xref: /linux/fs/f2fs/segment.c (revision 4c62e9764ab403d42f9b8871b1241fe7812f19d4)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/vmalloc.h>
16 
17 #include "f2fs.h"
18 #include "segment.h"
19 #include "node.h"
20 
21 static int need_to_flush(struct f2fs_sb_info *sbi)
22 {
23 	unsigned int pages_per_sec = (1 << sbi->log_blocks_per_seg) *
24 			sbi->segs_per_sec;
25 	int node_secs = ((get_pages(sbi, F2FS_DIRTY_NODES) + pages_per_sec - 1)
26 		>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
27 	int dent_secs = ((get_pages(sbi, F2FS_DIRTY_DENTS) + pages_per_sec - 1)
28 		>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
29 
30 	if (sbi->por_doing)
31 		return 0;
32 
33 	if (free_sections(sbi) <= (node_secs + 2 * dent_secs +
34 						reserved_sections(sbi)))
35 		return 1;
36 	return 0;
37 }
38 
39 /*
40  * This function balances dirty node and dentry pages.
41  * In addition, it controls garbage collection.
42  */
43 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
44 {
45 	struct writeback_control wbc = {
46 		.sync_mode = WB_SYNC_ALL,
47 		.nr_to_write = LONG_MAX,
48 		.for_reclaim = 0,
49 	};
50 
51 	if (sbi->por_doing)
52 		return;
53 
54 	/*
55 	 * We should do checkpoint when there are so many dirty node pages
56 	 * with enough free segments. After then, we should do GC.
57 	 */
58 	if (need_to_flush(sbi)) {
59 		sync_dirty_dir_inodes(sbi);
60 		sync_node_pages(sbi, 0, &wbc);
61 	}
62 
63 	if (has_not_enough_free_secs(sbi)) {
64 		mutex_lock(&sbi->gc_mutex);
65 		f2fs_gc(sbi, 1);
66 	}
67 }
68 
69 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
70 		enum dirty_type dirty_type)
71 {
72 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
73 
74 	/* need not be added */
75 	if (IS_CURSEG(sbi, segno))
76 		return;
77 
78 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
79 		dirty_i->nr_dirty[dirty_type]++;
80 
81 	if (dirty_type == DIRTY) {
82 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
83 		dirty_type = sentry->type;
84 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
85 			dirty_i->nr_dirty[dirty_type]++;
86 	}
87 }
88 
89 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
90 		enum dirty_type dirty_type)
91 {
92 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
93 
94 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
95 		dirty_i->nr_dirty[dirty_type]--;
96 
97 	if (dirty_type == DIRTY) {
98 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
99 		dirty_type = sentry->type;
100 		if (test_and_clear_bit(segno,
101 					dirty_i->dirty_segmap[dirty_type]))
102 			dirty_i->nr_dirty[dirty_type]--;
103 		clear_bit(segno, dirty_i->victim_segmap[FG_GC]);
104 		clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
105 	}
106 }
107 
108 /*
109  * Should not occur error such as -ENOMEM.
110  * Adding dirty entry into seglist is not critical operation.
111  * If a given segment is one of current working segments, it won't be added.
112  */
113 void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
114 {
115 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
116 	unsigned short valid_blocks;
117 
118 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
119 		return;
120 
121 	mutex_lock(&dirty_i->seglist_lock);
122 
123 	valid_blocks = get_valid_blocks(sbi, segno, 0);
124 
125 	if (valid_blocks == 0) {
126 		__locate_dirty_segment(sbi, segno, PRE);
127 		__remove_dirty_segment(sbi, segno, DIRTY);
128 	} else if (valid_blocks < sbi->blocks_per_seg) {
129 		__locate_dirty_segment(sbi, segno, DIRTY);
130 	} else {
131 		/* Recovery routine with SSR needs this */
132 		__remove_dirty_segment(sbi, segno, DIRTY);
133 	}
134 
135 	mutex_unlock(&dirty_i->seglist_lock);
136 	return;
137 }
138 
139 /*
140  * Should call clear_prefree_segments after checkpoint is done.
141  */
142 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
143 {
144 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
145 	unsigned int segno, offset = 0;
146 	unsigned int total_segs = TOTAL_SEGS(sbi);
147 
148 	mutex_lock(&dirty_i->seglist_lock);
149 	while (1) {
150 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
151 				offset);
152 		if (segno >= total_segs)
153 			break;
154 		__set_test_and_free(sbi, segno);
155 		offset = segno + 1;
156 	}
157 	mutex_unlock(&dirty_i->seglist_lock);
158 }
159 
160 void clear_prefree_segments(struct f2fs_sb_info *sbi)
161 {
162 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
163 	unsigned int segno, offset = 0;
164 	unsigned int total_segs = TOTAL_SEGS(sbi);
165 
166 	mutex_lock(&dirty_i->seglist_lock);
167 	while (1) {
168 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
169 				offset);
170 		if (segno >= total_segs)
171 			break;
172 
173 		offset = segno + 1;
174 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
175 			dirty_i->nr_dirty[PRE]--;
176 
177 		/* Let's use trim */
178 		if (test_opt(sbi, DISCARD))
179 			blkdev_issue_discard(sbi->sb->s_bdev,
180 					START_BLOCK(sbi, segno) <<
181 					sbi->log_sectors_per_block,
182 					1 << (sbi->log_sectors_per_block +
183 						sbi->log_blocks_per_seg),
184 					GFP_NOFS, 0);
185 	}
186 	mutex_unlock(&dirty_i->seglist_lock);
187 }
188 
189 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
190 {
191 	struct sit_info *sit_i = SIT_I(sbi);
192 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
193 		sit_i->dirty_sentries++;
194 }
195 
196 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
197 					unsigned int segno, int modified)
198 {
199 	struct seg_entry *se = get_seg_entry(sbi, segno);
200 	se->type = type;
201 	if (modified)
202 		__mark_sit_entry_dirty(sbi, segno);
203 }
204 
205 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
206 {
207 	struct seg_entry *se;
208 	unsigned int segno, offset;
209 	long int new_vblocks;
210 
211 	segno = GET_SEGNO(sbi, blkaddr);
212 
213 	se = get_seg_entry(sbi, segno);
214 	new_vblocks = se->valid_blocks + del;
215 	offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
216 
217 	BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
218 				(new_vblocks > sbi->blocks_per_seg)));
219 
220 	se->valid_blocks = new_vblocks;
221 	se->mtime = get_mtime(sbi);
222 	SIT_I(sbi)->max_mtime = se->mtime;
223 
224 	/* Update valid block bitmap */
225 	if (del > 0) {
226 		if (f2fs_set_bit(offset, se->cur_valid_map))
227 			BUG();
228 	} else {
229 		if (!f2fs_clear_bit(offset, se->cur_valid_map))
230 			BUG();
231 	}
232 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
233 		se->ckpt_valid_blocks += del;
234 
235 	__mark_sit_entry_dirty(sbi, segno);
236 
237 	/* update total number of valid blocks to be written in ckpt area */
238 	SIT_I(sbi)->written_valid_blocks += del;
239 
240 	if (sbi->segs_per_sec > 1)
241 		get_sec_entry(sbi, segno)->valid_blocks += del;
242 }
243 
244 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
245 			block_t old_blkaddr, block_t new_blkaddr)
246 {
247 	update_sit_entry(sbi, new_blkaddr, 1);
248 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
249 		update_sit_entry(sbi, old_blkaddr, -1);
250 }
251 
