xref: /linux/fs/f2fs/segment.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 	struct f2fs_inode_info *fi = F2FS_I(inode);
192 
193 	if (f2fs_is_atomic_file(inode)) {
194 		if (clean)
195 			truncate_inode_pages_final(inode->i_mapping);
196 		clear_inode_flag(fi->cow_inode, FI_ATOMIC_FILE);
197 		iput(fi->cow_inode);
198 		fi->cow_inode = NULL;
199 		clear_inode_flag(inode, FI_ATOMIC_FILE);
200 
201 		spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
202 		sbi->atomic_files--;
203 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
204 	}
205 }
206 
207 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
208 			block_t new_addr, block_t *old_addr, bool recover)
209 {
210 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
211 	struct dnode_of_data dn;
212 	struct node_info ni;
213 	int err;
214 
215 retry:
216 	set_new_dnode(&dn, inode, NULL, NULL, 0);
217 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
218 	if (err) {
219 		if (err == -ENOMEM) {
220 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
221 			goto retry;
222 		}
223 		return err;
224 	}
225 
226 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
227 	if (err) {
228 		f2fs_put_dnode(&dn);
229 		return err;
230 	}
231 
232 	if (recover) {
233 		/* dn.data_blkaddr is always valid */
234 		if (!__is_valid_data_blkaddr(new_addr)) {
235 			if (new_addr == NULL_ADDR)
236 				dec_valid_block_count(sbi, inode, 1);
237 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
238 			f2fs_update_data_blkaddr(&dn, new_addr);
239 		} else {
240 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
241 				new_addr, ni.version, true, true);
242 		}
243 	} else {
244 		blkcnt_t count = 1;
245 
246 		*old_addr = dn.data_blkaddr;
247 		f2fs_truncate_data_blocks_range(&dn, 1);
248 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
249 		inc_valid_block_count(sbi, inode, &count);
250 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
251 					ni.version, true, false);
252 	}
253 
254 	f2fs_put_dnode(&dn);
255 	return 0;
256 }
257 
258 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
259 					bool revoke)
260 {
261 	struct revoke_entry *cur, *tmp;
262 
263 	list_for_each_entry_safe(cur, tmp, head, list) {
264 		if (revoke)
265 			__replace_atomic_write_block(inode, cur->index,
266 						cur->old_addr, NULL, true);
267 		list_del(&cur->list);
268 		kmem_cache_free(revoke_entry_slab, cur);
269 	}
270 }
271 
272 static int __f2fs_commit_atomic_write(struct inode *inode)
273 {
274 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
275 	struct f2fs_inode_info *fi = F2FS_I(inode);
276 	struct inode *cow_inode = fi->cow_inode;
277 	struct revoke_entry *new;
278 	struct list_head revoke_list;
279 	block_t blkaddr;
280 	struct dnode_of_data dn;
281 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
282 	pgoff_t off = 0, blen, index;
283 	int ret = 0, i;
284 
285 	INIT_LIST_HEAD(&revoke_list);
286 
287 	while (len) {
288 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
289 
290 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
291 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
292 		if (ret && ret != -ENOENT) {
293 			goto out;
294 		} else if (ret == -ENOENT) {
295 			ret = 0;
296 			if (dn.max_level == 0)
297 				goto out;
298 			goto next;
299 		}
300 
301 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
302 				len);
303 		index = off;
304 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
305 			blkaddr = f2fs_data_blkaddr(&dn);
306 
307 			if (!__is_valid_data_blkaddr(blkaddr)) {
308 				continue;
309 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
310 					DATA_GENERIC_ENHANCE)) {
311 				f2fs_put_dnode(&dn);
312 				ret = -EFSCORRUPTED;
313 				goto out;
314 			}
315 
316 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
317 							true, NULL);
318 
319 			ret = __replace_atomic_write_block(inode, index, blkaddr,
320 							&new->old_addr, false);
321 			if (ret) {
322 				f2fs_put_dnode(&dn);
323 				kmem_cache_free(revoke_entry_slab, new);
324 				goto out;
325 			}
326 
327 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
328 			new->index = index;
329 			list_add_tail(&new->list, &revoke_list);
330 		}
331 		f2fs_put_dnode(&dn);
332 next:
333 		off += blen;
334 		len -= blen;
335 	}
336 
337 out:
338 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
339 
340 	return ret;
341 }
342 
343 int f2fs_commit_atomic_write(struct inode *inode)
344 {
345 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
346 	struct f2fs_inode_info *fi = F2FS_I(inode);
347 	int err;
348 
349 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
350 	if (err)
351 		return err;
352 
353 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
354 	f2fs_lock_op(sbi);
355 
356 	err = __f2fs_commit_atomic_write(inode);
357 
358 	f2fs_unlock_op(sbi);
359 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
360 
361 	return err;
362 }
363 
364 /*
365  * This function balances dirty node and dentry pages.
366  * In addition, it controls garbage collection.
367  */
368 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
369 {
370 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
371 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
372 		f2fs_stop_checkpoint(sbi, false);
373 	}
374 
375 	/* balance_fs_bg is able to be pending */
376 	if (need && excess_cached_nats(sbi))
377 		f2fs_balance_fs_bg(sbi, false);
378 
379 	if (!f2fs_is_checkpoint_ready(sbi))
380 		return;
381 
382 	/*
383 	 * We should do GC or end up with checkpoint, if there are so many dirty
384 	 * dir/node pages without enough free segments.
385 	 */
386 	if (has_not_enough_free_secs(sbi, 0, 0)) {
387 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
388 					sbi->gc_thread->f2fs_gc_task) {
389 			DEFINE_WAIT(wait);
390 
391 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
392 						TASK_UNINTERRUPTIBLE);
393 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
394 			io_schedule();
395 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
396 		} else {
397 			struct f2fs_gc_control gc_control = {
398 				.victim_segno = NULL_SEGNO,
399 				.init_gc_type = BG_GC,
400 				.no_bg_gc = true,
401 				.should_migrate_blocks = false,
402 				.err_gc_skipped = false,
403 				.nr_free_secs = 1 };
404 			f2fs_down_write(&sbi->gc_lock);
405 			f2fs_gc(sbi, &gc_control);
406 		}
407 	}
408 }
409 
410 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
411 {
412 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
413 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
414 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
415 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
416 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
417 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
418 	unsigned int threshold = sbi->blocks_per_seg * factor *
419 					DEFAULT_DIRTY_THRESHOLD;
420 	unsigned int global_threshold = threshold * 3 / 2;
421 
422 	if (dents >= threshold || qdata >= threshold ||
423 		nodes >= threshold || meta >= threshold ||
424 		imeta >= threshold)
425 		return true;
426 	return dents + qdata + nodes + meta + imeta >  global_threshold;
427 }
428 
429 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
430 {
431 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
432 		return;
433 
434 	/* try to shrink extent cache when there is no enough memory */
435 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
436 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
437 
438 	/* check the # of cached NAT entries */
439 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
440 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
441 
442 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
443 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
444 	else
445 		f2fs_build_free_nids(sbi, false, false);
446 
447 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
448 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
449 		goto do_sync;
450 
451 	/* there is background inflight IO or foreground operation recently */
452 	if (is_inflight_io(sbi, REQ_TIME) ||
453 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
454 		return;
455 
456 	/* exceed periodical checkpoint timeout threshold */
457 	if (f2fs_time_over(sbi, CP_TIME))
458 		goto do_sync;
459 
460 	/* checkpoint is the only way to shrink partial cached entries */
461 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
462 		f2fs_available_free_memory(sbi, INO_ENTRIES))
463 		return;
464 
465 do_sync:
466 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
467 		struct blk_plug plug;
468 
469 		mutex_lock(&sbi->flush_lock);
470 
471 		blk_start_plug(&plug);
472 		f2fs_sync_dirty_inodes(sbi, FILE_INODE);
473 		blk_finish_plug(&plug);
474 
475 		mutex_unlock(&sbi->flush_lock);
476 	}
477 	f2fs_sync_fs(sbi->sb, true);
478 	stat_inc_bg_cp_count(sbi->stat_info);
479 }
480 
481 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
482 				struct block_device *bdev)
483 {
484 	int ret = blkdev_issue_flush(bdev);
485 
486 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
487 				test_opt(sbi, FLUSH_MERGE), ret);
488 	return ret;
489 }
490 
491 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
492 {
493 	int ret = 0;
494 	int i;
495 
496 	if (!f2fs_is_multi_device(sbi))
497 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
498 
499 	for (i = 0; i < sbi->s_ndevs; i++) {
500 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
501 			continue;
502 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
503 		if (ret)
504 			break;
505 	}
506 	return ret;
507 }
508 
509 static int issue_flush_thread(void *data)
510 {
511 	struct f2fs_sb_info *sbi = data;
512 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
513 	wait_queue_head_t *q = &fcc->flush_wait_queue;
514 repeat:
515 	if (kthread_should_stop())
516 		return 0;
517 
518 	if (!llist_empty(&fcc->issue_list)) {
519 		struct flush_cmd *cmd, *next;
520 		int ret;
521 
522 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
523 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
524 
525 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
526 
527 		ret = submit_flush_wait(sbi, cmd->ino);
528 		atomic_inc(&fcc->issued_flush);
529 
530 		llist_for_each_entry_safe(cmd, next,
531 					  fcc->dispatch_list, llnode) {
532 			cmd->ret = ret;
533 			complete(&cmd->wait);
534 		}
535 		fcc->dispatch_list = NULL;
536 	}
537 
538 	wait_event_interruptible(*q,
539 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
540 	goto repeat;
541 }
542 
543 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
544 {
545 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
546 	struct flush_cmd cmd;
547 	int ret;
548 
549 	if (test_opt(sbi, NOBARRIER))
550 		return 0;
551 
552 	if (!test_opt(sbi, FLUSH_MERGE)) {
553 		atomic_inc(&fcc->queued_flush);
554 		ret = submit_flush_wait(sbi, ino);
555 		atomic_dec(&fcc->queued_flush);
556 		atomic_inc(&fcc->issued_flush);
557 		return ret;
558 	}
559 
560 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
561 	    f2fs_is_multi_device(sbi)) {
562 		ret = submit_flush_wait(sbi, ino);
563 		atomic_dec(&fcc->queued_flush);
564 
565 		atomic_inc(&fcc->issued_flush);
566 		return ret;
567 	}
568 
569 	cmd.ino = ino;
570 	init_completion(&cmd.wait);
571 
572 	llist_add(&cmd.llnode, &fcc->issue_list);
573 
574 	/*
575 	 * update issue_list before we wake up issue_flush thread, this
576 	 * smp_mb() pairs with another barrier in ___wait_event(), see
577 	 * more details in comments of waitqueue_active().
