xref: /linux/fs/f2fs/segment.c (revision 27dfc44e1ba30d2d49675e21918bf4b3b3b59fa6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 	clear_inode_flag(fi->cow_inode, FI_COW_FILE);
198 	iput(fi->cow_inode);
199 	fi->cow_inode = NULL;
200 	release_atomic_write_cnt(inode);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	stat_dec_atomic_inode(inode);
203 }
204 
205 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
206 			block_t new_addr, block_t *old_addr, bool recover)
207 {
208 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
209 	struct dnode_of_data dn;
210 	struct node_info ni;
211 	int err;
212 
213 retry:
214 	set_new_dnode(&dn, inode, NULL, NULL, 0);
215 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
216 	if (err) {
217 		if (err == -ENOMEM) {
218 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
219 			goto retry;
220 		}
221 		return err;
222 	}
223 
224 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
225 	if (err) {
226 		f2fs_put_dnode(&dn);
227 		return err;
228 	}
229 
230 	if (recover) {
231 		/* dn.data_blkaddr is always valid */
232 		if (!__is_valid_data_blkaddr(new_addr)) {
233 			if (new_addr == NULL_ADDR)
234 				dec_valid_block_count(sbi, inode, 1);
235 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
236 			f2fs_update_data_blkaddr(&dn, new_addr);
237 		} else {
238 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
239 				new_addr, ni.version, true, true);
240 		}
241 	} else {
242 		blkcnt_t count = 1;
243 
244 		*old_addr = dn.data_blkaddr;
245 		f2fs_truncate_data_blocks_range(&dn, 1);
246 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
247 		inc_valid_block_count(sbi, inode, &count);
248 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
249 					ni.version, true, false);
250 	}
251 
252 	f2fs_put_dnode(&dn);
253 	return 0;
254 }
255 
256 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
257 					bool revoke)
258 {
259 	struct revoke_entry *cur, *tmp;
260 
261 	list_for_each_entry_safe(cur, tmp, head, list) {
262 		if (revoke)
263 			__replace_atomic_write_block(inode, cur->index,
264 						cur->old_addr, NULL, true);
265 		list_del(&cur->list);
266 		kmem_cache_free(revoke_entry_slab, cur);
267 	}
268 }
269 
270 static int __f2fs_commit_atomic_write(struct inode *inode)
271 {
272 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
273 	struct f2fs_inode_info *fi = F2FS_I(inode);
274 	struct inode *cow_inode = fi->cow_inode;
275 	struct revoke_entry *new;
276 	struct list_head revoke_list;
277 	block_t blkaddr;
278 	struct dnode_of_data dn;
279 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
280 	pgoff_t off = 0, blen, index;
281 	int ret = 0, i;
282 
283 	INIT_LIST_HEAD(&revoke_list);
284 
285 	while (len) {
286 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
287 
288 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
289 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
290 		if (ret && ret != -ENOENT) {
291 			goto out;
292 		} else if (ret == -ENOENT) {
293 			ret = 0;
294 			if (dn.max_level == 0)
295 				goto out;
296 			goto next;
297 		}
298 
299 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
300 				len);
301 		index = off;
302 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
303 			blkaddr = f2fs_data_blkaddr(&dn);
304 
305 			if (!__is_valid_data_blkaddr(blkaddr)) {
306 				continue;
307 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
308 					DATA_GENERIC_ENHANCE)) {
309 				f2fs_put_dnode(&dn);
310 				ret = -EFSCORRUPTED;
311 				f2fs_handle_error(sbi,
312 						ERROR_INVALID_BLKADDR);
313 				goto out;
314 			}
315 
316 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
317 							true, NULL);
318 
319 			ret = __replace_atomic_write_block(inode, index, blkaddr,
320 							&new->old_addr, false);
321 			if (ret) {
322 				f2fs_put_dnode(&dn);
323 				kmem_cache_free(revoke_entry_slab, new);
324 				goto out;
325 			}
326 
327 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
328 			new->index = index;
329 			list_add_tail(&new->list, &revoke_list);
330 		}
331 		f2fs_put_dnode(&dn);
332 next:
333 		off += blen;
334 		len -= blen;
335 	}
336 
337 out:
338 	if (ret)
339 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
340 	else
341 		sbi->committed_atomic_block += fi->atomic_write_cnt;
342 
343 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
344 
345 	return ret;
346 }
347 
348 int f2fs_commit_atomic_write(struct inode *inode)
349 {
350 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
351 	struct f2fs_inode_info *fi = F2FS_I(inode);
352 	int err;
353 
354 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
355 	if (err)
356 		return err;
357 
358 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
359 	f2fs_lock_op(sbi);
360 
361 	err = __f2fs_commit_atomic_write(inode);
362 
363 	f2fs_unlock_op(sbi);
364 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
365 
366 	return err;
367 }
368 
369 /*
370  * This function balances dirty node and dentry pages.
371  * In addition, it controls garbage collection.
372  */
373 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
374 {
375 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
376 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
377 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
378 	}
379 
380 	/* balance_fs_bg is able to be pending */
381 	if (need && excess_cached_nats(sbi))
382 		f2fs_balance_fs_bg(sbi, false);
383 
384 	if (!f2fs_is_checkpoint_ready(sbi))
385 		return;
386 
387 	/*
388 	 * We should do GC or end up with checkpoint, if there are so many dirty
389 	 * dir/node pages without enough free segments.
390 	 */
391 	if (has_not_enough_free_secs(sbi, 0, 0)) {
392 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
393 					sbi->gc_thread->f2fs_gc_task) {
394 			DEFINE_WAIT(wait);
395 
396 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
397 						TASK_UNINTERRUPTIBLE);
398 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
399 			io_schedule();
400 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
401 		} else {
402 			struct f2fs_gc_control gc_control = {
403 				.victim_segno = NULL_SEGNO,
404 				.init_gc_type = BG_GC,
405 				.no_bg_gc = true,
406 				.should_migrate_blocks = false,
407 				.err_gc_skipped = false,
408 				.nr_free_secs = 1 };
409 			f2fs_down_write(&sbi->gc_lock);
410 			f2fs_gc(sbi, &gc_control);
411 		}
412 	}
413 }
414 
415 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
416 {
417 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
418 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
419 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
420 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
421 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
422 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
423 	unsigned int threshold = sbi->blocks_per_seg * factor *
424 					DEFAULT_DIRTY_THRESHOLD;
425 	unsigned int global_threshold = threshold * 3 / 2;
426 
427 	if (dents >= threshold || qdata >= threshold ||
428 		nodes >= threshold || meta >= threshold ||
429 		imeta >= threshold)
430 		return true;
431 	return dents + qdata + nodes + meta + imeta >  global_threshold;
432 }
433 
434 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
435 {
436 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
437 		return;
438 
439 	/* try to shrink extent cache when there is no enough memory */
440 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
441 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
442 
443 	/* check the # of cached NAT entries */
444 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
445 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
446 
447 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
448 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
449 	else
450 		f2fs_build_free_nids(sbi, false, false);
451 
452 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
453 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
454 		goto do_sync;
455 
456 	/* there is background inflight IO or foreground operation recently */
457 	if (is_inflight_io(sbi, REQ_TIME) ||
458 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
459 		return;
460 
461 	/* exceed periodical checkpoint timeout threshold */
462 	if (f2fs_time_over(sbi, CP_TIME))
463 		goto do_sync;
464 
465 	/* checkpoint is the only way to shrink partial cached entries */
466 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
467 		f2fs_available_free_memory(sbi, INO_ENTRIES))
468 		return;
469 
470 do_sync:
471 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
472 		struct blk_plug plug;
473 
474 		mutex_lock(&sbi->flush_lock);
475 
476 		blk_start_plug(&plug);
477 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
478 		blk_finish_plug(&plug);
479 
480 		mutex_unlock(&sbi->flush_lock);
481 	}
482 	f2fs_sync_fs(sbi->sb, 1);
483 	stat_inc_bg_cp_count(sbi->stat_info);
484 }
485 
486 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
487 				struct block_device *bdev)
488 {
489 	int ret = blkdev_issue_flush(bdev);
490 
491 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
492 				test_opt(sbi, FLUSH_MERGE), ret);
493 	return ret;
494 }
495 
496 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
497 {
498 	int ret = 0;
499 	int i;
500 
501 	if (!f2fs_is_multi_device(sbi))
502 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
503 
504 	for (i = 0; i < sbi->s_ndevs; i++) {
505 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
506 			continue;
507 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
508 		if (ret)
509 			break;
510 	}
511 	return ret;
512 }
513 
514 static int issue_flush_thread(void *data)
515 {
516 	struct f2fs_sb_info *sbi = data;
517 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
518 	wait_queue_head_t *q = &fcc->flush_wait_queue;
519 repeat:
520 	if (kthread_should_stop())
521 		return 0;
522 
523 	if (!llist_empty(&fcc->issue_list)) {
524 		struct flush_cmd *cmd, *next;
525 		int ret;
526 
527 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
528 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
529 
530 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
531 
532 		ret = submit_flush_wait(sbi, cmd->ino);
533 		atomic_inc(&fcc->issued_flush);
534 
535 		llist_for_each_entry_safe(cmd, next,
536 					  fcc->dispatch_list, llnode) {
537 			cmd->ret = ret;
538 			complete(&cmd->wait);
539 		}
540 		fcc->dispatch_list = NULL;
541 	}
542 
543 	wait_event_interruptible(*q,
544 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
545 	goto repeat;
546 }
547 
548 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
549 {
550 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
551 	struct flush_cmd cmd;
552 	int ret;
553 
554 	if (test_opt(sbi, NOBARRIER))
555 		return 0;
556 
557 	if (!test_opt(sbi, FLUSH_MERGE)) {
558 		atomic_inc(&fcc->queued_flush);
559 		ret = submit_flush_wait(sbi, ino);
560 		atomic_dec(&fcc->queued_flush);
561 		atomic_inc(&fcc->issued_flush);
562 		return ret;
563 	}
564 
565 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
566 	    f2fs_is_multi_device(sbi)) {
567 		ret = submit_flush_wait(sbi, ino);
568 		atomic_dec(&fcc->queued_flush);
569 
570 		atomic_inc(&fcc->issued_flush);
571 		return ret;
572 	}
573 
574 	cmd.ino = ino;
575 	init_completion(&cmd.wait);
576 
577 	llist_add(&cmd.llnode, &fcc->issue_list);
578 
579 	/*
580 	 * update issue_list before we wake up issue_flush thread, this
581 	 * smp_mb() pairs with another barrier in ___wait_event(), see
582 	 * more details in comments of waitqueue_active().
583 	 */
584 	smp_mb();
585 
586 	if (waitqueue_active(&fcc->flush_wait_queue))
587 		wake_up(&fcc->flush_wait_queue);
588 
589 	if (fcc->f2fs_issue_flush) {
590 		wait_for_completion(&cmd.wait);
591 		atomic_dec(&fcc->queued_flush);
592 	} else {
593 		struct llist_node *list;
594 
595 		list = llist_del_all(&fcc->issue_list);
596 		if (!list) {
597 			wait_for_completion(&cmd.wait);
598 			atomic_dec(&fcc->queued_flush);
599 		} else {
600 			struct flush_cmd *tmp, *next;
601 
602 			ret = submit_flush_wait(sbi, ino);
603 
604 			llist_for_each_entry_safe(tmp, next, list, llnode) {
605 				if (tmp == &cmd) {
606 					cmd.ret = ret;
607 					atomic_dec(&fcc->queued_flush);
608 					continue;
609 				}
610 				tmp->ret = ret;
611 				complete(&tmp->wait);
612 			}
613 		}
614 	}
615 
616 	return cmd.ret;
617 }
618 
619 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
620 {
621 	dev_t dev = sbi->sb->s_bdev->bd_dev;
622 	struct flush_cmd_control *fcc;
623 	int err = 0;
624 
625 	if (SM_I(sbi)->fcc_info) {
626 		fcc = SM_I(sbi)->fcc_info;
627 		if (fcc->f2fs_issue_flush)
628 			return err;
629 		goto init_thread;
630 	}
631 
632 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
633 	if (!fcc)
634 		return -ENOMEM;
635 	atomic_set(&fcc->issued_flush, 0);
636 	atomic_set(&fcc->queued_flush, 0);
637 	init_waitqueue_head(&fcc->flush_wait_queue);
638 	init_llist_head(&fcc->issue_list);
639 	SM_I(sbi)->fcc_info = fcc;
640 	if (!test_opt(sbi, FLUSH_MERGE))
641 		return err;
642 
643 init_thread:
644 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
645 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
646 	if (IS_ERR(fcc->f2fs_issue_flush)) {
647 		err = PTR_ERR(fcc->f2fs_issue_flush);
648 		kfree(fcc);
649 		SM_I(sbi)->fcc_info = NULL;
650 		return err;
651 	}
652 
653 	return err;
654 }
655 
656 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
657 {
658 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
659 
660 	if (fcc && fcc->f2fs_issue_flush) {
661 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
662 
663 		fcc->f2fs_issue_flush = NULL;
664 		kthread_stop(flush_thread);
665 	}
666 	if (free) {
667 		kfree(fcc);
668 		SM_I(sbi)->fcc_info = NULL;
669 	}
670 }
671 
672 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
673 {
674 	int ret = 0, i;
675 
676 	if (!f2fs_is_multi_device(sbi))
677 		return 0;
678 
679 	if (test_opt(sbi, NOBARRIER))
680 		return 0;
681 
682 	for (i = 1; i < sbi->s_ndevs; i++) {
683 		int count = DEFAULT_RETRY_IO_COUNT;
684 
685 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
686 			continue;
687 
688 		do {
689 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
690 			if (ret)
691 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
692 		} while (ret && --count);
693 
694 		if (ret) {
695 			f2fs_stop_checkpoint(sbi, false,
696 					STOP_CP_REASON_FLUSH_FAIL);
697 			break;
698 		}
699 
700 		spin_lock(&sbi->dev_lock);
701 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
702 		spin_unlock(&sbi->dev_lock);
703 	}
704 
705 	return ret;
706 }
707 
708 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
709 		enum dirty_type dirty_type)
710 {
711 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
712 
713 	/* need not be added */
714 	if (IS_CURSEG(sbi, segno))
715 		return;
716 
717 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
718 		dirty_i->nr_dirty[dirty_type]++;
719 
720 	if (dirty_type == DIRTY) {
721 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
722 		enum dirty_type t = sentry->type;
723 
724 		if (unlikely(t >= DIRTY)) {
725 			f2fs_bug_on(sbi, 1);
726 			return;
727 		}
728 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
729 			dirty_i->nr_dirty[t]++;
730 
731 		if (__is_large_section(sbi)) {
732 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
733 			block_t valid_blocks =
734 				get_valid_blocks(sbi, segno, true);
735 
736 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
737 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
738 
739 			if (!IS_CURSEC(sbi, secno))
740 				set_bit(secno, dirty_i->dirty_secmap);
741 		}
742 	}
743 }
744 
745 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
746 		enum dirty_type dirty_type)
747 {
748 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
749 	block_t valid_blocks;
750 
751 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
752 		dirty_i->nr_dirty[dirty_type]--;
753 
754 	if (dirty_type == DIRTY) {
755 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
756 		enum dirty_type t = sentry->type;
757 
758 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
759 			dirty_i->nr_dirty[t]--;
760 
761 		valid_blocks = get_valid_blocks(sbi, segno, true);
762 		if (valid_blocks == 0) {
763 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
764 						dirty_i->victim_secmap);
765 #ifdef CONFIG_F2FS_CHECK_FS
766 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
767 #endif
768 		}
769 		if (__is_large_section(sbi)) {
770 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
771 
772 			if (!valid_blocks ||
773 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
774 				clear_bit(secno, dirty_i->dirty_secmap);
775 				return;
776 			}
777 
778 			if (!IS_CURSEC(sbi, secno))
779 				set_bit(secno, dirty_i->dirty_secmap);
780 		}
781 	}
782 }
783 
784 /*
785  * Should not occur error such as -ENOMEM.
786  * Adding dirty entry into seglist is not critical operation.
787  * If a given segment is one of current working segments, it won't be added.