252 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
253 {
254 	unsigned int segno = GET_SEGNO(sbi, addr);
255 	struct sit_info *sit_i = SIT_I(sbi);
256 
257 	BUG_ON(addr == NULL_ADDR);
258 	if (addr == NEW_ADDR)
259 		return;
260 
261 	/* add it into sit main buffer */
262 	mutex_lock(&sit_i->sentry_lock);
263 
264 	update_sit_entry(sbi, addr, -1);
265 
266 	/* add it into dirty seglist */
267 	locate_dirty_segment(sbi, segno);
268 
269 	mutex_unlock(&sit_i->sentry_lock);
270 }
271 
272 /*
273  * This function should be resided under the curseg_mutex lock
274  */
275 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
276 		struct f2fs_summary *sum, unsigned short offset)
277 {
278 	struct curseg_info *curseg = CURSEG_I(sbi, type);
279 	void *addr = curseg->sum_blk;
280 	addr += offset * sizeof(struct f2fs_summary);
281 	memcpy(addr, sum, sizeof(struct f2fs_summary));
282 	return;
283 }
284 
285 /*
286  * Calculate the number of current summary pages for writing
287  */
288 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
289 {
290 	int total_size_bytes = 0;
291 	int valid_sum_count = 0;
292 	int i, sum_space;
293 
294 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
295 		if (sbi->ckpt->alloc_type[i] == SSR)
296 			valid_sum_count += sbi->blocks_per_seg;
297 		else
298 			valid_sum_count += curseg_blkoff(sbi, i);
299 	}
300 
301 	total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
302 			+ sizeof(struct nat_journal) + 2
303 			+ sizeof(struct sit_journal) + 2;
304 	sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
305 	if (total_size_bytes < sum_space)
306 		return 1;
307 	else if (total_size_bytes < 2 * sum_space)
308 		return 2;
309 	return 3;
310 }
311 
312 /*
313  * Caller should put this summary page
314  */
315 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
316 {
317 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
318 }
319 
320 static void write_sum_page(struct f2fs_sb_info *sbi,
321 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
322 {
323 	struct page *page = grab_meta_page(sbi, blk_addr);
324 	void *kaddr = page_address(page);
325 	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
326 	set_page_dirty(page);
327 	f2fs_put_page(page, 1);
328 }
329 
330 static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi,
331 					int ofs_unit, int type)
332 {
333 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
334 	unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE];
335 	unsigned int segno, next_segno, i;
336 	int ofs = 0;
337 
338 	/*
339 	 * If there is not enough reserved sections,
340 	 * we should not reuse prefree segments.
341 	 */
342 	if (has_not_enough_free_secs(sbi))
343 		return NULL_SEGNO;
344 
345 	/*
346 	 * NODE page should not reuse prefree segment,
347 	 * since those information is used for SPOR.
348 	 */
349 	if (IS_NODESEG(type))
350 		return NULL_SEGNO;
351 next:
352 	segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs++);
353 	ofs = ((segno / ofs_unit) * ofs_unit) + ofs_unit;
354 	if (segno < TOTAL_SEGS(sbi)) {
355 		/* skip intermediate segments in a section */
356 		if (segno % ofs_unit)
357 			goto next;
358 
359 		/* skip if whole section is not prefree */
360 		next_segno = find_next_zero_bit(prefree_segmap,
361 						TOTAL_SEGS(sbi), segno + 1);
362 		if (next_segno - segno < ofs_unit)
363 			goto next;
364 
365 		/* skip if whole section was not free at the last checkpoint */
366 		for (i = 0; i < ofs_unit; i++)
367 			if (get_seg_entry(sbi, segno)->ckpt_valid_blocks)
368 				goto next;
369 		return segno;
370 	}
371 	return NULL_SEGNO;
372 }
373 
374 /*
375  * Find a new segment from the free segments bitmap to right order
376  * This function should be returned with success, otherwise BUG
377  */
378 static void get_new_segment(struct f2fs_sb_info *sbi,
379 			unsigned int *newseg, bool new_sec, int dir)
380 {
381 	struct free_segmap_info *free_i = FREE_I(sbi);
382 	unsigned int total_secs = sbi->total_sections;
383 	unsigned int segno, secno, zoneno;
384 	unsigned int total_zones = sbi->total_sections / sbi->secs_per_zone;
385 	unsigned int hint = *newseg / sbi->segs_per_sec;
386 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
387 	unsigned int left_start = hint;
388 	bool init = true;
389 	int go_left = 0;
390 	int i;
391 
392 	write_lock(&free_i->segmap_lock);
393 
394 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
395 		segno = find_next_zero_bit(free_i->free_segmap,
396 					TOTAL_SEGS(sbi), *newseg + 1);
397 		if (segno < TOTAL_SEGS(sbi))
398 			goto got_it;
399 	}
400 find_other_zone:
401 	secno = find_next_zero_bit(free_i->free_secmap, total_secs, hint);
402 	if (secno >= total_secs) {
403 		if (dir == ALLOC_RIGHT) {
404 			secno = find_next_zero_bit(free_i->free_secmap,
405 						total_secs, 0);
406 			BUG_ON(secno >= total_secs);
407 		} else {
408 			go_left = 1;
409 			left_start = hint - 1;
410 		}
411 	}
412 	if (go_left == 0)
413 		goto skip_left;
414 
415 	while (test_bit(left_start, free_i->free_secmap)) {
416 		if (left_start > 0) {
417 			left_start--;
418 			continue;
419 		}
420 		left_start = find_next_zero_bit(free_i->free_secmap,
421 						total_secs, 0);
422 		BUG_ON(left_start >= total_secs);
423 		break;
424 	}
425 	secno = left_start;
426 skip_left:
427 	hint = secno;
428 	segno = secno * sbi->segs_per_sec;
429 	zoneno = secno / sbi->secs_per_zone;
430 
431 	/* give up on finding another zone */
432 	if (!init)
433 		goto got_it;
434 	if (sbi->secs_per_zone == 1)
435 		goto got_it;
436 	if (zoneno == old_zoneno)
437 		goto got_it;
438 	if (dir == ALLOC_LEFT) {
439 		if (!go_left && zoneno + 1 >= total_zones)
440 			goto got_it;
441 		if (go_left && zoneno == 0)
442 			goto got_it;
443 	}
444 	for (i = 0; i < NR_CURSEG_TYPE; i++)
445 		if (CURSEG_I(sbi, i)->zone == zoneno)
446 			break;
447 
448 	if (i < NR_CURSEG_TYPE) {
449 		/* zone is in user, try another */
450 		if (go_left)
451 			hint = zoneno * sbi->secs_per_zone - 1;
452 		else if (zoneno + 1 >= total_zones)
453 			hint = 0;
454 		else
455 			hint = (zoneno + 1) * sbi->secs_per_zone;
456 		init = false;
457 		goto find_other_zone;
458 	}
459 got_it:
460 	/* set it as dirty segment in free segmap */
461 	BUG_ON(test_bit(segno, free_i->free_segmap));
462 	__set_inuse(sbi, segno);
463 	*newseg = segno;
464 	write_unlock(&free_i->segmap_lock);
465 }
466 
467 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
468 {
469 	struct curseg_info *curseg = CURSEG_I(sbi, type);
470 	struct summary_footer *sum_footer;
471 
472 	curseg->segno = curseg->next_segno;
473 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
474 	curseg->next_blkoff = 0;
475 	curseg->next_segno = NULL_SEGNO;
476 
477 	sum_footer = &(curseg->sum_blk->footer);
478 	memset(sum_footer, 0, sizeof(struct summary_footer));
479 	if (IS_DATASEG(type))
480 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
481 	if (IS_NODESEG(type))
482 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
483 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
484 }
485 
486 /*
487  * Allocate a current working segment.