578 	 */
579 	smp_mb();
580 
581 	if (waitqueue_active(&fcc->flush_wait_queue))
582 		wake_up(&fcc->flush_wait_queue);
583 
584 	if (fcc->f2fs_issue_flush) {
585 		wait_for_completion(&cmd.wait);
586 		atomic_dec(&fcc->queued_flush);
587 	} else {
588 		struct llist_node *list;
589 
590 		list = llist_del_all(&fcc->issue_list);
591 		if (!list) {
592 			wait_for_completion(&cmd.wait);
593 			atomic_dec(&fcc->queued_flush);
594 		} else {
595 			struct flush_cmd *tmp, *next;
596 
597 			ret = submit_flush_wait(sbi, ino);
598 
599 			llist_for_each_entry_safe(tmp, next, list, llnode) {
600 				if (tmp == &cmd) {
601 					cmd.ret = ret;
602 					atomic_dec(&fcc->queued_flush);
603 					continue;
604 				}
605 				tmp->ret = ret;
606 				complete(&tmp->wait);
607 			}
608 		}
609 	}
610 
611 	return cmd.ret;
612 }
613 
614 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
615 {
616 	dev_t dev = sbi->sb->s_bdev->bd_dev;
617 	struct flush_cmd_control *fcc;
618 	int err = 0;
619 
620 	if (SM_I(sbi)->fcc_info) {
621 		fcc = SM_I(sbi)->fcc_info;
622 		if (fcc->f2fs_issue_flush)
623 			return err;
624 		goto init_thread;
625 	}
626 
627 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
628 	if (!fcc)
629 		return -ENOMEM;
630 	atomic_set(&fcc->issued_flush, 0);
631 	atomic_set(&fcc->queued_flush, 0);
632 	init_waitqueue_head(&fcc->flush_wait_queue);
633 	init_llist_head(&fcc->issue_list);
634 	SM_I(sbi)->fcc_info = fcc;
635 	if (!test_opt(sbi, FLUSH_MERGE))
636 		return err;
637 
638 init_thread:
639 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
640 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
641 	if (IS_ERR(fcc->f2fs_issue_flush)) {
642 		err = PTR_ERR(fcc->f2fs_issue_flush);
643 		kfree(fcc);
644 		SM_I(sbi)->fcc_info = NULL;
645 		return err;
646 	}
647 
648 	return err;
649 }
650 
651 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
652 {
653 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
654 
655 	if (fcc && fcc->f2fs_issue_flush) {
656 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
657 
658 		fcc->f2fs_issue_flush = NULL;
659 		kthread_stop(flush_thread);
660 	}
661 	if (free) {
662 		kfree(fcc);
663 		SM_I(sbi)->fcc_info = NULL;
664 	}
665 }
666 
667 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
668 {
669 	int ret = 0, i;
670 
671 	if (!f2fs_is_multi_device(sbi))
672 		return 0;
673 
674 	if (test_opt(sbi, NOBARRIER))
675 		return 0;
676 
677 	for (i = 1; i < sbi->s_ndevs; i++) {
678 		int count = DEFAULT_RETRY_IO_COUNT;
679 
680 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
681 			continue;
682 
683 		do {
684 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
685 			if (ret)
686 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
687 		} while (ret && --count);
688 
689 		if (ret) {
690 			f2fs_stop_checkpoint(sbi, false);
691 			break;
692 		}
693 
694 		spin_lock(&sbi->dev_lock);
695 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
696 		spin_unlock(&sbi->dev_lock);
697 	}
698 
699 	return ret;
700 }
701 
702 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
703 		enum dirty_type dirty_type)
704 {
705 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
706 
707 	/* need not be added */
708 	if (IS_CURSEG(sbi, segno))
709 		return;
710 
711 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
712 		dirty_i->nr_dirty[dirty_type]++;
713 
714 	if (dirty_type == DIRTY) {
715 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
716 		enum dirty_type t = sentry->type;
717 
718 		if (unlikely(t >= DIRTY)) {
719 			f2fs_bug_on(sbi, 1);
720 			return;
721 		}
722 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
723 			dirty_i->nr_dirty[t]++;
724 
725 		if (__is_large_section(sbi)) {
726 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
727 			block_t valid_blocks =
728 				get_valid_blocks(sbi, segno, true);
729 
730 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
731 					valid_blocks == BLKS_PER_SEC(sbi)));
732 
733 			if (!IS_CURSEC(sbi, secno))
734 				set_bit(secno, dirty_i->dirty_secmap);
735 		}
736 	}
737 }
738 
739 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
740 		enum dirty_type dirty_type)
741 {
742 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
743 	block_t valid_blocks;
744 
745 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
746 		dirty_i->nr_dirty[dirty_type]--;
747 
748 	if (dirty_type == DIRTY) {
749 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
750 		enum dirty_type t = sentry->type;
751 
752 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
753 			dirty_i->nr_dirty[t]--;
754 
755 		valid_blocks = get_valid_blocks(sbi, segno, true);
756 		if (valid_blocks == 0) {
757 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
758 						dirty_i->victim_secmap);
759 #ifdef CONFIG_F2FS_CHECK_FS
760 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
761 #endif
762 		}
763 		if (__is_large_section(sbi)) {
764 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
765 
766 			if (!valid_blocks ||
767 					valid_blocks == BLKS_PER_SEC(sbi)) {
768 				clear_bit(secno, dirty_i->dirty_secmap);
769 				return;
770 			}
771 
772 			if (!IS_CURSEC(sbi, secno))
773 				set_bit(secno, dirty_i->dirty_secmap);
774 		}
775 	}
776 }
777 
778 /*
779  * Should not occur error such as -ENOMEM.
780  * Adding dirty entry into seglist is not critical operation.
781  * If a given segment is one of current working segments, it won't be added.
782  */
783 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
784 {
785 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
786 	unsigned short valid_blocks, ckpt_valid_blocks;
787 	unsigned int usable_blocks;
788 
789 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
790 		return;
791 
792 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
793 	mutex_lock(&dirty_i->seglist_lock);
794 
795 	valid_blocks = get_valid_blocks(sbi, segno, false);
796 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
797 
798 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
799 		ckpt_valid_blocks == usable_blocks)) {
800 		__locate_dirty_segment(sbi, segno, PRE);
801 		__remove_dirty_segment(sbi, segno, DIRTY);
802 	} else if (valid_blocks < usable_blocks) {
803 		__locate_dirty_segment(sbi, segno, DIRTY);
804 	} else {
805 		/* Recovery routine with SSR needs this */
806 		__remove_dirty_segment(sbi, segno, DIRTY);
807 	}
808 
809 	mutex_unlock(&dirty_i->seglist_lock);
810 }
811 
812 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
813 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
814 {
815 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
816 	unsigned int segno;
817 
818 	mutex_lock(&dirty_i->seglist_lock);
819 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
820 		if (get_valid_blocks(sbi, segno, false))
821 			continue;
822 		if (IS_CURSEG(sbi, segno))
823 			continue;
824 		__locate_dirty_segment(sbi, segno, PRE);
825 		__remove_dirty_segment(sbi, segno, DIRTY);
826 	}
827 	mutex_unlock(&dirty_i->seglist_lock);
828 }
829 
830 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
831 {
832 	int ovp_hole_segs =
833 		(overprovision_segments(sbi) - reserved_segments(sbi));
834 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
835 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
836 	block_t holes[2] = {0, 0};	/* DATA and NODE */
837 	block_t unusable;
838 	struct seg_entry *se;
839 	unsigned int segno;
840 
841 	mutex_lock(&dirty_i->seglist_lock);
842 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
843 		se = get_seg_entry(sbi, segno);
844 		if (IS_NODESEG(se->type))
845 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
846 							se->valid_blocks;
847 		else
848 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
849 							se->valid_blocks;
850 	}
851 	mutex_unlock(&dirty_i->seglist_lock);
852 
853 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
854 	if (unusable > ovp_holes)
855 		return unusable - ovp_holes;
856 	return 0;
857 }
858 
859 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
860 {
861 	int ovp_hole_segs =
862 		(overprovision_segments(sbi) - reserved_segments(sbi));
863 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
864 		return -EAGAIN;
865 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
866 		dirty_segments(sbi) > ovp_hole_segs)
867 		return -EAGAIN;
868 	return 0;
869 }
870 
871 /* This is only used by SBI_CP_DISABLED */
872 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
873 {
874 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
875 	unsigned int segno = 0;
876 
877 	mutex_lock(&dirty_i->seglist_lock);
878 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
879 		if (get_valid_blocks(sbi, segno, false))
880 			continue;
881 		if (get_ckpt_valid_blocks(sbi, segno, false))
882 			continue;
883 		mutex_unlock(&dirty_i->seglist_lock);
884 		return segno;
885 	}
886 	mutex_unlock(&dirty_i->seglist_lock);
887 	return NULL_SEGNO;
888 }
889 
890 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
891 		struct block_device *bdev, block_t lstart,
892 		block_t start, block_t len)
893 {
894 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
895 	struct list_head *pend_list;
896 	struct discard_cmd *dc;
897 
898 	f2fs_bug_on(sbi, !len);
899 
900 	pend_list = &dcc->pend_list[plist_idx(len)];
901 
902 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
903 	INIT_LIST_HEAD(&dc->list);
904 	dc->bdev = bdev;
905 	dc->lstart = lstart;
906 	dc->start = start;
907 	dc->len = len;
908 	dc->ref = 0;
909 	dc->state = D_PREP;
910 	dc->queued = 0;
911 	dc->error = 0;
912 	init_completion(&dc->wait);
913 	list_add_tail(&dc->list, pend_list);
914 	spin_lock_init(&dc->lock);
915 	dc->bio_ref = 0;
916 	atomic_inc(&dcc->discard_cmd_cnt);
917 	dcc->undiscard_blks += len;
918 
919 	return dc;
920 }
921 
922 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
923 				struct block_device *bdev, block_t lstart,
924 				block_t start, block_t len,
925 				struct rb_node *parent, struct rb_node **p,
926 				bool leftmost)
927 {
928 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
929 	struct discard_cmd *dc;
930 
931 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
932 
933 	rb_link_node(&dc->rb_node, parent, p);
934 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
935 
936 	return dc;
937 }
938 
939 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
940 							struct discard_cmd *dc)
941 {
942 	if (dc->state == D_DONE)
943 		atomic_sub(dc->queued, &dcc->queued_discard);
944 
945 	list_del(&dc->list);
946 	rb_erase_cached(&dc->rb_node, &dcc->root);
947 	dcc->undiscard_blks -= dc->len;
948 
949 	kmem_cache_free(discard_cmd_slab, dc);
950 
951 	atomic_dec(&dcc->discard_cmd_cnt);
952 }
953 
954 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
955 							struct discard_cmd *dc)
956 {
957 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
958 	unsigned long flags;
959 
960 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
961 
962 	spin_lock_irqsave(&dc->lock, flags);
963 	if (dc->bio_ref) {
964 		spin_unlock_irqrestore(&dc->lock, flags);
965 		return;
966 	}
967 	spin_unlock_irqrestore(&dc->lock, flags);
968 
969 	f2fs_bug_on(sbi, dc->ref);
970 
971 	if (dc->error == -EOPNOTSUPP)
972 		dc->error = 0;
973 
974 	if (dc->error)
975 		printk_ratelimited(
976 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
977 			KERN_INFO, sbi->sb->s_id,
978 			dc->lstart, dc->start, dc->len, dc->error);
979 	__detach_discard_cmd(dcc, dc);
980 }
981 
982 static void f2fs_submit_discard_endio(struct bio *bio)
983 {
984 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
985 	unsigned long flags;
986 
987 	spin_lock_irqsave(&dc->lock, flags);
988 	if (!dc->error)
989 		dc->error = blk_status_to_errno(bio->bi_status);
990 	dc->bio_ref--;
991 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
992 		dc->state = D_DONE;
993 		complete_all(&dc->wait);
994 	}
995 	spin_unlock_irqrestore(&dc->lock, flags);
996 	bio_put(bio);
997 }
998 