788  */
789 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
790 {
791 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
792 	unsigned short valid_blocks, ckpt_valid_blocks;
793 	unsigned int usable_blocks;
794 
795 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
796 		return;
797 
798 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
799 	mutex_lock(&dirty_i->seglist_lock);
800 
801 	valid_blocks = get_valid_blocks(sbi, segno, false);
802 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
803 
804 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
805 		ckpt_valid_blocks == usable_blocks)) {
806 		__locate_dirty_segment(sbi, segno, PRE);
807 		__remove_dirty_segment(sbi, segno, DIRTY);
808 	} else if (valid_blocks < usable_blocks) {
809 		__locate_dirty_segment(sbi, segno, DIRTY);
810 	} else {
811 		/* Recovery routine with SSR needs this */
812 		__remove_dirty_segment(sbi, segno, DIRTY);
813 	}
814 
815 	mutex_unlock(&dirty_i->seglist_lock);
816 }
817 
818 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
819 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
820 {
821 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
822 	unsigned int segno;
823 
824 	mutex_lock(&dirty_i->seglist_lock);
825 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
826 		if (get_valid_blocks(sbi, segno, false))
827 			continue;
828 		if (IS_CURSEG(sbi, segno))
829 			continue;
830 		__locate_dirty_segment(sbi, segno, PRE);
831 		__remove_dirty_segment(sbi, segno, DIRTY);
832 	}
833 	mutex_unlock(&dirty_i->seglist_lock);
834 }
835 
836 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
837 {
838 	int ovp_hole_segs =
839 		(overprovision_segments(sbi) - reserved_segments(sbi));
840 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
841 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
842 	block_t holes[2] = {0, 0};	/* DATA and NODE */
843 	block_t unusable;
844 	struct seg_entry *se;
845 	unsigned int segno;
846 
847 	mutex_lock(&dirty_i->seglist_lock);
848 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
849 		se = get_seg_entry(sbi, segno);
850 		if (IS_NODESEG(se->type))
851 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
852 							se->valid_blocks;
853 		else
854 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
855 							se->valid_blocks;
856 	}
857 	mutex_unlock(&dirty_i->seglist_lock);
858 
859 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
860 	if (unusable > ovp_holes)
861 		return unusable - ovp_holes;
862 	return 0;
863 }
864 
865 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
866 {
867 	int ovp_hole_segs =
868 		(overprovision_segments(sbi) - reserved_segments(sbi));
869 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
870 		return -EAGAIN;
871 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
872 		dirty_segments(sbi) > ovp_hole_segs)
873 		return -EAGAIN;
874 	return 0;
875 }
876 
877 /* This is only used by SBI_CP_DISABLED */
878 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
879 {
880 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
881 	unsigned int segno = 0;
882 
883 	mutex_lock(&dirty_i->seglist_lock);
884 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
885 		if (get_valid_blocks(sbi, segno, false))
886 			continue;
887 		if (get_ckpt_valid_blocks(sbi, segno, false))
888 			continue;
889 		mutex_unlock(&dirty_i->seglist_lock);
890 		return segno;
891 	}
892 	mutex_unlock(&dirty_i->seglist_lock);
893 	return NULL_SEGNO;
894 }
895 
896 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
897 		struct block_device *bdev, block_t lstart,
898 		block_t start, block_t len)
899 {
900 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
901 	struct list_head *pend_list;
902 	struct discard_cmd *dc;
903 
904 	f2fs_bug_on(sbi, !len);
905 
906 	pend_list = &dcc->pend_list[plist_idx(len)];
907 
908 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
909 	INIT_LIST_HEAD(&dc->list);
910 	dc->bdev = bdev;
911 	dc->lstart = lstart;
912 	dc->start = start;
913 	dc->len = len;
914 	dc->ref = 0;
915 	dc->state = D_PREP;
916 	dc->queued = 0;
917 	dc->error = 0;
918 	init_completion(&dc->wait);
919 	list_add_tail(&dc->list, pend_list);
920 	spin_lock_init(&dc->lock);
921 	dc->bio_ref = 0;
922 	atomic_inc(&dcc->discard_cmd_cnt);
923 	dcc->undiscard_blks += len;
924 
925 	return dc;
926 }
927 
928 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
929 				struct block_device *bdev, block_t lstart,
930 				block_t start, block_t len,
931 				struct rb_node *parent, struct rb_node **p,
932 				bool leftmost)
933 {
934 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
935 	struct discard_cmd *dc;
936 
937 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
938 
939 	rb_link_node(&dc->rb_node, parent, p);
940 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
941 
942 	return dc;
943 }
944 
945 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
946 							struct discard_cmd *dc)
947 {
948 	if (dc->state == D_DONE)
949 		atomic_sub(dc->queued, &dcc->queued_discard);
950 
951 	list_del(&dc->list);
952 	rb_erase_cached(&dc->rb_node, &dcc->root);
953 	dcc->undiscard_blks -= dc->len;
954 
955 	kmem_cache_free(discard_cmd_slab, dc);
956 
957 	atomic_dec(&dcc->discard_cmd_cnt);
958 }
959 
960 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
961 							struct discard_cmd *dc)
962 {
963 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
964 	unsigned long flags;
965 
966 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
967 
968 	spin_lock_irqsave(&dc->lock, flags);
969 	if (dc->bio_ref) {
970 		spin_unlock_irqrestore(&dc->lock, flags);
971 		return;
972 	}
973 	spin_unlock_irqrestore(&dc->lock, flags);
974 
975 	f2fs_bug_on(sbi, dc->ref);
976 
977 	if (dc->error == -EOPNOTSUPP)
978 		dc->error = 0;
979 
980 	if (dc->error)
981 		printk_ratelimited(
982 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
983 			KERN_INFO, sbi->sb->s_id,
984 			dc->lstart, dc->start, dc->len, dc->error);
985 	__detach_discard_cmd(dcc, dc);
986 }
987 
988 static void f2fs_submit_discard_endio(struct bio *bio)
989 {
990 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
991 	unsigned long flags;
992 
993 	spin_lock_irqsave(&dc->lock, flags);
994 	if (!dc->error)
995 		dc->error = blk_status_to_errno(bio->bi_status);
996 	dc->bio_ref--;
997 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
998 		dc->state = D_DONE;
999 		complete_all(&dc->wait);
1000 	}
1001 	spin_unlock_irqrestore(&dc->lock, flags);
1002 	bio_put(bio);
1003 }
1004 
1005 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1006 				block_t start, block_t end)
1007 {
1008 #ifdef CONFIG_F2FS_CHECK_FS
1009 	struct seg_entry *sentry;
1010 	unsigned int segno;
1011 	block_t blk = start;
1012 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1013 	unsigned long *map;
1014 
1015 	while (blk < end) {
1016 		segno = GET_SEGNO(sbi, blk);
1017 		sentry = get_seg_entry(sbi, segno);
1018 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1019 
1020 		if (end < START_BLOCK(sbi, segno + 1))
1021 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1022 		else
1023 			size = max_blocks;
1024 		map = (unsigned long *)(sentry->cur_valid_map);
1025 		offset = __find_rev_next_bit(map, size, offset);
1026 		f2fs_bug_on(sbi, offset != size);
1027 		blk = START_BLOCK(sbi, segno + 1);
1028 	}
1029 #endif
1030 }
1031 
1032 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1033 				struct discard_policy *dpolicy,
1034 				int discard_type, unsigned int granularity)
1035 {
1036 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1037 
1038 	/* common policy */
1039 	dpolicy->type = discard_type;
1040 	dpolicy->sync = true;
1041 	dpolicy->ordered = false;
1042 	dpolicy->granularity = granularity;
1043 
1044 	dpolicy->max_requests = dcc->max_discard_request;
1045 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1046 	dpolicy->timeout = false;
1047 
1048 	if (discard_type == DPOLICY_BG) {
1049 		dpolicy->min_interval = dcc->min_discard_issue_time;
1050 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1051 		dpolicy->max_interval = dcc->max_discard_issue_time;
1052 		dpolicy->io_aware = true;
1053 		dpolicy->sync = false;
1054 		dpolicy->ordered = true;
1055 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1056 			dpolicy->granularity = 1;
1057 			if (atomic_read(&dcc->discard_cmd_cnt))
1058 				dpolicy->max_interval =
1059 					dcc->min_discard_issue_time;
1060 		}
1061 	} else if (discard_type == DPOLICY_FORCE) {
1062 		dpolicy->min_interval = dcc->min_discard_issue_time;
1063 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1064 		dpolicy->max_interval = dcc->max_discard_issue_time;
1065 		dpolicy->io_aware = false;
1066 	} else if (discard_type == DPOLICY_FSTRIM) {
1067 		dpolicy->io_aware = false;
1068 	} else if (discard_type == DPOLICY_UMOUNT) {
1069 		dpolicy->io_aware = false;
1070 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1071 		dpolicy->granularity = 1;
1072 		dpolicy->timeout = true;
1073 	}
1074 }
1075 
1076 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1077 				struct block_device *bdev, block_t lstart,
1078 				block_t start, block_t len);
1079 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1080 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1081 						struct discard_policy *dpolicy,
1082 						struct discard_cmd *dc,
1083 						unsigned int *issued)
1084 {
1085 	struct block_device *bdev = dc->bdev;
1086 	unsigned int max_discard_blocks =
1087 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1088 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1089 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1090 					&(dcc->fstrim_list) : &(dcc->wait_list);
1091 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1092 	block_t lstart, start, len, total_len;
1093 	int err = 0;
1094 
1095 	if (dc->state != D_PREP)
1096 		return 0;
1097 
1098 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1099 		return 0;
1100 
1101 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1102 
1103 	lstart = dc->lstart;
1104 	start = dc->start;
1105 	len = dc->len;
1106 	total_len = len;
1107 
1108 	dc->len = 0;
1109 
1110 	while (total_len && *issued < dpolicy->max_requests && !err) {
1111 		struct bio *bio = NULL;
1112 		unsigned long flags;
1113 		bool last = true;
1114 
1115 		if (len > max_discard_blocks) {
1116 			len = max_discard_blocks;
1117 			last = false;
1118 		}
1119 
1120 		(*issued)++;
1121 		if (*issued == dpolicy->max_requests)
1122 			last = true;
1123 
1124 		dc->len += len;
1125 
1126 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1127 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1128 			err = -EIO;
1129 			goto submit;
1130 		}
1131 		err = __blkdev_issue_discard(bdev,
1132 					SECTOR_FROM_BLOCK(start),
1133 					SECTOR_FROM_BLOCK(len),
1134 					GFP_NOFS, &bio);
1135 submit:
1136 		if (err) {
1137 			spin_lock_irqsave(&dc->lock, flags);
1138 			if (dc->state == D_PARTIAL)
1139 				dc->state = D_SUBMIT;
1140 			spin_unlock_irqrestore(&dc->lock, flags);
1141 
1142 			break;
1143 		}
1144 
1145 		f2fs_bug_on(sbi, !bio);
1146 
1147 		/*
1148 		 * should keep before submission to avoid D_DONE
1149 		 * right away
1150 		 */
1151 		spin_lock_irqsave(&dc->lock, flags);
1152 		if (last)
1153 			dc->state = D_SUBMIT;
1154 		else
1155 			dc->state = D_PARTIAL;
1156 		dc->bio_ref++;
1157 		spin_unlock_irqrestore(&dc->lock, flags);
1158 
1159 		atomic_inc(&dcc->queued_discard);
1160 		dc->queued++;
1161 		list_move_tail(&dc->list, wait_list);
1162 
1163 		/* sanity check on discard range */
1164 		__check_sit_bitmap(sbi, lstart, lstart + len);
1165 
1166 		bio->bi_private = dc;
1167 		bio->bi_end_io = f2fs_submit_discard_endio;
1168 		bio->bi_opf |= flag;
1169 		submit_bio(bio);
1170 
1171 		atomic_inc(&dcc->issued_discard);
1172 
1173 		f2fs_update_iostat(sbi, NULL, FS_DISCARD, 1);
1174 
1175 		lstart += len;
1176 		start += len;
1177 		total_len -= len;
1178 		len = total_len;
1179 	}
1180 
1181 	if (!err && len) {
1182 		dcc->undiscard_blks -= len;
1183 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1184 	}
1185 	return err;
1186 }
1187 
1188 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1189 				struct block_device *bdev, block_t lstart,
1190 				block_t start, block_t len,
1191 				struct rb_node **insert_p,
1192 				struct rb_node *insert_parent)
1193 {
1194 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1195 	struct rb_node **p;
1196 	struct rb_node *parent = NULL;
1197 	bool leftmost = true;
1198 
1199 	if (insert_p && insert_parent) {
1200 		parent = insert_parent;
1201 		p = insert_p;
1202 		goto do_insert;
1203 	}
1204 
1205 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1206 							lstart, &leftmost);
1207 do_insert:
1208 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1209 								p, leftmost);
1210 }
1211 
1212 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1213 						struct discard_cmd *dc)
1214 {
1215 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1216 }
1217 
1218 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1219 				struct discard_cmd *dc, block_t blkaddr)
1220 {
1221 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1222 	struct discard_info di = dc->di;
1223 	bool modified = false;
1224 
1225 	if (dc->state == D_DONE || dc->len == 1) {
1226 		__remove_discard_cmd(sbi, dc);
1227 		return;
1228 	}
1229 
1230 	dcc->undiscard_blks -= di.len;
1231 
1232 	if (blkaddr > di.lstart) {
1233 		dc->len = blkaddr - dc->lstart;
1234 		dcc->undiscard_blks += dc->len;
1235 		__relocate_discard_cmd(dcc, dc);
1236 		modified = true;
1237 	}
1238 
1239 	if (blkaddr < di.lstart + di.len - 1) {
1240 		if (modified) {
1241 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1242 					di.start + blkaddr + 1 - di.lstart,
1243 					di.lstart + di.len - 1 - blkaddr,
1244 					NULL, NULL);
1245 		} else {
1246 			dc->lstart++;
1247 			dc->len--;
1248 			dc->start++;
1249 			dcc->undiscard_blks += dc->len;
1250 			__relocate_discard_cmd(dcc, dc);
1251 		}
1252 	}
1253 }
1254 
1255 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1256 				struct block_device *bdev, block_t lstart,
1257 				block_t start, block_t len)
1258 {
1259 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1260 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1261 	struct discard_cmd *dc;
1262 	struct discard_info di = {0};
1263 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1264 	unsigned int max_discard_blocks =
1265 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1266 	block_t end = lstart + len;
1267 
1268 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1269 					NULL, lstart,
1270 					(struct rb_entry **)&prev_dc,
1271 					(struct rb_entry **)&next_dc,
1272 					&insert_p, &insert_parent, true, NULL);
1273 	if (dc)
1274 		prev_dc = dc;
1275 
1276 	if (!prev_dc) {
1277 		di.lstart = lstart;
1278 		di.len = next_dc ? next_dc->lstart - lstart : len;
1279 		di.len = min(di.len, len);
1280 		di.start = start;
1281 	}
1282 
1283 	while (1) {
1284 		struct rb_node *node;
1285 		bool merged = false;
1286 		struct discard_cmd *tdc = NULL;
1287 
1288 		if (prev_dc) {
1289 			di.lstart = prev_dc->lstart + prev_dc->len;
1290 			if (di.lstart < lstart)
1291 				di.lstart = lstart;
1292 			if (di.lstart >= end)
1293 				break;
1294 
1295 			if (!next_dc || next_dc->lstart > end)
1296 				di.len = end - di.lstart;
1297 			else
1298 				di.len = next_dc->lstart - di.lstart;
1299 			di.start = start + di.lstart - lstart;
1300 		}
1301 
1302 		if (!di.len)
1303 			goto next;
1304 
1305 		if (prev_dc && prev_dc->state == D_PREP &&
1306 			prev_dc->bdev == bdev &&
1307 			__is_discard_back_mergeable(&di, &prev_dc->di,
1308 							max_discard_blocks)) {
1309 			prev_dc->di.len += di.len;
1310 			dcc->undiscard_blks += di.len;
1311 			__relocate_discard_cmd(dcc, prev_dc);
1312 			di = prev_dc->di;
1313 			tdc = prev_dc;
1314 			merged = true;
1315 		}
1316 
1317 		if (next_dc && next_dc->state == D_PREP &&
1318 			next_dc->bdev == bdev &&
1319 			__is_discard_front_mergeable(&di, &next_dc->di,
1320 							max_discard_blocks)) {
1321 			next_dc->di.lstart = di.lstart;
1322 			next_dc->di.len += di.len;
1323 			next_dc->di.start = di.start;
1324 			dcc->undiscard_blks += di.len;
1325 			__relocate_discard_cmd(dcc, next_dc);
1326 			if (tdc)
1327 				__remove_discard_cmd(sbi, tdc);
1328 			merged = true;
1329 		}
1330 
1331 		if (!merged) {
1332 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1333 							di.len, NULL, NULL);
1334 		}
1335  next:
1336 		prev_dc = next_dc;
1337 		if (!prev_dc)
1338 			break;
1339 
1340 		node = rb_next(&prev_dc->rb_node);
1341 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1342 	}
1343 }
1344 
1345 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1346 		struct block_device *bdev, block_t blkstart, block_t blklen)
1347 {
1348 	block_t lblkstart = blkstart;
1349 
1350 	if (!f2fs_bdev_support_discard(bdev))
1351 		return 0;
1352 
1353 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1354 
1355 	if (f2fs_is_multi_device(sbi)) {
1356 		int devi = f2fs_target_device_index(sbi, blkstart);
1357 
1358 		blkstart -= FDEV(devi).start_blk;
1359 	}
1360 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1361 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1362 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1363 	return 0;
1364 }
1365 
1366 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1367 					struct discard_policy *dpolicy)
1368 {
1369 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1370 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1371 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1372 	struct discard_cmd *dc;
1373 	struct blk_plug plug;
1374 	unsigned int pos = dcc->next_pos;
1375 	unsigned int issued = 0;
1376 	bool io_interrupted = false;
1377 
1378 	mutex_lock(&dcc->cmd_lock);
1379 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1380 					NULL, pos,
1381 					(struct rb_entry **)&prev_dc,
1382 					(struct rb_entry **)&next_dc,
1383 					&insert_p, &insert_parent, true, NULL);
1384 	if (!dc)
1385 		dc = next_dc;
1386 
1387 	blk_start_plug(&plug);
1388 
1389 	while (dc) {
1390 		struct rb_node *node;
1391 		int err = 0;
1392 
1393 		if (dc->state != D_PREP)
1394 			goto next;
1395 
1396 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1397 			io_interrupted = true;
1398 			break;
1399 		}
1400 
1401 		dcc->next_pos = dc->lstart + dc->len;
1402 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1403 
1404 		if (issued >= dpolicy->max_requests)
1405 			break;
1406 next:
1407 		node = rb_next(&dc->rb_node);
1408 		if (err)
1409 			__remove_discard_cmd(sbi, dc);
1410 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1411 	}
1412 
1413 	blk_finish_plug(&plug);
1414 
1415 	if (!dc)
1416 		dcc->next_pos = 0;
1417 
1418 	mutex_unlock(&dcc->cmd_lock);
1419 
1420 	if (!issued && io_interrupted)
1421 		issued = -1;
1422 
1423 	return issued;
1424 }
1425 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1426 					struct discard_policy *dpolicy);
1427 
1428 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1429 					struct discard_policy *dpolicy)
1430 {
1431 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1432 	struct list_head *pend_list;
1433 	struct discard_cmd *dc, *tmp;
1434 	struct blk_plug plug;
1435 	int i, issued;
1436 	bool io_interrupted = false;
1437 
1438 	if (dpolicy->timeout)
1439 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1440 
1441 retry:
1442 	issued = 0;
1443 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1444 		if (dpolicy->timeout &&
1445 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1446 			break;
1447 
1448 		if (i + 1 < dpolicy->granularity)