488  * This function always allocates a free segment in LFS manner.
489  */
490 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
491 {
492 	struct curseg_info *curseg = CURSEG_I(sbi, type);
493 	unsigned int segno = curseg->segno;
494 	int dir = ALLOC_LEFT;
495 
496 	write_sum_page(sbi, curseg->sum_blk,
497 				GET_SUM_BLOCK(sbi, curseg->segno));
498 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
499 		dir = ALLOC_RIGHT;
500 
501 	if (test_opt(sbi, NOHEAP))
502 		dir = ALLOC_RIGHT;
503 
504 	get_new_segment(sbi, &segno, new_sec, dir);
505 	curseg->next_segno = segno;
506 	reset_curseg(sbi, type, 1);
507 	curseg->alloc_type = LFS;
508 }
509 
510 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
511 			struct curseg_info *seg, block_t start)
512 {
513 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
514 	block_t ofs;
515 	for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
516 		if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
517 			&& !f2fs_test_bit(ofs, se->cur_valid_map))
518 			break;
519 	}
520 	seg->next_blkoff = ofs;
521 }
522 
523 /*
524  * If a segment is written by LFS manner, next block offset is just obtained
525  * by increasing the current block offset. However, if a segment is written by
526  * SSR manner, next block offset obtained by calling __next_free_blkoff
527  */
528 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
529 				struct curseg_info *seg)
530 {
531 	if (seg->alloc_type == SSR)
532 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
533 	else
534 		seg->next_blkoff++;
535 }
536 
537 /*
538  * This function always allocates a used segment (from dirty seglist) by SSR
539  * manner, so it should recover the existing segment information of valid blocks
540  */
541 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
542 {
543 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
544 	struct curseg_info *curseg = CURSEG_I(sbi, type);
545 	unsigned int new_segno = curseg->next_segno;
546 	struct f2fs_summary_block *sum_node;
547 	struct page *sum_page;
548 
549 	write_sum_page(sbi, curseg->sum_blk,
550 				GET_SUM_BLOCK(sbi, curseg->segno));
551 	__set_test_and_inuse(sbi, new_segno);
552 
553 	mutex_lock(&dirty_i->seglist_lock);
554 	__remove_dirty_segment(sbi, new_segno, PRE);
555 	__remove_dirty_segment(sbi, new_segno, DIRTY);
556 	mutex_unlock(&dirty_i->seglist_lock);
557 
558 	reset_curseg(sbi, type, 1);
559 	curseg->alloc_type = SSR;
560 	__next_free_blkoff(sbi, curseg, 0);
561 
562 	if (reuse) {
563 		sum_page = get_sum_page(sbi, new_segno);
564 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
565 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
566 		f2fs_put_page(sum_page, 1);
567 	}
568 }
569 
570 /*
571  * flush out current segment and replace it with new segment
572  * This function should be returned with success, otherwise BUG
573  */
574 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
575 						int type, bool force)
576 {
577 	struct curseg_info *curseg = CURSEG_I(sbi, type);
578 	unsigned int ofs_unit;
579 
580 	if (force) {
581 		new_curseg(sbi, type, true);
582 		goto out;
583 	}
584 
585 	ofs_unit = need_SSR(sbi) ? 1 : sbi->segs_per_sec;
586 	curseg->next_segno = check_prefree_segments(sbi, ofs_unit, type);
587 
588 	if (curseg->next_segno != NULL_SEGNO)
589 		change_curseg(sbi, type, false);
590 	else if (type == CURSEG_WARM_NODE)
591 		new_curseg(sbi, type, false);
592 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
593 		change_curseg(sbi, type, true);
594 	else
595 		new_curseg(sbi, type, false);
596 out:
597 	sbi->segment_count[curseg->alloc_type]++;
598 }
599 
600 void allocate_new_segments(struct f2fs_sb_info *sbi)
601 {
602 	struct curseg_info *curseg;
603 	unsigned int old_curseg;
604 	int i;
605 
606 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
607 		curseg = CURSEG_I(sbi, i);
608 		old_curseg = curseg->segno;
609 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
610 		locate_dirty_segment(sbi, old_curseg);
611 	}
612 }
613 
614 static const struct segment_allocation default_salloc_ops = {
615 	.allocate_segment = allocate_segment_by_default,
616 };
617 
618 static void f2fs_end_io_write(struct bio *bio, int err)
619 {
620 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
621 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
622 	struct bio_private *p = bio->bi_private;
623 
624 	do {
625 		struct page *page = bvec->bv_page;
626 
627 		if (--bvec >= bio->bi_io_vec)
628 			prefetchw(&bvec->bv_page->flags);
629 		if (!uptodate) {
630 			SetPageError(page);
631 			if (page->mapping)
632 				set_bit(AS_EIO, &page->mapping->flags);
633 			set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
634 			set_page_dirty(page);
635 		}
636 		end_page_writeback(page);
637 		dec_page_count(p->sbi, F2FS_WRITEBACK);
638 	} while (bvec >= bio->bi_io_vec);
639 
640 	if (p->is_sync)
641 		complete(p->wait);
642 	kfree(p);
643 	bio_put(bio);
644 }
645 
646 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
647 {
648 	struct bio *bio;
649 	struct bio_private *priv;
650 retry:
651 	priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
652 	if (!priv) {
653 		cond_resched();
654 		goto retry;
655 	}
656 
657 	/* No failure on bio allocation */
658 	bio = bio_alloc(GFP_NOIO, npages);
659 	bio->bi_bdev = bdev;
660 	bio->bi_private = priv;
661 	return bio;
662 }
663 
664 static void do_submit_bio(struct f2fs_sb_info *sbi,
665 				enum page_type type, bool sync)
666 {
667 	int rw = sync ? WRITE_SYNC : WRITE;
668 	enum page_type btype = type > META ? META : type;
669 
670 	if (type >= META_FLUSH)
671 		rw = WRITE_FLUSH_FUA;
672 
673 	if (sbi->bio[btype]) {
674 		struct bio_private *p = sbi->bio[btype]->bi_private;
675 		p->sbi = sbi;
676 		sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
677 		if (type == META_FLUSH) {
678 			DECLARE_COMPLETION_ONSTACK(wait);
679 			p->is_sync = true;
680 			p->wait = &wait;
681 			submit_bio(rw, sbi->bio[btype]);
682 			wait_for_completion(&wait);
683 		} else {
684 			p->is_sync = false;
685 			submit_bio(rw, sbi->bio[btype]);
686 		}
687 		sbi->bio[btype] = NULL;
688 	}
689 }
690 
691 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
692 {
693 	down_write(&sbi->bio_sem);
694 	do_submit_bio(sbi, type, sync);
695 	up_write(&sbi->bio_sem);
696 }
697 
698 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
699 				block_t blk_addr, enum page_type type)
700 {
701 	struct block_device *bdev = sbi->sb->s_bdev;
702 
703 	verify_block_addr(sbi, blk_addr);
704 
705 	down_write(&sbi->bio_sem);
706 
707 	inc_page_count(sbi, F2FS_WRITEBACK);
708 
709 	if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
710 		do_submit_bio(sbi, type, false);
711 alloc_new:
712 	if (sbi->bio[type] == NULL) {
713 		sbi->bio[type] = f2fs_bio_alloc(bdev, bio_get_nr_vecs(bdev));
714 		sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
715 		/*
716 		 * The end_io will be assigned at the sumbission phase.