999 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1000 				block_t start, block_t end)
1001 {
1002 #ifdef CONFIG_F2FS_CHECK_FS
1003 	struct seg_entry *sentry;
1004 	unsigned int segno;
1005 	block_t blk = start;
1006 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1007 	unsigned long *map;
1008 
1009 	while (blk < end) {
1010 		segno = GET_SEGNO(sbi, blk);
1011 		sentry = get_seg_entry(sbi, segno);
1012 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1013 
1014 		if (end < START_BLOCK(sbi, segno + 1))
1015 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1016 		else
1017 			size = max_blocks;
1018 		map = (unsigned long *)(sentry->cur_valid_map);
1019 		offset = __find_rev_next_bit(map, size, offset);
1020 		f2fs_bug_on(sbi, offset != size);
1021 		blk = START_BLOCK(sbi, segno + 1);
1022 	}
1023 #endif
1024 }
1025 
1026 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1027 				struct discard_policy *dpolicy,
1028 				int discard_type, unsigned int granularity)
1029 {
1030 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1031 
1032 	/* common policy */
1033 	dpolicy->type = discard_type;
1034 	dpolicy->sync = true;
1035 	dpolicy->ordered = false;
1036 	dpolicy->granularity = granularity;
1037 
1038 	dpolicy->max_requests = dcc->max_discard_request;
1039 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1040 	dpolicy->timeout = false;
1041 
1042 	if (discard_type == DPOLICY_BG) {
1043 		dpolicy->min_interval = dcc->min_discard_issue_time;
1044 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1045 		dpolicy->max_interval = dcc->max_discard_issue_time;
1046 		dpolicy->io_aware = true;
1047 		dpolicy->sync = false;
1048 		dpolicy->ordered = true;
1049 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1050 			dpolicy->granularity = 1;
1051 			if (atomic_read(&dcc->discard_cmd_cnt))
1052 				dpolicy->max_interval =
1053 					dcc->min_discard_issue_time;
1054 		}
1055 	} else if (discard_type == DPOLICY_FORCE) {
1056 		dpolicy->min_interval = dcc->min_discard_issue_time;
1057 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1058 		dpolicy->max_interval = dcc->max_discard_issue_time;
1059 		dpolicy->io_aware = false;
1060 	} else if (discard_type == DPOLICY_FSTRIM) {
1061 		dpolicy->io_aware = false;
1062 	} else if (discard_type == DPOLICY_UMOUNT) {
1063 		dpolicy->io_aware = false;
1064 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1065 		dpolicy->granularity = 1;
1066 		dpolicy->timeout = true;
1067 	}
1068 }
1069 
1070 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1071 				struct block_device *bdev, block_t lstart,
1072 				block_t start, block_t len);
1073 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1074 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1075 						struct discard_policy *dpolicy,
1076 						struct discard_cmd *dc,
1077 						unsigned int *issued)
1078 {
1079 	struct block_device *bdev = dc->bdev;
1080 	unsigned int max_discard_blocks =
1081 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1082 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1083 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1084 					&(dcc->fstrim_list) : &(dcc->wait_list);
1085 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1086 	block_t lstart, start, len, total_len;
1087 	int err = 0;
1088 
1089 	if (dc->state != D_PREP)
1090 		return 0;
1091 
1092 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1093 		return 0;
1094 
1095 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1096 
1097 	lstart = dc->lstart;
1098 	start = dc->start;
1099 	len = dc->len;
1100 	total_len = len;
1101 
1102 	dc->len = 0;
1103 
1104 	while (total_len && *issued < dpolicy->max_requests && !err) {
1105 		struct bio *bio = NULL;
1106 		unsigned long flags;
1107 		bool last = true;
1108 
1109 		if (len > max_discard_blocks) {
1110 			len = max_discard_blocks;
1111 			last = false;
1112 		}
1113 
1114 		(*issued)++;
1115 		if (*issued == dpolicy->max_requests)
1116 			last = true;
1117 
1118 		dc->len += len;
1119 
1120 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1121 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1122 			err = -EIO;
1123 			goto submit;
1124 		}
1125 		err = __blkdev_issue_discard(bdev,
1126 					SECTOR_FROM_BLOCK(start),
1127 					SECTOR_FROM_BLOCK(len),
1128 					GFP_NOFS, &bio);
1129 submit:
1130 		if (err) {
1131 			spin_lock_irqsave(&dc->lock, flags);
1132 			if (dc->state == D_PARTIAL)
1133 				dc->state = D_SUBMIT;
1134 			spin_unlock_irqrestore(&dc->lock, flags);
1135 
1136 			break;
1137 		}
1138 
1139 		f2fs_bug_on(sbi, !bio);
1140 
1141 		/*
1142 		 * should keep before submission to avoid D_DONE
1143 		 * right away
1144 		 */
1145 		spin_lock_irqsave(&dc->lock, flags);
1146 		if (last)
1147 			dc->state = D_SUBMIT;
1148 		else
1149 			dc->state = D_PARTIAL;
1150 		dc->bio_ref++;
1151 		spin_unlock_irqrestore(&dc->lock, flags);
1152 
1153 		atomic_inc(&dcc->queued_discard);
1154 		dc->queued++;
1155 		list_move_tail(&dc->list, wait_list);
1156 
1157 		/* sanity check on discard range */
1158 		__check_sit_bitmap(sbi, lstart, lstart + len);
1159 
1160 		bio->bi_private = dc;
1161 		bio->bi_end_io = f2fs_submit_discard_endio;
1162 		bio->bi_opf |= flag;
1163 		submit_bio(bio);
1164 
1165 		atomic_inc(&dcc->issued_discard);
1166 
1167 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1168 
1169 		lstart += len;
1170 		start += len;
1171 		total_len -= len;
1172 		len = total_len;
1173 	}
1174 
1175 	if (!err && len) {
1176 		dcc->undiscard_blks -= len;
1177 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1178 	}
1179 	return err;
1180 }
1181 
1182 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1183 				struct block_device *bdev, block_t lstart,
1184 				block_t start, block_t len,
1185 				struct rb_node **insert_p,
1186 				struct rb_node *insert_parent)
1187 {
1188 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1189 	struct rb_node **p;
1190 	struct rb_node *parent = NULL;
1191 	bool leftmost = true;
1192 
1193 	if (insert_p && insert_parent) {
1194 		parent = insert_parent;
1195 		p = insert_p;
1196 		goto do_insert;
1197 	}
1198 
1199 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1200 							lstart, &leftmost);
1201 do_insert:
1202 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1203 								p, leftmost);
1204 }
1205 
1206 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1207 						struct discard_cmd *dc)
1208 {
1209 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1210 }
1211 
1212 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1213 				struct discard_cmd *dc, block_t blkaddr)
1214 {
1215 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1216 	struct discard_info di = dc->di;
1217 	bool modified = false;
1218 
1219 	if (dc->state == D_DONE || dc->len == 1) {
1220 		__remove_discard_cmd(sbi, dc);
1221 		return;
1222 	}
1223 
1224 	dcc->undiscard_blks -= di.len;
1225 
1226 	if (blkaddr > di.lstart) {
1227 		dc->len = blkaddr - dc->lstart;
1228 		dcc->undiscard_blks += dc->len;
1229 		__relocate_discard_cmd(dcc, dc);
1230 		modified = true;
1231 	}
1232 
1233 	if (blkaddr < di.lstart + di.len - 1) {
1234 		if (modified) {
1235 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1236 					di.start + blkaddr + 1 - di.lstart,
1237 					di.lstart + di.len - 1 - blkaddr,
1238 					NULL, NULL);
1239 		} else {
1240 			dc->lstart++;
1241 			dc->len--;
1242 			dc->start++;
1243 			dcc->undiscard_blks += dc->len;
1244 			__relocate_discard_cmd(dcc, dc);
1245 		}
1246 	}
1247 }
1248 
1249 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1250 				struct block_device *bdev, block_t lstart,
1251 				block_t start, block_t len)
1252 {
1253 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1254 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1255 	struct discard_cmd *dc;
1256 	struct discard_info di = {0};
1257 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1258 	unsigned int max_discard_blocks =
1259 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1260 	block_t end = lstart + len;
1261 
1262 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1263 					NULL, lstart,
1264 					(struct rb_entry **)&prev_dc,
1265 					(struct rb_entry **)&next_dc,
1266 					&insert_p, &insert_parent, true, NULL);
1267 	if (dc)
1268 		prev_dc = dc;
1269 
1270 	if (!prev_dc) {
1271 		di.lstart = lstart;
1272 		di.len = next_dc ? next_dc->lstart - lstart : len;
1273 		di.len = min(di.len, len);
1274 		di.start = start;
1275 	}
1276 
1277 	while (1) {
1278 		struct rb_node *node;
1279 		bool merged = false;
1280 		struct discard_cmd *tdc = NULL;
1281 
1282 		if (prev_dc) {
1283 			di.lstart = prev_dc->lstart + prev_dc->len;
1284 			if (di.lstart < lstart)
1285 				di.lstart = lstart;
1286 			if (di.lstart >= end)
1287 				break;
1288 
1289 			if (!next_dc || next_dc->lstart > end)
1290 				di.len = end - di.lstart;
1291 			else
1292 				di.len = next_dc->lstart - di.lstart;
1293 			di.start = start + di.lstart - lstart;
1294 		}
1295 
1296 		if (!di.len)
1297 			goto next;
1298 
1299 		if (prev_dc && prev_dc->state == D_PREP &&
1300 			prev_dc->bdev == bdev &&
1301 			__is_discard_back_mergeable(&di, &prev_dc->di,
1302 							max_discard_blocks)) {
1303 			prev_dc->di.len += di.len;
1304 			dcc->undiscard_blks += di.len;
1305 			__relocate_discard_cmd(dcc, prev_dc);
1306 			di = prev_dc->di;
1307 			tdc = prev_dc;
1308 			merged = true;
1309 		}
1310 
1311 		if (next_dc && next_dc->state == D_PREP &&
1312 			next_dc->bdev == bdev &&
1313 			__is_discard_front_mergeable(&di, &next_dc->di,
1314 							max_discard_blocks)) {
1315 			next_dc->di.lstart = di.lstart;
1316 			next_dc->di.len += di.len;
1317 			next_dc->di.start = di.start;
1318 			dcc->undiscard_blks += di.len;
1319 			__relocate_discard_cmd(dcc, next_dc);
1320 			if (tdc)
1321 				__remove_discard_cmd(sbi, tdc);
1322 			merged = true;
1323 		}
1324 
1325 		if (!merged) {
1326 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1327 							di.len, NULL, NULL);
1328 		}
1329  next:
1330 		prev_dc = next_dc;
1331 		if (!prev_dc)
1332 			break;
1333 
1334 		node = rb_next(&prev_dc->rb_node);
1335 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1336 	}
1337 }
1338 
1339 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1340 		struct block_device *bdev, block_t blkstart, block_t blklen)
1341 {
1342 	block_t lblkstart = blkstart;
1343 
1344 	if (!f2fs_bdev_support_discard(bdev))
1345 		return 0;
1346 
1347 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1348 
1349 	if (f2fs_is_multi_device(sbi)) {
1350 		int devi = f2fs_target_device_index(sbi, blkstart);
1351 
1352 		blkstart -= FDEV(devi).start_blk;
1353 	}
1354 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1355 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1356 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1357 	return 0;
1358 }
1359 
1360 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1361 					struct discard_policy *dpolicy)
1362 {
1363 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1364 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1365 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1366 	struct discard_cmd *dc;
1367 	struct blk_plug plug;
1368 	unsigned int pos = dcc->next_pos;
1369 	unsigned int issued = 0;
1370 	bool io_interrupted = false;
1371 
1372 	mutex_lock(&dcc->cmd_lock);
1373 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1374 					NULL, pos,
1375 					(struct rb_entry **)&prev_dc,
1376 					(struct rb_entry **)&next_dc,
1377 					&insert_p, &insert_parent, true, NULL);
1378 	if (!dc)
1379 		dc = next_dc;
1380 
1381 	blk_start_plug(&plug);
1382 
1383 	while (dc) {
1384 		struct rb_node *node;
1385 		int err = 0;
1386 
1387 		if (dc->state != D_PREP)
1388 			goto next;
1389 
1390 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1391 			io_interrupted = true;
1392 			break;
1393 		}
1394 
1395 		dcc->next_pos = dc->lstart + dc->len;
1396 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1397 
