) 1615 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1616 1617 /* wait all */ 1618 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1619 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1620 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1621 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1622 1623 return discard_blks; 1624 } 1625 1626 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1627 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1628 { 1629 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1630 struct discard_cmd *dc; 1631 bool need_wait = false; 1632 1633 mutex_lock(&dcc->cmd_lock); 1634 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1635 NULL, blkaddr); 1636 if (dc) { 1637 if (dc->state == D_PREP) { 1638 __punch_discard_cmd(sbi, dc, blkaddr); 1639 } else { 1640 dc->ref++; 1641 need_wait = true; 1642 } 1643 } 1644 mutex_unlock(&dcc->cmd_lock); 1645 1646 if (need_wait) 1647 __wait_one_discard_bio(sbi, dc); 1648 } 1649 1650 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1651 { 1652 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1653 1654 if (dcc && dcc->f2fs_issue_discard) { 1655 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1656 1657 dcc->f2fs_issue_discard = NULL; 1658 kthread_stop(discard_thread); 1659 } 1660 } 1661 1662 /* This comes from f2fs_put_super */ 1663 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1664 { 1665 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1666 struct discard_policy dpolicy; 1667 bool dropped; 1668 1669 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1670 dcc->discard_granularity); 1671 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT; 1672 __issue_discard_cmd(sbi, &dpolicy); 1673 dropped = __drop_discard_cmd(sbi); 1674 1675 /* just to make sure there is no pending discard commands */ 1676 __wait_all_discard_cmd(sbi, NULL); 1677 1678 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1679 return dropped; 1680 } 1681 1682 static int issue_discard_thread(void *data) 1683 { 1684 struct f2fs_sb_info *sbi = data; 1685 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1686 wait_queue_head_t *q = &dcc->discard_wait_queue; 1687 struct discard_policy dpolicy; 1688 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1689 int issued; 1690 1691 set_freezable(); 1692 1693 do { 1694 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1695 dcc->discard_granularity); 1696 1697 wait_event_interruptible_timeout(*q, 1698 kthread_should_stop() || freezing(current) || 1699 dcc->discard_wake, 1700 msecs_to_jiffies(wait_ms)); 1701 1702 if (dcc->discard_wake) 1703 dcc->discard_wake = 0; 1704 1705 /* clean up pending candidates before going to sleep */ 1706 if (atomic_read(&dcc->queued_discard)) 1707 __wait_all_discard_cmd(sbi, NULL); 1708 1709 if (try_to_freeze()) 1710 continue; 1711 if (f2fs_readonly(sbi->sb)) 1712 continue; 1713 if (kthread_should_stop()) 1714 return 0; 1715 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1716 wait_ms = dpolicy.max_interval; 1717 continue; 1718 } 1719 1720 if (sbi->gc_mode == GC_URGENT) 1721 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1722 1723 sb_start_intwrite(sbi->sb); 1724 1725 issued = __issue_discard_cmd(sbi, &dpolicy); 1726 if (issued > 0) { 1727 __wait_all_discard_cmd(sbi, &dpolicy); 1728 wait_ms = dpolicy.min_interval; 1729 } else if (issued == -1){ 1730 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1731 if (!wait_ms) 1732 wait_ms = dpolicy.mid_interval; 1733 } else { 1734 wait_ms = dpolicy.max_interval; 1735 } 1736 1737 sb_end_intwrite(sbi->sb); 1738 1739 } while (!kthread_should_stop()); 1740 return 0; 1741 } 1742 1743 #ifdef CONFIG_BLK_DEV_ZONED 1744 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1745 struct block_device *bdev, block_t blkstart, block_t blklen) 1746 { 1747 sector_t sector, nr_sects; 1748 block_t lblkstart = blkstart; 1749 int devi = 0; 1750 1751 if (f2fs_is_multi_device(sbi)) { 1752 devi = f2fs_target_device_index(sbi, blkstart); 1753 if (blkstart < FDEV(devi).start_blk || 1754 blkstart > FDEV(devi).end_blk) { 1755 f2fs_err(sbi, "Invalid block %x", blkstart); 1756 return -EIO; 1757 } 1758 blkstart -= FDEV(devi).start_blk; 1759 } 1760 1761 /* For sequential zones, reset the zone write pointer */ 1762 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1763 sector = SECTOR_FROM_BLOCK(blkstart); 1764 nr_sects = SECTOR_FROM_BLOCK(blklen); 1765 1766 if (sector & (bdev_zone_sectors(bdev) - 1) || 1767 nr_sects != bdev_zone_sectors(bdev)) { 1768 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1769 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1770 blkstart, blklen); 1771 return -EIO; 1772 } 1773 trace_f2fs_issue_reset_zone(bdev, blkstart); 1774 return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS); 1775 } 1776 1777 /* For conventional zones, use regular discard if supported */ 1778 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1779 } 1780 #endif 1781 1782 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1783 struct block_device *bdev, block_t blkstart, block_t blklen) 1784 { 1785 #ifdef CONFIG_BLK_DEV_ZONED 1786 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1787 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1788 #endif 1789 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1790 } 1791 1792 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1793 block_t blkstart, block_t blklen) 1794 { 1795 sector_t start = blkstart, len = 0; 1796 struct block_device *bdev; 1797 struct seg_entry *se; 1798 unsigned int offset; 1799 block_t i; 1800 int err = 0; 1801 1802 bdev = f2fs_target_device(sbi, blkstart, NULL); 1803 1804 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1805 if (i != start) { 1806 struct block_device *bdev2 = 1807 f2fs_target_device(sbi, i, NULL); 1808 1809 if (bdev2 != bdev) { 1810 err = __issue_discard_async(sbi, bdev, 1811 start, len); 1812 if (err) 1813 return err; 1814 bdev = bdev2; 1815 start = i; 1816 len = 0; 1817 } 1818 } 1819 1820 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1821 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1822 1823 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1824 sbi->discard_blks--; 1825 } 1826 1827 if (len) 1828 err = __issue_discard_async(sbi, bdev, start, len); 1829 return err; 1830 } 1831 1832 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1833 bool check_only) 1834 { 1835 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1836 int max_blocks = sbi->blocks_per_seg; 1837 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1838 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1839 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1840 unsigned long *discard_map = (unsigned long *)se->discard_map; 1841 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1842 unsigned int start = 0, end = -1; 1843 bool force = (cpc->reason & CP_DISCARD); 1844 struct discard_entry *de = NULL; 1845 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1846 int i; 1847 1848 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1849 return false; 1850 1851 if (!force) { 1852 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1853 SM_I(sbi)->dcc_info->nr_discards >= 1854 SM_I(sbi)->dcc_info->max_discards) 1855 return false; 1856 } 1857 1858 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1859 for (i = 0; i < entries; i++) 1860 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1861 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1862 1863 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1864 SM_I(sbi)->dcc_info->max_discards) { 1865 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1866 if (start >= max_blocks) 1867 break; 1868 1869 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1870 if (force && start && end != max_blocks 1871 && (end - start) < cpc->trim_minlen) 1872 continue; 1873 1874 if (check_only) 1875 return true; 1876 1877 if (!de) { 1878 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1879 GFP_F2FS_ZERO); 1880 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1881 list_add_tail(&de->list, head); 1882 } 1883 1884 for (i = start; i < end; i++) 1885 __set_bit_le(i, (void *)de->discard_map); 1886 1887 SM_I(sbi)->dcc_info->nr_discards += end - start; 1888 } 1889 return false; 1890 } 1891 1892 static void release_discard_addr(struct discard_entry *entry) 1893 { 1894 list_del(&entry->list); 1895 kmem_cache_free(discard_entry_slab, entry); 1896 } 1897 1898 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1899 { 1900 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1901 struct discard_entry *entry, *this; 1902 1903 /* drop caches */ 1904 list_for_each_entry_safe(entry, this, head, list) 1905 release_discard_addr(entry); 1906 } 1907 1908 /* 1909 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1910 */ 1911 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1912 { 1913 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1914 unsigned int segno; 1915 1916 mutex_lock(&dirty_i->seglist_lock); 1917 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1918 __set_test_and_free(sbi, segno); 1919 mutex_unlock(&dirty_i->seglist_lock); 1920 } 1921 1922 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1923 struct cp_control *cpc) 1924 { 1925 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1926 struct list_head *head = &dcc->entry_list; 1927 struct discard_entry *entry, *this; 1928 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1929 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1930 unsigned int start = 0, end = -1; 1931 unsigned int secno, start_segno; 1932 bool force = (cpc->reason & CP_DISCARD); 1933 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 1934 1935 mutex_lock(&dirty_i->seglist_lock); 1936 1937 while (1) { 1938 int i; 1939 1940 if (need_align && end != -1) 1941 end--; 1942 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1943 if (start >= MAIN_SEGS(sbi)) 1944 break; 1945 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1946 start + 1); 1947 1948 if (need_align) { 1949 start = rounddown(start, sbi->segs_per_sec); 1950 end = roundup(end, sbi->segs_per_sec); 1951 } 1952 1953 for (i = start; i < end; i++) { 1954 if (test_and_clear_bit(i, prefree_map)) 1955 dirty_i->nr_dirty[PRE]--; 1956 } 1957 1958 if (!f2fs_realtime_discard_enable(sbi)) 1959 continue; 1960 1961 if (force && start >= cpc->trim_start && 1962 (end - 1) <= cpc->trim_end) 1963 continue; 1964 1965 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) { 1966 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1967 (end - start) << sbi->log_blocks_per_seg); 1968 continue; 1969 } 1970 next: 1971 secno = GET_SEC_FROM_SEG(sbi, start); 1972 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1973 if (!IS_CURSEC(sbi, secno) && 1974 !get_valid_blocks(sbi, start, true)) 1975 