717 		 * Until then, let bio_add_page() merge consecutive IOs as much
718 		 * as possible.
719 		 */
720 	}
721 
722 	if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
723 							PAGE_CACHE_SIZE) {
724 		do_submit_bio(sbi, type, false);
725 		goto alloc_new;
726 	}
727 
728 	sbi->last_block_in_bio[type] = blk_addr;
729 
730 	up_write(&sbi->bio_sem);
731 }
732 
733 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
734 {
735 	struct curseg_info *curseg = CURSEG_I(sbi, type);
736 	if (curseg->next_blkoff < sbi->blocks_per_seg)
737 		return true;
738 	return false;
739 }
740 
741 static int __get_segment_type_2(struct page *page, enum page_type p_type)
742 {
743 	if (p_type == DATA)
744 		return CURSEG_HOT_DATA;
745 	else
746 		return CURSEG_HOT_NODE;
747 }
748 
749 static int __get_segment_type_4(struct page *page, enum page_type p_type)
750 {
751 	if (p_type == DATA) {
752 		struct inode *inode = page->mapping->host;
753 
754 		if (S_ISDIR(inode->i_mode))
755 			return CURSEG_HOT_DATA;
756 		else
757 			return CURSEG_COLD_DATA;
758 	} else {
759 		if (IS_DNODE(page) && !is_cold_node(page))
760 			return CURSEG_HOT_NODE;
761 		else
762 			return CURSEG_COLD_NODE;
763 	}
764 }
765 
766 static int __get_segment_type_6(struct page *page, enum page_type p_type)
767 {
768 	if (p_type == DATA) {
769 		struct inode *inode = page->mapping->host;
770 
771 		if (S_ISDIR(inode->i_mode))
772 			return CURSEG_HOT_DATA;
773 		else if (is_cold_data(page) || is_cold_file(inode))
774 			return CURSEG_COLD_DATA;
775 		else
776 			return CURSEG_WARM_DATA;
777 	} else {
778 		if (IS_DNODE(page))
779 			return is_cold_node(page) ? CURSEG_WARM_NODE :
780 						CURSEG_HOT_NODE;
781 		else
782 			return CURSEG_COLD_NODE;
783 	}
784 }
785 
786 static int __get_segment_type(struct page *page, enum page_type p_type)
787 {
788 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
789 	switch (sbi->active_logs) {
790 	case 2:
791 		return __get_segment_type_2(page, p_type);
792 	case 4:
793 		return __get_segment_type_4(page, p_type);
794 	case 6:
795 		return __get_segment_type_6(page, p_type);
796 	default:
797 		BUG();
798 	}
799 }
800 
801 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
802 			block_t old_blkaddr, block_t *new_blkaddr,
803 			struct f2fs_summary *sum, enum page_type p_type)
804 {
805 	struct sit_info *sit_i = SIT_I(sbi);
806 	struct curseg_info *curseg;
807 	unsigned int old_cursegno;
808 	int type;
809 
810 	type = __get_segment_type(page, p_type);
811 	curseg = CURSEG_I(sbi, type);
812 
813 	mutex_lock(&curseg->curseg_mutex);
814 
815 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
816 	old_cursegno = curseg->segno;
817 
818 	/*
819 	 * __add_sum_entry should be resided under the curseg_mutex
820 	 * because, this function updates a summary entry in the
821 	 * current summary block.
822 	 */
823 	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
824 
825 	mutex_lock(&sit_i->sentry_lock);
826 	__refresh_next_blkoff(sbi, curseg);
827 	sbi->block_count[curseg->alloc_type]++;
828 
829 	/*
830 	 * SIT information should be updated before segment allocation,
831 	 * since SSR needs latest valid block information.
832 	 */
833 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
834 
835 	if (!__has_curseg_space(sbi, type))
836 		sit_i->s_ops->allocate_segment(sbi, type, false);
837 
838 	locate_dirty_segment(sbi, old_cursegno);
839 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
840 	mutex_unlock(&sit_i->sentry_lock);
841 
842 	if (p_type == NODE)
843 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
844 
845 	/* writeout dirty page into bdev */
846 	submit_write_page(sbi, page, *new_blkaddr, p_type);
847 
848 	mutex_unlock(&curseg->curseg_mutex);
849 }
850 
851 int write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
852 			struct writeback_control *wbc)
853 {
854 	if (wbc->for_reclaim)
855 		return AOP_WRITEPAGE_ACTIVATE;
856 
857 	set_page_writeback(page);
858 	submit_write_page(sbi, page, page->index, META);
859 	return 0;
860 }
861 
862 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
863 		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
864 {
865 	struct f2fs_summary sum;
866 	set_summary(&sum, nid, 0, 0);
867 	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
868 }
869 
870 void write_data_page(struct inode *inode, struct page *page,
871 		struct dnode_of_data *dn, block_t old_blkaddr,
872 		block_t *new_blkaddr)
873 {
874 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
875 	struct f2fs_summary sum;
876 	struct node_info ni;
877 
878 	BUG_ON(old_blkaddr == NULL_ADDR);
879 	get_node_info(sbi, dn->nid, &ni);
880 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
881 
882 	do_write_page(sbi, page, old_blkaddr,
883 			new_blkaddr, &sum, DATA);
884 }
885 
886 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
887 					block_t old_blk_addr)
888 {
889 	submit_write_page(sbi, page, old_blk_addr, DATA);
890 }
891 
892 void recover_data_page(struct f2fs_sb_info *sbi,
893 			struct page *page, struct f2fs_summary *sum,
894 			block_t old_blkaddr, block_t new_blkaddr)
895 {
896 	struct sit_info *sit_i = SIT_I(sbi);
897 	struct curseg_info *curseg;
898 	unsigned int segno, old_cursegno;
899 	struct seg_entry *se;
900 	int type;
901 
902 	segno = GET_SEGNO(sbi, new_blkaddr);
903 	se = get_seg_entry(sbi, segno);
904 	type = se->type;
905 
906 	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
907 		if (old_blkaddr == NULL_ADDR)
908 			type = CURSEG_COLD_DATA;
909 		else
910 			type = CURSEG_WARM_DATA;
911 	}
912 	curseg = CURSEG_I(sbi, type);
913 
914 	mutex_lock(&curseg->curseg_mutex);
915 	mutex_lock(&sit_i->sentry_lock);
916 
917 	old_cursegno = curseg->segno;
918 
919 	/* change the current segment */
920 	if (segno != curseg->segno) {
921 		curseg->next_segno = segno;
922 		change_curseg(sbi, type, true);
923 	}
924 
925 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
926 					(sbi->blocks_per_seg - 1);
927 	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
928 
929 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
930 
931 	locate_dirty_segment(sbi, old_cursegno);
932 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
933 
934 	mutex_unlock(&sit_i->sentry_lock);