1398 		if (issued >= dpolicy->max_requests)
1399 			break;
1400 next:
1401 		node = rb_next(&dc->rb_node);
1402 		if (err)
1403 			__remove_discard_cmd(sbi, dc);
1404 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1405 	}
1406 
1407 	blk_finish_plug(&plug);
1408 
1409 	if (!dc)
1410 		dcc->next_pos = 0;
1411 
1412 	mutex_unlock(&dcc->cmd_lock);
1413 
1414 	if (!issued && io_interrupted)
1415 		issued = -1;
1416 
1417 	return issued;
1418 }
1419 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1420 					struct discard_policy *dpolicy);
1421 
1422 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1423 					struct discard_policy *dpolicy)
1424 {
1425 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1426 	struct list_head *pend_list;
1427 	struct discard_cmd *dc, *tmp;
1428 	struct blk_plug plug;
1429 	int i, issued;
1430 	bool io_interrupted = false;
1431 
1432 	if (dpolicy->timeout)
1433 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1434 
1435 retry:
1436 	issued = 0;
1437 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1438 		if (dpolicy->timeout &&
1439 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1440 			break;
1441 
1442 		if (i + 1 < dpolicy->granularity)
1443 			break;
1444 
1445 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1446 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1447 
1448 		pend_list = &dcc->pend_list[i];
1449 
1450 		mutex_lock(&dcc->cmd_lock);
1451 		if (list_empty(pend_list))
1452 			goto next;
1453 		if (unlikely(dcc->rbtree_check))
1454 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1455 							&dcc->root, false));
1456 		blk_start_plug(&plug);
1457 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1458 			f2fs_bug_on(sbi, dc->state != D_PREP);
1459 
1460 			if (dpolicy->timeout &&
1461 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1462 				break;
1463 
1464 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1465 						!is_idle(sbi, DISCARD_TIME)) {
1466 				io_interrupted = true;
1467 				break;
1468 			}
1469 
1470 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1471 
1472 			if (issued >= dpolicy->max_requests)
1473 				break;
1474 		}
1475 		blk_finish_plug(&plug);
1476 next:
1477 		mutex_unlock(&dcc->cmd_lock);
1478 
1479 		if (issued >= dpolicy->max_requests || io_interrupted)
1480 			break;
1481 	}
1482 
1483 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1484 		__wait_all_discard_cmd(sbi, dpolicy);
1485 		goto retry;
1486 	}
1487 
1488 	if (!issued && io_interrupted)
1489 		issued = -1;
1490 
1491 	return issued;
1492 }
1493 
1494 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1495 {
1496 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1497 	struct list_head *pend_list;
1498 	struct discard_cmd *dc, *tmp;
1499 	int i;
1500 	bool dropped = false;
1501 
1502 	mutex_lock(&dcc->cmd_lock);
1503 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1504 		pend_list = &dcc->pend_list[i];
1505 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1506 			f2fs_bug_on(sbi, dc->state != D_PREP);
1507 			__remove_discard_cmd(sbi, dc);
1508 			dropped = true;
1509 		}
1510 	}
1511 	mutex_unlock(&dcc->cmd_lock);
1512 
1513 	return dropped;
1514 }
1515 
1516 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1517 {
1518 	__drop_discard_cmd(sbi);
1519 }
1520 
1521 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1522 							struct discard_cmd *dc)
1523 {
1524 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1525 	unsigned int len = 0;
1526 
1527 	wait_for_completion_io(&dc->wait);
1528 	mutex_lock(&dcc->cmd_lock);
1529 	f2fs_bug_on(sbi, dc->state != D_DONE);
1530 	dc->ref--;
1531 	if (!dc->ref) {
1532 		if (!dc->error)
1533 			len = dc->len;
1534 		__remove_discard_cmd(sbi, dc);
1535 	}
1536 	mutex_unlock(&dcc->cmd_lock);
1537 
1538 	return len;
1539 }
1540 
1541 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1542 						struct discard_policy *dpolicy,
1543 						block_t start, block_t end)
1544 {
1545 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1546 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1547 					&(dcc->fstrim_list) : &(dcc->wait_list);
1548 	struct discard_cmd *dc = NULL, *iter, *tmp;
1549 	unsigned int trimmed = 0;
1550 
1551 next:
1552 	dc = NULL;
1553 
1554 	mutex_lock(&dcc->cmd_lock);
1555 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1556 		if (iter->lstart + iter->len <= start || end <= iter->lstart)
1557 			continue;
1558 		if (iter->len < dpolicy->granularity)
1559 			continue;
1560 		if (iter->state == D_DONE && !iter->ref) {
1561 			wait_for_completion_io(&iter->wait);
1562 			if (!iter->error)
1563 				trimmed += iter->len;
1564 			__remove_discard_cmd(sbi, iter);
1565 		} else {
1566 			iter->ref++;
1567 			dc = iter;
1568 			break;
1569 		}
1570 	}
1571 	mutex_unlock(&dcc->cmd_lock);
1572 
1573 	if (dc) {
1574 		trimmed += __wait_one_discard_bio(sbi, dc);
1575 		goto next;
1576 	}
1577 
1578 	return trimmed;
1579 }
1580 
1581 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1582 						struct discard_policy *dpolicy)
1583 {
1584 	struct discard_policy dp;
1585 	unsigned int discard_blks;
1586 
1587 	if (dpolicy)
1588 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1589 
1590 	/* wait all */
1591 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1592 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1593 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1594 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1595 
1596 	return discard_blks;
1597 }
1598 
1599 /* This should be covered by global mutex, &sit_i->sentry_lock */
1600 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1601 {
1602 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1603 	struct discard_cmd *dc;
1604 	bool need_wait = false;
1605 
1606 	mutex_lock(&dcc->cmd_lock);
1607 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1608 							NULL, blkaddr);
1609 	if (dc) {
1610 		if (dc->state == D_PREP) {
1611 			__punch_discard_cmd(sbi, dc, blkaddr);
1612 		} else {
1613 			dc->ref++;
1614 			need_wait = true;
1615 		}
1616 	}
1617 	mutex_unlock(&dcc->cmd_lock);
1618 
1619 	if (need_wait)
1620 		__wait_one_discard_bio(sbi, dc);
1621 }
1622 
1623 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1624 {
1625 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1626 
1627 	if (dcc && dcc->f2fs_issue_discard) {
1628 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1629 
1630 		dcc->f2fs_issue_discard = NULL;
1631 		kthread_stop(discard_thread);
1632 	}
1633 }
1634 
1635 /* This comes from f2fs_put_super */
1636 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1637 {
1638 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639 	struct discard_policy dpolicy;
1640 	bool dropped;
1641 
1642 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1643 					dcc->discard_granularity);
1644 	__issue_discard_cmd(sbi, &dpolicy);
1645 	dropped = __drop_discard_cmd(sbi);
1646 
1647 	/* just to make sure there is no pending discard commands */
1648 	__wait_all_discard_cmd(sbi, NULL);
1649 
1650 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1651 	return dropped;
1652 }
1653 
1654 static int issue_discard_thread(void *data)
1655 {
1656 	struct f2fs_sb_info *sbi = data;
1657 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1658 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1659 	struct discard_policy dpolicy;
1660 	unsigned int wait_ms = dcc->min_discard_issue_time;
1661 	int issued;
1662 
1663 	set_freezable();
1664 
1665 	do {
1666 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1667 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1668 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1669 		else
1670 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1671 						dcc->discard_granularity);
1672 
1673 		if (!atomic_read(&dcc->discard_cmd_cnt))
1674 		       wait_ms = dpolicy.max_interval;
1675 
1676 		wait_event_interruptible_timeout(*q,
1677 				kthread_should_stop() || freezing(current) ||
1678 				dcc->discard_wake,
1679 				msecs_to_jiffies(wait_ms));
1680 
1681 		if (dcc->discard_wake)
1682 			dcc->discard_wake = 0;
1683 
1684 		/* clean up pending candidates before going to sleep */
1685 		if (atomic_read(&dcc->queued_discard))
1686 			__wait_all_discard_cmd(sbi, NULL);
1687 
1688 		if (try_to_freeze())
1689 			continue;
1690 		if (f2fs_readonly(sbi->sb))
1691 			continue;
1692 		if (kthread_should_stop())
1693 			return 0;
1694 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1695 			wait_ms = dpolicy.max_interval;
1696 			continue;
1697 		}
1698 		if (!atomic_read(&dcc->discard_cmd_cnt))
1699 			continue;
1700 
1701 		sb_start_intwrite(sbi->sb);
1702 
1703 		issued = __issue_discard_cmd(sbi, &dpolicy);
1704 		if (issued > 0) {
1705 			__wait_all_discard_cmd(sbi, &dpolicy);
1706 			wait_ms = dpolicy.min_interval;
1707 		} else if (issued == -1) {
1708 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1709 			if (!wait_ms)
1710 				wait_ms = dpolicy.mid_interval;
1711 		} else {
1712 			wait_ms = dpolicy.max_interval;
1713 		}
1714 
1715 		sb_end_intwrite(sbi->sb);
1716 
1717 	} while (!kthread_should_stop());
1718 	return 0;
1719 }
1720 
1721 #ifdef CONFIG_BLK_DEV_ZONED
1722 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1723 		struct block_device *bdev, block_t blkstart, block_t blklen)
1724 {
1725 	sector_t sector, nr_sects;
1726 	block_t lblkstart = blkstart;
1727 	int devi = 0;
1728 
1729 	if (f2fs_is_multi_device(sbi)) {
1730 		devi = f2fs_target_device_index(sbi, blkstart);
1731 		if (blkstart < FDEV(devi).start_blk ||
1732 		    blkstart > FDEV(devi).end_blk) {
1733 			f2fs_err(sbi, "Invalid block %x", blkstart);
1734 			return -EIO;
1735 		}
1736 		blkstart -= FDEV(devi).start_blk;
1737 	}
1738 
1739 	/* For sequential zones, reset the zone write pointer */
1740 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1741 		sector = SECTOR_FROM_BLOCK(blkstart);
1742 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1743 
1744 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1745 				nr_sects != bdev_zone_sectors(bdev)) {
1746 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1747 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1748 				 blkstart, blklen);
1749 			return -EIO;
1750 		}
1751 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1752 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1753 					sector, nr_sects, GFP_NOFS);
1754 	}
1755 
1756 	/* For conventional zones, use regular discard if supported */
1757 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1758 }
1759 #endif
1760 
1761 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1762 		struct block_device *bdev, block_t blkstart, block_t blklen)
1763 {
1764 #ifdef CONFIG_BLK_DEV_ZONED
1765 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1766 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1767 #endif
1768 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1769 }
1770 
1771 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1772 				block_t blkstart, block_t blklen)
1773 {
1774 	sector_t start = blkstart, len = 0;
1775 	struct block_device *bdev;
1776 	struct seg_entry *se;
1777 	unsigned int offset;
1778 	block_t i;
1779 	int err = 0;
1780 
1781 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1782 
1783 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1784 		if (i != start) {
1785 			struct block_device *bdev2 =
1786 				f2fs_target_device(sbi, i, NULL);
1787 
1788 			if (bdev2 != bdev) {
1789 				err = __issue_discard_async(sbi, bdev,
1790 						start, len);
1791 				if (err)
1792 					return err;
1793 				bdev = bdev2;
1794 				start = i;
1795 				len = 0;
1796 			}
1797 		}
1798 
1799 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1800 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1801 
1802 		if (f2fs_block_unit_discard(sbi) &&
1803 				!f2fs_test_and_set_bit(offset, se->discard_map))
1804 			sbi->discard_blks--;
1805 	}
1806 
1807 	if (len)
1808 		err = __issue_discard_async(sbi, bdev, start, len);