1449 			break;
1450 
1451 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1452 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1453 
1454 		pend_list = &dcc->pend_list[i];
1455 
1456 		mutex_lock(&dcc->cmd_lock);
1457 		if (list_empty(pend_list))
1458 			goto next;
1459 		if (unlikely(dcc->rbtree_check))
1460 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1461 							&dcc->root, false));
1462 		blk_start_plug(&plug);
1463 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1464 			f2fs_bug_on(sbi, dc->state != D_PREP);
1465 
1466 			if (dpolicy->timeout &&
1467 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1468 				break;
1469 
1470 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1471 						!is_idle(sbi, DISCARD_TIME)) {
1472 				io_interrupted = true;
1473 				break;
1474 			}
1475 
1476 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1477 
1478 			if (issued >= dpolicy->max_requests)
1479 				break;
1480 		}
1481 		blk_finish_plug(&plug);
1482 next:
1483 		mutex_unlock(&dcc->cmd_lock);
1484 
1485 		if (issued >= dpolicy->max_requests || io_interrupted)
1486 			break;
1487 	}
1488 
1489 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1490 		__wait_all_discard_cmd(sbi, dpolicy);
1491 		goto retry;
1492 	}
1493 
1494 	if (!issued && io_interrupted)
1495 		issued = -1;
1496 
1497 	return issued;
1498 }
1499 
1500 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1501 {
1502 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1503 	struct list_head *pend_list;
1504 	struct discard_cmd *dc, *tmp;
1505 	int i;
1506 	bool dropped = false;
1507 
1508 	mutex_lock(&dcc->cmd_lock);
1509 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1510 		pend_list = &dcc->pend_list[i];
1511 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1512 			f2fs_bug_on(sbi, dc->state != D_PREP);
1513 			__remove_discard_cmd(sbi, dc);
1514 			dropped = true;
1515 		}
1516 	}
1517 	mutex_unlock(&dcc->cmd_lock);
1518 
1519 	return dropped;
1520 }
1521 
1522 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1523 {
1524 	__drop_discard_cmd(sbi);
1525 }
1526 
1527 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1528 							struct discard_cmd *dc)
1529 {
1530 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1531 	unsigned int len = 0;
1532 
1533 	wait_for_completion_io(&dc->wait);
1534 	mutex_lock(&dcc->cmd_lock);
1535 	f2fs_bug_on(sbi, dc->state != D_DONE);
1536 	dc->ref--;
1537 	if (!dc->ref) {
1538 		if (!dc->error)
1539 			len = dc->len;
1540 		__remove_discard_cmd(sbi, dc);
1541 	}
1542 	mutex_unlock(&dcc->cmd_lock);
1543 
1544 	return len;
1545 }
1546 
1547 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1548 						struct discard_policy *dpolicy,
1549 						block_t start, block_t end)
1550 {
1551 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1552 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1553 					&(dcc->fstrim_list) : &(dcc->wait_list);
1554 	struct discard_cmd *dc = NULL, *iter, *tmp;
1555 	unsigned int trimmed = 0;
1556 
1557 next:
1558 	dc = NULL;
1559 
1560 	mutex_lock(&dcc->cmd_lock);
1561 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1562 		if (iter->lstart + iter->len <= start || end <= iter->lstart)
1563 			continue;
1564 		if (iter->len < dpolicy->granularity)
1565 			continue;
1566 		if (iter->state == D_DONE && !iter->ref) {
1567 			wait_for_completion_io(&iter->wait);
1568 			if (!iter->error)
1569 				trimmed += iter->len;
1570 			__remove_discard_cmd(sbi, iter);
1571 		} else {
1572 			iter->ref++;
1573 			dc = iter;
1574 			break;
1575 		}
1576 	}
1577 	mutex_unlock(&dcc->cmd_lock);
1578 
1579 	if (dc) {
1580 		trimmed += __wait_one_discard_bio(sbi, dc);
1581 		goto next;
1582 	}
1583 
1584 	return trimmed;
1585 }
1586 
1587 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1588 						struct discard_policy *dpolicy)
1589 {
1590 	struct discard_policy dp;
1591 	unsigned int discard_blks;
1592 
1593 	if (dpolicy)
1594 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1595 
1596 	/* wait all */
1597 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1598 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1599 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1600 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1601 
1602 	return discard_blks;
1603 }
1604 
1605 /* This should be covered by global mutex, &sit_i->sentry_lock */
1606 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1607 {
1608 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1609 	struct discard_cmd *dc;
1610 	bool need_wait = false;
1611 
1612 	mutex_lock(&dcc->cmd_lock);
1613 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1614 							NULL, blkaddr);
1615 	if (dc) {
1616 		if (dc->state == D_PREP) {
1617 			__punch_discard_cmd(sbi, dc, blkaddr);
1618 		} else {
1619 			dc->ref++;
1620 			need_wait = true;
1621 		}
1622 	}
1623 	mutex_unlock(&dcc->cmd_lock);
1624 
1625 	if (need_wait)
1626 		__wait_one_discard_bio(sbi, dc);
1627 }
1628 
1629 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1630 {
1631 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1632 
1633 	if (dcc && dcc->f2fs_issue_discard) {
1634 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1635 
1636 		dcc->f2fs_issue_discard = NULL;
1637 		kthread_stop(discard_thread);
1638 	}
1639 }
1640 
1641 /* This comes from f2fs_put_super */
1642 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1643 {
1644 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1645 	struct discard_policy dpolicy;
1646 	bool dropped;
1647 
1648 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1649 					dcc->discard_granularity);
1650 	__issue_discard_cmd(sbi, &dpolicy);
1651 	dropped = __drop_discard_cmd(sbi);
1652 
1653 	/* just to make sure there is no pending discard commands */
1654 	__wait_all_discard_cmd(sbi, NULL);
1655 
1656 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1657 	return dropped;
1658 }
1659 
1660 static int issue_discard_thread(void *data)
1661 {
1662 	struct f2fs_sb_info *sbi = data;
1663 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1664 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1665 	struct discard_policy dpolicy;
1666 	unsigned int wait_ms = dcc->min_discard_issue_time;
1667 	int issued;
1668 
1669 	set_freezable();
1670 
1671 	do {
1672 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1673 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1674 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1675 		else
1676 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1677 						dcc->discard_granularity);
1678 
1679 		if (!atomic_read(&dcc->discard_cmd_cnt))
1680 		       wait_ms = dpolicy.max_interval;
1681 
1682 		wait_event_interruptible_timeout(*q,
1683 				kthread_should_stop() || freezing(current) ||
1684 				dcc->discard_wake,
1685 				msecs_to_jiffies(wait_ms));
1686 
1687 		if (dcc->discard_wake)
1688 			dcc->discard_wake = 0;
1689 
1690 		/* clean up pending candidates before going to sleep */
1691 		if (atomic_read(&dcc->queued_discard))
1692 			__wait_all_discard_cmd(sbi, NULL);
1693 
1694 		if (try_to_freeze())
1695 			continue;
1696 		if (f2fs_readonly(sbi->sb))
1697 			continue;
1698 		if (kthread_should_stop())
1699 			return 0;
1700 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1701 			wait_ms = dpolicy.max_interval;
1702 			continue;
1703 		}
1704 		if (!atomic_read(&dcc->discard_cmd_cnt))
1705 			continue;
1706 
1707 		sb_start_intwrite(sbi->sb);
1708 
1709 		issued = __issue_discard_cmd(sbi, &dpolicy);
1710 		if (issued > 0) {
1711 			__wait_all_discard_cmd(sbi, &dpolicy);
1712 			wait_ms = dpolicy.min_interval;
1713 		} else if (issued == -1) {
1714 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1715 			if (!wait_ms)
1716 				wait_ms = dpolicy.mid_interval;
1717 		} else {
1718 			wait_ms = dpolicy.max_interval;
1719 		}
1720 
1721 		sb_end_intwrite(sbi->sb);
1722 
1723 	} while (!kthread_should_stop());
1724 	return 0;
1725 }
1726 
1727 #ifdef CONFIG_BLK_DEV_ZONED
1728 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1729 		struct block_device *bdev, block_t blkstart, block_t blklen)
1730 {
1731 	sector_t sector, nr_sects;
1732 	block_t lblkstart = blkstart;
1733 	int devi = 0;
1734 
1735 	if (f2fs_is_multi_device(sbi)) {
1736 		devi = f2fs_target_device_index(sbi, blkstart);
1737 		if (blkstart < FDEV(devi).start_blk ||
1738 		    blkstart > FDEV(devi).end_blk) {
1739 			f2fs_err(sbi, "Invalid block %x", blkstart);
1740 			return -EIO;
1741 		}
1742 		blkstart -= FDEV(devi).start_blk;
1743 	}
1744 
1745 	/* For sequential zones, reset the zone write pointer */
1746 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1747 		sector = SECTOR_FROM_BLOCK(blkstart);
1748 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1749 
1750 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1751 				nr_sects != bdev_zone_sectors(bdev)) {
1752 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1753 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1754 				 blkstart, blklen);
1755 			return -EIO;
1756 		}
1757 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1758 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1759 					sector, nr_sects, GFP_NOFS);
1760 	}
1761 
1762 	/* For conventional zones, use regular discard if supported */
1763 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1764 }
1765 #endif
1766 
1767 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1768 		struct block_device *bdev, block_t blkstart, block_t blklen)
1769 {
1770 #ifdef CONFIG_BLK_DEV_ZONED
1771 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1772 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1773 #endif
1774 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1775 }
1776 
1777 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1778 				block_t blkstart, block_t blklen)
1779 {
1780 	sector_t start = blkstart, len = 0;
1781 	struct block_device *bdev;
1782 	struct seg_entry *se;
1783 	unsigned int offset;
1784 	block_t i;
1785 	int err = 0;
1786 
1787 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1788 
1789 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1790 		if (i != start) {
1791 			struct block_device *bdev2 =
1792 				f2fs_target_device(sbi, i, NULL);
1793 
1794 			if (bdev2 != bdev) {
1795 				err = __issue_discard_async(sbi, bdev,
1796 						start, len);
1797 				if (err)
1798 					return err;
1799 				bdev = bdev2;
1800 				start = i;
1801 				len = 0;
1802 			}
1803 		}
1804 
1805 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1806 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1807 
1808 		if (f2fs_block_unit_discard(sbi) &&
1809 				!f2fs_test_and_set_bit(offset, se->discard_map))
1810 			sbi->discard_blks--;
1811 	}
1812 
1813 	if (len)
1814 		err = __issue_discard_async(sbi, bdev, start, len);
1815 	return err;
1816 }
1817 
1818 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1819 							bool check_only)
1820 {
1821 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1822 	int max_blocks = sbi->blocks_per_seg;
1823 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1824 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1825 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1826 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1827 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1828 	unsigned int start = 0, end = -1;
1829 	bool force = (cpc->reason & CP_DISCARD);
1830 	struct discard_entry *de = NULL;
1831 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1832 	int i;
1833 
1834 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1835 			!f2fs_block_unit_discard(sbi))
1836 		return false;
1837 
1838 	if (!force) {
1839 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1840 			SM_I(sbi)->dcc_info->nr_discards >=
1841 				SM_I(sbi)->dcc_info->max_discards)
1842 			return false;
1843 	}
1844 
1845 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1846 	for (i = 0; i < entries; i++)
1847 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1848 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1849 
1850 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1851 				SM_I(sbi)->dcc_info->max_discards) {
1852 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1853 		if (start >= max_blocks)
1854 			break;
1855 
1856 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1857 		if (force && start && end != max_blocks
1858 					&& (end - start) < cpc->trim_minlen)
1859 			continue;
1860 
1861 		if (check_only)
1862 			return true;
1863 
1864 		if (!de) {
1865 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1866 						GFP_F2FS_ZERO, true, NULL);
1867 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1868 			list_add_tail(&de->list, head);
1869 		}
1870 
1871 		for (i = start; i < end; i++)
1872 			__set_bit_le(i, (void *)de->discard_map);
1873 
1874 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1875 	}
1876 	return false;
1877 }
1878 
1879 static void release_discard_addr(struct discard_entry *entry)
1880 {
1881 	list_del(&entry->list);
1882 	kmem_cache_free(discard_entry_slab, entry);
1883 }
1884 
1885 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1886 {
1887 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1888 	struct discard_entry *entry, *this;
1889 
1890 	/* drop caches */
1891 	list_for_each_entry_safe(entry, this, head, list)
1892 		release_discard_addr(entry);
1893 }
1894 
1895 /*
1896  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1897  */
1898 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1899 {
1900 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1901 	unsigned int segno;
1902 
1903 	mutex_lock(&dirty_i->seglist_lock);
1904 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1905 		__set_test_and_free(sbi, segno, false);
1906 	mutex_unlock(&dirty_i->seglist_lock);
1907 }
1908 
1909 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1910 						struct cp_control *cpc)
1911 {
1912 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1913 	struct list_head *head = &dcc->entry_list;
1914 	struct discard_entry *entry, *this;
1915 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1916 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1917 	unsigned int start = 0, end = -1;
1918 	unsigned int secno, start_segno;
1919 	bool force = (cpc->reason & CP_DISCARD);
1920 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1921 						DISCARD_UNIT_SECTION;
1922 
1923 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1924 		section_alignment = true;
1925 
1926 	mutex_lock(&dirty_i->seglist_lock);
1927 
1928 	while (1) {
1929 		int i;
1930 
1931 		if (section_alignment && end != -1)
1932 			end--;
1933 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1934 		if (start >= MAIN_SEGS(sbi))
1935 			break;
1936 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1937 								start + 1);
1938 
1939 		if (section_alignment) {
1940 			start = rounddown(start, sbi->segs_per_sec);
1941 			end = roundup(end, sbi->segs_per_sec);
1942 		}
1943 
1944 		for (i = start; i < end; i++) {
1945 			if (test_and_clear_bit(i, prefree_map))
1946 				dirty_i->nr_dirty[PRE]--;
1947 		}
1948 
1949 		if (!f2fs_realtime_discard_enable(sbi))
1950 			continue;
1951 
1952 		if (force && start >= cpc->trim_start &&
1953 					(end - 1) <= cpc->trim_end)
1954 				continue;
1955 
1956 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1957 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1958 				(end - start) << sbi->log_blocks_per_seg);
1959 			continue;
1960 		}
1961 next:
1962 		secno = GET_SEC_FROM_SEG(sbi, start);
1963 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1964 		if (!IS_CURSEC(sbi, secno) &&
1965 			!get_valid_blocks(sbi, start, true))
1966 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1967 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1968 
1969 		start = start_segno + sbi->segs_per_sec;
1970 		if (start < end)
1971 			goto next;
1972 		else
1973 			end = start - 1;
1974 	}
1975 	mutex_unlock(&dirty_i->seglist_lock);
1976 
1977 	if (!f2fs_block_unit_discard(sbi))
1978 		goto wakeup;
1979 
1980 	/* send small discards */
1981 	list_for_each_entry_safe(entry, this, head, list) {
1982 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1983 		bool is_valid = test_bit_le(0, entry->discard_map);
1984 
1985 find_next:
1986 		if (is_valid) {
1987 			next_pos = find_next_zero_bit_le(entry->discard_map,
1988 					sbi->blocks_per_seg, cur_pos);
1989 			len = next_pos - cur_pos;
1990 
1991 			if (f2fs_sb_has_blkzoned(sbi) ||
1992 			    (force && len < cpc->trim_minlen))
1993 				goto skip;
1994 
1995 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1996 									len);
1997 			total_len += len;
1998 		} else {
1999 			next_pos = find_next_bit_le(entry->discard_map,
2000 					sbi->blocks_per_seg, cur_pos);
2001 		}
2002 skip:
2003 		cur_pos = next_pos;
2004 		is_valid = !is_valid;
2005 
2006 		if (cur_pos < sbi->blocks_per_seg)
2007 			goto find_next;
2008 
2009 		release_discard_addr(entry);
2010 		dcc->nr_discards -= total_len;
2011 	}
2012 
2013 wakeup:
2014 	wake_up_discard_thread(sbi, false);
2015 }
2016 
2017 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2018 {
2019 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2020 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2021 	int err = 0;
2022 
2023 	if (!f2fs_realtime_discard_enable(sbi))
2024 		return 0;
2025 
2026 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2027 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2028 	if (IS_ERR(dcc->f2fs_issue_discard))
2029 		err = PTR_ERR(dcc->f2fs_issue_discard);
2030 
2031 	return err;
2032 }
2033 
2034 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2035 {
2036 	struct discard_cmd_control *dcc;
2037 	int err = 0, i;
2038 
2039 	if (SM_I(sbi)->dcc_info) {
2040 		dcc = SM_I(sbi)->dcc_info;
2041 		goto init_thread;
2042 	}
2043 
2044 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2045 	if (!dcc)
2046 		return -ENOMEM;
2047 
2048 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2049 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2050 		dcc->discard_granularity = sbi->blocks_per_seg;
2051 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2052 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2053 
2054 	INIT_LIST_HEAD(&dcc->entry_list);
2055 	for (i = 0; i < MAX_PLIST_NUM; i++)
2056 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2057 	INIT_LIST_HEAD(&dcc->wait_list);
2058 	INIT_LIST_HEAD(&dcc->fstrim_list);
2059 	mutex_init(&dcc->cmd_lock);
2060 	atomic_set(&dcc->issued_discard, 0);
2061 	atomic_set(&dcc->queued_discard, 0);
2062 	atomic_set(&dcc->discard_cmd_cnt, 0);
2063 	dcc->nr_discards = 0;
2064 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2065 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2066 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2067 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2068 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2069 	dcc->undiscard_blks = 0;
2070 	dcc->next_pos = 0;
2071 	dcc->root = RB_ROOT_CACHED;
2072 	dcc->rbtree_check = false;
2073 
2074 	init_waitqueue_head(&dcc->discard_wait_queue);
2075 	SM_I(sbi)->dcc_info = dcc;
2076 init_thread:
2077 	err = f2fs_start_discard_thread(sbi);
2078 	if (err) {
2079 		kfree(dcc);
2080 		SM_I(sbi)->dcc_info = NULL;
2081 	}
2082 
2083 	return err;
2084 }
2085 
2086 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2087 {
2088 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2089 
2090 	if (!dcc)
2091 		return;
2092 
2093 	f2fs_stop_discard_thread(sbi);
2094 
2095 	/*
2096 	 * Recovery can cache discard commands, so in error path of
2097 	 * fill_super(), it needs to give a chance to handle them.