935 	mutex_unlock(&curseg->curseg_mutex);
936 }
937 
938 void rewrite_node_page(struct f2fs_sb_info *sbi,
939 			struct page *page, struct f2fs_summary *sum,
940 			block_t old_blkaddr, block_t new_blkaddr)
941 {
942 	struct sit_info *sit_i = SIT_I(sbi);
943 	int type = CURSEG_WARM_NODE;
944 	struct curseg_info *curseg;
945 	unsigned int segno, old_cursegno;
946 	block_t next_blkaddr = next_blkaddr_of_node(page);
947 	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
948 
949 	curseg = CURSEG_I(sbi, type);
950 
951 	mutex_lock(&curseg->curseg_mutex);
952 	mutex_lock(&sit_i->sentry_lock);
953 
954 	segno = GET_SEGNO(sbi, new_blkaddr);
955 	old_cursegno = curseg->segno;
956 
957 	/* change the current segment */
958 	if (segno != curseg->segno) {
959 		curseg->next_segno = segno;
960 		change_curseg(sbi, type, true);
961 	}
962 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
963 					(sbi->blocks_per_seg - 1);
964 	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
965 
966 	/* change the current log to the next block addr in advance */
967 	if (next_segno != segno) {
968 		curseg->next_segno = next_segno;
969 		change_curseg(sbi, type, true);
970 	}
971 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
972 					(sbi->blocks_per_seg - 1);
973 
974 	/* rewrite node page */
975 	set_page_writeback(page);
976 	submit_write_page(sbi, page, new_blkaddr, NODE);
977 	f2fs_submit_bio(sbi, NODE, true);
978 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
979 
980 	locate_dirty_segment(sbi, old_cursegno);
981 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
982 
983 	mutex_unlock(&sit_i->sentry_lock);
984 	mutex_unlock(&curseg->curseg_mutex);
985 }
986 
987 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
988 {
989 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
990 	struct curseg_info *seg_i;
991 	unsigned char *kaddr;
992 	struct page *page;
993 	block_t start;
994 	int i, j, offset;
995 
996 	start = start_sum_block(sbi);
997 
998 	page = get_meta_page(sbi, start++);
999 	kaddr = (unsigned char *)page_address(page);
1000 
1001 	/* Step 1: restore nat cache */
1002 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1003 	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1004 
1005 	/* Step 2: restore sit cache */
1006 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1007 	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1008 						SUM_JOURNAL_SIZE);
1009 	offset = 2 * SUM_JOURNAL_SIZE;
1010 
1011 	/* Step 3: restore summary entries */
1012 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1013 		unsigned short blk_off;
1014 		unsigned int segno;
1015 
1016 		seg_i = CURSEG_I(sbi, i);
1017 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1018 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1019 		seg_i->next_segno = segno;
1020 		reset_curseg(sbi, i, 0);
1021 		seg_i->alloc_type = ckpt->alloc_type[i];
1022 		seg_i->next_blkoff = blk_off;
1023 
1024 		if (seg_i->alloc_type == SSR)
1025 			blk_off = sbi->blocks_per_seg;
1026 
1027 		for (j = 0; j < blk_off; j++) {
1028 			struct f2fs_summary *s;
1029 			s = (struct f2fs_summary *)(kaddr + offset);
1030 			seg_i->sum_blk->entries[j] = *s;
1031 			offset += SUMMARY_SIZE;
1032 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1033 						SUM_FOOTER_SIZE)
1034 				continue;
1035 
1036 			f2fs_put_page(page, 1);
1037 			page = NULL;
1038 
1039 			page = get_meta_page(sbi, start++);
1040 			kaddr = (unsigned char *)page_address(page);
1041 			offset = 0;
1042 		}
1043 	}
1044 	f2fs_put_page(page, 1);
1045 	return 0;
1046 }
1047 
1048 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1049 {
1050 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1051 	struct f2fs_summary_block *sum;
1052 	struct curseg_info *curseg;
1053 	struct page *new;
1054 	unsigned short blk_off;
1055 	unsigned int segno = 0;
1056 	block_t blk_addr = 0;
1057 
1058 	/* get segment number and block addr */
1059 	if (IS_DATASEG(type)) {
1060 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1061 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1062 							CURSEG_HOT_DATA]);
1063 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1064 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1065 		else
1066 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1067 	} else {
1068 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1069 							CURSEG_HOT_NODE]);
1070 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1071 							CURSEG_HOT_NODE]);
1072 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1073 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1074 							type - CURSEG_HOT_NODE);
1075 		else
1076 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1077 	}
1078 
1079 	new = get_meta_page(sbi, blk_addr);
1080 	sum = (struct f2fs_summary_block *)page_address(new);
1081 
1082 	if (IS_NODESEG(type)) {
1083 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1084 			struct f2fs_summary *ns = &sum->entries[0];
1085 			int i;
1086 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1087 				ns->version = 0;
1088 				ns->ofs_in_node = 0;
1089 			}
1090 		} else {
1091 			if (restore_node_summary(sbi, segno, sum)) {
1092 				f2fs_put_page(new, 1);
1093 				return -EINVAL;
1094 			}
1095 		}
1096 	}
1097 
1098 	/* set uncompleted segment to curseg */
1099 	curseg = CURSEG_I(sbi, type);
1100 	mutex_lock(&curseg->curseg_mutex);
1101 	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1102 	curseg->next_segno = segno;
1103 	reset_curseg(sbi, type, 0);
1104 	curseg->alloc_type = ckpt->alloc_type[type];
1105 	curseg->next_blkoff = blk_off;
1106 	mutex_unlock(&curseg->curseg_mutex);
1107 	f2fs_put_page(new, 1);
1108 	return 0;
1109 }
1110 
1111 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1112 {
1113 	int type = CURSEG_HOT_DATA;
1114 
1115 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1116 		/* restore for compacted data summary */
1117 		if (read_compacted_summaries(sbi))
1118 			return -EINVAL;
1119 		type = CURSEG_HOT_NODE;
1120 	}
1121 
1122 	for (; type <= CURSEG_COLD_NODE; type++)
1123 		if (read_normal_summaries(sbi, type))
1124 			return -EINVAL;
1125 	return 0;
1126 }
1127 
1128 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1129 {
1130 	struct page *page;