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1976 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1977 1978 start = start_segno + sbi->segs_per_sec; 1979 if (start < end) 1980 goto next; 1981 else 1982 end = start - 1; 1983 } 1984 mutex_unlock(&dirty_i->seglist_lock); 1985 1986 /* send small discards */ 1987 list_for_each_entry_safe(entry, this, head, list) { 1988 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1989 bool is_valid = test_bit_le(0, entry->discard_map); 1990 1991 find_next: 1992 if (is_valid) { 1993 next_pos = find_next_zero_bit_le(entry->discard_map, 1994 sbi->blocks_per_seg, cur_pos); 1995 len = next_pos - cur_pos; 1996 1997 if (f2fs_sb_has_blkzoned(sbi) || 1998 (force && len < cpc->trim_minlen)) 1999 goto skip; 2000 2001 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2002 len); 2003 total_len += len; 2004 } else { 2005 next_pos = find_next_bit_le(entry->discard_map, 2006 sbi->blocks_per_seg, cur_pos); 2007 } 2008 skip: 2009 cur_pos = next_pos; 2010 is_valid = !is_valid; 2011 2012 if (cur_pos < sbi->blocks_per_seg) 2013 goto find_next; 2014 2015 release_discard_addr(entry); 2016 dcc->nr_discards -= total_len; 2017 } 2018 2019 wake_up_discard_thread(sbi, false); 2020 } 2021 2022 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2023 { 2024 dev_t dev = sbi->sb->s_bdev->bd_dev; 2025 struct discard_cmd_control *dcc; 2026 int err = 0, i; 2027 2028 if (SM_I(sbi)->dcc_info) { 2029 dcc = SM_I(sbi)->dcc_info; 2030 goto init_thread; 2031 } 2032 2033 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2034 if (!dcc) 2035 return -ENOMEM; 2036 2037 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2038 INIT_LIST_HEAD(&dcc->entry_list); 2039 for (i = 0; i < MAX_PLIST_NUM; i++) 2040 INIT_LIST_HEAD(&dcc->pend_list[i]); 2041 INIT_LIST_HEAD(&dcc->wait_list); 2042 INIT_LIST_HEAD(&dcc->fstrim_list); 2043 mutex_init(&dcc->cmd_lock); 2044 atomic_set(&dcc->issued_discard, 0); 2045 atomic_set(&dcc->queued_discard, 0); 2046 atomic_set(&dcc->discard_cmd_cnt, 0); 2047 dcc->nr_discards = 0; 2048 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2049 dcc->undiscard_blks = 0; 2050 dcc->next_pos = 0; 2051 dcc->root = RB_ROOT_CACHED; 2052 dcc->rbtree_check = false; 2053 2054 init_waitqueue_head(&dcc->discard_wait_queue); 2055 SM_I(sbi)->dcc_info = dcc; 2056 init_thread: 2057 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2058 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2059 if (IS_ERR(dcc->f2fs_issue_discard)) { 2060 err = PTR_ERR(dcc->f2fs_issue_discard); 2061 kvfree(dcc); 2062 SM_I(sbi)->dcc_info = NULL; 2063 return err; 2064 } 2065 2066 return err; 2067 } 2068 2069 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2070 { 2071 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2072 2073 if (!dcc) 2074 return; 2075 2076 f2fs_stop_discard_thread(sbi); 2077 2078 /* 2079 * Recovery can cache discard commands, so in error path of 2080 * fill_super(), it needs to give a chance to handle them. 2081 */ 2082 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2083 f2fs_issue_discard_timeout(sbi); 2084 2085 kvfree(dcc); 2086 SM_I(sbi)->dcc_info = NULL; 2087 } 2088 2089 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2090 { 2091 struct sit_info *sit_i = SIT_I(sbi); 2092 2093 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2094 sit_i->dirty_sentries++; 2095 return false; 2096 } 2097 2098 return true; 2099 } 2100 2101 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2102 unsigned int segno, int modified) 2103 { 2104 struct seg_entry *se = get_seg_entry(sbi, segno); 2105 se->type = type; 2106 if (modified) 2107 __mark_sit_entry_dirty(sbi, segno); 2108 } 2109 2110 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2111 { 2112 struct seg_entry *se; 2113 unsigned int segno, offset; 2114 long int new_vblocks; 2115 bool exist; 2116 #ifdef CONFIG_F2FS_CHECK_FS 2117 bool mir_exist; 2118 #endif 2119 2120 segno = GET_SEGNO(sbi, blkaddr); 2121 2122 se = get_seg_entry(sbi, segno); 2123 new_vblocks = se->valid_blocks + del; 2124 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2125 2126 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 2127 (new_vblocks > sbi->blocks_per_seg))); 2128 2129 se->valid_blocks = new_vblocks; 2130 se->mtime = get_mtime(sbi, false); 2131 if (se->mtime > SIT_I(sbi)->max_mtime) 2132 SIT_I(sbi)->max_mtime = se->mtime; 2133 2134 /* Update valid block bitmap */ 2135 if (del > 0) { 2136 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2137 #ifdef CONFIG_F2FS_CHECK_FS 2138 mir_exist = f2fs_test_and_set_bit(offset, 2139 se->cur_valid_map_mir); 2140 if (unlikely(exist != mir_exist)) { 2141 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2142 blkaddr, exist); 2143 f2fs_bug_on(sbi, 1); 2144 } 2145 #endif 2146 if (unlikely(exist)) { 2147 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2148 blkaddr); 2149 f2fs_bug_on(sbi, 1); 2150 se->valid_blocks--; 2151 del = 0; 2152 } 2153 2154 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2155 sbi->discard_blks--; 2156 2157 /* 2158 * SSR should never reuse block which is checkpointed 2159 * or newly invalidated. 2160 */ 2161 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2162 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2163 se->ckpt_valid_blocks++; 2164 } 2165 } else { 2166 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2167 #ifdef CONFIG_F2FS_CHECK_FS 2168 mir_exist = f2fs_test_and_clear_bit(offset, 2169 se->cur_valid_map_mir); 2170 if (unlikely(exist != mir_exist)) { 2171 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2172 blkaddr, exist); 2173 f2fs_bug_on(sbi, 1); 2174 } 2175 #endif 2176 if (unlikely(!exist)) { 2177 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2178 blkaddr); 2179 f2fs_bug_on(sbi, 1); 2180 se->valid_blocks++; 2181 del = 0; 2182 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2183 /* 2184 * If checkpoints are off, we must not reuse data that 2185 * was used in the previous checkpoint. If it was used 2186 * before, we must track that to know how much space we 2187 * really have. 2188 */ 2189 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2190 spin_lock(&sbi->stat_lock); 2191 sbi->unusable_block_count++; 2192 spin_unlock(&sbi->stat_lock); 2193 } 2194 } 2195 2196 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2197 sbi->discard_blks++; 2198 } 2199 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2200 se->ckpt_valid_blocks += del; 2201 2202 __mark_sit_entry_dirty(sbi, segno); 2203 2204 /* update total number of valid blocks to be written in ckpt area */ 2205 SIT_I(sbi)->written_valid_blocks += del; 2206 2207 if (__is_large_section(sbi)) 2208 get_sec_entry(sbi, segno)->valid_blocks += del; 2209 } 2210 2211 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2212 { 2213 unsigned int segno = GET_SEGNO(sbi, addr); 2214 struct sit_info *sit_i = SIT_I(sbi); 2215 2216 f2fs_bug_on(sbi, addr == NULL_ADDR); 2217 if (addr == NEW_ADDR) 2218 return; 2219 2220 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2221 2222 /* add it into sit main buffer */ 2223 down_write(&sit_i->sentry_lock); 2224 2225 update_sit_entry(sbi, addr, -1); 2226 2227 /* add it into dirty seglist */ 2228 locate_dirty_segment(sbi, segno); 2229 2230 up_write(&sit_i->sentry_lock); 2231 } 2232 2233 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2234 { 2235 struct sit_info *sit_i = SIT_I(sbi); 2236 unsigned int segno, offset; 2237 struct seg_entry *se; 2238 bool is_cp = false; 2239 2240 if (!__is_valid_data_blkaddr(blkaddr)) 2241 return true; 2242 2243 down_read(&sit_i->sentry_lock); 2244 2245 segno = GET_SEGNO(sbi, blkaddr); 2246 se = get_seg_entry(sbi, segno); 2247 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2248 2249 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2250 is_cp = true; 2251 2252 up_read(&sit_i->sentry_lock); 2253 2254 return is_cp; 2255 } 2256 2257 /* 2258 * This function should be resided under the curseg_mutex lock 2259 */ 2260 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2261 struct f2fs_summary *sum) 2262 { 2263 struct curseg_info *curseg = CURSEG_I(sbi, type); 2264 void *addr = curseg->sum_blk; 2265 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2266 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2267 } 2268 2269 /* 2270 * Calculate the number of current summary pages for writing 2271 */ 2272 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2273 { 2274 int valid_sum_count = 0; 2275 int i, sum_in_page; 2276 2277 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2278 if (sbi->ckpt->alloc_type[i] == SSR) 2279 valid_sum_count += sbi->blocks_per_seg; 2280 else { 2281 if (for_ra) 2282 valid_sum_count += le16_to_cpu( 2283 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2284 else 2285 valid_sum_count += curseg_blkoff(sbi, i); 2286 } 2287 } 2288 2289 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2290 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2291 if (valid_sum_count <= sum_in_page) 2292 return 1; 2293 else if ((valid_sum_count - sum_in_page) <= 2294 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2295 return 2; 2296 return 3; 2297 } 2298 2299 /* 2300 * Caller should put this summary page 2301 */ 2302 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2303 { 2304 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); 2305 } 2306 2307 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2308 void *src, block_t blk_addr) 2309 { 2310 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2311 2312 memcpy(page_address(page), src, PAGE_SIZE); 2313 set_page_dirty(page); 2314 f2fs_put_page(page, 1); 2315 } 2316 2317 static void write_sum_page(struct f2fs_sb_info *sbi, 2318 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2319 { 2320 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2321 } 2322 2323 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2324 int type, block_t blk_addr) 2325 { 2326 struct curseg_info *curseg = CURSEG_I(sbi, type); 2327 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2328 struct f2fs_summary_block *src = curseg->sum_blk; 2329 struct f2fs_summary_block *dst; 2330 2331 dst = (struct f2fs_summary_block *)page_address(page); 2332 memset(dst, 0, PAGE_SIZE); 2333 2334 mutex_lock(&curseg->curseg_mutex); 2335 2336 down_read(&curseg->journal_rwsem); 2337 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2338 up_read(&curseg->journal_rwsem); 2339 2340 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2341 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2342 2343 mutex_unlock(&curseg->curseg_mutex); 2344 2345 set_page_dirty(page); 2346 f2fs_put_page(page, 1); 2347 } 2348 2349 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2350 { 2351 struct curseg_info *curseg = CURSEG_I(sbi, type); 2352 unsigned int segno = curseg->segno + 1; 2353 struct free_segmap_info *free_i = FREE_I(sbi); 2354 2355 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2356 return !test_bit(segno, free_i->free_segmap); 2357 return 0; 2358 } 2359 2360 /* 2361 * Find a new segment from the free segments bitmap to right order 2362 * This function should be returned with success, otherwise BUG 2363 */ 2364 static void get_new_segment(struct f2fs_sb_info *sbi, 2365 unsigned int *newseg, bool new_sec, int dir) 2366 { 2367 struct free_segmap_info *free_i = FREE_I(sbi); 2368 unsigned int segno, secno, zoneno; 2369 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2370 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2371 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2372 unsigned int left_start = hint; 2373 bool init = true; 2374 int go_left = 0; 2375 int i; 2376 2377 spin_lock(&free_i->segmap_lock); 2378 2379 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2380 segno = find_next_zero_bit(free_i->free_segmap, 2381 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2382 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2383 goto got_it; 2384 } 2385 find_other_zone: 2386 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2387 if (secno >= MAIN_SECS(sbi)) { 2388 if (dir == ALLOC_RIGHT) { 2389 secno = find_next_zero_bit(free_i->free_secmap, 2390 MAIN_SECS(sbi), 0); 2391 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2392 } else { 2393 go_left = 1; 2394 left_start = hint - 1; 2395 } 2396 } 2397 if (go_left == 0) 2398 goto skip_left; 2399 2400 while (test_bit(left_start, free_i->free_secmap)) { 2401 if (left_start > 0) { 2402 left_start--; 2403 continue; 2404 } 2405 left_start = find_next_zero_bit(free_i->free_secmap, 2406 MAIN_SECS(sbi), 0); 2407 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2408 break; 2409 } 2410 secno = left_start; 2411 skip_left: 2412 segno = GET_SEG_FROM_SEC(sbi, secno); 2413 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2414 2415 /* give up on finding another zone */ 2416 if (!init) 2417 goto got_it; 2418 if (sbi->secs_per_zone == 1) 2419 goto got_it; 2420 if (zoneno == old_zoneno) 2421 goto got_it; 2422 if (dir == ALLOC_LEFT) { 2423 if (!go_left && zoneno + 1 >= total_zones) 2424 goto got_it; 2425 if (go_left && zoneno == 0) 2426 goto got_it; 2427 } 2428 for (i = 0; i < NR_CURSEG_TYPE; i++) 2429 if (CURSEG_I(sbi, i)->zone == zoneno) 2430 break; 2431 2432 if (i < NR_CURSEG_TYPE) { 2433 /* zone is in user, try another */ 2434 if (go_left) 2435 hint = zoneno * sbi->secs_per_zone - 1; 2436 else if (zoneno + 1 >= total_zones) 2437 hint = 0; 2438 else 2439 hint = (zoneno + 1) * sbi->secs_per_zone; 2440 init = false; 2441 goto find_other_zone; 2442 } 2443 got_it: 2444 /* set it as dirty segment in free segmap */ 2445 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2446 __set_inuse(sbi, segno); 2447 *newseg = segno; 2448 spin_unlock(&free_i->segmap_lock); 2449 } 2450 2451 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2452 { 2453 struct curseg_info *curseg = CURSEG_I(sbi, type); 2454 struct summary_footer *sum_footer; 2455 2456 curseg->segno = curseg->next_segno; 2457 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2458 curseg->next_blkoff = 0; 2459 curseg->next_segno = NULL_SEGNO; 2460 2461 sum_footer = &(curseg->sum_blk->footer); 2462 memset(sum_footer, 0, sizeof(struct summary_footer)); 2463 if (IS_DATASEG(type)) 2464 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2465 if (IS_NODESEG(type)) 2466 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2467 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2468 } 2469 2470 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2471 { 2472 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2473 if (__is_large_section(sbi)) 2474 return CURSEG_I(sbi, type)->segno; 2475 2476 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2477 return 0; 2478 2479 if (test_opt(sbi, NOHEAP) && 2480 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2481 return 0; 2482 2483 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2484 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2485 2486 /* find segments from 0 to reuse freed segments */ 2487 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2488 return 0; 2489 2490 return CURSEG_I(sbi, type)->segno; 2491 } 2492 2493 /* 2494 * Allocate a current working segment. 2495 * This function always allocates a free segment in LFS manner. 2496 */ 2497 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2498 { 2499 struct curseg_info *curseg = CURSEG_I(sbi, type); 2500 unsigned int segno = curseg->segno; 2501 int dir = ALLOC_LEFT; 2502 2503 write_sum_page(sbi, curseg->sum_blk, 2504 GET_SUM_BLOCK(sbi, segno)); 2505 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2506 dir = ALLOC_RIGHT; 2507 2508 if (test_opt(sbi, NOHEAP)) 2509 dir = ALLOC_RIGHT; 2510 2511 segno = __get_next_segno(sbi, type); 2512 get_new_segment(sbi, &segno, new_sec, dir); 2513 curseg->next_segno = segno; 2514 reset_curseg(sbi, type, 1); 2515 curseg->alloc_type = LFS; 2516 } 2517 2518 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2519 struct curseg_info *seg, block_t start) 2520 { 2521 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2522 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2523 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2524 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2525 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2526 int i, pos; 2527 2528 for (i = 0; i < entries; i++) 2529 target_map[i] = ckpt_map[i] | cur_map[i]; 2530 2531 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2532 2533 seg->next_blkoff = pos; 2534 } 2535 2536 /* 2537 * If a segment is written by LFS manner, next block offset is just obtained 2538 * by increasing the current block offset. However, if a segment is written by 2539 * SSR manner, next block offset obtained by calling __next_free_blkoff 2540 */ 2541 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2542 struct curseg_info *seg) 2543 { 2544 if (seg->alloc_type == SSR) 2545 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2546 else 2547 seg->next_blkoff++; 2548 } 2549 2550 /* 2551 * This function always allocates a used segment(from dirty seglist) by SSR 2552 * manner, so it should recover the existing segment information of valid blocks 2553 */ 2554 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2555 { 2556 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2557 struct curseg_info *curseg = CURSEG_I(sbi, type); 2558 unsigned int new_segno = curseg->next_segno; 2559 struct f2fs_summary_block *sum_node; 2560 struct page *sum_page; 2561 2562 write_sum_page(sbi, curseg->sum_blk, 2563 GET_SUM_BLOCK(sbi, curseg->segno)); 2564 __set_test_and_inuse(sbi, new_segno); 2565 2566 mutex_lock(&dirty_i->seglist_lock); 2567 __remove_dirty_segment(sbi, new_segno, PRE); 2568 __remove_dirty_segment(sbi, new_segno, DIRTY); 2569 mutex_unlock(&dirty_i->seglist_lock); 2570 2571 reset_curseg(sbi, type, 1); 2572 curseg->alloc_type = SSR; 2573 __next_free_blkoff(sbi, curseg, 0); 2574 2575 sum_page = f2fs_get_sum_page(sbi, new_segno); 2576 f2fs_bug_on(sbi, IS_ERR(sum_page)); 2577 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2578 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2579 f2fs_put_page(sum_page, 1); 2580 } 2581 2582 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2583 { 2584 struct curseg_info *curseg = CURSEG_I(sbi, type); 2585 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2586 unsigned segno = NULL_SEGNO; 2587 int i, cnt; 2588 bool reversed = false; 2589 2590 /* f2fs_need_SSR() already forces to do this */ 2591 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2592 curseg->next_segno = segno; 2593 return 1; 2594 } 2595 2596 /* For node segments, let's do SSR more intensively */ 2597 if (IS_NODESEG(type)) { 2598 if (type >= CURSEG_WARM_NODE) { 2599 reversed = true; 2600 i = CURSEG_COLD_NODE; 2601 } else { 2602 i = CURSEG_HOT_NODE; 2603 } 2604 cnt = NR_CURSEG_NODE_TYPE; 2605 } else { 2606 if (type >= CURSEG_WARM_DATA) { 2607 reversed = true; 2608 i = CURSEG_COLD_DATA; 2609 } else { 2610 i = CURSEG_HOT_DATA; 2611 } 2612 cnt = NR_CURSEG_DATA_TYPE; 2613 } 2614 2615 for (; cnt-- > 0; reversed ? i-- : i++) { 2616 if (i == type) 2617 continue; 2618 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2619 curseg->next_segno = segno; 2620 return 1; 2621 } 2622 } 2623 2624 /* find valid_blocks=0 in dirty list */ 2625 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2626 segno = get_free_segment(sbi); 2627 if (segno != NULL_SEGNO) { 2628 curseg->next_segno = segno; 2629 return 1; 2630 } 2631 } 2632 return 0; 2633 } 2634 2635 /* 2636 * flush out current segment and replace it with new segment 2637 * This function should be returned with success, otherwise BUG 2638 */ 2639 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2640 int type, bool force) 2641 { 2642 struct curseg_info *curseg = CURSEG_I(sbi, type); 2643 2644 if (force) 2645 new_curseg(sbi, type, true); 2646 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2647 type == CURSEG_WARM_NODE) 2648 new_curseg(sbi, type, false); 2649 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) && 2650 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2651 new_curseg(sbi, type, false); 2652 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2653 change_curseg(sbi, type); 2654 else 2655 new_curseg(sbi, type, false); 2656 2657 stat_inc_seg_type(sbi, curseg); 2658 } 2659 2660 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2661 unsigned int start, unsigned int end) 2662 { 2663 struct curseg_info *curseg = CURSEG_I(sbi, type); 2664 unsigned int segno; 2665 2666 down_read(&SM_I(sbi)->curseg_lock); 2667 mutex_lock(&curseg->curseg_mutex); 2668 down_write(&SIT_I(sbi)->sentry_lock); 2669 2670 segno = CURSEG_I(sbi, type)->segno; 2671 if (segno < start || segno > end) 2672 goto unlock; 2673 2674 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2675 change_curseg(sbi, type); 2676 else 2677 new_curseg(sbi, type, true); 2678 2679 stat_inc_seg_type(sbi, curseg); 2680 2681 locate_dirty_segment(sbi, segno); 2682 unlock: 2683 up_write(&SIT_I(sbi)->sentry_lock); 2684 2685 if (segno != curseg->segno) 2686 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2687 type, segno, curseg->segno); 2688 2689 mutex_unlock(&curseg->curseg_mutex); 2690 up_read(&SM_I(sbi)->curseg_lock); 2691 } 2692 2693 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2694 { 2695 struct curseg_info *curseg; 2696 unsigned int old_segno; 2697 int i; 2698 2699 down_write(&SIT_I(sbi)->sentry_lock); 2700 2701 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2702 curseg = CURSEG_I(sbi, i); 2703 old_segno = curseg->segno; 2704 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2705 locate_dirty_segment(sbi, old_segno); 2706 } 2707 2708 