1809 	return err;
1810 }
1811 
1812 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1813 							bool check_only)
1814 {
1815 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1816 	int max_blocks = sbi->blocks_per_seg;
1817 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1818 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1819 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1820 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1821 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1822 	unsigned int start = 0, end = -1;
1823 	bool force = (cpc->reason & CP_DISCARD);
1824 	struct discard_entry *de = NULL;
1825 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1826 	int i;
1827 
1828 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1829 			!f2fs_block_unit_discard(sbi))
1830 		return false;
1831 
1832 	if (!force) {
1833 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1834 			SM_I(sbi)->dcc_info->nr_discards >=
1835 				SM_I(sbi)->dcc_info->max_discards)
1836 			return false;
1837 	}
1838 
1839 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1840 	for (i = 0; i < entries; i++)
1841 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1842 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1843 
1844 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1845 				SM_I(sbi)->dcc_info->max_discards) {
1846 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1847 		if (start >= max_blocks)
1848 			break;
1849 
1850 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1851 		if (force && start && end != max_blocks
1852 					&& (end - start) < cpc->trim_minlen)
1853 			continue;
1854 
1855 		if (check_only)
1856 			return true;
1857 
1858 		if (!de) {
1859 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1860 						GFP_F2FS_ZERO, true, NULL);
1861 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1862 			list_add_tail(&de->list, head);
1863 		}
1864 
1865 		for (i = start; i < end; i++)
1866 			__set_bit_le(i, (void *)de->discard_map);
1867 
1868 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1869 	}
1870 	return false;
1871 }
1872 
1873 static void release_discard_addr(struct discard_entry *entry)
1874 {
1875 	list_del(&entry->list);
1876 	kmem_cache_free(discard_entry_slab, entry);
1877 }
1878 
1879 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1880 {
1881 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1882 	struct discard_entry *entry, *this;
1883 
1884 	/* drop caches */
1885 	list_for_each_entry_safe(entry, this, head, list)
1886 		release_discard_addr(entry);
1887 }
1888 
1889 /*
1890  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1891  */
1892 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1893 {
1894 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1895 	unsigned int segno;
1896 
1897 	mutex_lock(&dirty_i->seglist_lock);
1898 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1899 		__set_test_and_free(sbi, segno, false);
1900 	mutex_unlock(&dirty_i->seglist_lock);
1901 }
1902 
1903 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1904 						struct cp_control *cpc)
1905 {
1906 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1907 	struct list_head *head = &dcc->entry_list;
1908 	struct discard_entry *entry, *this;
1909 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1910 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1911 	unsigned int start = 0, end = -1;
1912 	unsigned int secno, start_segno;
1913 	bool force = (cpc->reason & CP_DISCARD);
1914 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1915 						DISCARD_UNIT_SECTION;
1916 
1917 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1918 		section_alignment = true;
1919 
1920 	mutex_lock(&dirty_i->seglist_lock);
1921 
1922 	while (1) {
1923 		int i;
1924 
1925 		if (section_alignment && end != -1)
1926 			end--;
1927 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1928 		if (start >= MAIN_SEGS(sbi))
1929 			break;
1930 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1931 								start + 1);
1932 
1933 		if (section_alignment) {
1934 			start = rounddown(start, sbi->segs_per_sec);
1935 			end = roundup(end, sbi->segs_per_sec);
1936 		}
1937 
1938 		for (i = start; i < end; i++) {
1939 			if (test_and_clear_bit(i, prefree_map))
1940 				dirty_i->nr_dirty[PRE]--;
1941 		}
1942 
1943 		if (!f2fs_realtime_discard_enable(sbi))
1944 			continue;
1945 
1946 		if (force && start >= cpc->trim_start &&
1947 					(end - 1) <= cpc->trim_end)
1948 				continue;
1949 
1950 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1951 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1952 				(end - start) << sbi->log_blocks_per_seg);
1953 			continue;
1954 		}
1955 next:
1956 		secno = GET_SEC_FROM_SEG(sbi, start);
1957 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1958 		if (!IS_CURSEC(sbi, secno) &&
1959 			!get_valid_blocks(sbi, start, true))
1960 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1961 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1962 
1963 		start = start_segno + sbi->segs_per_sec;
1964 		if (start < end)
1965 			goto next;
1966 		else
1967 			end = start - 1;
1968 	}
1969 	mutex_unlock(&dirty_i->seglist_lock);
1970 
1971 	if (!f2fs_block_unit_discard(sbi))
1972 		goto wakeup;
1973 
1974 	/* send small discards */
1975 	list_for_each_entry_safe(entry, this, head, list) {
1976 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1977 		bool is_valid = test_bit_le(0, entry->discard_map);
1978 
1979 find_next:
1980 		if (is_valid) {
1981 			next_pos = find_next_zero_bit_le(entry->discard_map,
1982 					sbi->blocks_per_seg, cur_pos);
1983 			len = next_pos - cur_pos;
1984 
1985 			if (f2fs_sb_has_blkzoned(sbi) ||
1986 			    (force && len < cpc->trim_minlen))
1987 				goto skip;
1988 
1989 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1990 									len);
1991 			total_len += len;
1992 		} else {
1993 			next_pos = find_next_bit_le(entry->discard_map,
1994 					sbi->blocks_per_seg, cur_pos);
1995 		}
1996 skip:
1997 		cur_pos = next_pos;
1998 		is_valid = !is_valid;
1999 
2000 		if (cur_pos < sbi->blocks_per_seg)
2001 			goto find_next;
2002 
2003 		release_discard_addr(entry);
2004 		dcc->nr_discards -= total_len;
2005 	}
2006 
2007 wakeup:
2008 	wake_up_discard_thread(sbi, false);
2009 }
2010 
2011 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2012 {
2013 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2014 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2015 	int err = 0;
2016 
2017 	if (!f2fs_realtime_discard_enable(sbi))
2018 		return 0;
2019 
2020 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2021 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2022 	if (IS_ERR(dcc->f2fs_issue_discard))
2023 		err = PTR_ERR(dcc->f2fs_issue_discard);
2024 
2025 	return err;
2026 }
2027 
2028 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2029 {
2030 	struct discard_cmd_control *dcc;
2031 	int err = 0, i;
2032 
2033 	if (SM_I(sbi)->dcc_info) {
2034 		dcc = SM_I(sbi)->dcc_info;
2035 		goto init_thread;
2036 	}
2037 
2038 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2039 	if (!dcc)
2040 		return -ENOMEM;
2041 
2042 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2043 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2044 		dcc->discard_granularity = sbi->blocks_per_seg;
2045 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2046 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2047 
2048 	INIT_LIST_HEAD(&dcc->entry_list);
2049 	for (i = 0; i < MAX_PLIST_NUM; i++)
2050 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2051 	INIT_LIST_HEAD(&dcc->wait_list);
2052 	INIT_LIST_HEAD(&dcc->fstrim_list);
2053 	mutex_init(&dcc->cmd_lock);
2054 	atomic_set(&dcc->issued_discard, 0);
2055 	atomic_set(&dcc->queued_discard, 0);
2056 	atomic_set(&dcc->discard_cmd_cnt, 0);
2057 	dcc->nr_discards = 0;
2058 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2059 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2060 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2061 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2062 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2063 	dcc->undiscard_blks = 0;
2064 	dcc->next_pos = 0;
2065 	dcc->root = RB_ROOT_CACHED;
2066 	dcc->rbtree_check = false;
2067 
2068 	init_waitqueue_head(&dcc->discard_wait_queue);
2069 	SM_I(sbi)->dcc_info = dcc;
2070 init_thread:
2071 	err = f2fs_start_discard_thread(sbi);
2072 	if (err) {
2073 		kfree(dcc);
2074 		SM_I(sbi)->dcc_info = NULL;
2075 	}
2076 
2077 	return err;
2078 }
2079 
2080 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2081 {
2082 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2083 
2084 	if (!dcc)
2085 		return;
2086 
2087 	f2fs_stop_discard_thread(sbi);
2088 
2089 	/*
2090 	 * Recovery can cache discard commands, so in error path of
2091 	 * fill_super(), it needs to give a chance to handle them.
2092 	 */
2093 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2094 		f2fs_issue_discard_timeout(sbi);
2095 
2096 	kfree(dcc);
2097 	SM_I(sbi)->dcc_info = NULL;
2098 }
2099 
2100 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2101 {
2102 	struct sit_info *sit_i = SIT_I(sbi);
2103 
2104 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2105 		sit_i->dirty_sentries++;
2106 		return false;
2107 	}
2108 
2109 	return true;
2110 }
2111 
2112 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2113 					unsigned int segno, int modified)
2114 {
2115 	struct seg_entry *se = get_seg_entry(sbi, segno);
2116 
2117 	se->type = type;
2118 	if (modified)
2119 		__mark_sit_entry_dirty(sbi, segno);
2120 }
2121 
2122 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2123 								block_t blkaddr)
2124 {
2125 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2126 
2127 	if (segno == NULL_SEGNO)
2128 		return 0;
2129 	return get_seg_entry(sbi, segno)->mtime;
2130 }
2131 
2132 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2133 						unsigned long long old_mtime)
2134 {
2135 	struct seg_entry *se;
2136 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2137 	unsigned long long ctime = get_mtime(sbi, false);
2138 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2139 
2140 	if (segno == NULL_SEGNO)
2141 		return;
2142 
2143 	se = get_seg_entry(sbi, segno);
2144 
2145 	if (!se->mtime)
2146 		se->mtime = mtime;
2147 	else
2148 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2149 						se->valid_blocks + 1);
2150 
2151 	if (ctime > SIT_I(sbi)->max_mtime)
2152 		SIT_I(sbi)->max_mtime = ctime;
2153 }
2154 
2155 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2156 {
2157 	struct seg_entry *se;
2158 	unsigned int segno, offset;
2159 	long int new_vblocks;
2160 	bool exist;
2161 #ifdef CONFIG_F2FS_CHECK_FS
2162 	bool mir_exist;
2163 #endif
2164 
2165 	segno = GET_SEGNO(sbi, blkaddr);
2166 
2167 	se = get_seg_entry(sbi, segno);
2168 	new_vblocks = se->valid_blocks + del;
2169 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2170 
2171 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2172 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2173 
2174 	se->valid_blocks = new_vblocks;
2175 
2176 	/* Update valid block bitmap */
2177 	if (del > 0) {
2178 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2179 #ifdef CONFIG_F2FS_CHECK_FS
2180 		mir_exist = f2fs_test_and_set_bit(offset,
2181 						se->cur_valid_map_mir);
2182 		if (unlikely(exist != mir_exist)) {
2183 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2184 				 blkaddr, exist);
2185 			f2fs_bug_on(sbi, 1);
2186 		}
2187 #endif
2188 		if (unlikely(exist)) {
2189 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2190 				 blkaddr);
2191 			f2fs_bug_on(sbi, 1);
2192 			se->valid_blocks--;
2193 			del = 0;
2194 		}
2195 
2196 		if (f2fs_block_unit_discard(sbi) &&
2197 				!f2fs_test_and_set_bit(offset, se->discard_map))
2198 			sbi->discard_blks--;
2199 
2200 		/*
2201 		 * SSR should never reuse block which is checkpointed
2202 		 * or newly invalidated.