2098 	 */
2099 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2100 		f2fs_issue_discard_timeout(sbi);
2101 
2102 	kfree(dcc);
2103 	SM_I(sbi)->dcc_info = NULL;
2104 }
2105 
2106 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2107 {
2108 	struct sit_info *sit_i = SIT_I(sbi);
2109 
2110 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2111 		sit_i->dirty_sentries++;
2112 		return false;
2113 	}
2114 
2115 	return true;
2116 }
2117 
2118 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2119 					unsigned int segno, int modified)
2120 {
2121 	struct seg_entry *se = get_seg_entry(sbi, segno);
2122 
2123 	se->type = type;
2124 	if (modified)
2125 		__mark_sit_entry_dirty(sbi, segno);
2126 }
2127 
2128 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2129 								block_t blkaddr)
2130 {
2131 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2132 
2133 	if (segno == NULL_SEGNO)
2134 		return 0;
2135 	return get_seg_entry(sbi, segno)->mtime;
2136 }
2137 
2138 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2139 						unsigned long long old_mtime)
2140 {
2141 	struct seg_entry *se;
2142 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2143 	unsigned long long ctime = get_mtime(sbi, false);
2144 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2145 
2146 	if (segno == NULL_SEGNO)
2147 		return;
2148 
2149 	se = get_seg_entry(sbi, segno);
2150 
2151 	if (!se->mtime)
2152 		se->mtime = mtime;
2153 	else
2154 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2155 						se->valid_blocks + 1);
2156 
2157 	if (ctime > SIT_I(sbi)->max_mtime)
2158 		SIT_I(sbi)->max_mtime = ctime;
2159 }
2160 
2161 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2162 {
2163 	struct seg_entry *se;
2164 	unsigned int segno, offset;
2165 	long int new_vblocks;
2166 	bool exist;
2167 #ifdef CONFIG_F2FS_CHECK_FS
2168 	bool mir_exist;
2169 #endif
2170 
2171 	segno = GET_SEGNO(sbi, blkaddr);
2172 
2173 	se = get_seg_entry(sbi, segno);
2174 	new_vblocks = se->valid_blocks + del;
2175 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2176 
2177 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2178 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2179 
2180 	se->valid_blocks = new_vblocks;
2181 
2182 	/* Update valid block bitmap */
2183 	if (del > 0) {
2184 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2185 #ifdef CONFIG_F2FS_CHECK_FS
2186 		mir_exist = f2fs_test_and_set_bit(offset,
2187 						se->cur_valid_map_mir);
2188 		if (unlikely(exist != mir_exist)) {
2189 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2190 				 blkaddr, exist);
2191 			f2fs_bug_on(sbi, 1);
2192 		}
2193 #endif
2194 		if (unlikely(exist)) {
2195 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2196 				 blkaddr);
2197 			f2fs_bug_on(sbi, 1);
2198 			se->valid_blocks--;
2199 			del = 0;
2200 		}
2201 
2202 		if (f2fs_block_unit_discard(sbi) &&
2203 				!f2fs_test_and_set_bit(offset, se->discard_map))
2204 			sbi->discard_blks--;
2205 
2206 		/*
2207 		 * SSR should never reuse block which is checkpointed
2208 		 * or newly invalidated.
2209 		 */
2210 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2211 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2212 				se->ckpt_valid_blocks++;
2213 		}
2214 	} else {
2215 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2216 #ifdef CONFIG_F2FS_CHECK_FS
2217 		mir_exist = f2fs_test_and_clear_bit(offset,
2218 						se->cur_valid_map_mir);
2219 		if (unlikely(exist != mir_exist)) {
2220 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2221 				 blkaddr, exist);
2222 			f2fs_bug_on(sbi, 1);
2223 		}
2224 #endif
2225 		if (unlikely(!exist)) {
2226 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2227 				 blkaddr);
2228 			f2fs_bug_on(sbi, 1);
2229 			se->valid_blocks++;
2230 			del = 0;
2231 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2232 			/*
2233 			 * If checkpoints are off, we must not reuse data that
2234 			 * was used in the previous checkpoint. If it was used
2235 			 * before, we must track that to know how much space we
2236 			 * really have.
2237 			 */
2238 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2239 				spin_lock(&sbi->stat_lock);
2240 				sbi->unusable_block_count++;
2241 				spin_unlock(&sbi->stat_lock);
2242 			}
2243 		}
2244 
2245 		if (f2fs_block_unit_discard(sbi) &&
2246 			f2fs_test_and_clear_bit(offset, se->discard_map))
2247 			sbi->discard_blks++;
2248 	}
2249 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2250 		se->ckpt_valid_blocks += del;
2251 
2252 	__mark_sit_entry_dirty(sbi, segno);
2253 
2254 	/* update total number of valid blocks to be written in ckpt area */
2255 	SIT_I(sbi)->written_valid_blocks += del;
2256 
2257 	if (__is_large_section(sbi))
2258 		get_sec_entry(sbi, segno)->valid_blocks += del;
2259 }
2260 
2261 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2262 {
2263 	unsigned int segno = GET_SEGNO(sbi, addr);
2264 	struct sit_info *sit_i = SIT_I(sbi);
2265 
2266 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2267 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2268 		return;
2269 
2270 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2271 	f2fs_invalidate_compress_page(sbi, addr);
2272 
2273 	/* add it into sit main buffer */
2274 	down_write(&sit_i->sentry_lock);
2275 
2276 	update_segment_mtime(sbi, addr, 0);
2277 	update_sit_entry(sbi, addr, -1);
2278 
2279 	/* add it into dirty seglist */
2280 	locate_dirty_segment(sbi, segno);
2281 
2282 	up_write(&sit_i->sentry_lock);
2283 }
2284 
2285 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2286 {
2287 	struct sit_info *sit_i = SIT_I(sbi);
2288 	unsigned int segno, offset;
2289 	struct seg_entry *se;
2290 	bool is_cp = false;
2291 
2292 	if (!__is_valid_data_blkaddr(blkaddr))
2293 		return true;
2294 
2295 	down_read(&sit_i->sentry_lock);
2296 
2297 	segno = GET_SEGNO(sbi, blkaddr);
2298 	se = get_seg_entry(sbi, segno);
2299 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2300 
2301 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2302 		is_cp = true;
2303 
2304 	up_read(&sit_i->sentry_lock);
2305 
2306 	return is_cp;
2307 }
2308 
2309 /*
2310  * This function should be resided under the curseg_mutex lock
2311  */
2312 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2313 					struct f2fs_summary *sum)
2314 {
2315 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2316 	void *addr = curseg->sum_blk;
2317 
2318 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2319 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2320 }
2321 
2322 /*
2323  * Calculate the number of current summary pages for writing
2324  */
2325 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2326 {
2327 	int valid_sum_count = 0;
2328 	int i, sum_in_page;
2329 
2330 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2331 		if (sbi->ckpt->alloc_type[i] == SSR)
2332 			valid_sum_count += sbi->blocks_per_seg;
2333 		else {
2334 			if (for_ra)
2335 				valid_sum_count += le16_to_cpu(
2336 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2337 			else
2338 				valid_sum_count += curseg_blkoff(sbi, i);
2339 		}
2340 	}
2341 
2342 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2343 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2344 	if (valid_sum_count <= sum_in_page)
2345 		return 1;
2346 	else if ((valid_sum_count - sum_in_page) <=
2347 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2348 		return 2;
2349 	return 3;
2350 }
2351 
2352 /*
2353  * Caller should put this summary page
2354  */
2355 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2356 {
2357 	if (unlikely(f2fs_cp_error(sbi)))
2358 		return ERR_PTR(-EIO);
2359 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2360 }
2361 
2362 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2363 					void *src, block_t blk_addr)
2364 {
2365 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2366 
2367 	memcpy(page_address(page), src, PAGE_SIZE);
2368 	set_page_dirty(page);
2369 	f2fs_put_page(page, 1);
2370 }
2371 
2372 static void write_sum_page(struct f2fs_sb_info *sbi,
2373 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2374 {
2375 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2376 }
2377 
2378 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2379 						int type, block_t blk_addr)
2380 {
2381 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2382 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2383 	struct f2fs_summary_block *src = curseg->sum_blk;
2384 	struct f2fs_summary_block *dst;
2385 
2386 	dst = (struct f2fs_summary_block *)page_address(page);
2387 	memset(dst, 0, PAGE_SIZE);
2388 
2389 	mutex_lock(&curseg->curseg_mutex);
2390 
2391 	down_read(&curseg->journal_rwsem);
2392 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2393 	up_read(&curseg->journal_rwsem);
2394 
2395 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2396 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2397 
2398 	mutex_unlock(&curseg->curseg_mutex);
2399 
2400 	set_page_dirty(page);
2401 	f2fs_put_page(page, 1);
2402 }
2403 
2404 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2405 				struct curseg_info *curseg, int type)
2406 {
2407 	unsigned int segno = curseg->segno + 1;
2408 	struct free_segmap_info *free_i = FREE_I(sbi);
2409 
2410 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2411 		return !test_bit(segno, free_i->free_segmap);
2412 	return 0;
2413 }
2414 
2415 /*
2416  * Find a new segment from the free segments bitmap to right order
2417  * This function should be returned with success, otherwise BUG
2418  */
2419 static void get_new_segment(struct f2fs_sb_info *sbi,
2420 			unsigned int *newseg, bool new_sec, int dir)
2421 {
2422 	struct free_segmap_info *free_i = FREE_I(sbi);
2423 	unsigned int segno, secno, zoneno;
2424 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2425 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2426 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2427 	unsigned int left_start = hint;
2428 	bool init = true;
2429 	int go_left = 0;
2430 	int i;
2431 
2432 	spin_lock(&free_i->segmap_lock);
2433 
2434 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2435 		segno = find_next_zero_bit(free_i->free_segmap,
2436 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2437 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2438 			goto got_it;
2439 	}
2440 find_other_zone:
2441 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2442 	if (secno >= MAIN_SECS(sbi)) {
2443 		if (dir == ALLOC_RIGHT) {
2444 			secno = find_first_zero_bit(free_i->free_secmap,
2445 							MAIN_SECS(sbi));
2446 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2447 		} else {
2448 			go_left = 1;
2449 			left_start = hint - 1;
2450 		}
2451 	}
2452 	if (go_left == 0)
2453 		goto skip_left;
2454 
2455 	while (test_bit(left_start, free_i->free_secmap)) {
2456 		if (left_start > 0) {
2457 			left_start--;
2458 			continue;
2459 		}
2460 		left_start = find_first_zero_bit(free_i->free_secmap,
2461 							MAIN_SECS(sbi));
2462 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2463 		break;
2464 	}
2465 	secno = left_start;
2466 skip_left:
2467 	segno = GET_SEG_FROM_SEC(sbi, secno);
2468 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2469 
2470 	/* give up on finding another zone */
2471 	if (!init)
2472 		goto got_it;
2473 	if (sbi->secs_per_zone == 1)
2474 		goto got_it;
2475 	if (zoneno == old_zoneno)
2476 		goto got_it;
2477 	if (dir == ALLOC_LEFT) {
2478 		if (!go_left && zoneno + 1 >= total_zones)
2479 			goto got_it;
2480 		if (go_left && zoneno == 0)
2481 			goto got_it;
2482 	}
2483 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2484 		if (CURSEG_I(sbi, i)->zone == zoneno)
2485 			break;
2486 
2487 	if (i < NR_CURSEG_TYPE) {
2488 		/* zone is in user, try another */
2489 		if (go_left)
2490 			hint = zoneno * sbi->secs_per_zone - 1;
2491 		else if (zoneno + 1 >= total_zones)
2492 			hint = 0;
2493 		else
2494 			hint = (zoneno + 1) * sbi->secs_per_zone;
2495 		init = false;
2496 		goto find_other_zone;
2497 	}
2498 got_it:
2499 	/* set it as dirty segment in free segmap */
2500 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2501 	__set_inuse(sbi, segno);
2502 	*newseg = segno;
2503 	spin_unlock(&free_i->segmap_lock);
2504 }
2505 
2506 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2507 {
2508 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2509 	struct summary_footer *sum_footer;
2510 	unsigned short seg_type = curseg->seg_type;
2511 
2512 	curseg->inited = true;
2513 	curseg->segno = curseg->next_segno;
2514 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2515 	curseg->next_blkoff = 0;
2516 	curseg->next_segno = NULL_SEGNO;
2517 
2518 	sum_footer = &(curseg->sum_blk->footer);
2519 	memset(sum_footer, 0, sizeof(struct summary_footer));
2520 
2521 	sanity_check_seg_type(sbi, seg_type);
2522 
2523 	if (IS_DATASEG(seg_type))
2524 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2525 	if (IS_NODESEG(seg_type))
2526 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2527 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2528 }
2529 
2530 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2531 {
2532 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2533 	unsigned short seg_type = curseg->seg_type;
2534 
2535 	sanity_check_seg_type(sbi, seg_type);
2536 	if (f2fs_need_rand_seg(sbi))
2537 		return prandom_u32_max(MAIN_SECS(sbi) * sbi->segs_per_sec);
2538 
2539 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2540 	if (__is_large_section(sbi))
2541 		return curseg->segno;
2542 
2543 	/* inmem log may not locate on any segment after mount */
2544 	if (!curseg->inited)
2545 		return 0;
2546 
2547 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2548 		return 0;
2549 
2550 	if (test_opt(sbi, NOHEAP) &&
2551 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2552 		return 0;
2553 
2554 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2555 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2556 
2557 	/* find segments from 0 to reuse freed segments */
2558 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2559 		return 0;
2560 
2561 	return curseg->segno;
2562 }
2563 
2564 /*
2565  * Allocate a current working segment.
2566  * This function always allocates a free segment in LFS manner.