up_write(&SIT_I(sbi)->sentry_lock); 2709 } 2710 2711 static const struct segment_allocation default_salloc_ops = { 2712 .allocate_segment = allocate_segment_by_default, 2713 }; 2714 2715 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2716 struct cp_control *cpc) 2717 { 2718 __u64 trim_start = cpc->trim_start; 2719 bool has_candidate = false; 2720 2721 down_write(&SIT_I(sbi)->sentry_lock); 2722 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2723 if (add_discard_addrs(sbi, cpc, true)) { 2724 has_candidate = true; 2725 break; 2726 } 2727 } 2728 up_write(&SIT_I(sbi)->sentry_lock); 2729 2730 cpc->trim_start = trim_start; 2731 return has_candidate; 2732 } 2733 2734 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2735 struct discard_policy *dpolicy, 2736 unsigned int start, unsigned int end) 2737 { 2738 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2739 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2740 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2741 struct discard_cmd *dc; 2742 struct blk_plug plug; 2743 int issued; 2744 unsigned int trimmed = 0; 2745 2746 next: 2747 issued = 0; 2748 2749 mutex_lock(&dcc->cmd_lock); 2750 if (unlikely(dcc->rbtree_check)) 2751 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2752 &dcc->root)); 2753 2754 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2755 NULL, start, 2756 (struct rb_entry **)&prev_dc, 2757 (struct rb_entry **)&next_dc, 2758 &insert_p, &insert_parent, true, NULL); 2759 if (!dc) 2760 dc = next_dc; 2761 2762 blk_start_plug(&plug); 2763 2764 while (dc && dc->lstart <= end) { 2765 struct rb_node *node; 2766 int err = 0; 2767 2768 if (dc->len < dpolicy->granularity) 2769 goto skip; 2770 2771 if (dc->state != D_PREP) { 2772 list_move_tail(&dc->list, &dcc->fstrim_list); 2773 goto skip; 2774 } 2775 2776 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 2777 2778 if (issued >= dpolicy->max_requests) { 2779 start = dc->lstart + dc->len; 2780 2781 if (err) 2782 __remove_discard_cmd(sbi, dc); 2783 2784 blk_finish_plug(&plug); 2785 mutex_unlock(&dcc->cmd_lock); 2786 trimmed += __wait_all_discard_cmd(sbi, NULL); 2787 congestion_wait(BLK_RW_ASYNC, HZ/50); 2788 goto next; 2789 } 2790 skip: 2791 node = rb_next(&dc->rb_node); 2792 if (err) 2793 __remove_discard_cmd(sbi, dc); 2794 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 2795 2796 if (fatal_signal_pending(current)) 2797 break; 2798 } 2799 2800 blk_finish_plug(&plug); 2801 mutex_unlock(&dcc->cmd_lock); 2802 2803 return trimmed; 2804 } 2805 2806 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2807 { 2808 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2809 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2810 unsigned int start_segno, end_segno; 2811 block_t start_block, end_block; 2812 struct cp_control cpc; 2813 struct discard_policy dpolicy; 2814 unsigned long long trimmed = 0; 2815 int err = 0; 2816 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 2817 2818 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2819 return -EINVAL; 2820 2821 if (end < MAIN_BLKADDR(sbi)) 2822 goto out; 2823 2824 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2825 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 2826 return -EFSCORRUPTED; 2827 } 2828 2829 /* start/end segment number in main_area */ 2830 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2831 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2832 GET_SEGNO(sbi, end); 2833 if (need_align) { 2834 start_segno = rounddown(start_segno, sbi->segs_per_sec); 2835 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 2836 } 2837 2838 cpc.reason = CP_DISCARD; 2839 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2840 cpc.trim_start = start_segno; 2841 cpc.trim_end = end_segno; 2842 2843 if (sbi->discard_blks == 0) 2844 goto out; 2845 2846 mutex_lock(&sbi->gc_mutex); 2847 err = f2fs_write_checkpoint(sbi, &cpc); 2848 mutex_unlock(&sbi->gc_mutex); 2849 if (err) 2850 goto out; 2851 2852 /* 2853 * We filed discard candidates, but actually we don't need to wait for 2854 * all of them, since they'll be issued in idle time along with runtime 2855 * discard option. User configuration looks like using runtime discard 2856 * or periodic fstrim instead of it. 2857 */ 2858 if (f2fs_realtime_discard_enable(sbi)) 2859 goto out; 2860 2861 start_block = START_BLOCK(sbi, start_segno); 2862 end_block = START_BLOCK(sbi, end_segno + 1); 2863 2864 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2865 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 2866 start_block, end_block); 2867 2868 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 2869 start_block, end_block); 2870 out: 2871 if (!err) 2872 range->len = F2FS_BLK_TO_BYTES(trimmed); 2873 return err; 2874 } 2875 2876 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2877 { 2878 struct curseg_info *curseg = CURSEG_I(sbi, type); 2879 if (curseg->next_blkoff < sbi->blocks_per_seg) 2880 return true; 2881 return false; 2882 } 2883 2884 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 2885 { 2886 switch (hint) { 2887 case WRITE_LIFE_SHORT: 2888 return CURSEG_HOT_DATA; 2889 case WRITE_LIFE_EXTREME: 2890 return CURSEG_COLD_DATA; 2891 default: 2892 return CURSEG_WARM_DATA; 2893 } 2894 } 2895 2896 /* This returns write hints for each segment type. This hints will be 2897 * passed down to block layer. There are mapping tables which depend on 2898 * the mount option 'whint_mode'. 2899 * 2900 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2901 * 2902 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2903 * 2904 * User F2FS Block 2905 * ---- ---- ----- 2906 * META WRITE_LIFE_NOT_SET 2907 * HOT_NODE " 2908 * WARM_NODE " 2909 * COLD_NODE " 2910 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2911 * extension list " " 2912 * 2913 * -- buffered io 2914 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2915 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2916 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2917 * WRITE_LIFE_NONE " " 2918 * WRITE_LIFE_MEDIUM " " 2919 * WRITE_LIFE_LONG " " 2920 * 2921 * -- direct io 2922 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2923 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2924 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2925 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2926 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2927 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2928 * 2929 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2930 * 2931 * User F2FS Block 2932 * ---- ---- ----- 2933 * META WRITE_LIFE_MEDIUM; 2934 * HOT_NODE WRITE_LIFE_NOT_SET 2935 * WARM_NODE " 2936 * COLD_NODE WRITE_LIFE_NONE 2937 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2938 * extension list " " 2939 * 2940 * -- buffered io 2941 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2942 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2943 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 2944 * WRITE_LIFE_NONE " " 2945 * WRITE_LIFE_MEDIUM " " 2946 * WRITE_LIFE_LONG " " 2947 * 2948 * -- direct io 2949 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2950 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2951 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2952 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2953 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2954 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2955 */ 2956 2957 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2958 enum page_type type, enum temp_type temp) 2959 { 2960 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 2961 if (type == DATA) { 2962 if (temp == WARM) 2963 return WRITE_LIFE_NOT_SET; 2964 else if (temp == HOT) 2965 return WRITE_LIFE_SHORT; 2966 else if (temp == COLD) 2967 return WRITE_LIFE_EXTREME; 2968 } else { 2969 return WRITE_LIFE_NOT_SET; 2970 } 2971 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 2972 if (type == DATA) { 2973 if (temp == WARM) 2974 return WRITE_LIFE_LONG; 2975 else if (temp == HOT) 2976 return WRITE_LIFE_SHORT; 2977 else if (temp == COLD) 2978 return WRITE_LIFE_EXTREME; 2979 } else if (type == NODE) { 2980 if (temp == WARM || temp == HOT) 2981 return WRITE_LIFE_NOT_SET; 2982 else if (temp == COLD) 2983 return WRITE_LIFE_NONE; 2984 } else if (type == META) { 2985 return WRITE_LIFE_MEDIUM; 2986 } 2987 } 2988 return WRITE_LIFE_NOT_SET; 2989 } 2990 2991 static int __get_segment_type_2(struct f2fs_io_info *fio) 2992 { 2993 if (fio->type == DATA) 2994 return CURSEG_HOT_DATA; 2995 else 2996 return CURSEG_HOT_NODE; 2997 } 2998 2999 static int __get_segment_type_4(struct f2fs_io_info *fio) 3000 { 3001 if (fio->type == DATA) { 3002 struct inode *inode = fio->page->mapping->host; 3003 3004 if (S_ISDIR(inode->i_mode)) 3005 return CURSEG_HOT_DATA; 3006 else 3007 return CURSEG_COLD_DATA; 3008 } else { 3009 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3010 return CURSEG_WARM_NODE; 3011 else 3012 return CURSEG_COLD_NODE; 3013 } 3014 } 3015 3016 static int __get_segment_type_6(struct f2fs_io_info *fio) 3017 { 3018 if (fio->type == DATA) { 3019 struct inode *inode = fio->page->mapping->host; 3020 3021 if (is_cold_data(fio->page) || file_is_cold(inode)) 3022 return CURSEG_COLD_DATA; 3023 if (file_is_hot(inode) || 3024 is_inode_flag_set(inode, FI_HOT_DATA) || 3025 f2fs_is_atomic_file(inode) || 3026 f2fs_is_volatile_file(inode)) 3027 return CURSEG_HOT_DATA; 3028 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3029 } else { 3030 if (IS_DNODE(fio->page)) 3031 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3032 CURSEG_HOT_NODE; 3033 return CURSEG_COLD_NODE; 3034 } 3035 } 3036 3037 static int __get_segment_type(struct f2fs_io_info *fio) 3038 { 3039 int type = 0; 3040 3041 switch (F2FS_OPTION(fio->sbi).active_logs) { 3042 case 2: 3043 type = __get_segment_type_2(fio); 3044 break; 3045 case 4: 3046 type = __get_segment_type_4(fio); 3047 break; 3048 case 6: 3049 type = __get_segment_type_6(fio); 3050 break; 3051 default: 3052 f2fs_bug_on(fio->sbi, true); 3053 } 3054 3055 if (IS_HOT(type)) 3056 fio->temp = HOT; 3057 else if (IS_WARM(type)) 3058 fio->temp = WARM; 3059 else 3060 fio->temp = COLD; 3061 return type; 3062 } 3063 3064 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3065 block_t old_blkaddr, block_t *new_blkaddr, 3066 struct f2fs_summary *sum, int type, 3067 struct f2fs_io_info *fio, bool add_list) 3068 { 3069 struct sit_info *sit_i = SIT_I(sbi); 3070 struct curseg_info *curseg = CURSEG_I(sbi, type); 3071 3072 down_read(&SM_I(sbi)->curseg_lock); 3073 3074 mutex_lock(&curseg->curseg_mutex); 3075 down_write(&sit_i->sentry_lock); 3076 3077 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3078 3079 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3080 3081 /* 3082 * __add_sum_entry should be resided under the curseg_mutex 3083 * because, this function updates a summary entry in the 3084 * current summary block. 