2203 		 */
2204 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2205 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2206 				se->ckpt_valid_blocks++;
2207 		}
2208 	} else {
2209 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2210 #ifdef CONFIG_F2FS_CHECK_FS
2211 		mir_exist = f2fs_test_and_clear_bit(offset,
2212 						se->cur_valid_map_mir);
2213 		if (unlikely(exist != mir_exist)) {
2214 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2215 				 blkaddr, exist);
2216 			f2fs_bug_on(sbi, 1);
2217 		}
2218 #endif
2219 		if (unlikely(!exist)) {
2220 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2221 				 blkaddr);
2222 			f2fs_bug_on(sbi, 1);
2223 			se->valid_blocks++;
2224 			del = 0;
2225 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2226 			/*
2227 			 * If checkpoints are off, we must not reuse data that
2228 			 * was used in the previous checkpoint. If it was used
2229 			 * before, we must track that to know how much space we
2230 			 * really have.
2231 			 */
2232 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2233 				spin_lock(&sbi->stat_lock);
2234 				sbi->unusable_block_count++;
2235 				spin_unlock(&sbi->stat_lock);
2236 			}
2237 		}
2238 
2239 		if (f2fs_block_unit_discard(sbi) &&
2240 			f2fs_test_and_clear_bit(offset, se->discard_map))
2241 			sbi->discard_blks++;
2242 	}
2243 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2244 		se->ckpt_valid_blocks += del;
2245 
2246 	__mark_sit_entry_dirty(sbi, segno);
2247 
2248 	/* update total number of valid blocks to be written in ckpt area */
2249 	SIT_I(sbi)->written_valid_blocks += del;
2250 
2251 	if (__is_large_section(sbi))
2252 		get_sec_entry(sbi, segno)->valid_blocks += del;
2253 }
2254 
2255 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2256 {
2257 	unsigned int segno = GET_SEGNO(sbi, addr);
2258 	struct sit_info *sit_i = SIT_I(sbi);
2259 
2260 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2261 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2262 		return;
2263 
2264 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2265 	f2fs_invalidate_compress_page(sbi, addr);
2266 
2267 	/* add it into sit main buffer */
2268 	down_write(&sit_i->sentry_lock);
2269 
2270 	update_segment_mtime(sbi, addr, 0);
2271 	update_sit_entry(sbi, addr, -1);
2272 
2273 	/* add it into dirty seglist */
2274 	locate_dirty_segment(sbi, segno);
2275 
2276 	up_write(&sit_i->sentry_lock);
2277 }
2278 
2279 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2280 {
2281 	struct sit_info *sit_i = SIT_I(sbi);
2282 	unsigned int segno, offset;
2283 	struct seg_entry *se;
2284 	bool is_cp = false;
2285 
2286 	if (!__is_valid_data_blkaddr(blkaddr))
2287 		return true;
2288 
2289 	down_read(&sit_i->sentry_lock);
2290 
2291 	segno = GET_SEGNO(sbi, blkaddr);
2292 	se = get_seg_entry(sbi, segno);
2293 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2294 
2295 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2296 		is_cp = true;
2297 
2298 	up_read(&sit_i->sentry_lock);
2299 
2300 	return is_cp;
2301 }
2302 
2303 /*
2304  * This function should be resided under the curseg_mutex lock
2305  */
2306 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2307 					struct f2fs_summary *sum)
2308 {
2309 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2310 	void *addr = curseg->sum_blk;
2311 
2312 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2313 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2314 }
2315 
2316 /*
2317  * Calculate the number of current summary pages for writing
2318  */
2319 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2320 {
2321 	int valid_sum_count = 0;
2322 	int i, sum_in_page;
2323 
2324 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2325 		if (sbi->ckpt->alloc_type[i] == SSR)
2326 			valid_sum_count += sbi->blocks_per_seg;
2327 		else {
2328 			if (for_ra)
2329 				valid_sum_count += le16_to_cpu(
2330 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2331 			else
2332 				valid_sum_count += curseg_blkoff(sbi, i);
2333 		}
2334 	}
2335 
2336 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2337 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2338 	if (valid_sum_count <= sum_in_page)
2339 		return 1;
2340 	else if ((valid_sum_count - sum_in_page) <=
2341 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2342 		return 2;
2343 	return 3;
2344 }
2345 
2346 /*
2347  * Caller should put this summary page
2348  */
2349 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2350 {
2351 	if (unlikely(f2fs_cp_error(sbi)))
2352 		return ERR_PTR(-EIO);
2353 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2354 }
2355 
2356 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2357 					void *src, block_t blk_addr)
2358 {
2359 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2360 
2361 	memcpy(page_address(page), src, PAGE_SIZE);
2362 	set_page_dirty(page);
2363 	f2fs_put_page(page, 1);
2364 }
2365 
2366 static void write_sum_page(struct f2fs_sb_info *sbi,
2367 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2368 {
2369 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2370 }
2371 
2372 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2373 						int type, block_t blk_addr)
2374 {
2375 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2376 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2377 	struct f2fs_summary_block *src = curseg->sum_blk;
2378 	struct f2fs_summary_block *dst;
2379 
2380 	dst = (struct f2fs_summary_block *)page_address(page);
2381 	memset(dst, 0, PAGE_SIZE);
2382 
2383 	mutex_lock(&curseg->curseg_mutex);
2384 
2385 	down_read(&curseg->journal_rwsem);
2386 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2387 	up_read(&curseg->journal_rwsem);
2388 
2389 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2390 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2391 
2392 	mutex_unlock(&curseg->curseg_mutex);
2393 
2394 	set_page_dirty(page);
2395 	f2fs_put_page(page, 1);
2396 }
2397 
2398 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2399 				struct curseg_info *curseg, int type)
2400 {
2401 	unsigned int segno = curseg->segno + 1;
2402 	struct free_segmap_info *free_i = FREE_I(sbi);
2403 
2404 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2405 		return !test_bit(segno, free_i->free_segmap);
2406 	return 0;
2407 }
2408 
2409 /*
2410  * Find a new segment from the free segments bitmap to right order
2411  * This function should be returned with success, otherwise BUG
2412  */
2413 static void get_new_segment(struct f2fs_sb_info *sbi,
2414 			unsigned int *newseg, bool new_sec, int dir)
2415 {
2416 	struct free_segmap_info *free_i = FREE_I(sbi);
2417 	unsigned int segno, secno, zoneno;
2418 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2419 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2420 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2421 	unsigned int left_start = hint;
2422 	bool init = true;
2423 	int go_left = 0;
2424 	int i;
2425 
2426 	spin_lock(&free_i->segmap_lock);
2427 
2428 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2429 		segno = find_next_zero_bit(free_i->free_segmap,
2430 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2431 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2432 			goto got_it;
2433 	}
2434 find_other_zone:
2435 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2436 	if (secno >= MAIN_SECS(sbi)) {
2437 		if (dir == ALLOC_RIGHT) {
2438 			secno = find_first_zero_bit(free_i->free_secmap,
2439 							MAIN_SECS(sbi));
2440 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2441 		} else {
2442 			go_left = 1;
2443 			left_start = hint - 1;
2444 		}
2445 	}
2446 	if (go_left == 0)
2447 		goto skip_left;
2448 
2449 	while (test_bit(left_start, free_i->free_secmap)) {
2450 		if (left_start > 0) {
2451 			left_start--;
2452 			continue;
2453 		}
2454 		left_start = find_first_zero_bit(free_i->free_secmap,
2455 							MAIN_SECS(sbi));
2456 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2457 		break;
2458 	}
2459 	secno = left_start;
2460 skip_left:
2461 	segno = GET_SEG_FROM_SEC(sbi, secno);
2462 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2463 
2464 	/* give up on finding another zone */
2465 	if (!init)
2466 		goto got_it;
2467 	if (sbi->secs_per_zone == 1)
2468 		goto got_it;
2469 	if (zoneno == old_zoneno)
2470 		goto got_it;
2471 	if (dir == ALLOC_LEFT) {
2472 		if (!go_left && zoneno + 1 >= total_zones)
2473 			goto got_it;
2474 		if (go_left && zoneno == 0)
2475 			goto got_it;
2476 	}
2477 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2478 		if (CURSEG_I(sbi, i)->zone == zoneno)
2479 			break;
2480 
2481 	if (i < NR_CURSEG_TYPE) {
2482 		/* zone is in user, try another */
2483 		if (go_left)
2484 			hint = zoneno * sbi->secs_per_zone - 1;
2485 		else if (zoneno + 1 >= total_zones)
2486 			hint = 0;
2487 		else
2488 			hint = (zoneno + 1) * sbi->secs_per_zone;
2489 		init = false;
2490 		goto find_other_zone;
2491 	}
2492 got_it:
2493 	/* set it as dirty segment in free segmap */
2494 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2495 	__set_inuse(sbi, segno);
2496 	*newseg = segno;
2497 	spin_unlock(&free_i->segmap_lock);
2498 }
2499 
2500 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2501 {
2502 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2503 	struct summary_footer *sum_footer;
2504 	unsigned short seg_type = curseg->seg_type;
2505 
2506 	curseg->inited = true;
2507 	curseg->segno = curseg->next_segno;
2508 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2509 	curseg->next_blkoff = 0;
2510 	curseg->next_segno = NULL_SEGNO;
2511 
2512 	sum_footer = &(curseg->sum_blk->footer);
2513 	memset(sum_footer, 0, sizeof(struct summary_footer));
2514 
2515 	sanity_check_seg_type(sbi, seg_type);
2516 
2517 	if (IS_DATASEG(seg_type))
2518 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2519 	if (IS_NODESEG(seg_type))
2520 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2521 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2522 }
2523 
2524 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2525 {
2526 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2527 	unsigned short seg_type = curseg->seg_type;
2528 
2529 	sanity_check_seg_type(sbi, seg_type);
2530 	if (f2fs_need_rand_seg(sbi))
2531 		return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2532 
2533 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2534 	if (__is_large_section(sbi))
2535 		return curseg->segno;
2536 
2537 	/* inmem log may not locate on any segment after mount */
2538 	if (!curseg->inited)
2539 		return 0;
2540 
2541 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2542 		return 0;
2543 
2544 	if (test_opt(sbi, NOHEAP) &&
2545 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2546 		return 0;
2547 
2548 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2549 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2550 
2551 	/* find segments from 0 to reuse freed segments */
2552 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2553 		return 0;
2554 
2555 	return curseg->segno;
2556 }
2557 
2558 /*
2559  * Allocate a current working segment.