1131 	unsigned char *kaddr;
1132 	struct f2fs_summary *summary;
1133 	struct curseg_info *seg_i;
1134 	int written_size = 0;
1135 	int i, j;
1136 
1137 	page = grab_meta_page(sbi, blkaddr++);
1138 	kaddr = (unsigned char *)page_address(page);
1139 
1140 	/* Step 1: write nat cache */
1141 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1142 	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1143 	written_size += SUM_JOURNAL_SIZE;
1144 
1145 	/* Step 2: write sit cache */
1146 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1147 	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1148 						SUM_JOURNAL_SIZE);
1149 	written_size += SUM_JOURNAL_SIZE;
1150 
1151 	set_page_dirty(page);
1152 
1153 	/* Step 3: write summary entries */
1154 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1155 		unsigned short blkoff;
1156 		seg_i = CURSEG_I(sbi, i);
1157 		if (sbi->ckpt->alloc_type[i] == SSR)
1158 			blkoff = sbi->blocks_per_seg;
1159 		else
1160 			blkoff = curseg_blkoff(sbi, i);
1161 
1162 		for (j = 0; j < blkoff; j++) {
1163 			if (!page) {
1164 				page = grab_meta_page(sbi, blkaddr++);
1165 				kaddr = (unsigned char *)page_address(page);
1166 				written_size = 0;
1167 			}
1168 			summary = (struct f2fs_summary *)(kaddr + written_size);
1169 			*summary = seg_i->sum_blk->entries[j];
1170 			written_size += SUMMARY_SIZE;
1171 			set_page_dirty(page);
1172 
1173 			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1174 							SUM_FOOTER_SIZE)
1175 				continue;
1176 
1177 			f2fs_put_page(page, 1);
1178 			page = NULL;
1179 		}
1180 	}
1181 	if (page)
1182 		f2fs_put_page(page, 1);
1183 }
1184 
1185 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1186 					block_t blkaddr, int type)
1187 {
1188 	int i, end;
1189 	if (IS_DATASEG(type))
1190 		end = type + NR_CURSEG_DATA_TYPE;
1191 	else
1192 		end = type + NR_CURSEG_NODE_TYPE;
1193 
1194 	for (i = type; i < end; i++) {
1195 		struct curseg_info *sum = CURSEG_I(sbi, i);
1196 		mutex_lock(&sum->curseg_mutex);
1197 		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1198 		mutex_unlock(&sum->curseg_mutex);
1199 	}
1200 }
1201 
1202 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1203 {
1204 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1205 		write_compacted_summaries(sbi, start_blk);
1206 	else
1207 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1208 }
1209 
1210 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1211 {
1212 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1213 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1214 	return;
1215 }
1216 
1217 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1218 					unsigned int val, int alloc)
1219 {
1220 	int i;
1221 
1222 	if (type == NAT_JOURNAL) {
1223 		for (i = 0; i < nats_in_cursum(sum); i++) {
1224 			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1225 				return i;
1226 		}
1227 		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1228 			return update_nats_in_cursum(sum, 1);
1229 	} else if (type == SIT_JOURNAL) {
1230 		for (i = 0; i < sits_in_cursum(sum); i++)
1231 			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1232 				return i;
1233 		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1234 			return update_sits_in_cursum(sum, 1);
1235 	}
1236 	return -1;
1237 }
1238 
1239 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1240 					unsigned int segno)
1241 {
1242 	struct sit_info *sit_i = SIT_I(sbi);
1243 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1244 	block_t blk_addr = sit_i->sit_base_addr + offset;
1245 
1246 	check_seg_range(sbi, segno);
1247 
1248 	/* calculate sit block address */
1249 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1250 		blk_addr += sit_i->sit_blocks;
1251 
1252 	return get_meta_page(sbi, blk_addr);
1253 }
1254 
1255 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1256 					unsigned int start)
1257 {
1258 	struct sit_info *sit_i = SIT_I(sbi);
1259 	struct page *src_page, *dst_page;
1260 	pgoff_t src_off, dst_off;
1261 	void *src_addr, *dst_addr;
1262 
1263 	src_off = current_sit_addr(sbi, start);
1264 	dst_off = next_sit_addr(sbi, src_off);
1265 
1266 	/* get current sit block page without lock */
1267 	src_page = get_meta_page(sbi, src_off);
1268 	dst_page = grab_meta_page(sbi, dst_off);
1269 	BUG_ON(PageDirty(src_page));
1270 
1271 	src_addr = page_address(src_page);
1272 	dst_addr = page_address(dst_page);
1273 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1274 
1275 	set_page_dirty(dst_page);
1276 	f2fs_put_page(src_page, 1);
1277 
1278 	set_to_next_sit(sit_i, start);
1279 
1280 	return dst_page;
1281 }
1282 
1283 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1284 {
1285 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1286 	struct f2fs_summary_block *sum = curseg->sum_blk;
1287 	int i;
1288 
1289 	/*
1290 	 * If the journal area in the current summary is full of sit entries,
1291 	 * all the sit entries will be flushed. Otherwise the sit entries
1292 	 * are not able to replace with newly hot sit entries.
1293 	 */
1294 	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1295 		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1296 			unsigned int segno;
1297 			segno = le32_to_cpu(segno_in_journal(sum, i));
1298 			__mark_sit_entry_dirty(sbi, segno);
1299 		}
1300 		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1301 		return 1;
1302 	}
1303 	return 0;
1304 }
1305 
1306 /*
1307  * CP calls this function, which flushes SIT entries including sit_journal,
1308  * and moves prefree segs to free segs.
1309  */
1310 void flush_sit_entries(struct f2fs_sb_info *sbi)
1311 {
1312 	struct sit_info *sit_i = SIT_I(sbi);
1313 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1314 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1315 	struct f2fs_summary_block *sum = curseg->sum_blk;
1316 	unsigned long nsegs = TOTAL_SEGS(sbi);
1317 	struct page *page = NULL;
1318 	struct f2fs_sit_block *raw_sit = NULL;
1319 	unsigned int start = 0, end = 0;
1320 	unsigned int segno = -1;
1321 	bool flushed;
1322 
1323 	mutex_lock(&curseg->curseg_mutex);
1324 	mutex_lock(&sit_i->sentry_lock);
1325 
1326 	/*
1327 	 * "flushed" indicates whether sit entries in journal are flushed
1328 	 * to the SIT area or not.