3085 */ 3086 __add_sum_entry(sbi, type, sum); 3087 3088 __refresh_next_blkoff(sbi, curseg); 3089 3090 stat_inc_block_count(sbi, curseg); 3091 3092 /* 3093 * SIT information should be updated before segment allocation, 3094 * since SSR needs latest valid block information. 3095 */ 3096 update_sit_entry(sbi, *new_blkaddr, 1); 3097 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3098 update_sit_entry(sbi, old_blkaddr, -1); 3099 3100 if (!__has_curseg_space(sbi, type)) 3101 sit_i->s_ops->allocate_segment(sbi, type, false); 3102 3103 /* 3104 * segment dirty status should be updated after segment allocation, 3105 * so we just need to update status only one time after previous 3106 * segment being closed. 3107 */ 3108 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3109 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3110 3111 up_write(&sit_i->sentry_lock); 3112 3113 if (page && IS_NODESEG(type)) { 3114 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3115 3116 f2fs_inode_chksum_set(sbi, page); 3117 } 3118 3119 if (F2FS_IO_ALIGNED(sbi)) 3120 fio->retry = false; 3121 3122 if (add_list) { 3123 struct f2fs_bio_info *io; 3124 3125 INIT_LIST_HEAD(&fio->list); 3126 fio->in_list = true; 3127 io = sbi->write_io[fio->type] + fio->temp; 3128 spin_lock(&io->io_lock); 3129 list_add_tail(&fio->list, &io->io_list); 3130 spin_unlock(&io->io_lock); 3131 } 3132 3133 mutex_unlock(&curseg->curseg_mutex); 3134 3135 up_read(&SM_I(sbi)->curseg_lock); 3136 } 3137 3138 static void update_device_state(struct f2fs_io_info *fio) 3139 { 3140 struct f2fs_sb_info *sbi = fio->sbi; 3141 unsigned int devidx; 3142 3143 if (!f2fs_is_multi_device(sbi)) 3144 return; 3145 3146 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3147 3148 /* update device state for fsync */ 3149 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3150 3151 /* update device state for checkpoint */ 3152 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3153 spin_lock(&sbi->dev_lock); 3154 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3155 spin_unlock(&sbi->dev_lock); 3156 } 3157 } 3158 3159 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3160 { 3161 int type = __get_segment_type(fio); 3162 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA); 3163 3164 if (keep_order) 3165 down_read(&fio->sbi->io_order_lock); 3166 reallocate: 3167 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3168 &fio->new_blkaddr, sum, type, fio, true); 3169 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3170 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3171 fio->old_blkaddr, fio->old_blkaddr); 3172 3173 /* writeout dirty page into bdev */ 3174 f2fs_submit_page_write(fio); 3175 if (fio->retry) { 3176 fio->old_blkaddr = fio->new_blkaddr; 3177 goto reallocate; 3178 } 3179 3180 update_device_state(fio); 3181 3182 if (keep_order) 3183 up_read(&fio->sbi->io_order_lock); 3184 } 3185 3186 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3187 enum iostat_type io_type) 3188 { 3189 struct f2fs_io_info fio = { 3190 .sbi = sbi, 3191 .type = META, 3192 .temp = HOT, 3193 .op = REQ_OP_WRITE, 3194 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3195 .old_blkaddr = page->index, 3196 .new_blkaddr = page->index, 3197 .page = page, 3198 .encrypted_page = NULL, 3199 .in_list = false, 3200 }; 3201 3202 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3203 fio.op_flags &= ~REQ_META; 3204 3205 set_page_writeback(page); 3206 ClearPageError(page); 3207 f2fs_submit_page_write(&fio); 3208 3209 stat_inc_meta_count(sbi, page->index); 3210 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3211 } 3212 3213 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3214 { 3215 struct f2fs_summary sum; 3216 3217 set_summary(&sum, nid, 0, 0); 3218 do_write_page(&sum, fio); 3219 3220 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3221 } 3222 3223 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3224 struct f2fs_io_info *fio) 3225 { 3226 struct f2fs_sb_info *sbi = fio->sbi; 3227 struct f2fs_summary sum; 3228 3229 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3230 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3231 do_write_page(&sum, fio); 3232 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3233 3234 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3235 } 3236 3237 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3238 { 3239 int err; 3240 struct f2fs_sb_info *sbi = fio->sbi; 3241 unsigned int segno; 3242 3243 fio->new_blkaddr = fio->old_blkaddr; 3244 /* i/o temperature is needed for passing down write hints */ 3245 __get_segment_type(fio); 3246 3247 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3248 3249 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3250 set_sbi_flag(sbi, SBI_NEED_FSCK); 3251 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3252 __func__, segno); 3253 return -EFSCORRUPTED; 3254 } 3255 3256 stat_inc_inplace_blocks(fio->sbi); 3257 3258 if (fio->bio) 3259 err = f2fs_merge_page_bio(fio); 3260 else 3261 err = f2fs_submit_page_bio(fio); 3262 if (!err) { 3263 update_device_state(fio); 3264 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3265 } 3266 3267 return err; 3268 } 3269 3270 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3271 unsigned int segno) 3272 { 3273 int i; 3274 3275 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3276 if (CURSEG_I(sbi, i)->segno == segno) 3277 break; 3278 } 3279 return i; 3280 } 3281 3282 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3283 block_t old_blkaddr, block_t new_blkaddr, 3284 bool recover_curseg, bool recover_newaddr) 3285 { 3286 struct sit_info *sit_i = SIT_I(sbi); 3287 struct curseg_info *curseg; 3288 unsigned int segno, old_cursegno; 3289 struct seg_entry *se; 3290 int type; 3291 unsigned short old_blkoff; 3292 3293 segno = GET_SEGNO(sbi, new_blkaddr); 3294 se = get_seg_entry(sbi, segno); 3295 type = se->type; 3296 3297 down_write(&SM_I(sbi)->curseg_lock); 3298 3299 if (!recover_curseg) { 3300 /* for recovery flow */ 3301 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3302 if (old_blkaddr == NULL_ADDR) 3303 type = CURSEG_COLD_DATA; 3304 else 3305 type = CURSEG_WARM_DATA; 3306 } 3307 } else { 3308 if (IS_CURSEG(sbi, segno)) { 3309 /* se->type is volatile as SSR allocation */ 3310 type = __f2fs_get_curseg(sbi, segno); 3311 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3312 } else { 3313 type = CURSEG_WARM_DATA; 3314 } 3315 } 3316 3317 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3318 curseg = CURSEG_I(sbi, type); 3319 3320 mutex_lock(&curseg->curseg_mutex); 3321 down_write(&sit_i->sentry_lock); 3322 3323 old_cursegno = curseg->segno; 3324 old_blkoff = curseg->next_blkoff; 3325 3326 /* change the current segment */ 3327 if (segno != curseg->segno) { 3328 curseg->next_segno = segno; 3329 change_curseg(sbi, type); 3330 } 3331 3332 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3333 __add_sum_entry(sbi, type, sum); 3334 3335 if (!recover_curseg || recover_newaddr) 3336 update_sit_entry(sbi, new_blkaddr, 1); 3337 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3338 invalidate_mapping_pages(META_MAPPING(sbi), 3339 old_blkaddr, old_blkaddr); 3340 update_sit_entry(sbi, old_blkaddr, -1); 3341 } 3342 3343 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3344 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3345 3346 locate_dirty_segment(sbi, old_cursegno); 3347 3348 if (recover_curseg) { 3349 if (old_cursegno != curseg->segno) { 3350 curseg->next_segno = old_cursegno; 3351 change_curseg(sbi, type); 3352 } 3353 curseg->next_blkoff = old_blkoff; 3354 } 3355 3356 up_write(&sit_i->sentry_lock); 3357 mutex_unlock(&curseg->curseg_mutex); 3358 up_write(&SM_I(sbi)->curseg_lock); 3359 } 3360 3361 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3362 block_t old_addr, block_t new_addr, 3363 unsigned char version, bool recover_curseg, 3364 bool recover_newaddr) 3365 { 3366 struct f2fs_summary sum; 3367 3368 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3369 3370 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3371 recover_curseg, recover_newaddr); 3372 3373 f2fs_update_data_blkaddr(dn, new_addr); 3374 } 3375 3376 void f2fs_wait_on_page_writeback(struct page *page, 3377 enum page_type type, bool ordered, bool locked) 3378 { 3379 if (PageWriteback(page)) { 3380 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3381 3382 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3383 if (ordered) { 3384 wait_on_page_writeback(page); 3385 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3386 } else { 3387 wait_for_stable_page(page); 3388 } 3389 } 3390 } 3391 3392 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3393 { 3394 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3395 struct page *cpage; 3396 3397 if (!f2fs_post_read_required(inode)) 3398 return; 3399 3400 if (!__is_valid_data_blkaddr(blkaddr)) 3401 return; 3402 3403 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3404 if (cpage) { 3405 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3406 f2fs_put_page(cpage, 1); 3407 } 3408 } 3409 3410 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3411 block_t len) 3412 { 3413 block_t i; 3414 3415 for (i = 0; i < len; i++) 3416 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3417 } 3418 3419 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3420 { 3421 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3422 struct curseg_info *seg_i; 3423 unsigned char *kaddr; 3424 struct page *page; 3425 block_t start; 3426 int i, j, offset; 3427 3428 start = start_sum_block(sbi); 3429 3430 page = f2fs_get_meta_page(sbi, start++); 3431 if (IS_ERR(page)) 3432 return PTR_ERR(page); 3433 kaddr = (unsigned char *)page_address(page); 3434 3435 /* Step 1: restore nat cache */ 3436 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3437 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3438 3439 /* Step 2: restore sit cache */ 3440 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3441 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3442 offset = 2 * SUM_JOURNAL_SIZE; 3443 3444 /* Step 3: restore summary entries */ 3445 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3446 unsigned short blk_off; 3447 unsigned int segno; 3448 3449 seg_i = CURSEG_I(sbi, i); 3450 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3451 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3452 seg_i->next_segno = segno; 3453 reset_curseg(sbi, i, 0); 3454 seg_i->alloc_type = ckpt->alloc_type[i]; 3455 seg_i->next_blkoff = blk_off; 3456 3457 if (seg_i->alloc_type == SSR) 3458 blk_off = sbi->blocks_per_seg; 3459 3460 for (j = 0; j < blk_off; j++) { 3461 struct f2fs_summary *s; 3462 s = (struct f2fs_summary *)(kaddr + offset); 3463 seg_i->sum_blk->entries[j] = *s; 3464 offset += SUMMARY_SIZE; 3465 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3466 SUM_FOOTER_SIZE) 3467 continue; 3468 3469 f2fs_put_page(page, 1); 3470 page = NULL; 3471 3472 page = f2fs_get_meta_page(sbi, start++); 3473 if (IS_ERR(page)) 3474 return PTR_ERR(page); 3475 kaddr = (unsigned char *)page_address(page); 3476 offset = 0; 3477 } 3478 } 3479 f2fs_put_page(page, 1); 3480 return 0; 3481 } 3482 3483 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3484 { 3485 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3486 struct f2fs_summary_block *sum; 3487 struct curseg_info *curseg; 3488 struct page *new; 3489 unsigned short blk_off; 3490 unsigned int segno = 0; 3491 block_t blk_addr = 0; 3492 int err = 0; 3493 3494 /* get segment number and block addr */ 3495 if (IS_DATASEG(type)) { 3496 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3497 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3498 CURSEG_HOT_DATA]); 3499 if (__exist_node_summaries(sbi)) 3500 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3501 else 3502 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3503 } else { 3504 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3505 CURSEG_HOT_NODE]); 3506 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3507 CURSEG_HOT_NODE]); 3508 if (__exist_node_summaries(sbi)) 3509 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3510 type - CURSEG_HOT_NODE); 3511 else 3512 blk_addr = GET_SUM_BLOCK(sbi, segno); 3513 } 3514 3515 new = f2fs_get_meta_page(sbi, blk_addr); 3516 if (IS_ERR(new)) 3517 return PTR_ERR(new); 3518 sum = (struct f2fs_summary_block *)page_address(new); 3519 3520 if (IS_NODESEG(type)) { 3521 if (__exist_node_summaries(sbi)) { 3522 struct f2fs_summary *ns = &sum->entries[0]; 3523 int i; 3524 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3525 ns->version = 0; 3526 ns->ofs_in_node = 0; 3527 } 3528 } else { 3529 err = f2fs_restore_node_summary(sbi, segno, sum); 3530 if (err) 3531 goto out; 3532 } 3533 } 3534 3535 /* set uncompleted segment to curseg */ 3536 curseg = CURSEG_I(sbi, type); 3537 mutex_lock(&curseg->curseg_mutex); 3538 3539 /* update journal info */ 3540 down_write(&curseg->journal_rwsem); 3541 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3542 up_write(&curseg->journal_rwsem); 3543 3544 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3545 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3546 curseg->next_segno = segno; 3547 reset_curseg(sbi, type, 0); 3548 curseg->alloc_type = ckpt->alloc_type[type]; 3549 curseg->next_blkoff = blk_off; 3550 mutex_unlock(&curseg->curseg_mutex); 3551 out: 3552 f2fs_put_page(new, 1); 3553 return err; 3554 } 3555 3556 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3557 { 3558 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3559 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3560 int type = CURSEG_HOT_DATA; 3561 int err; 3562 3563 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3564 int npages = f2fs_npages_for_summary_flush(sbi, true); 3565 3566 if (npages >= 2) 3567 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3568 META_CP, true); 3569 3570 /* restore for compacted data summary */ 3571 err = read_compacted_summaries(sbi); 3572 if (err) 3573 return err; 3574 type = CURSEG_HOT_NODE; 3575 } 3576 3577 if (__exist_node_summaries(sbi)) 3578 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3579 NR_CURSEG_TYPE - type, META_CP, true); 3580 3581 for (; type <= CURSEG_COLD_NODE; type++) { 3582 err = read_normal_summaries(sbi, type); 3583 if (err) 3584 return err; 3585 } 3586 3587 /* sanity check for summary blocks */ 3588 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3589 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3590 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n", 3591 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3592 return -EINVAL; 3593 } 3594 3595 return 0; 3596 } 3597 3598 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3599 { 3600 struct page *page; 3601 unsigned char *kaddr; 3602 struct f2fs_summary *summary; 3603 struct curseg_info *seg_i; 3604 int written_size = 0; 3605 int i, j; 3606 3607 page = f2fs_grab_meta_page(sbi, blkaddr++); 3608 kaddr = (unsigned char *)page_address(page); 3609 memset(kaddr, 0, PAGE_SIZE); 3610 3611 /* Step 1: write nat cache */ 3612 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3613 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3614 written_size += SUM_JOURNAL_SIZE; 3615 3616 /* Step 2: write sit cache */ 3617 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3618 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3619 written_size += SUM_JOURNAL_SIZE; 3620 3621 /* Step 3: write summary entries */ 3622 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3623 unsigned short blkoff; 3624 seg_i = CURSEG_I(sbi, i); 3625 if (sbi->ckpt->alloc_type[i] == SSR) 3626 blkoff = sbi->blocks_per_seg; 3627 else 3628 blkoff = curseg_blkoff(sbi, i); 3629 3630 for (j = 0; j < blkoff; j++) { 3631 if (!page) { 3632 page = f2fs_grab_meta_page(sbi, blkaddr++); 3633 kaddr = (unsigned char *)page_address(page); 3634 memset(kaddr, 0, PAGE_SIZE); 3635 written_size = 0; 3636 } 3637 summary = (struct f2fs_summary *)(kaddr + written_size); 3638 *summary = seg_i->sum_blk->entries[j]; 3639 written_size += SUMMARY_SIZE; 3640 3641 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3642 SUM_FOOTER_SIZE) 3643 continue; 3644 3645 set_page_dirty(page); 3646 f2fs_put_page(page, 1); 3647 page = NULL; 3648 } 3649 } 3650 if (page) { 3651 set_page_dirty(page); 3652 f2fs_put_page(page, 1); 3653 } 3654 } 3655 3656 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3657 block_t blkaddr, int type) 3658 { 3659 int i, end; 3660 if (IS_DATASEG(type)) 3661 end = type + NR_CURSEG_DATA_TYPE; 3662 else 3663 end = type + NR_CURSEG_NODE_TYPE; 3664 3665 for (i = type; i < end; i++) 3666 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3667 } 3668 3669 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3670 { 3671 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3672 write_compacted_summaries(sbi, start_blk); 3673 else 3674 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3675 } 3676 3677 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3678 { 3679 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3680 } 3681 3682 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3683 unsigned int val, int alloc) 3684 { 3685 int i; 3686 3687 if (type == NAT_JOURNAL) { 3688 for (i = 0; i < nats_in_cursum(journal); i++) { 3689 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3690 return i; 3691 } 3692 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3693 return update_nats_in_cursum(journal, 1); 3694 } else if (type == SIT_JOURNAL) { 3695 for (i = 0; i < sits_in_cursum(journal); i++) 3696 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3697 return i; 3698 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3699 return update_sits_in_cursum(journal, 1); 3700 } 3701 return -1; 3702 } 3703 3704 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3705 unsigned int segno) 3706 { 3707 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); 3708 } 3709 3710 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3711 unsigned int start) 3712 { 3713 struct sit_info *sit_i = SIT_I(sbi); 3714 struct page *page; 3715 pgoff_t src_off, dst_off; 3716 3717 src_off = current_sit_addr(sbi, start); 3718 dst_off = next_sit_addr(sbi, src_off); 3719 3720 page = f2fs_grab_meta_page(sbi, dst_off); 3721 seg_info_to_sit_page(sbi, page, start); 3722 3723 set_page_dirty(page); 3724 set_to_next_sit(sit_i, start); 3725 3726 return page; 3727 } 3728 3729 static struct sit_entry_set *grab_sit_entry_set(void) 3730 { 3731 struct sit_entry_set *ses = 3732 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3733 3734 ses->entry_cnt = 0; 3735 INIT_LIST_HEAD(&ses->set_list); 3736 return ses; 3737 } 3738 3739 static void release_sit_entry_set(struct sit_entry_set *ses) 3740 { 3741 list_del(&ses->set_list); 3742 kmem_cache_free(sit_entry_set_slab, ses); 3743 } 3744 3745 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3746 struct list_head *head) 3747 { 3748 struct sit_entry_set *next = ses; 3749 3750 if (list_is_last(&ses->set_list, head)) 3751 return; 3752 3753 list_for_each_entry_continue(next, head, set_list) 3754 if (ses->entry_cnt <= next->entry_cnt) 3755 break; 3756 3757 list_move_tail(&ses->set_list, &next->set_list); 3758 } 3759 3760 static void add_sit_entry(unsigned int segno, struct list_head *head) 3761 { 3762 struct sit_entry_set *ses; 3763 unsigned int start_segno = START_SEGNO(segno); 3764 3765 list_for_each_entry(ses, head, set_list) { 3766 if (ses->start_segno == start_segno) { 3767 ses->entry_cnt++; 3768 adjust_sit_entry_set(ses, head); 3769 return; 3770 } 3771 } 3772 3773 ses = grab_sit_entry_set(); 3774 3775 ses->start_segno = start_segno; 3776 ses->entry_cnt++; 3777 list_add(&ses->set_list, head); 3778 } 3779 3780 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3781 { 3782 struct f2fs_sm_info *sm_info = SM_I(sbi); 3783 struct list_head *set_list = &sm_info->sit_entry_set; 3784 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3785 unsigned int segno; 3786 3787 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3788 add_sit_entry(segno, set_list); 3789 } 3790 3791 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3792 { 3793 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3794 struct f2fs_journal *journal = curseg->journal; 3795 int i; 3796 3797 down_write(&curseg->journal_rwsem); 3798 for (i = 0; i < sits_in_cursum(journal); i++) { 3799 unsigned int segno; 3800 bool dirtied; 3801 3802 segno = le32_to_cpu(segno_in_journal(journal, i)); 3803 dirtied = __mark_sit_entry_dirty(sbi, segno); 3804 3805 if (!dirtied) 3806 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3807 } 3808 update_sits_in_cursum(journal, -i); 3809 up_write(&curseg->journal_rwsem); 3810 } 3811 3812 /* 3813 * CP calls this function, which flushes SIT entries including sit_journal, 3814 * and moves prefree segs to free segs. 3815 */ 3816 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3817 { 3818 struct sit_info *sit_i = SIT_I(sbi); 3819 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3820 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3821 struct f2fs_journal *journal = curseg->journal; 3822 struct sit_entry_set *ses, *tmp; 3823 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3824 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 3825 struct seg_entry *se; 3826 3827 down_write(&sit_i->sentry_lock); 3828 3829 if (!sit_i->dirty_sentries) 3830 goto out; 3831 3832 /* 3833 * add and account sit entries of dirty bitmap in sit entry 3834 * set temporarily 3835 */ 3836 add_sits_in_set(sbi); 3837 3838 /* 3839 * if there are no enough space in journal to store dirty sit 3840 * entries, remove all entries from journal and add and account 3841 * them in sit entry set. 3842 */ 3843 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 3844 !to_journal) 3845 remove_sits_in_journal(sbi); 3846 3847 /* 3848 * there are two steps to flush sit entries: 3849 * #1, flush sit entries to journal in current cold data summary block. 