2560  * This function always allocates a free segment in LFS manner.
2561  */
2562 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2563 {
2564 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2565 	unsigned short seg_type = curseg->seg_type;
2566 	unsigned int segno = curseg->segno;
2567 	int dir = ALLOC_LEFT;
2568 
2569 	if (curseg->inited)
2570 		write_sum_page(sbi, curseg->sum_blk,
2571 				GET_SUM_BLOCK(sbi, segno));
2572 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2573 		dir = ALLOC_RIGHT;
2574 
2575 	if (test_opt(sbi, NOHEAP))
2576 		dir = ALLOC_RIGHT;
2577 
2578 	segno = __get_next_segno(sbi, type);
2579 	get_new_segment(sbi, &segno, new_sec, dir);
2580 	curseg->next_segno = segno;
2581 	reset_curseg(sbi, type, 1);
2582 	curseg->alloc_type = LFS;
2583 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2584 		curseg->fragment_remained_chunk =
2585 				prandom_u32() % sbi->max_fragment_chunk + 1;
2586 }
2587 
2588 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2589 					int segno, block_t start)
2590 {
2591 	struct seg_entry *se = get_seg_entry(sbi, segno);
2592 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2593 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2594 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2595 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2596 	int i;
2597 
2598 	for (i = 0; i < entries; i++)
2599 		target_map[i] = ckpt_map[i] | cur_map[i];
2600 
2601 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2602 }
2603 
2604 /*
2605  * If a segment is written by LFS manner, next block offset is just obtained
2606  * by increasing the current block offset. However, if a segment is written by
2607  * SSR manner, next block offset obtained by calling __next_free_blkoff
2608  */
2609 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2610 				struct curseg_info *seg)
2611 {
2612 	if (seg->alloc_type == SSR) {
2613 		seg->next_blkoff =
2614 			__next_free_blkoff(sbi, seg->segno,
2615 						seg->next_blkoff + 1);
2616 	} else {
2617 		seg->next_blkoff++;
2618 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2619 			/* To allocate block chunks in different sizes, use random number */
2620 			if (--seg->fragment_remained_chunk <= 0) {
2621 				seg->fragment_remained_chunk =
2622 				   prandom_u32() % sbi->max_fragment_chunk + 1;
2623 				seg->next_blkoff +=
2624 				   prandom_u32() % sbi->max_fragment_hole + 1;
2625 			}
2626 		}
2627 	}
2628 }
2629 
2630 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2631 {
2632 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2633 }
2634 
2635 /*
2636  * This function always allocates a used segment(from dirty seglist) by SSR
2637  * manner, so it should recover the existing segment information of valid blocks
2638  */
2639 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2640 {
2641 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2642 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2643 	unsigned int new_segno = curseg->next_segno;
2644 	struct f2fs_summary_block *sum_node;
2645 	struct page *sum_page;
2646 
2647 	if (flush)
2648 		write_sum_page(sbi, curseg->sum_blk,
2649 					GET_SUM_BLOCK(sbi, curseg->segno));
2650 
2651 	__set_test_and_inuse(sbi, new_segno);
2652 
2653 	mutex_lock(&dirty_i->seglist_lock);
2654 	__remove_dirty_segment(sbi, new_segno, PRE);
2655 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2656 	mutex_unlock(&dirty_i->seglist_lock);
2657 
2658 	reset_curseg(sbi, type, 1);
2659 	curseg->alloc_type = SSR;
2660 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2661 
2662 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2663 	if (IS_ERR(sum_page)) {
2664 		/* GC won't be able to use stale summary pages by cp_error */
2665 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2666 		return;
2667 	}
2668 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2669 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2670 	f2fs_put_page(sum_page, 1);
2671 }
2672 
2673 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2674 				int alloc_mode, unsigned long long age);
2675 
2676 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2677 					int target_type, int alloc_mode,
2678 					unsigned long long age)
2679 {
2680 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2681 
2682 	curseg->seg_type = target_type;
2683 
2684 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2685 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2686 
2687 		curseg->seg_type = se->type;
2688 		change_curseg(sbi, type, true);
2689 	} else {
2690 		/* allocate cold segment by default */
2691 		curseg->seg_type = CURSEG_COLD_DATA;
2692 		new_curseg(sbi, type, true);
2693 	}
2694 	stat_inc_seg_type(sbi, curseg);
2695 }
2696 
2697 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2698 {
2699 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2700 
2701 	if (!sbi->am.atgc_enabled)
2702 		return;
2703 
2704 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2705 
2706 	mutex_lock(&curseg->curseg_mutex);
2707 	down_write(&SIT_I(sbi)->sentry_lock);
2708 
2709 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2710 
2711 	up_write(&SIT_I(sbi)->sentry_lock);
2712 	mutex_unlock(&curseg->curseg_mutex);
2713 
2714 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2715 
2716 }
2717 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2718 {
2719 	__f2fs_init_atgc_curseg(sbi);
2720 }
2721 
2722 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2723 {
2724 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2725 
2726 	mutex_lock(&curseg->curseg_mutex);
2727 	if (!curseg->inited)
2728 		goto out;
2729 
2730 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2731 		write_sum_page(sbi, curseg->sum_blk,
2732 				GET_SUM_BLOCK(sbi, curseg->segno));
2733 	} else {
2734 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2735 		__set_test_and_free(sbi, curseg->segno, true);
2736 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2737 	}
2738 out:
2739 	mutex_unlock(&curseg->curseg_mutex);
2740 }
2741 
2742 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2743 {
2744 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2745 
2746 	if (sbi->am.atgc_enabled)
2747 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2748 }
2749 
2750 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2751 {
2752 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2753 
2754 	mutex_lock(&curseg->curseg_mutex);
2755 	if (!curseg->inited)
2756 		goto out;
2757 	if (get_valid_blocks(sbi, curseg->segno, false))
2758 		goto out;
2759 
2760 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2761 	__set_test_and_inuse(sbi, curseg->segno);
2762 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2763 out:
2764 	mutex_unlock(&curseg->curseg_mutex);
2765 }
2766 
2767 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2768 {
2769 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2770 
2771 	if (sbi->am.atgc_enabled)
2772 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2773 }
2774 
2775 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2776 				int alloc_mode, unsigned long long age)
2777 {
2778 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2779 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2780 	unsigned segno = NULL_SEGNO;
2781 	unsigned short seg_type = curseg->seg_type;
2782 	int i, cnt;
2783 	bool reversed = false;
2784 
2785 	sanity_check_seg_type(sbi, seg_type);
2786 
2787 	/* f2fs_need_SSR() already forces to do this */
2788 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2789 		curseg->next_segno = segno;
2790 		return 1;
2791 	}
2792 
2793 	/* For node segments, let's do SSR more intensively */
2794 	if (IS_NODESEG(seg_type)) {
2795 		if (seg_type >= CURSEG_WARM_NODE) {
2796 			reversed = true;
2797 			i = CURSEG_COLD_NODE;
2798 		} else {
2799 			i = CURSEG_HOT_NODE;
2800 		}
2801 		cnt = NR_CURSEG_NODE_TYPE;
2802 	} else {
2803 		if (seg_type >= CURSEG_WARM_DATA) {
2804 			reversed = true;
2805 			i = CURSEG_COLD_DATA;
2806 		} else {
2807 			i = CURSEG_HOT_DATA;
2808 		}
2809 		cnt = NR_CURSEG_DATA_TYPE;
2810 	}
2811 
2812 	for (; cnt-- > 0; reversed ? i-- : i++) {
2813 		if (i == seg_type)
2814 			continue;
2815 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2816 			curseg->next_segno = segno;
2817 			return 1;
2818 		}
2819 	}
2820 
2821 	/* find valid_blocks=0 in dirty list */
2822 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2823 		segno = get_free_segment(sbi);
2824 		if (segno != NULL_SEGNO) {
2825 			curseg->next_segno = segno;
2826 			return 1;
2827 		}
2828 	}
2829 	return 0;
2830 }
2831 
2832 /*
2833  * flush out current segment and replace it with new segment
2834  * This function should be returned with success, otherwise BUG
2835  */
2836 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2837 						int type, bool force)
2838 {
2839 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2840 
2841 	if (force)
2842 		new_curseg(sbi, type, true);
2843 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2844 					curseg->seg_type == CURSEG_WARM_NODE)
2845 		new_curseg(sbi, type, false);
2846 	else if (curseg->alloc_type == LFS &&
2847 			is_next_segment_free(sbi, curseg, type) &&
2848 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2849 		new_curseg(sbi, type, false);
2850 	else if (f2fs_need_SSR(sbi) &&
2851 			get_ssr_segment(sbi, type, SSR, 0))
2852 		change_curseg(sbi, type, true);
2853 	else
2854 		new_curseg(sbi, type, false);
2855 
2856 	stat_inc_seg_type(sbi, curseg);
2857 }
2858 
2859 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2860 					unsigned int start, unsigned int end)
2861 {
2862 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2863 	unsigned int segno;
2864 
2865 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2866 	mutex_lock(&curseg->curseg_mutex);
2867 	down_write(&SIT_I(sbi)->sentry_lock);
2868 
2869 	segno = CURSEG_I(sbi, type)->segno;
2870 	if (segno < start || segno > end)
2871 		goto unlock;
2872 
2873 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2874 		change_curseg(sbi, type, true);
2875 	else
2876 		new_curseg(sbi, type, true);
2877 
2878 	stat_inc_seg_type(sbi, curseg);
2879 
2880 	locate_dirty_segment(sbi, segno);
2881 unlock:
2882 	up_write(&SIT_I(sbi)->sentry_lock);
2883 
2884 	if (segno != curseg->segno)
2885 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2886 			    type, segno, curseg->segno);
2887 
2888 	mutex_unlock(&curseg->curseg_mutex);
2889 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2890 }
2891 
2892 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2893 						bool new_sec, bool force)
2894 {
2895 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2896 	unsigned int old_segno;
2897 
2898 	if (!curseg->inited)
2899 		goto alloc;
2900 
2901 	if (force || curseg->next_blkoff ||
2902 		get_valid_blocks(sbi, curseg->segno, new_sec))
2903 		goto alloc;
2904 
2905 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2906 		return;
2907 alloc:
2908 	old_segno = curseg->segno;
2909 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2910 	locate_dirty_segment(sbi, old_segno);
2911 }
2912 
2913 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2914 						int type, bool force)
2915 {
2916 	__allocate_new_segment(sbi, type, true, force);
2917 }
2918 
2919 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2920 {
2921 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2922 	down_write(&SIT_I(sbi)->sentry_lock);
2923 	__allocate_new_section(sbi, type, force);
2924 	up_write(&SIT_I(sbi)->sentry_lock);
2925 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2926 }
2927 
2928 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2929 {
2930 	int i;
2931 
2932 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2933 	down_write(&SIT_I(sbi)->sentry_lock);
2934 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2935 		__allocate_new_segment(sbi, i, false, false);
2936 	up_write(&SIT_I(sbi)->sentry_lock);
2937 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2938 }
2939 