2567  */
2568 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2569 {
2570 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2571 	unsigned short seg_type = curseg->seg_type;
2572 	unsigned int segno = curseg->segno;
2573 	int dir = ALLOC_LEFT;
2574 
2575 	if (curseg->inited)
2576 		write_sum_page(sbi, curseg->sum_blk,
2577 				GET_SUM_BLOCK(sbi, segno));
2578 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2579 		dir = ALLOC_RIGHT;
2580 
2581 	if (test_opt(sbi, NOHEAP))
2582 		dir = ALLOC_RIGHT;
2583 
2584 	segno = __get_next_segno(sbi, type);
2585 	get_new_segment(sbi, &segno, new_sec, dir);
2586 	curseg->next_segno = segno;
2587 	reset_curseg(sbi, type, 1);
2588 	curseg->alloc_type = LFS;
2589 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2590 		curseg->fragment_remained_chunk =
2591 				prandom_u32_max(sbi->max_fragment_chunk) + 1;
2592 }
2593 
2594 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2595 					int segno, block_t start)
2596 {
2597 	struct seg_entry *se = get_seg_entry(sbi, segno);
2598 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2599 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2600 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2601 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2602 	int i;
2603 
2604 	for (i = 0; i < entries; i++)
2605 		target_map[i] = ckpt_map[i] | cur_map[i];
2606 
2607 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2608 }
2609 
2610 /*
2611  * If a segment is written by LFS manner, next block offset is just obtained
2612  * by increasing the current block offset. However, if a segment is written by
2613  * SSR manner, next block offset obtained by calling __next_free_blkoff
2614  */
2615 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2616 				struct curseg_info *seg)
2617 {
2618 	if (seg->alloc_type == SSR) {
2619 		seg->next_blkoff =
2620 			__next_free_blkoff(sbi, seg->segno,
2621 						seg->next_blkoff + 1);
2622 	} else {
2623 		seg->next_blkoff++;
2624 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2625 			/* To allocate block chunks in different sizes, use random number */
2626 			if (--seg->fragment_remained_chunk <= 0) {
2627 				seg->fragment_remained_chunk =
2628 				   prandom_u32_max(sbi->max_fragment_chunk) + 1;
2629 				seg->next_blkoff +=
2630 				   prandom_u32_max(sbi->max_fragment_hole) + 1;
2631 			}
2632 		}
2633 	}
2634 }
2635 
2636 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2637 {
2638 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2639 }
2640 
2641 /*
2642  * This function always allocates a used segment(from dirty seglist) by SSR
2643  * manner, so it should recover the existing segment information of valid blocks
2644  */
2645 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2646 {
2647 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2648 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2649 	unsigned int new_segno = curseg->next_segno;
2650 	struct f2fs_summary_block *sum_node;
2651 	struct page *sum_page;
2652 
2653 	if (flush)
2654 		write_sum_page(sbi, curseg->sum_blk,
2655 					GET_SUM_BLOCK(sbi, curseg->segno));
2656 
2657 	__set_test_and_inuse(sbi, new_segno);
2658 
2659 	mutex_lock(&dirty_i->seglist_lock);
2660 	__remove_dirty_segment(sbi, new_segno, PRE);
2661 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2662 	mutex_unlock(&dirty_i->seglist_lock);
2663 
2664 	reset_curseg(sbi, type, 1);
2665 	curseg->alloc_type = SSR;
2666 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2667 
2668 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2669 	if (IS_ERR(sum_page)) {
2670 		/* GC won't be able to use stale summary pages by cp_error */
2671 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2672 		return;
2673 	}
2674 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2675 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2676 	f2fs_put_page(sum_page, 1);
2677 }
2678 
2679 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2680 				int alloc_mode, unsigned long long age);
2681 
2682 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2683 					int target_type, int alloc_mode,
2684 					unsigned long long age)
2685 {
2686 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2687 
2688 	curseg->seg_type = target_type;
2689 
2690 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2691 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2692 
2693 		curseg->seg_type = se->type;
2694 		change_curseg(sbi, type, true);
2695 	} else {
2696 		/* allocate cold segment by default */
2697 		curseg->seg_type = CURSEG_COLD_DATA;
2698 		new_curseg(sbi, type, true);
2699 	}
2700 	stat_inc_seg_type(sbi, curseg);
2701 }
2702 
2703 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2704 {
2705 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2706 
2707 	if (!sbi->am.atgc_enabled)
2708 		return;
2709 
2710 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2711 
2712 	mutex_lock(&curseg->curseg_mutex);
2713 	down_write(&SIT_I(sbi)->sentry_lock);
2714 
2715 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2716 
2717 	up_write(&SIT_I(sbi)->sentry_lock);
2718 	mutex_unlock(&curseg->curseg_mutex);
2719 
2720 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2721 
2722 }
2723 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2724 {
2725 	__f2fs_init_atgc_curseg(sbi);
2726 }
2727 
2728 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2729 {
2730 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2731 
2732 	mutex_lock(&curseg->curseg_mutex);
2733 	if (!curseg->inited)
2734 		goto out;
2735 
2736 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2737 		write_sum_page(sbi, curseg->sum_blk,
2738 				GET_SUM_BLOCK(sbi, curseg->segno));
2739 	} else {
2740 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2741 		__set_test_and_free(sbi, curseg->segno, true);
2742 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2743 	}
2744 out:
2745 	mutex_unlock(&curseg->curseg_mutex);
2746 }
2747 
2748 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2749 {
2750 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2751 
2752 	if (sbi->am.atgc_enabled)
2753 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2754 }
2755 
2756 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2757 {
2758 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2759 
2760 	mutex_lock(&curseg->curseg_mutex);
2761 	if (!curseg->inited)
2762 		goto out;
2763 	if (get_valid_blocks(sbi, curseg->segno, false))
2764 		goto out;
2765 
2766 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2767 	__set_test_and_inuse(sbi, curseg->segno);
2768 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2769 out:
2770 	mutex_unlock(&curseg->curseg_mutex);
2771 }
2772 
2773 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2774 {
2775 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2776 
2777 	if (sbi->am.atgc_enabled)
2778 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2779 }
2780 
2781 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2782 				int alloc_mode, unsigned long long age)
2783 {
2784 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2785 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2786 	unsigned segno = NULL_SEGNO;
2787 	unsigned short seg_type = curseg->seg_type;
2788 	int i, cnt;
2789 	bool reversed = false;
2790 
2791 	sanity_check_seg_type(sbi, seg_type);
2792 
2793 	/* f2fs_need_SSR() already forces to do this */
2794 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2795 		curseg->next_segno = segno;
2796 		return 1;
2797 	}
2798 
2799 	/* For node segments, let's do SSR more intensively */
2800 	if (IS_NODESEG(seg_type)) {
2801 		if (seg_type >= CURSEG_WARM_NODE) {
2802 			reversed = true;
2803 			i = CURSEG_COLD_NODE;
2804 		} else {
2805 			i = CURSEG_HOT_NODE;
2806 		}
2807 		cnt = NR_CURSEG_NODE_TYPE;
2808 	} else {
2809 		if (seg_type >= CURSEG_WARM_DATA) {
2810 			reversed = true;
2811 			i = CURSEG_COLD_DATA;
2812 		} else {
2813 			i = CURSEG_HOT_DATA;
2814 		}
2815 		cnt = NR_CURSEG_DATA_TYPE;
2816 	}
2817 
2818 	for (; cnt-- > 0; reversed ? i-- : i++) {
2819 		if (i == seg_type)
2820 			continue;
2821 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2822 			curseg->next_segno = segno;
2823 			return 1;
2824 		}
2825 	}
2826 
2827 	/* find valid_blocks=0 in dirty list */
2828 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2829 		segno = get_free_segment(sbi);
2830 		if (segno != NULL_SEGNO) {
2831 			curseg->next_segno = segno;
2832 			return 1;
2833 		}
2834 	}
2835 	return 0;
2836 }
2837 
2838 /*
2839  * flush out current segment and replace it with new segment
2840  * This function should be returned with success, otherwise BUG
2841  */
2842 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2843 						int type, bool force)
2844 {
2845 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2846 
2847 	if (force)
2848 		new_curseg(sbi, type, true);
2849 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2850 					curseg->seg_type == CURSEG_WARM_NODE)
2851 		new_curseg(sbi, type, false);
2852 	else if (curseg->alloc_type == LFS &&
2853 			is_next_segment_free(sbi, curseg, type) &&
2854 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2855 		new_curseg(sbi, type, false);
2856 	else if (f2fs_need_SSR(sbi) &&
2857 			get_ssr_segment(sbi, type, SSR, 0))
2858 		change_curseg(sbi, type, true);
2859 	else
2860 		new_curseg(sbi, type, false);
2861 
2862 	stat_inc_seg_type(sbi, curseg);
2863 }
2864 
2865 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2866 					unsigned int start, unsigned int end)
2867 {
2868 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2869 	unsigned int segno;
2870 
2871 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2872 	mutex_lock(&curseg->curseg_mutex);
2873 	down_write(&SIT_I(sbi)->sentry_lock);
2874 
2875 	segno = CURSEG_I(sbi, type)->segno;
2876 	if (segno < start || segno > end)
2877 		goto unlock;
2878 
2879 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2880 		change_curseg(sbi, type, true);
2881 	else
2882 		new_curseg(sbi, type, true);
2883 
2884 	stat_inc_seg_type(sbi, curseg);
2885 
2886 	locate_dirty_segment(sbi, segno);
2887 unlock:
2888 	up_write(&SIT_I(sbi)->sentry_lock);
2889 
2890 	if (segno != curseg->segno)
2891 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2892 			    type, segno, curseg->segno);
2893 
2894 	mutex_unlock(&curseg->curseg_mutex);
2895 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2896 }
2897 
2898 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2899 						bool new_sec, bool force)
2900 {
2901 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2902 	unsigned int old_segno;
2903 
2904 	if (!curseg->inited)
2905 		goto alloc;
2906 
2907 	if (force || curseg->next_blkoff ||
2908 		get_valid_blocks(sbi, curseg->segno, new_sec))
2909 		goto alloc;
2910 
2911 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2912 		return;
2913 alloc:
2914 	old_segno = curseg->segno;
2915 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2916 	locate_dirty_segment(sbi, old_segno);
2917 }
2918 
2919 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2920 						int type, bool force)
2921 {
2922 	__allocate_new_segment(sbi, type, true, force);
2923 }
2924 
2925 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2926 {
2927 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2928 	down_write(&SIT_I(sbi)->sentry_lock);
2929 	__allocate_new_section(sbi, type, force);
2930 	up_write(&SIT_I(sbi)->sentry_lock);
2931 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2932 }
2933 
2934 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2935 {
2936 	int i;
2937 
2938 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2939 	down_write(&SIT_I(sbi)->sentry_lock);
2940 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2941 		__allocate_new_segment(sbi, i, false, false);
2942 	up_write(&SIT_I(sbi)->sentry_lock);
2943 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2944 }
2945 
2946 static const struct segment_allocation default_salloc_ops = {
2947 	.allocate_segment = allocate_segment_by_default,
2948 };
2949 
2950 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2951 						struct cp_control *cpc)
2952 {
2953 	__u64 trim_start = cpc->trim_start;
2954 	bool has_candidate = false;
2955 
2956 	down_write(&SIT_I(sbi)->sentry_lock);
2957 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2958 		if (add_discard_addrs(sbi, cpc, true)) {
2959 			has_candidate = true;
2960 			break;
2961 		}
2962 	}
2963 	up_write(&SIT_I(sbi)->sentry_lock);
2964 
2965 	cpc->trim_start = trim_start;
2966 	return has_candidate;
2967 }
2968 
2969 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2970 					struct discard_policy *dpolicy,
2971 					unsigned int start, unsigned int end)
2972 {
2973 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2974 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2975 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2976 	struct discard_cmd *dc;
2977 	struct blk_plug plug;
2978 	int issued;
2979 	unsigned int trimmed = 0;
2980 
2981 next:
2982 	issued = 0;
2983 
2984 	mutex_lock(&dcc->cmd_lock);
2985 	if (unlikely(dcc->rbtree_check))
2986 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2987 							&dcc->root, false));
2988 
2989 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2990 					NULL, start,
2991 					(struct rb_entry **)&prev_dc,
2992 					(struct rb_entry **)&next_dc,
2993 					&insert_p, &insert_parent, true, NULL);
2994 	if (!dc)
2995 		dc = next_dc;
2996 
2997 	blk_start_plug(&plug);
2998 
2999 	while (dc && dc->lstart <= end) {
3000 		struct rb_node *node;
3001 		int err = 0;
3002 
3003 		if (dc->len < dpolicy->granularity)
3004 			goto skip;
3005 
3006 		if (dc->state != D_PREP) {
3007 			list_move_tail(&dc->list, &dcc->fstrim_list);
3008 			goto skip;
3009 		}
3010 
3011 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3012 
3013 		if (issued >= dpolicy->max_requests) {
3014 			start = dc->lstart + dc->len;
3015 
3016 			if (err)
3017 				__remove_discard_cmd(sbi, dc);
3018 
3019 			blk_finish_plug(&plug);
3020 			mutex_unlock(&dcc->cmd_lock);
3021 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3022 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3023 			goto next;
3024 		}
3025 skip:
3026 		node = rb_next(&dc->rb_node);
3027 		if (err)
3028 			__remove_discard_cmd(sbi, dc);
3029 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3030 
3031 		if (fatal_signal_pending(current))
3032 			break;
3033 	}
3034 
3035 	blk_finish_plug(&plug);
3036 	mutex_unlock(&dcc->cmd_lock);
3037 
3038 	return trimmed;
3039 }
3040 
3041 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3042 {
3043 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3044 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3045 	unsigned int start_segno, end_segno;
3046 	block_t start_block, end_block;
3047 	struct cp_control cpc;
3048 	struct discard_policy dpolicy;
3049 	unsigned long long trimmed = 0;
3050 	int err = 0;
3051 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3052 
3053 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3054 		return -EINVAL;
3055 
3056 	if (end < MAIN_BLKADDR(sbi))
3057 		goto out;
3058 
3059 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3060 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3061 		return -EFSCORRUPTED;
3062 	}
3063 
3064 	/* start/end segment number in main_area */
3065 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3066 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3067 						GET_SEGNO(sbi, end);
3068 	if (need_align) {
3069 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3070 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3071 	}
3072 
3073 	cpc.reason = CP_DISCARD;
3074 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3075 	cpc.trim_start = start_segno;
3076 	cpc.trim_end = end_segno;
3077 
3078 	if (sbi->discard_blks == 0)
3079 		goto out;
3080 
3081 	f2fs_down_write(&sbi->gc_lock);
3082 	err = f2fs_write_checkpoint(sbi, &cpc);
3083 	f2fs_up_write(&sbi->gc_lock);
3084 	if (err)
3085 		goto out;
3086 
3087 	/*
3088 	 * We filed discard candidates, but actually we don't need to wait for
3089 	 * all of them, since they'll be issued in idle time along with runtime
3090 	 * discard option. User configuration looks like using runtime discard
3091 	 * or periodic fstrim instead of it.
3092 	 */
3093 	if (f2fs_realtime_discard_enable(sbi))
3094 		goto out;
3095 
3096 	start_block = START_BLOCK(sbi, start_segno);
3097 	end_block = START_BLOCK(sbi, end_segno + 1);
3098 
3099 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3100 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3101 					start_block, end_block);
3102 
3103 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3104 					start_block, end_block);
3105 out:
3106 	if (!err)
3107 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3108 	return err;
3109 }
3110 
3111 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3112 					struct curseg_info *curseg)
3113 {
3114 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3115 							curseg->segno);
3116 }
3117 
3118 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3119 {
3120 	switch (hint) {
3121 	case WRITE_LIFE_SHORT:
3122 		return CURSEG_HOT_DATA;
3123 	case WRITE_LIFE_EXTREME:
3124 		return CURSEG_COLD_DATA;
3125 	default:
3126 		return CURSEG_WARM_DATA;
3127 	}
3128 }
3129 
3130 static int __get_segment_type_2(struct f2fs_io_info *fio)
3131 {
3132 	if (fio->type == DATA)
3133 		return CURSEG_HOT_DATA;
3134 	else
3135 		return CURSEG_HOT_NODE;
3136 }
3137 
3138 static int __get_segment_type_4(struct f2fs_io_info *fio)
3139 {
3140 	if (fio->type == DATA) {
3141 		struct inode *inode = fio->page->mapping->host;
3142 
3143 		if (S_ISDIR(inode->i_mode))
3144 			return CURSEG_HOT_DATA;
3145 		else
3146 			return CURSEG_COLD_DATA;
3147 	} else {
3148 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3149 			return CURSEG_WARM_NODE;
3150 		else
3151 			return CURSEG_COLD_NODE;
3152 	}
3153 }
3154 
3155 static int __get_segment_type_6(struct f2fs_io_info *fio)
3156 {
3157 	if (fio->type == DATA) {
3158 		struct inode *inode = fio->page->mapping->host;
3159 
3160 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3161 			return CURSEG_COLD_DATA_PINNED;
3162 
3163 		if (page_private_gcing(fio->page)) {
3164 			if (fio->sbi->am.atgc_enabled &&
3165 				(fio->io_type == FS_DATA_IO) &&
3166 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3167 				return CURSEG_ALL_DATA_ATGC;
3168 			else
3169 				return CURSEG_COLD_DATA;
3170 		}
3171 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3172 			return CURSEG_COLD_DATA;
3173 		if (file_is_hot(inode) ||
3174 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3175 				f2fs_is_cow_file(inode))
3176 			return CURSEG_HOT_DATA;
3177 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3178 	} else {
3179 		if (IS_DNODE(fio->page))
3180 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3181 						CURSEG_HOT_NODE;
3182 		return CURSEG_COLD_NODE;
3183 	}
3184 }
3185 
3186 static int __get_segment_type(struct f2fs_io_info *fio)
3187 {
3188 	int type = 0;
3189 
3190 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3191 	case 2:
3192 		type = __get_segment_type_2(fio);
3193 		break;
3194 	case 4:
3195 		type = __get_segment_type_4(fio);
3196 		break;
3197 	case 6:
3198 		type = __get_segment_type_6(fio);
3199 		break;
3200 	default:
3201 		f2fs_bug_on(fio->sbi, true);
3202 	}
3203 
3204 	if (IS_HOT(type))
3205 		fio->temp = HOT;
3206 	else if (IS_WARM(type))
3207 		fio->temp = WARM;
3208 	else
3209 		fio->temp = COLD;
3210 	return type;
3211 }
3212 
3213 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3214 		block_t old_blkaddr, block_t *new_blkaddr,
3215 		struct f2fs_summary *sum, int type,
3216 		struct f2fs_io_info *fio)
3217 {
3218 	struct sit_info *sit_i = SIT_I(sbi);
3219 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3220 	unsigned long long old_mtime;
3221 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3222 	struct seg_entry *se = NULL;
3223 
3224 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3225 
3226 	mutex_lock(&curseg->curseg_mutex);
3227 	down_write(&sit_i->sentry_lock);
3228 
3229 	if (from_gc) {
3230 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3231 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3232 		sanity_check_seg_type(sbi, se->type);
3233 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3234 	}
3235 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3236 
3237 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3238 
3239 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3240 
3241 	/*
3242 	 * __add_sum_entry should be resided under the curseg_mutex
3243 	 * because, this function updates a summary entry in the
3244 	 * current summary block.
3245 	 */
3246 	__add_sum_entry(sbi, type, sum);
3247 
3248 	__refresh_next_blkoff(sbi, curseg);
3249 
3250 	stat_inc_block_count(sbi, curseg);
3251 
3252 	if (from_gc) {
3253 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3254 	} else {
3255 		update_segment_mtime(sbi, old_blkaddr, 0);
3256 		old_mtime = 0;
3257 	}
3258 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3259 
3260 	/*
3261 	 * SIT information should be updated before segment allocation,
3262 	 * since SSR needs latest valid block information.
3263 	 */
3264 	update_sit_entry(sbi, *new_blkaddr, 1);
3265 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3266 		update_sit_entry(sbi, old_blkaddr, -1);
3267 
3268 	if (!__has_curseg_space(sbi, curseg)) {
3269 		if (from_gc)
3270 			get_atssr_segment(sbi, type, se->type,
3271 						AT_SSR, se->mtime);
3272 		else
3273 			sit_i->s_ops->allocate_segment(sbi, type, false);
3274 	}
3275 	/*
3276 	 * segment dirty status should be updated after segment allocation,
3277 	 * so we just need to update status only one time after previous
3278 	 * segment being closed.