1329 	 */
1330 	flushed = flush_sits_in_journal(sbi);
1331 
1332 	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1333 		struct seg_entry *se = get_seg_entry(sbi, segno);
1334 		int sit_offset, offset;
1335 
1336 		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1337 
1338 		if (flushed)
1339 			goto to_sit_page;
1340 
1341 		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1342 		if (offset >= 0) {
1343 			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1344 			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1345 			goto flush_done;
1346 		}
1347 to_sit_page:
1348 		if (!page || (start > segno) || (segno > end)) {
1349 			if (page) {
1350 				f2fs_put_page(page, 1);
1351 				page = NULL;
1352 			}
1353 
1354 			start = START_SEGNO(sit_i, segno);
1355 			end = start + SIT_ENTRY_PER_BLOCK - 1;
1356 
1357 			/* read sit block that will be updated */
1358 			page = get_next_sit_page(sbi, start);
1359 			raw_sit = page_address(page);
1360 		}
1361 
1362 		/* udpate entry in SIT block */
1363 		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1364 flush_done:
1365 		__clear_bit(segno, bitmap);
1366 		sit_i->dirty_sentries--;
1367 	}
1368 	mutex_unlock(&sit_i->sentry_lock);
1369 	mutex_unlock(&curseg->curseg_mutex);
1370 
1371 	/* writeout last modified SIT block */
1372 	f2fs_put_page(page, 1);
1373 
1374 	set_prefree_as_free_segments(sbi);
1375 }
1376 
1377 static int build_sit_info(struct f2fs_sb_info *sbi)
1378 {
1379 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1380 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1381 	struct sit_info *sit_i;
1382 	unsigned int sit_segs, start;
1383 	char *src_bitmap, *dst_bitmap;
1384 	unsigned int bitmap_size;
1385 
1386 	/* allocate memory for SIT information */
1387 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1388 	if (!sit_i)
1389 		return -ENOMEM;
1390 
1391 	SM_I(sbi)->sit_info = sit_i;
1392 
1393 	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1394 	if (!sit_i->sentries)
1395 		return -ENOMEM;
1396 
1397 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1398 	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1399 	if (!sit_i->dirty_sentries_bitmap)
1400 		return -ENOMEM;
1401 
1402 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1403 		sit_i->sentries[start].cur_valid_map
1404 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1405 		sit_i->sentries[start].ckpt_valid_map
1406 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1407 		if (!sit_i->sentries[start].cur_valid_map
1408 				|| !sit_i->sentries[start].ckpt_valid_map)
1409 			return -ENOMEM;
1410 	}
1411 
1412 	if (sbi->segs_per_sec > 1) {
1413 		sit_i->sec_entries = vzalloc(sbi->total_sections *
1414 					sizeof(struct sec_entry));
1415 		if (!sit_i->sec_entries)
1416 			return -ENOMEM;
1417 	}
1418 
1419 	/* get information related with SIT */
1420 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1421 
1422 	/* setup SIT bitmap from ckeckpoint pack */
1423 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1424 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1425 
1426 	dst_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1427 	if (!dst_bitmap)
1428 		return -ENOMEM;
1429 	memcpy(dst_bitmap, src_bitmap, bitmap_size);
1430 
1431 	/* init SIT information */
1432 	sit_i->s_ops = &default_salloc_ops;
1433 
1434 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1435 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1436 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1437 	sit_i->sit_bitmap = dst_bitmap;
1438 	sit_i->bitmap_size = bitmap_size;
1439 	sit_i->dirty_sentries = 0;
1440 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1441 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1442 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1443 	mutex_init(&sit_i->sentry_lock);
1444 	return 0;
1445 }
1446 
1447 static int build_free_segmap(struct f2fs_sb_info *sbi)
1448 {
1449 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1450 	struct free_segmap_info *free_i;
1451 	unsigned int bitmap_size, sec_bitmap_size;
1452 
1453 	/* allocate memory for free segmap information */
1454 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1455 	if (!free_i)
1456 		return -ENOMEM;
1457 
1458 	SM_I(sbi)->free_info = free_i;
1459 
1460 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1461 	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1462 	if (!free_i->free_segmap)
1463 		return -ENOMEM;
1464 
1465 	sec_bitmap_size = f2fs_bitmap_size(sbi->total_sections);
1466 	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1467 	if (!free_i->free_secmap)
1468 		return -ENOMEM;
1469 
1470 	/* set all segments as dirty temporarily */
1471 	memset(free_i->free_segmap, 0xff, bitmap_size);
1472 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1473 
1474 	/* init free segmap information */
1475 	free_i->start_segno =
1476 		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1477 	free_i->free_segments = 0;
1478 	free_i->free_sections = 0;
1479 	rwlock_init(&free_i->segmap_lock);
1480 	return 0;
1481 }
1482 
1483 static int build_curseg(struct f2fs_sb_info *sbi)
1484 {
1485 	struct curseg_info *array;
1486 	int i;
1487 
1488 	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1489 	if (!array)
1490 		return -ENOMEM;
1491 
1492 	SM_I(sbi)->curseg_array = array;
1493 
1494 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1495 		mutex_init(&array[i].curseg_mutex);
1496 		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1497 		if (!array[i].sum_blk)
1498 			return -ENOMEM;
1499 		array[i].segno = NULL_SEGNO;
1500 		array[i].next_blkoff = 0;
1501 	}
1502 	return restore_curseg_summaries(sbi);
1503 }
1504 
1505 static void build_sit_entries(struct f2fs_sb_info *sbi)
1506 {
1507 	struct sit_info *sit_i = SIT_I(sbi);
1508 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1509 	struct f2fs_summary_block *sum = curseg->sum_blk;
1510 	unsigned int start;
1511 
1512 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1513 		struct seg_entry *se = &sit_i->sentries[start];
1514 		struct f2fs_sit_block *sit_blk;
1515 		struct f2fs_sit_entry sit;
1516 		struct page *page;
1517 		int i;
1518 
1519 		mutex_lock(&curseg->curseg_mutex);
1520 		for (i = 0; i < sits_in_cursum(sum); i++) {
1521 			if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1522 				sit = sit_in_journal(sum, i);
1523 				mutex_unlock(&curseg->curseg_mutex);
1524 				goto got_it;
1525 			}
1526 		}
1527 		mutex_unlock(&curseg->curseg_mutex);
1528 		page = get_current_sit_page(sbi, start);
1529 		sit_blk = (struct f2fs_sit_block *)page_address(page);
1530 		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1531 		f2fs_put_page(page, 1);
1532 got_it:
1533 		check_block_count(sbi, start, &sit);
1534 		seg_info_from_raw_sit(se, &sit);
1535 		if (sbi->segs_per_sec > 1) {
1536 			struct sec_entry *e = get_sec_entry(sbi, start);
1537 			e->valid_blocks += se->valid_blocks;
1538 		}
1539 	}
1540 }
1541 
1542 static void init_free_segmap(struct f2fs_sb_info *sbi)
1543 {
1544 	unsigned int start;
1545 	int type;
1546 
1547 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1548 		struct seg_entry *sentry = get_seg_entry(sbi, start);