3850 * #2, flush sit entries to sit page. 3851 */ 3852 list_for_each_entry_safe(ses, tmp, head, set_list) { 3853 struct page *page = NULL; 3854 struct f2fs_sit_block *raw_sit = NULL; 3855 unsigned int start_segno = ses->start_segno; 3856 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3857 (unsigned long)MAIN_SEGS(sbi)); 3858 unsigned int segno = start_segno; 3859 3860 if (to_journal && 3861 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3862 to_journal = false; 3863 3864 if (to_journal) { 3865 down_write(&curseg->journal_rwsem); 3866 } else { 3867 page = get_next_sit_page(sbi, start_segno); 3868 raw_sit = page_address(page); 3869 } 3870 3871 /* flush dirty sit entries in region of current sit set */ 3872 for_each_set_bit_from(segno, bitmap, end) { 3873 int offset, sit_offset; 3874 3875 se = get_seg_entry(sbi, segno); 3876 #ifdef CONFIG_F2FS_CHECK_FS 3877 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 3878 SIT_VBLOCK_MAP_SIZE)) 3879 f2fs_bug_on(sbi, 1); 3880 #endif 3881 3882 /* add discard candidates */ 3883 if (!(cpc->reason & CP_DISCARD)) { 3884 cpc->trim_start = segno; 3885 add_discard_addrs(sbi, cpc, false); 3886 } 3887 3888 if (to_journal) { 3889 offset = f2fs_lookup_journal_in_cursum(journal, 3890 SIT_JOURNAL, segno, 1); 3891 f2fs_bug_on(sbi, offset < 0); 3892 segno_in_journal(journal, offset) = 3893 cpu_to_le32(segno); 3894 seg_info_to_raw_sit(se, 3895 &sit_in_journal(journal, offset)); 3896 check_block_count(sbi, segno, 3897 &sit_in_journal(journal, offset)); 3898 } else { 3899 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3900 seg_info_to_raw_sit(se, 3901 &raw_sit->entries[sit_offset]); 3902 check_block_count(sbi, segno, 3903 &raw_sit->entries[sit_offset]); 3904 } 3905 3906 __clear_bit(segno, bitmap); 3907 sit_i->dirty_sentries--; 3908 ses->entry_cnt--; 3909 } 3910 3911 if (to_journal) 3912 up_write(&curseg->journal_rwsem); 3913 else 3914 f2fs_put_page(page, 1); 3915 3916 f2fs_bug_on(sbi, ses->entry_cnt); 3917 release_sit_entry_set(ses); 3918 } 3919 3920 f2fs_bug_on(sbi, !list_empty(head)); 3921 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3922 out: 3923 if (cpc->reason & CP_DISCARD) { 3924 __u64 trim_start = cpc->trim_start; 3925 3926 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3927 add_discard_addrs(sbi, cpc, false); 3928 3929 cpc->trim_start = trim_start; 3930 } 3931 up_write(&sit_i->sentry_lock); 3932 3933 set_prefree_as_free_segments(sbi); 3934 } 3935 3936 static int build_sit_info(struct f2fs_sb_info *sbi) 3937 { 3938 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3939 struct sit_info *sit_i; 3940 unsigned int sit_segs, start; 3941 char *src_bitmap, *bitmap; 3942 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 3943 3944 /* allocate memory for SIT information */ 3945 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 3946 if (!sit_i) 3947 return -ENOMEM; 3948 3949 SM_I(sbi)->sit_info = sit_i; 3950 3951 sit_i->sentries = 3952 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 3953 MAIN_SEGS(sbi)), 3954 GFP_KERNEL); 3955 if (!sit_i->sentries) 3956 return -ENOMEM; 3957 3958 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3959 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 3960 GFP_KERNEL); 3961 if (!sit_i->dirty_sentries_bitmap) 3962 return -ENOMEM; 3963 3964 #ifdef CONFIG_F2FS_CHECK_FS 3965 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; 3966 #else 3967 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; 3968 #endif 3969 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 3970 if (!sit_i->bitmap) 3971 return -ENOMEM; 3972 3973 bitmap = sit_i->bitmap; 3974 3975 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3976 sit_i->sentries[start].cur_valid_map = bitmap; 3977 bitmap += SIT_VBLOCK_MAP_SIZE; 3978 3979 sit_i->sentries[start].ckpt_valid_map = bitmap; 3980 bitmap += SIT_VBLOCK_MAP_SIZE; 3981 3982 #ifdef CONFIG_F2FS_CHECK_FS 3983 sit_i->sentries[start].cur_valid_map_mir = bitmap; 3984 bitmap += SIT_VBLOCK_MAP_SIZE; 3985 #endif 3986 3987 sit_i->sentries[start].discard_map = bitmap; 3988 bitmap += SIT_VBLOCK_MAP_SIZE; 3989 } 3990 3991 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3992 if (!sit_i->tmp_map) 3993 return -ENOMEM; 3994 3995 if (__is_large_section(sbi)) { 3996 sit_i->sec_entries = 3997 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 3998 MAIN_SECS(sbi)), 3999 GFP_KERNEL); 4000 if (!sit_i->sec_entries) 4001 return -ENOMEM; 4002 } 4003 4004 /* get information related with SIT */ 4005 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4006 4007 /* setup SIT bitmap from ckeckpoint pack */ 4008 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4009 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4010 4011 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4012 if (!sit_i->sit_bitmap) 4013 return -ENOMEM; 4014 4015 #ifdef CONFIG_F2FS_CHECK_FS 4016 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4017 sit_bitmap_size, GFP_KERNEL); 4018 if (!sit_i->sit_bitmap_mir) 4019 return -ENOMEM; 4020 4021 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4022 main_bitmap_size, GFP_KERNEL); 4023 if (!sit_i->invalid_segmap) 4024 return -ENOMEM; 4025 #endif 4026 4027 /* init SIT information */ 4028 sit_i->s_ops = &default_salloc_ops; 4029 4030 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4031 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4032 sit_i->written_valid_blocks = 0; 4033 sit_i->bitmap_size = sit_bitmap_size; 4034 sit_i->dirty_sentries = 0; 4035 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4036 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4037 sit_i->mounted_time = ktime_get_real_seconds(); 4038 init_rwsem(&sit_i->sentry_lock); 4039 return 0; 4040 } 4041 4042 static int build_free_segmap(struct f2fs_sb_info *sbi) 4043 { 4044 struct free_segmap_info *free_i; 4045 unsigned int bitmap_size, sec_bitmap_size; 4046 4047 /* allocate memory for free segmap information */ 4048 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4049 if (!free_i) 4050 return -ENOMEM; 4051 4052 SM_I(sbi)->free_info = free_i; 4053 4054 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4055 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4056 if (!free_i->free_segmap) 4057 return -ENOMEM; 4058 4059 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4060 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4061 if (!free_i->free_secmap) 4062 return -ENOMEM; 4063 4064 /* set all segments as dirty temporarily */ 4065 memset(free_i->free_segmap, 0xff, bitmap_size); 4066 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4067 4068 /* init free segmap information */ 4069 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4070 free_i->free_segments = 0; 4071 free_i->free_sections = 0; 4072 spin_lock_init(&free_i->segmap_lock); 4073 return 0; 4074 } 4075 4076 static int build_curseg(struct f2fs_sb_info *sbi) 4077 { 4078 struct curseg_info *array; 4079 int i; 4080 4081 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), 4082 GFP_KERNEL); 4083 if (!array) 4084 return -ENOMEM; 4085 4086 SM_I(sbi)->curseg_array = array; 4087 4088 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4089 mutex_init(&array[i].curseg_mutex); 4090 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4091 if (!array[i].sum_blk) 4092 return -ENOMEM; 4093 init_rwsem(&array[i].journal_rwsem); 4094 array[i].journal = f2fs_kzalloc(sbi, 4095 sizeof(struct f2fs_journal), GFP_KERNEL); 4096 if (!array[i].journal) 4097 return -ENOMEM; 4098 array[i].segno = NULL_SEGNO; 4099 array[i].next_blkoff = 0; 4100 } 4101 return restore_curseg_summaries(sbi); 4102 } 4103 4104 static int build_sit_entries(struct f2fs_sb_info *sbi) 4105 { 4106 struct sit_info *sit_i = SIT_I(sbi); 4107 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4108 struct f2fs_journal *journal = curseg->journal; 4109 struct seg_entry *se; 4110 struct f2fs_sit_entry sit; 4111 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4112 unsigned int i, start, end; 4113 unsigned int readed, start_blk = 0; 4114 int err = 0; 4115 block_t total_node_blocks = 0; 4116 4117 do { 4118 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4119 META_SIT, true); 4120 4121 start = start_blk * sit_i->sents_per_block; 4122 end = (start_blk + readed) * sit_i->sents_per_block; 4123 4124 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4125 struct f2fs_sit_block *sit_blk; 4126 struct page *page; 4127 4128 se = &sit_i->sentries[start]; 4129 page = get_current_sit_page(sbi, start); 4130 if (IS_ERR(page)) 4131 return PTR_ERR(page); 4132 sit_blk = (struct f2fs_sit_block *)page_address(page); 4133 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4134 f2fs_put_page(page, 1); 4135 4136 err = check_block_count(sbi, start, &sit); 4137 if (err) 4138 return err; 4139 seg_info_from_raw_sit(se, &sit); 4140 if (IS_NODESEG(se->type)) 4141 total_node_blocks += se->valid_blocks; 4142 4143 /* build discard map only one time */ 4144 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4145 memset(se->discard_map, 0xff, 4146 SIT_VBLOCK_MAP_SIZE); 4147 } else { 4148 memcpy(se->discard_map, 4149 se->cur_valid_map, 4150 SIT_VBLOCK_MAP_SIZE); 4151 sbi->discard_blks += 4152 sbi->blocks_per_seg - 4153 se->valid_blocks; 4154 } 4155 4156 if (__is_large_section(sbi)) 4157 get_sec_entry(sbi, start)->valid_blocks += 4158 se->valid_blocks; 4159 } 4160 start_blk += readed; 4161 } while (start_blk < sit_blk_cnt); 4162 4163 down_read(&curseg->journal_rwsem); 4164 for (i = 0; i < sits_in_cursum(journal); i++) { 4165 unsigned int old_valid_blocks; 4166 4167 start = le32_to_cpu(segno_in_journal(journal, i)); 4168 if (start >= MAIN_SEGS(sbi)) { 4169 f2fs_err(sbi, "Wrong journal entry on segno %u", 4170 start); 4171 err = -EFSCORRUPTED; 4172 break; 4173 } 4174 4175 se = &sit_i->sentries[start]; 4176 sit = sit_in_journal(journal, i); 4177 4178 old_valid_blocks = se->valid_blocks; 4179 if (IS_NODESEG(se->type)) 4180 total_node_blocks -= old_valid_blocks; 4181 4182 err = check_block_count(sbi, start, &sit); 4183 if (err) 4184 break; 4185 seg_info_from_raw_sit(se, &sit); 4186 if (IS_NODESEG(se->type)) 4187 total_node_blocks += se->valid_blocks; 4188 4189 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4190 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4191 } else { 4192 memcpy(se->discard_map, se->cur_valid_map, 4193 