3279 	 */
3280 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3281 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3282 
3283 	up_write(&sit_i->sentry_lock);
3284 
3285 	if (page && IS_NODESEG(type)) {
3286 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3287 
3288 		f2fs_inode_chksum_set(sbi, page);
3289 	}
3290 
3291 	if (fio) {
3292 		struct f2fs_bio_info *io;
3293 
3294 		if (F2FS_IO_ALIGNED(sbi))
3295 			fio->retry = false;
3296 
3297 		INIT_LIST_HEAD(&fio->list);
3298 		fio->in_list = true;
3299 		io = sbi->write_io[fio->type] + fio->temp;
3300 		spin_lock(&io->io_lock);
3301 		list_add_tail(&fio->list, &io->io_list);
3302 		spin_unlock(&io->io_lock);
3303 	}
3304 
3305 	mutex_unlock(&curseg->curseg_mutex);
3306 
3307 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3308 }
3309 
3310 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3311 					block_t blkaddr, unsigned int blkcnt)
3312 {
3313 	if (!f2fs_is_multi_device(sbi))
3314 		return;
3315 
3316 	while (1) {
3317 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3318 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3319 
3320 		/* update device state for fsync */
3321 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3322 
3323 		/* update device state for checkpoint */
3324 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3325 			spin_lock(&sbi->dev_lock);
3326 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3327 			spin_unlock(&sbi->dev_lock);
3328 		}
3329 
3330 		if (blkcnt <= blks)
3331 			break;
3332 		blkcnt -= blks;
3333 		blkaddr += blks;
3334 	}
3335 }
3336 
3337 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3338 {
3339 	int type = __get_segment_type(fio);
3340 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3341 
3342 	if (keep_order)
3343 		f2fs_down_read(&fio->sbi->io_order_lock);
3344 reallocate:
3345 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3346 			&fio->new_blkaddr, sum, type, fio);
3347 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3348 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3349 					fio->old_blkaddr, fio->old_blkaddr);
3350 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3351 	}
3352 
3353 	/* writeout dirty page into bdev */
3354 	f2fs_submit_page_write(fio);
3355 	if (fio->retry) {
3356 		fio->old_blkaddr = fio->new_blkaddr;
3357 		goto reallocate;
3358 	}
3359 
3360 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3361 
3362 	if (keep_order)
3363 		f2fs_up_read(&fio->sbi->io_order_lock);
3364 }
3365 
3366 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3367 					enum iostat_type io_type)
3368 {
3369 	struct f2fs_io_info fio = {
3370 		.sbi = sbi,
3371 		.type = META,
3372 		.temp = HOT,
3373 		.op = REQ_OP_WRITE,
3374 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3375 		.old_blkaddr = page->index,
3376 		.new_blkaddr = page->index,
3377 		.page = page,
3378 		.encrypted_page = NULL,
3379 		.in_list = false,
3380 	};
3381 
3382 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3383 		fio.op_flags &= ~REQ_META;
3384 
3385 	set_page_writeback(page);
3386 	ClearPageError(page);
3387 	f2fs_submit_page_write(&fio);
3388 
3389 	stat_inc_meta_count(sbi, page->index);
3390 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3391 }
3392 
3393 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3394 {
3395 	struct f2fs_summary sum;
3396 
3397 	set_summary(&sum, nid, 0, 0);
3398 	do_write_page(&sum, fio);
3399 
3400 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3401 }
3402 
3403 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3404 					struct f2fs_io_info *fio)
3405 {
3406 	struct f2fs_sb_info *sbi = fio->sbi;
3407 	struct f2fs_summary sum;
3408 
3409 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3410 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3411 	do_write_page(&sum, fio);
3412 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3413 
3414 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3415 }
3416 
3417 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3418 {
3419 	int err;
3420 	struct f2fs_sb_info *sbi = fio->sbi;
3421 	unsigned int segno;
3422 
3423 	fio->new_blkaddr = fio->old_blkaddr;
3424 	/* i/o temperature is needed for passing down write hints */
3425 	__get_segment_type(fio);
3426 
3427 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3428 
3429 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3430 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3431 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3432 			  __func__, segno);
3433 		err = -EFSCORRUPTED;
3434 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3435 		goto drop_bio;
3436 	}
3437 
3438 	if (f2fs_cp_error(sbi)) {
3439 		err = -EIO;
3440 		goto drop_bio;
3441 	}
3442 
3443 	if (fio->post_read)
3444 		invalidate_mapping_pages(META_MAPPING(sbi),
3445 				fio->new_blkaddr, fio->new_blkaddr);
3446 
3447 	stat_inc_inplace_blocks(fio->sbi);
3448 
3449 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3450 		err = f2fs_merge_page_bio(fio);
3451 	else
3452 		err = f2fs_submit_page_bio(fio);
3453 	if (!err) {
3454 		f2fs_update_device_state(fio->sbi, fio->ino,
3455 						fio->new_blkaddr, 1);
3456 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3457 						fio->io_type, F2FS_BLKSIZE);
3458 	}
3459 
3460 	return err;
3461 drop_bio:
3462 	if (fio->bio && *(fio->bio)) {
3463 		struct bio *bio = *(fio->bio);
3464 
3465 		bio->bi_status = BLK_STS_IOERR;
3466 		bio_endio(bio);
3467 		*(fio->bio) = NULL;
3468 	}
3469 	return err;
3470 }
3471 
3472 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3473 						unsigned int segno)
3474 {
3475 	int i;
3476 
3477 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3478 		if (CURSEG_I(sbi, i)->segno == segno)
3479 			break;
3480 	}
3481 	return i;
3482 }
3483 
3484 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3485 				block_t old_blkaddr, block_t new_blkaddr,
3486 				bool recover_curseg, bool recover_newaddr,
3487 				bool from_gc)
3488 {
3489 	struct sit_info *sit_i = SIT_I(sbi);
3490 	struct curseg_info *curseg;
3491 	unsigned int segno, old_cursegno;
3492 	struct seg_entry *se;
3493 	int type;
3494 	unsigned short old_blkoff;
3495 	unsigned char old_alloc_type;
3496 
3497 	segno = GET_SEGNO(sbi, new_blkaddr);
3498 	se = get_seg_entry(sbi, segno);
3499 	type = se->type;
3500 
3501 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3502 
3503 	if (!recover_curseg) {
3504 		/* for recovery flow */
3505 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3506 			if (old_blkaddr == NULL_ADDR)
3507 				type = CURSEG_COLD_DATA;
3508 			else
3509 				type = CURSEG_WARM_DATA;
3510 		}
3511 	} else {
3512 		if (IS_CURSEG(sbi, segno)) {
3513 			/* se->type is volatile as SSR allocation */
3514 			type = __f2fs_get_curseg(sbi, segno);
3515 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3516 		} else {
3517 			type = CURSEG_WARM_DATA;
3518 		}
3519 	}
3520 
3521 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3522 	curseg = CURSEG_I(sbi, type);
3523 
3524 	mutex_lock(&curseg->curseg_mutex);
3525 	down_write(&sit_i->sentry_lock);
3526 
3527 	old_cursegno = curseg->segno;
3528 	old_blkoff = curseg->next_blkoff;
3529 	old_alloc_type = curseg->alloc_type;
3530 
3531 	/* change the current segment */
3532 	if (segno != curseg->segno) {
3533 		curseg->next_segno = segno;
3534 		change_curseg(sbi, type, true);
3535 	}
3536 
3537 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3538 	__add_sum_entry(sbi, type, sum);
3539 
3540 	if (!recover_curseg || recover_newaddr) {
3541 		if (!from_gc)
3542 			update_segment_mtime(sbi, new_blkaddr, 0);
3543 		update_sit_entry(sbi, new_blkaddr, 1);
3544 	}
3545 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3546 		invalidate_mapping_pages(META_MAPPING(sbi),
3547 					old_blkaddr, old_blkaddr);
3548 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3549 		if (!from_gc)
3550 			update_segment_mtime(sbi, old_blkaddr, 0);
3551 		update_sit_entry(sbi, old_blkaddr, -1);
3552 	}
3553 
3554 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3555 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3556 
3557 	locate_dirty_segment(sbi, old_cursegno);
3558 
3559 	if (recover_curseg) {
3560 		if (old_cursegno != curseg->segno) {
3561 			curseg->next_segno = old_cursegno;
3562 			change_curseg(sbi, type, true);
3563 		}
3564 		curseg->next_blkoff = old_blkoff;
3565 		curseg->alloc_type = old_alloc_type;
3566 	}
3567 
3568 	up_write(&sit_i->sentry_lock);
3569 	mutex_unlock(&curseg->curseg_mutex);
3570 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3571 }
3572 
3573 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3574 				block_t old_addr, block_t new_addr,
3575 				unsigned char version, bool recover_curseg,
3576 				bool recover_newaddr)
3577 {
3578 	struct f2fs_summary sum;
3579 
3580 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3581 
3582 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3583 					recover_curseg, recover_newaddr, false);
3584 
3585 	f2fs_update_data_blkaddr(dn, new_addr);
3586 }
3587 
3588 void f2fs_wait_on_page_writeback(struct page *page,
3589 				enum page_type type, bool ordered, bool locked)
3590 {
3591 	if (PageWriteback(page)) {
3592 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3593 
3594 		/* submit cached LFS IO */
3595 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3596 		/* sbumit cached IPU IO */
3597 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3598 		if (ordered) {
3599 			wait_on_page_writeback(page);
3600 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3601 		} else {
3602 			wait_for_stable_page(page);
3603 		}
3604 	}
3605 }
3606 
3607 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3608 {
3609 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3610 	struct page *cpage;
3611 
3612 	if (!f2fs_post_read_required(inode))
3613 		return;
3614 
3615 	if (!__is_valid_data_blkaddr(blkaddr))
3616 		return;
3617 
3618 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3619 	if (cpage) {
3620 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3621 		f2fs_put_page(cpage, 1);
3622 	}
3623 }
3624 
3625 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3626 								block_t len)
3627 {
3628 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3629 	block_t i;
3630 
3631 	if (!f2fs_post_read_required(inode))
3632 		return;
3633 
3634 	for (i = 0; i < len; i++)
3635 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3636 
3637 	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3638 }
3639 
3640 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3641 {
3642 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3643 	struct curseg_info *seg_i;
3644 	unsigned char *kaddr;
3645 	struct page *page;
3646 	block_t start;
3647 	int i, j, offset;
3648 
3649 	start = start_sum_block(sbi);
3650 
3651 	page = f2fs_get_meta_page(sbi, start++);
3652 	if (IS_ERR(page))
3653 		return PTR_ERR(page);
3654 	kaddr = (unsigned char *)page_address(page);
3655 
3656 	/* Step 1: restore nat cache */
3657 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3658 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3659 
3660 	/* Step 2: restore sit cache */
3661 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3662 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3663 	offset = 2 * SUM_JOURNAL_SIZE;
3664 
3665 	/* Step 3: restore summary entries */
3666 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3667 		unsigned short blk_off;
3668 		unsigned int segno;
3669 
3670 		seg_i = CURSEG_I(sbi, i);
3671 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3672 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3673 		seg_i->next_segno = segno;
3674 		reset_curseg(sbi, i, 0);
3675 		seg_i->alloc_type = ckpt->alloc_type[i];
3676 		seg_i->next_blkoff = blk_off;
3677 
3678 		if (seg_i->alloc_type == SSR)
3679 			blk_off = sbi->blocks_per_seg;
3680 
3681 		for (j = 0; j < blk_off; j++) {
3682 			struct f2fs_summary *s;
3683 
3684 			s = (struct f2fs_summary *)(kaddr + offset);
3685 			seg_i->sum_blk->entries[j] = *s;
3686 			offset += SUMMARY_SIZE;
3687 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3688 						SUM_FOOTER_SIZE)
3689 				continue;
3690 
3691 			f2fs_put_page(page, 1);
3692 			page = NULL;
3693 
3694 			page = f2fs_get_meta_page(sbi, start++);
3695 			if (IS_ERR(page))
3696 				return PTR_ERR(page);
3697 			kaddr = (unsigned char *)page_address(page);
3698 			offset = 0;
3699 		}
3700 	}
3701 	f2fs_put_page(page, 1);
3702 	return 0;
3703 }
3704 
3705 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3706 {
3707 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3708 	struct f2fs_summary_block *sum;
3709 	struct curseg_info *curseg;
3710 	struct page *new;
3711 	unsigned short blk_off;
3712 	unsigned int segno = 0;
3713 	block_t blk_addr = 0;
3714 	int err = 0;
3715 
3716 	/* get segment number and block addr */
3717 	if (IS_DATASEG(type)) {
3718 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3719 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3720 							CURSEG_HOT_DATA]);
3721 		if (__exist_node_summaries(sbi))
3722 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3723 		else
3724 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3725 	} else {
3726 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3727 							CURSEG_HOT_NODE]);
3728 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3729 							CURSEG_HOT_NODE]);
3730 		if (__exist_node_summaries(sbi))
3731 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3732 							type - CURSEG_HOT_NODE);
3733 		else
3734 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3735 	}
3736 
3737 	new = f2fs_get_meta_page(sbi, blk_addr);
3738 	if (IS_ERR(new))
3739 		return PTR_ERR(new);
3740 	sum = (struct f2fs_summary_block *)page_address(new);
3741 
3742 	if (IS_NODESEG(type)) {
3743 		if (__exist_node_summaries(sbi)) {
3744 			struct f2fs_summary *ns = &sum->entries[0];
3745 			int i;
3746 
3747 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3748 				ns->version = 0;
3749 				ns->ofs_in_node = 0;
3750 			}
3751 		} else {
3752 			err = f2fs_restore_node_summary(sbi, segno, sum);
3753 			if (err)
3754 				goto out;
3755 		}
3756 	}
3757 
3758 	/* set uncompleted segment to curseg */
3759 	curseg = CURSEG_I(sbi, type);
3760 	mutex_lock(&curseg->curseg_mutex);
3761 
3762 	/* update journal info */
3763 	down_write(&curseg->journal_rwsem);
3764 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3765 	up_write(&curseg->journal_rwsem);
3766 
3767 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3768 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3769 	curseg->next_segno = segno;
3770 	reset_curseg(sbi, type, 0);
3771 	curseg->alloc_type = ckpt->alloc_type[type];
3772 	curseg->next_blkoff = blk_off;
3773 	mutex_unlock(&curseg->curseg_mutex);
3774 out:
3775 	f2fs_put_page(new, 1);
3776 	return err;
3777 }
3778 
3779 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3780 {
3781 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3782 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3783 	int type = CURSEG_HOT_DATA;
3784 	int err;
3785 
3786 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3787 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3788 
3789 		if (npages >= 2)
3790 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3791 							META_CP, true);
3792 
3793 		/* restore for compacted data summary */
3794 		err = read_compacted_summaries(sbi);
3795 		if (err)
3796 			return err;
3797 		type = CURSEG_HOT_NODE;
3798 	}
3799 
3800 	if (__exist_node_summaries(sbi))
3801 		f2fs_ra_meta_pages(sbi,
3802 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3803 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3804 
3805 	for (; type <= CURSEG_COLD_NODE; type++) {
3806 		err = read_normal_summaries(sbi, type);
3807 		if (err)
3808 			return err;
3809 	}
3810 
3811 	/* sanity check for summary blocks */
3812 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3813 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3814 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3815 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3816 		return -EINVAL;
3817 	}
3818 
3819 	return 0;
3820 }
3821 
3822 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3823 {
3824 	struct page *page;
3825 	unsigned char *kaddr;
3826 	struct f2fs_summary *summary;
3827 	struct curseg_info *seg_i;
3828 	int written_size = 0;
3829 	int i, j;
3830 
3831 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3832 	kaddr = (unsigned char *)page_address(page);
3833 	memset(kaddr, 0, PAGE_SIZE);
3834 
3835 	/* Step 1: write nat cache */
3836 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3837 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3838 	written_size += SUM_JOURNAL_SIZE;
3839 
3840 	/* Step 2: write sit cache */
3841 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3842 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3843 	written_size += SUM_JOURNAL_SIZE;
3844 
3845 	/* Step 3: write summary entries */
3846 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3847 		unsigned short blkoff;
3848 
3849 		seg_i = CURSEG_I(sbi, i);
3850 		if (sbi->ckpt->alloc_type[i] == SSR)
3851 			blkoff = sbi->blocks_per_seg;
3852 		else
3853 			blkoff = curseg_blkoff(sbi, i);
3854 
3855 		for (j = 0; j < blkoff; j++) {
3856 			if (!page) {
3857 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3858 				kaddr = (unsigned char *)page_address(page);
3859 				memset(kaddr, 0, PAGE_SIZE);
3860 				written_size = 0;
3861 			}
3862 			summary = (struct f2fs_summary *)(kaddr + written_size);
3863 			*summary = seg_i->sum_blk->entries[j];
3864 			written_size += SUMMARY_SIZE;
3865 
3866 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3867 							SUM_FOOTER_SIZE)
3868 				continue;
3869 
3870 			set_page_dirty(page);
3871 			f2fs_put_page(page, 1);
3872 			page = NULL;
3873 		}
3874 	}
3875 	if (page) {
3876 		set_page_dirty(page);
3877 		f2fs_put_page(page, 1);
3878 	}
3879 }
3880 
3881 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3882 					block_t blkaddr, int type)
3883 {
3884 	int i, end;
3885 
3886 	if (IS_DATASEG(type))
3887 		end = type + NR_CURSEG_DATA_TYPE;
3888 	else
3889 		end = type + NR_CURSEG_NODE_TYPE;
3890 
3891 	for (i = type; i < end; i++)
3892 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3893 }
3894 
3895 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3896 {
3897 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3898 		write_compacted_summaries(sbi, start_blk);
3899 	else
3900 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3901 }
3902 
3903 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3904 {
3905 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3906 }
3907 
3908 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3909 					unsigned int val, int alloc)
3910 {
3911 	int i;
3912 
3913 	if (type == NAT_JOURNAL) {
3914 		for (i = 0; i < nats_in_cursum(journal); i++) {
3915 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3916 				return i;
3917 		}
3918 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3919 			return update_nats_in_cursum(journal, 1);
3920 	} else if (type == SIT_JOURNAL) {
3921 		for (i = 0; i < sits_in_cursum(journal); i++)
3922 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3923 				return i;
3924 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3925 			return update_sits_in_cursum(journal, 1);
3926 	}
3927 	return -1;
3928 }
3929 
3930 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3931 					unsigned int segno)
3932 {
3933 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3934 }
3935 
3936 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3937 					unsigned int start)
3938 {
3939 	struct sit_info *sit_i = SIT_I(sbi);
3940 	struct page *page;
3941 	pgoff_t src_off, dst_off;
3942 
3943 	src_off = current_sit_addr(sbi, start);
3944 	dst_off = next_sit_addr(sbi, src_off);
3945 
3946 	page = f2fs_grab_meta_page(sbi, dst_off);
3947 	seg_info_to_sit_page(sbi, page, start);
3948 
3949 	set_page_dirty(page);
3950 	set_to_next_sit(sit_i, start);
3951 
3952 	return page;
3953 }
3954 
3955 static struct sit_entry_set *grab_sit_entry_set(void)
3956 {
3957 	struct sit_entry_set *ses =
3958 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
3959 						GFP_NOFS, true, NULL);
3960 
3961 	ses->entry_cnt = 0;
3962 	INIT_LIST_HEAD(&ses->set_list);
3963 	return ses;
3964 }
3965 
3966 static void release_sit_entry_set(struct sit_entry_set *ses)
3967 {
3968 	list_del(&ses->set_list);
3969 	kmem_cache_free(sit_entry_set_slab, ses);
3970 }
3971 
3972 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3973 						struct list_head *head)
3974 {
3975 	struct sit_entry_set *next = ses;
3976 
3977 	if (list_is_last(&ses->set_list, head))
3978 		return;
3979 
3980 	list_for_each_entry_continue(next, head, set_list)
3981 		if (ses->entry_cnt <= next->entry_cnt) {
3982 			list_move_tail(&ses->set_list, &next->set_list);
3983 			return;
3984 		}
3985 
3986 	list_move_tail(&ses->set_list, head);
3987 }
3988 
3989 static void add_sit_entry(unsigned int segno, struct list_head *head)
3990 {
3991 	struct sit_entry_set *ses;
3992 	unsigned int start_segno = START_SEGNO(segno);
3993 
3994 	list_for_each_entry(ses, head, set_list) {
3995 		if (ses->start_segno == start_segno) {
3996 			ses->entry_cnt++;
3997 			adjust_sit_entry_set(ses, head);
3998 			return;
3999 		}
4000 	}
4001 
4002 	ses = grab_sit_entry_set();
4003 
4004 	ses->start_segno = start_segno;
4005 	ses->entry_cnt++;
4006 	list_add(&ses->set_list, head);
4007 }
4008 
4009 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4010 {
4011 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4012 	struct list_head *set_list = &sm_info->sit_entry_set;
4013 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4014 	unsigned int segno;
4015 
4016 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4017 		add_sit_entry(segno, set_list);
4018 }
4019 
4020 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4021 {
4022 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4023 	struct f2fs_journal *journal = curseg->journal;
4024 	int i;
4025 
4026 	down_write(&curseg->journal_rwsem);
4027 	for (i = 0; i < sits_in_cursum(journal); i++) {
4028 		unsigned int segno;
4029 		bool dirtied;
4030 
4031 		segno = le32_to_cpu(segno_in_journal(journal, i));
4032 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4033 
4034 		if (!dirtied)
4035 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4036 	}
4037 	update_sits_in_cursum(journal, -i);
4038 	up_write(&curseg->journal_rwsem);
4039 }
4040 
4041 /*
4042  * CP calls this function, which flushes SIT entries including sit_journal,
4043  * and moves prefree segs to free segs.