1549 		if (!sentry->valid_blocks)
1550 			__set_free(sbi, start);
1551 	}
1552 
1553 	/* set use the current segments */
1554 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1555 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1556 		__set_test_and_inuse(sbi, curseg_t->segno);
1557 	}
1558 }
1559 
1560 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1561 {
1562 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1563 	struct free_segmap_info *free_i = FREE_I(sbi);
1564 	unsigned int segno = 0, offset = 0;
1565 	unsigned short valid_blocks;
1566 
1567 	while (segno < TOTAL_SEGS(sbi)) {
1568 		/* find dirty segment based on free segmap */
1569 		segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset);
1570 		if (segno >= TOTAL_SEGS(sbi))
1571 			break;
1572 		offset = segno + 1;
1573 		valid_blocks = get_valid_blocks(sbi, segno, 0);
1574 		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1575 			continue;
1576 		mutex_lock(&dirty_i->seglist_lock);
1577 		__locate_dirty_segment(sbi, segno, DIRTY);
1578 		mutex_unlock(&dirty_i->seglist_lock);
1579 	}
1580 }
1581 
1582 static int init_victim_segmap(struct f2fs_sb_info *sbi)
1583 {
1584 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1585 	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1586 
1587 	dirty_i->victim_segmap[FG_GC] = kzalloc(bitmap_size, GFP_KERNEL);
1588 	dirty_i->victim_segmap[BG_GC] = kzalloc(bitmap_size, GFP_KERNEL);
1589 	if (!dirty_i->victim_segmap[FG_GC] || !dirty_i->victim_segmap[BG_GC])
1590 		return -ENOMEM;
1591 	return 0;
1592 }
1593 
1594 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1595 {
1596 	struct dirty_seglist_info *dirty_i;
1597 	unsigned int bitmap_size, i;
1598 
1599 	/* allocate memory for dirty segments list information */
1600 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1601 	if (!dirty_i)
1602 		return -ENOMEM;
1603 
1604 	SM_I(sbi)->dirty_info = dirty_i;
1605 	mutex_init(&dirty_i->seglist_lock);
1606 
1607 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1608 
1609 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1610 		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1611 		dirty_i->nr_dirty[i] = 0;
1612 		if (!dirty_i->dirty_segmap[i])
1613 			return -ENOMEM;
1614 	}
1615 
1616 	init_dirty_segmap(sbi);
1617 	return init_victim_segmap(sbi);
1618 }
1619 
1620 /*
1621  * Update min, max modified time for cost-benefit GC algorithm
1622  */
1623 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1624 {
1625 	struct sit_info *sit_i = SIT_I(sbi);
1626 	unsigned int segno;
1627 
1628 	mutex_lock(&sit_i->sentry_lock);
1629 
1630 	sit_i->min_mtime = LLONG_MAX;
1631 
1632 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1633 		unsigned int i;
1634 		unsigned long long mtime = 0;
1635 
1636 		for (i = 0; i < sbi->segs_per_sec; i++)
1637 			mtime += get_seg_entry(sbi, segno + i)->mtime;
1638 
1639 		mtime = div_u64(mtime, sbi->segs_per_sec);
1640 
1641 		if (sit_i->min_mtime > mtime)
1642 			sit_i->min_mtime = mtime;
1643 	}
1644 	sit_i->max_mtime = get_mtime(sbi);
1645 	mutex_unlock(&sit_i->sentry_lock);
1646 }
1647 
1648 int build_segment_manager(struct f2fs_sb_info *sbi)
1649 {
1650 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1651 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1652 	struct f2fs_sm_info *sm_info;
1653 	int err;
1654 
1655 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1656 	if (!sm_info)
1657 		return -ENOMEM;
1658 
1659 	/* init sm info */
1660 	sbi->sm_info = sm_info;
1661 	INIT_LIST_HEAD(&sm_info->wblist_head);
1662 	spin_lock_init(&sm_info->wblist_lock);
1663 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1664 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1665 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1666 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1667 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1668 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1669 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1670 
1671 	err = build_sit_info(sbi);
1672 	if (err)
1673 		return err;
1674 	err = build_free_segmap(sbi);
1675 	if (err)
1676 		return err;
1677 	err = build_curseg(sbi);
1678 	if (err)
1679 		return err;
1680 
1681 	/* reinit free segmap based on SIT */
1682 	build_sit_entries(sbi);
1683 
1684 	init_free_segmap(sbi);
1685 	err = build_dirty_segmap(sbi);
1686 	if (err)
1687 		return err;
1688 
1689 	init_min_max_mtime(sbi);
1690 	return 0;
1691 }
1692 
1693 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1694 		enum dirty_type dirty_type)
1695 {
1696 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1697 
1698 	mutex_lock(&dirty_i->seglist_lock);
1699 	kfree(dirty_i->dirty_segmap[dirty_type]);
1700 	dirty_i->nr_dirty[dirty_type] = 0;
1701 	mutex_unlock(&dirty_i->seglist_lock);
1702 }
1703 
1704 void reset_victim_segmap(struct f2fs_sb_info *sbi)
1705 {
1706 	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1707 	memset(DIRTY_I(sbi)->victim_segmap[FG_GC], 0, bitmap_size);
1708 }
1709 
1710 static void destroy_victim_segmap(struct f2fs_sb_info *sbi)
1711 {
1712 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1713 
1714 	kfree(dirty_i->victim_segmap[FG_GC]);
1715 	kfree(dirty_i->victim_segmap[BG_GC]);
1716 }
1717 
1718 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1719 {
1720 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1721 	int i;
1722 
1723 	if (!dirty_i)
1724 		return;
1725 
1726 	/* discard pre-free/dirty segments list */
1727 	for (i = 0; i < NR_DIRTY_TYPE; i++)
1728 		discard_dirty_segmap(sbi, i);
1729 
1730 	destroy_victim_segmap(sbi);
1731 	SM_I(sbi)->dirty_info = NULL;
1732 	kfree(dirty_i);
1733 }
1734 
1735 static void destroy_curseg(struct f2fs_sb_info *sbi)
1736 {
1737 	struct curseg_info *array = SM_I(sbi)->curseg_array;
1738 	int i;
1739 
1740 	if (!array)
1741 		return;
1742 	SM_I(sbi)->curseg_array = NULL;
1743 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1744 		kfree(array[i].sum_blk);
1745 	kfree(array);
1746 }
1747 
1748 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1749 {
1750 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1751 	if (!free_i)
1752 		return;
1753 	SM_I(sbi)->free_info = NULL;
1754 	kfree(free_i->free_segmap);
1755 	kfree(free_i->free_secmap);
1756 	kfree(free_i);
1757 }
1758 
1759 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1760 {
1761 	struct sit_info *sit_i = SIT_I(sbi);
1762 	unsigned int start;
1763 
1764 	if (!sit_i)
1765 		return;
1766 
1767 	if (sit_i->sentries) {
1768 		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1769 			kfree(sit_i->sentries[start].cur_valid_map);
1770 			kfree(sit_i->sentries[start].ckpt_valid_map);
1771 		}
1772 	}
1773 	vfree(sit_i->sentries);
1774 	vfree(sit_i->sec_entries);
1775 	kfree(sit_i->dirty_sentries_bitmap);
1776 
1777 	SM_I(sbi)->sit_info = NULL;
1778 	kfree(sit_i->sit_bitmap);
1779 	kfree(sit_i);
1780 }
1781 
1782 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1783 {
1784 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1785 	destroy_dirty_segmap(sbi);
1786 	destroy_curseg(sbi);
1787 	destroy_free_segmap(sbi);
1788 	destroy_sit_info(sbi);
1789 	sbi->sm_info = NULL;
1790 	kfree(sm_info);
1791 }
1792