SIT_VBLOCK_MAP_SIZE); 4194 sbi->discard_blks += old_valid_blocks; 4195 sbi->discard_blks -= se->valid_blocks; 4196 } 4197 4198 if (__is_large_section(sbi)) { 4199 get_sec_entry(sbi, start)->valid_blocks += 4200 se->valid_blocks; 4201 get_sec_entry(sbi, start)->valid_blocks -= 4202 old_valid_blocks; 4203 } 4204 } 4205 up_read(&curseg->journal_rwsem); 4206 4207 if (!err && total_node_blocks != valid_node_count(sbi)) { 4208 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4209 total_node_blocks, valid_node_count(sbi)); 4210 err = -EFSCORRUPTED; 4211 } 4212 4213 return err; 4214 } 4215 4216 static void init_free_segmap(struct f2fs_sb_info *sbi) 4217 { 4218 unsigned int start; 4219 int type; 4220 4221 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4222 struct seg_entry *sentry = get_seg_entry(sbi, start); 4223 if (!sentry->valid_blocks) 4224 __set_free(sbi, start); 4225 else 4226 SIT_I(sbi)->written_valid_blocks += 4227 sentry->valid_blocks; 4228 } 4229 4230 /* set use the current segments */ 4231 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4232 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4233 __set_test_and_inuse(sbi, curseg_t->segno); 4234 } 4235 } 4236 4237 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4238 { 4239 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4240 struct free_segmap_info *free_i = FREE_I(sbi); 4241 unsigned int segno = 0, offset = 0; 4242 unsigned short valid_blocks; 4243 4244 while (1) { 4245 /* find dirty segment based on free segmap */ 4246 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4247 if (segno >= MAIN_SEGS(sbi)) 4248 break; 4249 offset = segno + 1; 4250 valid_blocks = get_valid_blocks(sbi, segno, false); 4251 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 4252 continue; 4253 if (valid_blocks > sbi->blocks_per_seg) { 4254 f2fs_bug_on(sbi, 1); 4255 continue; 4256 } 4257 mutex_lock(&dirty_i->seglist_lock); 4258 __locate_dirty_segment(sbi, segno, DIRTY); 4259 mutex_unlock(&dirty_i->seglist_lock); 4260 } 4261 } 4262 4263 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4264 { 4265 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4266 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4267 4268 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4269 if (!dirty_i->victim_secmap) 4270 return -ENOMEM; 4271 return 0; 4272 } 4273 4274 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4275 { 4276 struct dirty_seglist_info *dirty_i; 4277 unsigned int bitmap_size, i; 4278 4279 /* allocate memory for dirty segments list information */ 4280 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4281 GFP_KERNEL); 4282 if (!dirty_i) 4283 return -ENOMEM; 4284 4285 SM_I(sbi)->dirty_info = dirty_i; 4286 mutex_init(&dirty_i->seglist_lock); 4287 4288 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4289 4290 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4291 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4292 GFP_KERNEL); 4293 if (!dirty_i->dirty_segmap[i]) 4294 return -ENOMEM; 4295 } 4296 4297 init_dirty_segmap(sbi); 4298 return init_victim_secmap(sbi); 4299 } 4300 4301 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4302 { 4303 int i; 4304 4305 /* 4306 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4307 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4308 */ 4309 for (i = 0; i < NO_CHECK_TYPE; i++) { 4310 struct curseg_info *curseg = CURSEG_I(sbi, i); 4311 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4312 unsigned int blkofs = curseg->next_blkoff; 4313 4314 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4315 goto out; 4316 4317 if (curseg->alloc_type == SSR) 4318 continue; 4319 4320 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4321 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4322 continue; 4323 out: 4324 f2fs_err(sbi, 4325 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4326 i, curseg->segno, curseg->alloc_type, 4327 curseg->next_blkoff, blkofs); 4328 return -EFSCORRUPTED; 4329 } 4330 } 4331 return 0; 4332 } 4333 4334 /* 4335 * Update min, max modified time for cost-benefit GC algorithm 4336 */ 4337 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 4338 { 4339 struct sit_info *sit_i = SIT_I(sbi); 4340 unsigned int segno; 4341 4342 down_write(&sit_i->sentry_lock); 4343 4344 sit_i->min_mtime = ULLONG_MAX; 4345 4346 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4347 unsigned int i; 4348 unsigned long long mtime = 0; 4349 4350 for (i = 0; i < sbi->segs_per_sec; i++) 4351 mtime += get_seg_entry(sbi, segno + i)->mtime; 4352 4353 mtime = div_u64(mtime, sbi->segs_per_sec); 4354 4355 if (sit_i->min_mtime > mtime) 4356 sit_i->min_mtime = mtime; 4357 } 4358 sit_i->max_mtime = get_mtime(sbi, false); 4359 up_write(&sit_i->sentry_lock); 4360 } 4361 4362 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 4363 { 4364 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4365 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4366 struct f2fs_sm_info *sm_info; 4367 int err; 4368 4369 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 4370 if (!sm_info) 4371 return -ENOMEM; 4372 4373 /* init sm info */ 4374 sbi->sm_info = sm_info; 4375 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 4376 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 4377 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 4378 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 4379 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 4380 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 4381 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 4382 sm_info->rec_prefree_segments = sm_info->main_segments * 4383 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 4384 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 4385 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 4386 4387 if (!test_opt(sbi, LFS)) 4388 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 4389 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 4390 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 4391 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 4392 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 4393 sm_info->min_ssr_sections = reserved_sections(sbi); 4394 4395 INIT_LIST_HEAD(&sm_info->sit_entry_set); 4396 4397 init_rwsem(&sm_info->curseg_lock); 4398 4399 if (!f2fs_readonly(sbi->sb)) { 4400 err = f2fs_create_flush_cmd_control(sbi); 4401 if (err) 4402 return err; 4403 } 4404 4405 err = create_discard_cmd_control(sbi); 4406 if (err) 4407 return err; 4408 4409 err = build_sit_info(sbi); 4410 if (err) 4411 return err; 4412 err = build_free_segmap(sbi); 4413 if (err) 4414 return err; 4415 err = build_curseg(sbi); 4416 if (err) 4417 return err; 4418 4419 /* reinit free segmap based on SIT */ 4420 err = build_sit_entries(sbi); 4421 if (err) 4422 return err; 4423 4424 init_free_segmap(sbi); 4425 err = build_dirty_segmap(sbi); 4426 if (err) 4427 return err; 4428 4429 err = sanity_check_curseg(sbi); 4430 if (err) 4431 return err; 4432 4433 init_min_max_mtime(sbi); 4434 return 0; 4435 } 4436 4437 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 4438 enum dirty_type dirty_type) 4439 { 4440 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4441 4442 mutex_lock(&dirty_i->seglist_lock); 4443 kvfree(dirty_i->dirty_segmap[dirty_type]); 4444 dirty_i->nr_dirty[dirty_type] = 0; 4445 mutex_unlock(&dirty_i->seglist_lock); 4446 } 4447 4448 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 4449 { 4450 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4451 kvfree(dirty_i->victim_secmap); 4452 } 4453 4454 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 4455 { 4456 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4457 int i; 4458 4459 if (!dirty_i) 4460 return; 4461 4462 /* discard pre-free/dirty segments list */ 4463 for (i = 0; i < NR_DIRTY_TYPE; i++) 4464 discard_dirty_segmap(sbi, i); 4465 4466 destroy_victim_secmap(sbi); 4467 SM_I(sbi)->dirty_info = NULL; 4468 kvfree(dirty_i); 4469 } 4470 4471 static void destroy_curseg(struct f2fs_sb_info *sbi) 4472 { 4473 struct curseg_info *array = SM_I(sbi)->curseg_array; 4474 int i; 4475 4476 if (!array) 4477 return; 4478 SM_I(sbi)->curseg_array = NULL; 4479 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4480 kvfree(array[i].sum_blk); 4481 kvfree(array[i].journal); 4482 } 4483 kvfree(array); 4484 } 4485 4486 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 4487 { 4488 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 4489 if (!free_i) 4490 return; 4491 SM_I(sbi)->free_info = NULL; 4492 kvfree(free_i->free_segmap); 4493 kvfree(free_i->free_secmap); 4494 kvfree(free_i); 4495 } 4496 4497 static void destroy_sit_info(struct f2fs_sb_info *sbi) 4498 { 4499 struct sit_info *sit_i = SIT_I(sbi); 4500 4501 if (!sit_i) 4502 return; 4503 4504 if (sit_i->sentries) 4505 kvfree(sit_i->bitmap); 4506 kvfree(sit_i->tmp_map); 4507 4508 kvfree(sit_i->sentries); 4509 kvfree(sit_i->sec_entries); 4510 kvfree(sit_i->dirty_sentries_bitmap); 4511 4512 SM_I(sbi)->sit_info = NULL; 4513 kvfree(sit_i->sit_bitmap); 4514 #ifdef CONFIG_F2FS_CHECK_FS 4515 kvfree(sit_i->sit_bitmap_mir); 4516 kvfree(sit_i->invalid_segmap); 4517 #endif 4518 kvfree(sit_i); 4519 } 4520 4521 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 4522 { 4523 struct f2fs_sm_info *sm_info = SM_I(sbi); 4524 4525 if (!sm_info) 4526 return; 4527 f2fs_destroy_flush_cmd_control(sbi, true); 4528 destroy_discard_cmd_control(sbi); 4529 destroy_dirty_segmap(sbi); 4530 destroy_curseg(sbi); 4531 destroy_free_segmap(sbi); 4532 destroy_sit_info(sbi); 4533 sbi->sm_info = NULL; 4534 kvfree(sm_info); 4535 } 4536 4537 int __init f2fs_create_segment_manager_caches(void) 4538 { 4539 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 4540 sizeof(struct discard_entry)); 4541 if (!discard_entry_slab) 4542 goto fail; 4543 4544 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 4545 sizeof(struct discard_cmd)); 4546 if (!discard_cmd_slab) 4547 goto destroy_discard_entry; 4548 4549 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 4550 sizeof(struct sit_entry_set)); 4551 if (!sit_entry_set_slab) 4552 goto destroy_discard_cmd; 4553 4554 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 4555 sizeof(struct inmem_pages)); 4556 if (!inmem_entry_slab) 4557 goto destroy_sit_entry_set; 4558 return 0; 4559 4560 destroy_sit_entry_set: 4561 kmem_cache_destroy(sit_entry_set_slab); 4562 destroy_discard_cmd: 4563 kmem_cache_destroy(discard_cmd_slab); 4564 destroy_discard_entry: 4565 kmem_cache_destroy(discard_entry_slab); 4566 fail: 4567 return -ENOMEM; 4568 } 4569 4570 void f2fs_destroy_segment_manager_caches(void) 4571 { 4572 kmem_cache_destroy(sit_entry_set_slab); 4573 kmem_cache_destroy(discard_cmd_slab); 4574 kmem_cache_destroy(discard_entry_slab); 4575 kmem_cache_destroy(inmem_entry_slab); 4576 } 4577