4044  */
4045 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4046 {
4047 	struct sit_info *sit_i = SIT_I(sbi);
4048 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4049 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4050 	struct f2fs_journal *journal = curseg->journal;
4051 	struct sit_entry_set *ses, *tmp;
4052 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4053 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4054 	struct seg_entry *se;
4055 
4056 	down_write(&sit_i->sentry_lock);
4057 
4058 	if (!sit_i->dirty_sentries)
4059 		goto out;
4060 
4061 	/*
4062 	 * add and account sit entries of dirty bitmap in sit entry
4063 	 * set temporarily
4064 	 */
4065 	add_sits_in_set(sbi);
4066 
4067 	/*
4068 	 * if there are no enough space in journal to store dirty sit
4069 	 * entries, remove all entries from journal and add and account
4070 	 * them in sit entry set.
4071 	 */
4072 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4073 								!to_journal)
4074 		remove_sits_in_journal(sbi);
4075 
4076 	/*
4077 	 * there are two steps to flush sit entries:
4078 	 * #1, flush sit entries to journal in current cold data summary block.
4079 	 * #2, flush sit entries to sit page.
4080 	 */
4081 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4082 		struct page *page = NULL;
4083 		struct f2fs_sit_block *raw_sit = NULL;
4084 		unsigned int start_segno = ses->start_segno;
4085 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4086 						(unsigned long)MAIN_SEGS(sbi));
4087 		unsigned int segno = start_segno;
4088 
4089 		if (to_journal &&
4090 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4091 			to_journal = false;
4092 
4093 		if (to_journal) {
4094 			down_write(&curseg->journal_rwsem);
4095 		} else {
4096 			page = get_next_sit_page(sbi, start_segno);
4097 			raw_sit = page_address(page);
4098 		}
4099 
4100 		/* flush dirty sit entries in region of current sit set */
4101 		for_each_set_bit_from(segno, bitmap, end) {
4102 			int offset, sit_offset;
4103 
4104 			se = get_seg_entry(sbi, segno);
4105 #ifdef CONFIG_F2FS_CHECK_FS
4106 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4107 						SIT_VBLOCK_MAP_SIZE))
4108 				f2fs_bug_on(sbi, 1);
4109 #endif
4110 
4111 			/* add discard candidates */
4112 			if (!(cpc->reason & CP_DISCARD)) {
4113 				cpc->trim_start = segno;
4114 				add_discard_addrs(sbi, cpc, false);
4115 			}
4116 
4117 			if (to_journal) {
4118 				offset = f2fs_lookup_journal_in_cursum(journal,
4119 							SIT_JOURNAL, segno, 1);
4120 				f2fs_bug_on(sbi, offset < 0);
4121 				segno_in_journal(journal, offset) =
4122 							cpu_to_le32(segno);
4123 				seg_info_to_raw_sit(se,
4124 					&sit_in_journal(journal, offset));
4125 				check_block_count(sbi, segno,
4126 					&sit_in_journal(journal, offset));
4127 			} else {
4128 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4129 				seg_info_to_raw_sit(se,
4130 						&raw_sit->entries[sit_offset]);
4131 				check_block_count(sbi, segno,
4132 						&raw_sit->entries[sit_offset]);
4133 			}
4134 
4135 			__clear_bit(segno, bitmap);
4136 			sit_i->dirty_sentries--;
4137 			ses->entry_cnt--;
4138 		}
4139 
4140 		if (to_journal)
4141 			up_write(&curseg->journal_rwsem);
4142 		else
4143 			f2fs_put_page(page, 1);
4144 
4145 		f2fs_bug_on(sbi, ses->entry_cnt);
4146 		release_sit_entry_set(ses);
4147 	}
4148 
4149 	f2fs_bug_on(sbi, !list_empty(head));
4150 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4151 out:
4152 	if (cpc->reason & CP_DISCARD) {
4153 		__u64 trim_start = cpc->trim_start;
4154 
4155 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4156 			add_discard_addrs(sbi, cpc, false);
4157 
4158 		cpc->trim_start = trim_start;
4159 	}
4160 	up_write(&sit_i->sentry_lock);
4161 
4162 	set_prefree_as_free_segments(sbi);
4163 }
4164 
4165 static int build_sit_info(struct f2fs_sb_info *sbi)
4166 {
4167 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4168 	struct sit_info *sit_i;
4169 	unsigned int sit_segs, start;
4170 	char *src_bitmap, *bitmap;
4171 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4172 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4173 
4174 	/* allocate memory for SIT information */
4175 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4176 	if (!sit_i)
4177 		return -ENOMEM;
4178 
4179 	SM_I(sbi)->sit_info = sit_i;
4180 
4181 	sit_i->sentries =
4182 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4183 					      MAIN_SEGS(sbi)),
4184 			      GFP_KERNEL);
4185 	if (!sit_i->sentries)
4186 		return -ENOMEM;
4187 
4188 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4189 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4190 								GFP_KERNEL);
4191 	if (!sit_i->dirty_sentries_bitmap)
4192 		return -ENOMEM;
4193 
4194 #ifdef CONFIG_F2FS_CHECK_FS
4195 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4196 #else
4197 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4198 #endif
4199 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4200 	if (!sit_i->bitmap)
4201 		return -ENOMEM;
4202 
4203 	bitmap = sit_i->bitmap;
4204 
4205 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4206 		sit_i->sentries[start].cur_valid_map = bitmap;
4207 		bitmap += SIT_VBLOCK_MAP_SIZE;
4208 
4209 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4210 		bitmap += SIT_VBLOCK_MAP_SIZE;
4211 
4212 #ifdef CONFIG_F2FS_CHECK_FS
4213 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4214 		bitmap += SIT_VBLOCK_MAP_SIZE;
4215 #endif
4216 
4217 		if (discard_map) {
4218 			sit_i->sentries[start].discard_map = bitmap;
4219 			bitmap += SIT_VBLOCK_MAP_SIZE;
4220 		}
4221 	}
4222 
4223 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4224 	if (!sit_i->tmp_map)
4225 		return -ENOMEM;
4226 
4227 	if (__is_large_section(sbi)) {
4228 		sit_i->sec_entries =
4229 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4230 						      MAIN_SECS(sbi)),
4231 				      GFP_KERNEL);
4232 		if (!sit_i->sec_entries)
4233 			return -ENOMEM;
4234 	}
4235 
4236 	/* get information related with SIT */
4237 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4238 
4239 	/* setup SIT bitmap from ckeckpoint pack */
4240 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4241 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4242 
4243 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4244 	if (!sit_i->sit_bitmap)
4245 		return -ENOMEM;
4246 
4247 #ifdef CONFIG_F2FS_CHECK_FS
4248 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4249 					sit_bitmap_size, GFP_KERNEL);
4250 	if (!sit_i->sit_bitmap_mir)
4251 		return -ENOMEM;
4252 
4253 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4254 					main_bitmap_size, GFP_KERNEL);
4255 	if (!sit_i->invalid_segmap)
4256 		return -ENOMEM;
4257 #endif
4258 
4259 	/* init SIT information */
4260 	sit_i->s_ops = &default_salloc_ops;
4261 
4262 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4263 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4264 	sit_i->written_valid_blocks = 0;
4265 	sit_i->bitmap_size = sit_bitmap_size;
4266 	sit_i->dirty_sentries = 0;
4267 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4268 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4269 	sit_i->mounted_time = ktime_get_boottime_seconds();
4270 	init_rwsem(&sit_i->sentry_lock);
4271 	return 0;
4272 }
4273 
4274 static int build_free_segmap(struct f2fs_sb_info *sbi)
4275 {
4276 	struct free_segmap_info *free_i;
4277 	unsigned int bitmap_size, sec_bitmap_size;
4278 
4279 	/* allocate memory for free segmap information */
4280 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4281 	if (!free_i)
4282 		return -ENOMEM;
4283 
4284 	SM_I(sbi)->free_info = free_i;
4285 
4286 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4287 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4288 	if (!free_i->free_segmap)
4289 		return -ENOMEM;
4290 
4291 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4292 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4293 	if (!free_i->free_secmap)
4294 		return -ENOMEM;
4295 
4296 	/* set all segments as dirty temporarily */
4297 	memset(free_i->free_segmap, 0xff, bitmap_size);
4298 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4299 
4300 	/* init free segmap information */
4301 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4302 	free_i->free_segments = 0;
4303 	free_i->free_sections = 0;
4304 	spin_lock_init(&free_i->segmap_lock);
4305 	return 0;
4306 }
4307 
4308 static int build_curseg(struct f2fs_sb_info *sbi)
4309 {
4310 	struct curseg_info *array;
4311 	int i;
4312 
4313 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4314 					sizeof(*array)), GFP_KERNEL);
4315 	if (!array)
4316 		return -ENOMEM;
4317 
4318 	SM_I(sbi)->curseg_array = array;
4319 
4320 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4321 		mutex_init(&array[i].curseg_mutex);
4322 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4323 		if (!array[i].sum_blk)
4324 			return -ENOMEM;
4325 		init_rwsem(&array[i].journal_rwsem);
4326 		array[i].journal = f2fs_kzalloc(sbi,
4327 				sizeof(struct f2fs_journal), GFP_KERNEL);
4328 		if (!array[i].journal)
4329 			return -ENOMEM;
4330 		if (i < NR_PERSISTENT_LOG)
4331 			array[i].seg_type = CURSEG_HOT_DATA + i;
4332 		else if (i == CURSEG_COLD_DATA_PINNED)
4333 			array[i].seg_type = CURSEG_COLD_DATA;
4334 		else if (i == CURSEG_ALL_DATA_ATGC)
4335 			array[i].seg_type = CURSEG_COLD_DATA;
4336 		array[i].segno = NULL_SEGNO;
4337 		array[i].next_blkoff = 0;
4338 		array[i].inited = false;
4339 	}
4340 	return restore_curseg_summaries(sbi);
4341 }
4342 
4343 static int build_sit_entries(struct f2fs_sb_info *sbi)
4344 {
4345 	struct sit_info *sit_i = SIT_I(sbi);
4346 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4347 	struct f2fs_journal *journal = curseg->journal;
4348 	struct seg_entry *se;
4349 	struct f2fs_sit_entry sit;
4350 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4351 	unsigned int i, start, end;
4352 	unsigned int readed, start_blk = 0;
4353 	int err = 0;
4354 	block_t sit_valid_blocks[2] = {0, 0};
4355 
4356 	do {
4357 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4358 							META_SIT, true);
4359 
4360 		start = start_blk * sit_i->sents_per_block;
4361 		end = (start_blk + readed) * sit_i->sents_per_block;
4362 
4363 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4364 			struct f2fs_sit_block *sit_blk;
4365 			struct page *page;
4366 
4367 			se = &sit_i->sentries[start];
4368 			page = get_current_sit_page(sbi, start);
4369 			if (IS_ERR(page))
4370 				return PTR_ERR(page);
4371 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4372 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4373 			f2fs_put_page(page, 1);
4374 
4375 			err = check_block_count(sbi, start, &sit);
4376 			if (err)
4377 				return err;
4378 			seg_info_from_raw_sit(se, &sit);
4379 
4380 			if (se->type >= NR_PERSISTENT_LOG) {
4381 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4382 							se->type, start);
4383 				f2fs_handle_error(sbi,
4384 						ERROR_INCONSISTENT_SUM_TYPE);
4385 				return -EFSCORRUPTED;
4386 			}
4387 
4388 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4389 
4390 			if (f2fs_block_unit_discard(sbi)) {
4391 				/* build discard map only one time */
4392 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4393 					memset(se->discard_map, 0xff,
4394 						SIT_VBLOCK_MAP_SIZE);
4395 				} else {
4396 					memcpy(se->discard_map,
4397 						se->cur_valid_map,
4398 						SIT_VBLOCK_MAP_SIZE);
4399 					sbi->discard_blks +=
4400 						sbi->blocks_per_seg -
4401 						se->valid_blocks;
4402 				}
4403 			}
4404 
4405 			if (__is_large_section(sbi))
4406 				get_sec_entry(sbi, start)->valid_blocks +=
4407 							se->valid_blocks;
4408 		}
4409 		start_blk += readed;
4410 	} while (start_blk < sit_blk_cnt);
4411 
4412 	down_read(&curseg->journal_rwsem);
4413 	for (i = 0; i < sits_in_cursum(journal); i++) {
4414 		unsigned int old_valid_blocks;
4415 
4416 		start = le32_to_cpu(segno_in_journal(journal, i));
4417 		if (start >= MAIN_SEGS(sbi)) {
4418 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4419 				 start);
4420 			err = -EFSCORRUPTED;
4421 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4422 			break;
4423 		}
4424 
4425 		se = &sit_i->sentries[start];
4426 		sit = sit_in_journal(journal, i);
4427 
4428 		old_valid_blocks = se->valid_blocks;
4429 
4430 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4431 
4432 		err = check_block_count(sbi, start, &sit);
4433 		if (err)
4434 			break;
4435 		seg_info_from_raw_sit(se, &sit);
4436 
4437 		if (se->type >= NR_PERSISTENT_LOG) {
4438 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4439 							se->type, start);
4440 			err = -EFSCORRUPTED;
4441 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4442 			break;
4443 		}
4444 
4445 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4446 
4447 		if (f2fs_block_unit_discard(sbi)) {
4448 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4449 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4450 			} else {
4451 				memcpy(se->discard_map, se->cur_valid_map,
4452 							SIT_VBLOCK_MAP_SIZE);
4453 				sbi->discard_blks += old_valid_blocks;
4454 				sbi->discard_blks -= se->valid_blocks;
4455 			}
4456 		}
4457 
4458 		if (__is_large_section(sbi)) {
4459 			get_sec_entry(sbi, start)->valid_blocks +=
4460 							se->valid_blocks;
4461 			get_sec_entry(sbi, start)->valid_blocks -=
4462 							old_valid_blocks;
4463 		}
4464 	}
4465 	up_read(&curseg->journal_rwsem);
4466 
4467 	if (err)
4468 		return err;
4469 
4470 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4471 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4472 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4473 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4474 		return -EFSCORRUPTED;
4475 	}
4476 
4477 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4478 				valid_user_blocks(sbi)) {
4479 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4480 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4481 			 valid_user_blocks(sbi));
4482 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4483 		return -EFSCORRUPTED;
4484 	}
4485 
4486 	return 0;
4487 }
4488 
4489 static void init_free_segmap(struct f2fs_sb_info *sbi)
4490 {
4491 	unsigned int start;
4492 	int type;
4493 	struct seg_entry *sentry;
4494 
4495 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4496 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4497 			continue;
4498 		sentry = get_seg_entry(sbi, start);
4499 		if (!sentry->valid_blocks)
4500 			__set_free(sbi, start);
4501 		else
4502 			SIT_I(sbi)->written_valid_blocks +=
4503 						sentry->valid_blocks;
4504 	}
4505 
4506 	/* set use the current segments */
4507 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4508 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4509 
4510 		__set_test_and_inuse(sbi, curseg_t->segno);
4511 	}
4512 }
4513 
4514 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4515 {
4516 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4517 	struct free_segmap_info *free_i = FREE_I(sbi);
4518 	unsigned int segno = 0, offset = 0, secno;
4519 	block_t valid_blocks, usable_blks_in_seg;
4520 
4521 	while (1) {
4522 		/* find dirty segment based on free segmap */
4523 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4524 		if (segno >= MAIN_SEGS(sbi))
4525 			break;
4526 		offset = segno + 1;
4527 		valid_blocks = get_valid_blocks(sbi, segno, false);
4528 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4529 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4530 			continue;
4531 		if (valid_blocks > usable_blks_in_seg) {
4532 			f2fs_bug_on(sbi, 1);
4533 			continue;
4534 		}
4535 		mutex_lock(&dirty_i->seglist_lock);
4536 		__locate_dirty_segment(sbi, segno, DIRTY);
4537 		mutex_unlock(&dirty_i->seglist_lock);
4538 	}
4539 
4540 	if (!__is_large_section(sbi))
4541 		return;
4542 
4543 	mutex_lock(&dirty_i->seglist_lock);
4544 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4545 		valid_blocks = get_valid_blocks(sbi, segno, true);
4546 		secno = GET_SEC_FROM_SEG(sbi, segno);
4547 
4548 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4549 			continue;
4550 		if (IS_CURSEC(sbi, secno))
4551 			continue;
4552 		set_bit(secno, dirty_i->dirty_secmap);
4553 	}
4554 	mutex_unlock(&dirty_i->seglist_lock);
4555 }
4556 
4557 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4558 {
4559 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4560 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4561 
4562 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4563 	if (!dirty_i->victim_secmap)
4564 		return -ENOMEM;
4565 
4566 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4567 	if (!dirty_i->pinned_secmap)
4568 		return -ENOMEM;
4569 
4570 	dirty_i->pinned_secmap_cnt = 0;
4571 	dirty_i->enable_pin_section = true;
4572 	return 0;
4573 }
4574 
4575 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4576 {
4577 	struct dirty_seglist_info *dirty_i;
4578 	unsigned int bitmap_size, i;
4579 
4580 	/* allocate memory for dirty segments list information */
4581 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4582 								GFP_KERNEL);
4583 	if (!dirty_i)
4584 		return -ENOMEM;
4585 
4586 	SM_I(sbi)->dirty_info = dirty_i;
4587 	mutex_init(&dirty_i->seglist_lock);
4588 
4589 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4590 
4591 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4592 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4593 								GFP_KERNEL);
4594 		if (!dirty_i->dirty_segmap[i])
4595 			return -ENOMEM;
4596 	}
4597 
4598 	if (__is_large_section(sbi)) {
4599 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4600 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4601 						bitmap_size, GFP_KERNEL);
4602 		if (!dirty_i->dirty_secmap)
4603 			return -ENOMEM;
4604 	}
4605 
4606 	init_dirty_segmap(sbi);
4607 	return init_victim_secmap(sbi);
4608 }
4609 
4610 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4611 {
4612 	int i;
4613 
4614 	/*
4615 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4616 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4617 	 */
4618 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4619 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4620 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4621 		unsigned int blkofs = curseg->next_blkoff;
4622 
4623 		if (f2fs_sb_has_readonly(sbi) &&
4624 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4625 			continue;
4626 
4627 		sanity_check_seg_type(sbi, curseg->seg_type);
4628 
4629 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4630 			f2fs_err(sbi,
4631 				 "Current segment has invalid alloc_type:%d",
4632 				 curseg->alloc_type);
4633 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4634 			return -EFSCORRUPTED;
4635 		}
4636 
4637 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4638 			goto out;
4639 
4640 		if (curseg->alloc_type == SSR)
4641 			continue;
4642 
4643 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4644 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4645 				continue;
4646 out:
4647 			f2fs_err(sbi,
4648 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4649 				 i, curseg->segno, curseg->alloc_type,
4650 				 curseg->next_blkoff, blkofs);
4651 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4652 			return -EFSCORRUPTED;
4653 		}
4654 	}
4655 	return 0;
4656 }
4657 
4658 #ifdef CONFIG_BLK_DEV_ZONED
4659 
4660 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4661 				    struct f2fs_dev_info *fdev,
4662 				    struct blk_zone *zone)
4663 {
4664 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4665 	block_t zone_block, wp_block, last_valid_block;
4666 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4667 	int i, s, b, ret;
4668 	struct seg_entry *se;
4669 
4670 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4671 		return 0;
4672 
4673 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4674 	wp_segno = GET_SEGNO(sbi, wp_block);
4675 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4676 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4677 	zone_segno = GET_SEGNO(sbi, zone_block);
4678 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4679 
4680 	if (zone_segno >= MAIN_SEGS(sbi))
4681 		return 0;
4682 
4683 	/*
4684 	 * Skip check of zones cursegs point to, since
4685 	 * fix_curseg_write_pointer() checks them.
4686 	 */
4687 	for (i = 0; i < NO_CHECK_TYPE; i++)
4688 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4689 						   CURSEG_I(sbi, i)->segno))
4690 			return 0;
4691 
4692 	/*
4693 	 * Get last valid block of the zone.
4694 	 */
4695 	last_valid_block = zone_block - 1;
4696 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4697 		segno = zone_segno + s;
4698 		se = get_seg_entry(sbi, segno);
4699 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4700 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4701 				last_valid_block = START_BLOCK(sbi, segno) + b;
4702 				break;
4703 			}
4704 		if (last_valid_block >= zone_block)
4705 			break;
4706 	}
4707 
4708 	/*
4709 	 * If last valid block is beyond the write pointer, report the
4710 	 * inconsistency. This inconsistency does not cause write error
4711 	 * because the zone will not be selected for write operation until
4712 	 * it get discarded. Just report it.
4713 	 */
4714 	if (last_valid_block >= wp_block) {
4715 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4716 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4717 			    GET_SEGNO(sbi, last_valid_block),
4718 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4719 			    wp_segno, wp_blkoff);
4720 		return 0;
4721 	}
4722 
4723 	/*
4724 	 * If there is no valid block in the zone and if write pointer is
4725 	 * not at zone start, reset the write pointer.
4726 	 */
4727 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4728 		f2fs_notice(sbi,
4729 			    "Zone without valid block has non-zero write "
4730 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4731 			    wp_segno, wp_blkoff);
4732 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4733 					zone->len >> log_sectors_per_block);
4734 		if (ret) {
4735 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4736 				 fdev->path, ret);
4737 			return ret;
4738 		}
4739 	}
4740 
4741 	return 0;
4742 }
4743 
4744 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4745 						  block_t zone_blkaddr)
4746 {
4747 	int i;
4748 
4749 	for (i = 0; i < sbi->s_ndevs; i++) {
4750 		if (!bdev_is_zoned(FDEV(i).bdev))
4751 			continue;
4752 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4753 				zone_blkaddr <= FDEV(i).end_blk))
4754 			return &FDEV(i);
4755 	}
4756 
4757 	return NULL;
4758 }
4759 
4760 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4761 			      void *data)
4762 {
4763 	memcpy(data, zone, sizeof(struct blk_zone));
4764 	return 0;
4765 }
4766 
4767 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4768 {
4769 	struct curseg_info *cs = CURSEG_I(sbi, type);
4770 	struct f2fs_dev_info *zbd;
4771 	struct blk_zone zone;
4772 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4773 	block_t cs_zone_block, wp_block;
4774 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4775 	sector_t zone_sector;
4776 	int err;
4777 
4778 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4779 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4780 
4781 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4782 	if (!zbd)
4783 		return 0;
4784 
4785 	/* report zone for the sector the curseg points to */
4786 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4787 		<< log_sectors_per_block;
4788 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4789 				  report_one_zone_cb, &zone);
4790 	if (err != 1) {
4791 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4792 			 zbd->path, err);
4793 		return err;
4794 	}
4795 
4796 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4797 		return 0;
4798 
4799 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4800 	wp_segno = GET_SEGNO(sbi, wp_block);
4801 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4802 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4803 
4804 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4805 		wp_sector_off == 0)
4806 		return 0;
4807 
4808 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4809 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4810 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4811 
4812 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4813 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4814 
4815 	f2fs_allocate_new_section(sbi, type, true);
4816 
4817 	/* check consistency of the zone curseg pointed to */
4818 	if (check_zone_write_pointer(sbi, zbd, &zone))
4819 		return -EIO;
4820 
4821 	/* check newly assigned zone */
4822 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4823 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4824 
4825 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4826 	if (!zbd)
4827 		return 0;
4828 
4829 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4830 		<< log_sectors_per_block;
4831 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4832 				  report_one_zone_cb, &zone);
4833 	if (err != 1) {
4834 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4835 			 zbd->path, err);
4836 		return err;
4837 	}
4838 
4839 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4840 		return 0;
4841 
4842 	if (zone.wp != zone.start) {
4843 		f2fs_notice(sbi,
4844 			    "New zone for curseg[%d] is not yet discarded. "
4845 			    "Reset the zone: curseg[0x%x,0x%x]",
4846 			    type, cs->segno, cs->next_blkoff);
4847 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4848 				zone_sector >> log_sectors_per_block,
4849 				zone.len >> log_sectors_per_block);
4850 		if (err) {
4851 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4852 				 zbd->path, err);
4853 			return err;
4854 		}
4855 	}
4856 
4857 	return 0;
4858 }
4859 
4860 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4861 {
4862 	int i, ret;
4863 
4864 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4865 		ret = fix_curseg_write_pointer(sbi, i);
4866 		if (ret)
4867 			return ret;
4868 	}
4869 
4870 	return 0;
4871 }
4872 
4873 struct check_zone_write_pointer_args {
4874 	struct f2fs_sb_info *sbi;
4875 	struct f2fs_dev_info *fdev;
4876 };
4877 
4878 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4879 				      void *data)
4880 {
4881 	struct check_zone_write_pointer_args *args;
4882 
4883 	args = (struct check_zone_write_pointer_args *)data;
4884 
4885 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4886 }
4887 
4888 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4889 {
4890 	int i, ret;
4891 	struct check_zone_write_pointer_args args;
4892 
4893 	for (i = 0; i < sbi->s_ndevs; i++) {
4894 		if (!bdev_is_zoned(FDEV(i).bdev))
4895 			continue;
4896 
4897 		args.sbi = sbi;
4898 		args.fdev = &FDEV(i);
4899 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4900 					  check_zone_write_pointer_cb, &args);
4901 		if (ret < 0)
4902 			return ret;
4903 	}
4904 
4905 	return 0;
4906 }
4907 
4908 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4909 						unsigned int dev_idx)
4910 {
4911 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4912 		return true;
4913 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4914 }
4915 
4916 /* Return the zone index in the given device */
4917 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4918 					int dev_idx)
4919 {
4920 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4921 
4922 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4923 						sbi->log_blocks_per_blkz;
4924 }
4925 
4926 /*
4927  * Return the usable segments in a section based on the zone's
4928  * corresponding zone capacity. Zone is equal to a section.
4929  */
4930 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4931 		struct f2fs_sb_info *sbi, unsigned int segno)
4932 {
4933 	unsigned int dev_idx, zone_idx;
4934 
4935 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4936 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4937 
4938 	/* Conventional zone's capacity is always equal to zone size */
4939 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4940 		return sbi->segs_per_sec;
4941 
4942 	if (!sbi->unusable_blocks_per_sec)
4943 		return sbi->segs_per_sec;
4944 
4945 	/* Get the segment count beyond zone capacity block */
4946 	return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4947 						sbi->log_blocks_per_seg);
4948 }
4949 
4950 /*
4951  * Return the number of usable blocks in a segment. The number of blocks
4952  * returned is always equal to the number of blocks in a segment for
4953  * segments fully contained within a sequential zone capacity or a
4954  * conventional zone. For segments partially contained in a sequential
4955  * zone capacity, the number of usable blocks up to the zone capacity
4956  * is returned. 0 is returned in all other cases.
4957  */
4958 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4959 			struct f2fs_sb_info *sbi, unsigned int segno)
4960 {
4961 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4962 	unsigned int zone_idx, dev_idx, secno;
4963 
4964 	secno = GET_SEC_FROM_SEG(sbi, segno);
4965 	seg_start = START_BLOCK(sbi, segno);
4966 	dev_idx = f2fs_target_device_index(sbi, seg_start);
4967 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
4968 
4969 	/*
4970 	 * Conventional zone's capacity is always equal to zone size,
4971 	 * so, blocks per segment is unchanged.
4972 	 */
4973 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4974 		return sbi->blocks_per_seg;
4975 
4976 	if (!sbi->unusable_blocks_per_sec)
4977 		return sbi->blocks_per_seg;
4978 
4979 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4980 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
4981 
4982 	/*
4983 	 * If segment starts before zone capacity and spans beyond
4984 	 * zone capacity, then usable blocks are from seg start to
4985 	 * zone capacity. If the segment starts after the zone capacity,
4986 	 * then there are no usable blocks.
4987 	 */
4988 	if (seg_start >= sec_cap_blkaddr)
4989 		return 0;
4990 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4991 		return sec_cap_blkaddr - seg_start;
4992 
4993 	return sbi->blocks_per_seg;
4994 }
4995 #else
4996 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4997 {
4998 	return 0;
4999 }
5000 
5001 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5002 {
5003 	return 0;
5004 }
5005 
5006 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5007 							unsigned int segno)
5008 {
5009 	return 0;
5010 }
5011 
5012 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5013 							unsigned int segno)
5014 {
5015 	return 0;
5016 }
5017 #endif
5018 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5019 					unsigned int segno)
5020 {
5021 	if (f2fs_sb_has_blkzoned(sbi))
5022 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5023 
5024 	return sbi->blocks_per_seg;
5025 }
5026 
5027 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5028 					unsigned int segno)
5029 {
5030 	if (f2fs_sb_has_blkzoned(sbi))
5031 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5032 
5033 	return sbi->segs_per_sec;
5034 }
5035 
5036 /*
5037  * Update min, max modified time for cost-benefit GC algorithm
5038  */
5039 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5040 {
5041 	struct sit_info *sit_i = SIT_I(sbi);
5042 	unsigned int segno;
5043 
5044 	down_write(&sit_i->sentry_lock);
5045 
5046 	sit_i->min_mtime = ULLONG_MAX;
5047 
5048 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5049 		unsigned int i;
5050 		unsigned long long mtime = 0;
5051 
5052 		for (i = 0; i < sbi->segs_per_sec; i++)
5053 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5054 
5055 		mtime = div_u64(mtime, sbi->segs_per_sec);
5056 
5057 		if (sit_i->min_mtime > mtime)
5058 			sit_i->min_mtime = mtime;
5059 	}
5060 	sit_i->max_mtime = get_mtime(sbi, false);
5061 	sit_i->dirty_max_mtime = 0;
5062 	up_write(&sit_i->sentry_lock);
5063 }
5064 
5065 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5066 {
5067 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5068 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5069 	struct f2fs_sm_info *sm_info;
5070 	int err;
5071 
5072 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5073 	if (!sm_info)
5074 		return -ENOMEM;
5075 
5076 	/* init sm info */
5077 	sbi->sm_info = sm_info;
5078 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5079 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5080 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5081 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5082 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5083 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5084 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5085 	sm_info->rec_prefree_segments = sm_info->main_segments *
5086 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5087 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5088 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5089 
5090 	if (!f2fs_lfs_mode(sbi))
5091 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5092 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5093 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5094 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5095 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5096 	sm_info->min_ssr_sections = reserved_sections(sbi);
5097 
5098 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5099 
5100 	init_f2fs_rwsem(&sm_info->curseg_lock);
5101 
5102 	if (!f2fs_readonly(sbi->sb)) {
5103 		err = f2fs_create_flush_cmd_control(sbi);
5104 		if (err)
5105 			return err;
5106 	}
5107 
5108 	err = create_discard_cmd_control(sbi);
5109 	if (err)
5110 		return err;
5111 
5112 	err = build_sit_info(sbi);
5113 	if (err)
5114 		return err;
5115 	err = build_free_segmap(sbi);
5116 	if (err)
5117 		return err;
5118 	err = build_curseg(sbi);
5119 	if (err)
5120 		return err;
5121 
5122 	/* reinit free segmap based on SIT */
5123 	err = build_sit_entries(sbi);
5124 	if (err)
5125 		return err;
5126 
5127 	init_free_segmap(sbi);
5128 	err = build_dirty_segmap(sbi);
5129 	if (err)
5130 		return err;
5131 
5132 	err = sanity_check_curseg(sbi);
5133 	if (err)
5134 		return err;
5135 
5136 	init_min_max_mtime(sbi);
5137 	return 0;
5138 }
5139 
5140 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5141 		enum dirty_type dirty_type)
5142 {
5143 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5144 
5145 	mutex_lock(&dirty_i->seglist_lock);
5146 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5147 	dirty_i->nr_dirty[dirty_type] = 0;
5148 	mutex_unlock(&dirty_i->seglist_lock);
5149 }
5150 
5151 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5152 {
5153 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5154 
5155 	kvfree(dirty_i->pinned_secmap);
5156 	kvfree(dirty_i->victim_secmap);
5157 }
5158 
5159 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5160 {
5161 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5162 	int i;
5163 
5164 	if (!dirty_i)
5165 		return;
5166 
5167 	/* discard pre-free/dirty segments list */
5168 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5169 		discard_dirty_segmap(sbi, i);
5170 
5171 	if (__is_large_section(sbi)) {
5172 		mutex_lock(&dirty_i->seglist_lock);
5173 		kvfree(dirty_i->dirty_secmap);
5174 		mutex_unlock(&dirty_i->seglist_lock);
5175 	}
5176 
5177 	destroy_victim_secmap(sbi);
5178 	SM_I(sbi)->dirty_info = NULL;
5179 	kfree(dirty_i);
5180 }
5181 
5182 static void destroy_curseg(struct f2fs_sb_info *sbi)
5183 {
5184 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5185 	int i;
5186 
5187 	if (!array)
5188 		return;
5189 	SM_I(sbi)->curseg_array = NULL;
5190 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5191 		kfree(array[i].sum_blk);
5192 		kfree(array[i].journal);
5193 	}
5194 	kfree(array);
5195 }
5196 
5197 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5198 {
5199 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5200 
5201 	if (!free_i)
5202 		return;
5203 	SM_I(sbi)->free_info = NULL;
5204 	kvfree(free_i->free_segmap);
5205 	kvfree(free_i->free_secmap);
5206 	kfree(free_i);
5207 }
5208 
5209 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5210 {
5211 	struct sit_info *sit_i = SIT_I(sbi);
5212 
5213 	if (!sit_i)
5214 		return;
5215 
5216 	if (sit_i->sentries)
5217 		kvfree(sit_i->bitmap);
5218 	kfree(sit_i->tmp_map);
5219 
5220 	kvfree(sit_i->sentries);
5221 	kvfree(sit_i->sec_entries);
5222 	kvfree(sit_i->dirty_sentries_bitmap);
5223 
5224 	SM_I(sbi)->sit_info = NULL;
5225 	kvfree(sit_i->sit_bitmap);
5226 #ifdef CONFIG_F2FS_CHECK_FS
5227 	kvfree(sit_i->sit_bitmap_mir);
5228 	kvfree(sit_i->invalid_segmap);
5229 #endif
5230 	kfree(sit_i);
5231 }
5232 
5233 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5234 {
5235 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5236 
5237 	if (!sm_info)
5238 		return;
5239 	f2fs_destroy_flush_cmd_control(sbi, true);
5240 	destroy_discard_cmd_control(sbi);
5241 	destroy_dirty_segmap(sbi);
5242 	destroy_curseg(sbi);
5243 	destroy_free_segmap(sbi);
5244 	destroy_sit_info(sbi);
5245 	sbi->sm_info = NULL;
5246 	kfree(sm_info);
5247 }
5248 
5249 int __init f2fs_create_segment_manager_caches(void)
5250 {
5251 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5252 			sizeof(struct discard_entry));
5253 	if (!discard_entry_slab)
5254 		goto fail;
5255 
5256 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5257 			sizeof(struct discard_cmd));
5258 	if (!discard_cmd_slab)
5259 		goto destroy_discard_entry;
5260 
5261 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5262 			sizeof(struct sit_entry_set));
5263 	if (!sit_entry_set_slab)
5264 		goto destroy_discard_cmd;
5265 
5266 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5267 			sizeof(struct revoke_entry));
5268 	if (!revoke_entry_slab)
5269 		goto destroy_sit_entry_set;
5270 	return 0;
5271 
5272 destroy_sit_entry_set:
5273 	kmem_cache_destroy(sit_entry_set_slab);
5274 destroy_discard_cmd:
5275 	kmem_cache_destroy(discard_cmd_slab);
5276 destroy_discard_entry:
5277 	kmem_cache_destroy(discard_entry_slab);
5278 fail:
5279 	return -ENOMEM;
5280 }
5281 
5282 void f2fs_destroy_segment_manager_caches(void)
5283 {
5284 	kmem_cache_destroy(sit_entry_set_slab);
5285 	kmem_cache_destroy(discard_cmd_slab);
5286 	kmem_cache_destroy(discard_entry_slab);
5287 	kmem_cache_destroy(revoke_entry_slab);
5288 }
5289