2940 static const struct segment_allocation default_salloc_ops = {
2941 	.allocate_segment = allocate_segment_by_default,
2942 };
2943 
2944 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2945 						struct cp_control *cpc)
2946 {
2947 	__u64 trim_start = cpc->trim_start;
2948 	bool has_candidate = false;
2949 
2950 	down_write(&SIT_I(sbi)->sentry_lock);
2951 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2952 		if (add_discard_addrs(sbi, cpc, true)) {
2953 			has_candidate = true;
2954 			break;
2955 		}
2956 	}
2957 	up_write(&SIT_I(sbi)->sentry_lock);
2958 
2959 	cpc->trim_start = trim_start;
2960 	return has_candidate;
2961 }
2962 
2963 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2964 					struct discard_policy *dpolicy,
2965 					unsigned int start, unsigned int end)
2966 {
2967 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2968 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2969 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2970 	struct discard_cmd *dc;
2971 	struct blk_plug plug;
2972 	int issued;
2973 	unsigned int trimmed = 0;
2974 
2975 next:
2976 	issued = 0;
2977 
2978 	mutex_lock(&dcc->cmd_lock);
2979 	if (unlikely(dcc->rbtree_check))
2980 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2981 							&dcc->root, false));
2982 
2983 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2984 					NULL, start,
2985 					(struct rb_entry **)&prev_dc,
2986 					(struct rb_entry **)&next_dc,
2987 					&insert_p, &insert_parent, true, NULL);
2988 	if (!dc)
2989 		dc = next_dc;
2990 
2991 	blk_start_plug(&plug);
2992 
2993 	while (dc && dc->lstart <= end) {
2994 		struct rb_node *node;
2995 		int err = 0;
2996 
2997 		if (dc->len < dpolicy->granularity)
2998 			goto skip;
2999 
3000 		if (dc->state != D_PREP) {
3001 			list_move_tail(&dc->list, &dcc->fstrim_list);
3002 			goto skip;
3003 		}
3004 
3005 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3006 
3007 		if (issued >= dpolicy->max_requests) {
3008 			start = dc->lstart + dc->len;
3009 
3010 			if (err)
3011 				__remove_discard_cmd(sbi, dc);
3012 
3013 			blk_finish_plug(&plug);
3014 			mutex_unlock(&dcc->cmd_lock);
3015 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3016 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3017 			goto next;
3018 		}
3019 skip:
3020 		node = rb_next(&dc->rb_node);
3021 		if (err)
3022 			__remove_discard_cmd(sbi, dc);
3023 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3024 
3025 		if (fatal_signal_pending(current))
3026 			break;
3027 	}
3028 
3029 	blk_finish_plug(&plug);
3030 	mutex_unlock(&dcc->cmd_lock);
3031 
3032 	return trimmed;
3033 }
3034 
3035 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3036 {
3037 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3038 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3039 	unsigned int start_segno, end_segno;
3040 	block_t start_block, end_block;
3041 	struct cp_control cpc;
3042 	struct discard_policy dpolicy;
3043 	unsigned long long trimmed = 0;
3044 	int err = 0;
3045 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3046 
3047 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3048 		return -EINVAL;
3049 
3050 	if (end < MAIN_BLKADDR(sbi))
3051 		goto out;
3052 
3053 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3054 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3055 		return -EFSCORRUPTED;
3056 	}
3057 
3058 	/* start/end segment number in main_area */
3059 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3060 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3061 						GET_SEGNO(sbi, end);
3062 	if (need_align) {
3063 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3064 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3065 	}
3066 
3067 	cpc.reason = CP_DISCARD;
3068 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3069 	cpc.trim_start = start_segno;
3070 	cpc.trim_end = end_segno;
3071 
3072 	if (sbi->discard_blks == 0)
3073 		goto out;
3074 
3075 	f2fs_down_write(&sbi->gc_lock);
3076 	err = f2fs_write_checkpoint(sbi, &cpc);
3077 	f2fs_up_write(&sbi->gc_lock);
3078 	if (err)
3079 		goto out;
3080 
3081 	/*
3082 	 * We filed discard candidates, but actually we don't need to wait for
3083 	 * all of them, since they'll be issued in idle time along with runtime
3084 	 * discard option. User configuration looks like using runtime discard
3085 	 * or periodic fstrim instead of it.
3086 	 */
3087 	if (f2fs_realtime_discard_enable(sbi))
3088 		goto out;
3089 
3090 	start_block = START_BLOCK(sbi, start_segno);
3091 	end_block = START_BLOCK(sbi, end_segno + 1);
3092 
3093 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3094 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3095 					start_block, end_block);
3096 
3097 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3098 					start_block, end_block);
3099 out:
3100 	if (!err)
3101 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3102 	return err;
3103 }
3104 
3105 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3106 					struct curseg_info *curseg)
3107 {
3108 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3109 							curseg->segno);
3110 }
3111 
3112 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3113 {
3114 	switch (hint) {
3115 	case WRITE_LIFE_SHORT:
3116 		return CURSEG_HOT_DATA;
3117 	case WRITE_LIFE_EXTREME:
3118 		return CURSEG_COLD_DATA;
3119 	default:
3120 		return CURSEG_WARM_DATA;
3121 	}
3122 }
3123 
3124 static int __get_segment_type_2(struct f2fs_io_info *fio)
3125 {
3126 	if (fio->type == DATA)
3127 		return CURSEG_HOT_DATA;
3128 	else
3129 		return CURSEG_HOT_NODE;
3130 }
3131 
3132 static int __get_segment_type_4(struct f2fs_io_info *fio)
3133 {
3134 	if (fio->type == DATA) {
3135 		struct inode *inode = fio->page->mapping->host;
3136 
3137 		if (S_ISDIR(inode->i_mode))
3138 			return CURSEG_HOT_DATA;
3139 		else
3140 			return CURSEG_COLD_DATA;
3141 	} else {
3142 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3143 			return CURSEG_WARM_NODE;
3144 		else
3145 			return CURSEG_COLD_NODE;
3146 	}
3147 }
3148 
3149 static int __get_segment_type_6(struct f2fs_io_info *fio)
3150 {
3151 	if (fio->type == DATA) {
3152 		struct inode *inode = fio->page->mapping->host;
3153 
3154 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3155 			return CURSEG_COLD_DATA_PINNED;
3156 
3157 		if (page_private_gcing(fio->page)) {
3158 			if (fio->sbi->am.atgc_enabled &&
3159 				(fio->io_type == FS_DATA_IO) &&
3160 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3161 				return CURSEG_ALL_DATA_ATGC;
3162 			else
3163 				return CURSEG_COLD_DATA;
3164 		}
3165 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3166 			return CURSEG_COLD_DATA;
3167 		if (file_is_hot(inode) ||
3168 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3169 				f2fs_is_atomic_file(inode))
3170 			return CURSEG_HOT_DATA;
3171 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3172 	} else {
3173 		if (IS_DNODE(fio->page))
3174 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3175 						CURSEG_HOT_NODE;
3176 		return CURSEG_COLD_NODE;
3177 	}
3178 }
3179 
3180 static int __get_segment_type(struct f2fs_io_info *fio)
3181 {
3182 	int type = 0;
3183 
3184 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3185 	case 2:
3186 		type = __get_segment_type_2(fio);
3187 		break;
3188 	case 4:
3189 		type = __get_segment_type_4(fio);
3190 		break;
3191 	case 6:
3192 		type = __get_segment_type_6(fio);
3193 		break;
3194 	default:
3195 		f2fs_bug_on(fio->sbi, true);
3196 	}
3197 
3198 	if (IS_HOT(type))
3199 		fio->temp = HOT;
3200 	else if (IS_WARM(type))
3201 		fio->temp = WARM;
3202 	else
3203 		fio->temp = COLD;
3204 	return type;
3205 }
3206 
3207 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3208 		block_t old_blkaddr, block_t *new_blkaddr,
3209 		struct f2fs_summary *sum, int type,
3210 		struct f2fs_io_info *fio)
3211 {
3212 	struct sit_info *sit_i = SIT_I(sbi);
3213 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3214 	unsigned long long old_mtime;
3215 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3216 	struct seg_entry *se = NULL;
3217 
3218 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3219 
3220 	mutex_lock(&curseg->curseg_mutex);
3221 	down_write(&sit_i->sentry_lock);
3222 
3223 	if (from_gc) {
3224 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3225 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3226 		sanity_check_seg_type(sbi, se->type);
3227 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3228 	}
3229 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3230 
3231 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3232 
3233 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3234 
3235 	/*
3236 	 * __add_sum_entry should be resided under the curseg_mutex
3237 	 * because, this function updates a summary entry in the
3238 	 * current summary block.
3239 	 */
3240 	__add_sum_entry(sbi, type, sum);
3241 
3242 	__refresh_next_blkoff(sbi, curseg);
3243 
3244 	stat_inc_block_count(sbi, curseg);
3245 
3246 	if (from_gc) {
3247 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3248 	} else {
3249 		update_segment_mtime(sbi, old_blkaddr, 0);
3250 		old_mtime = 0;
3251 	}
3252 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3253 
3254 	/*
3255 	 * SIT information should be updated before segment allocation,
3256 	 * since SSR needs latest valid block information.
3257 	 */
3258 	update_sit_entry(sbi, *new_blkaddr, 1);
3259 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3260 		update_sit_entry(sbi, old_blkaddr, -1);
3261 
3262 	if (!__has_curseg_space(sbi, curseg)) {
3263 		if (from_gc)
3264 			get_atssr_segment(sbi, type, se->type,
3265 						AT_SSR, se->mtime);
3266 		else
3267 			sit_i->s_ops->allocate_segment(sbi, type, false);
3268 	}
3269 	/*
3270 	 * segment dirty status should be updated after segment allocation,
3271 	 * so we just need to update status only one time after previous
3272 	 * segment being closed.
3273 	 */
3274 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3275 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3276 
3277 	up_write(&sit_i->sentry_lock);
3278 
3279 	if (page && IS_NODESEG(type)) {
3280 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3281 
3282 		f2fs_inode_chksum_set(sbi, page);
3283 	}
3284 
3285 	if (fio) {
3286 		struct f2fs_bio_info *io;
3287 
3288 		if (F2FS_IO_ALIGNED(sbi))
3289 			fio->retry = false;
3290 
3291 		INIT_LIST_HEAD(&fio->list);
3292 		fio->in_list = true;
3293 		io = sbi->write_io[fio->type] + fio->temp;
3294 		spin_lock(&io->io_lock);
3295 		list_add_tail(&fio->list, &io->io_list);
3296 		spin_unlock(&io->io_lock);
3297 	}
3298 
3299 	mutex_unlock(&curseg->curseg_mutex);
3300 
3301 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3302 }
3303 
3304 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3305 					block_t blkaddr, unsigned int blkcnt)
3306 {
3307 	if (!f2fs_is_multi_device(sbi))
3308 		return;
3309 
3310 	while (1) {
3311 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3312 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3313 
3314 		/* update device state for fsync */
3315 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3316 
3317 		/* update device state for checkpoint */
3318 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3319 			spin_lock(&sbi->dev_lock);
3320 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3321 			spin_unlock(&sbi->dev_lock);
3322 		}
3323 
3324 		if (blkcnt <= blks)
3325 			break;
3326 		blkcnt -= blks;
3327 		blkaddr += blks;
3328 	}
3329 }
3330 
3331 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3332 {
3333 	int type = __get_segment_type(fio);
3334 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3335 
3336 	if (keep_order)
3337 		f2fs_down_read(&fio->sbi->io_order_lock);
3338 reallocate:
3339 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3340 			&fio->new_blkaddr, sum, type, fio);
3341 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3342 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3343 					fio->old_blkaddr, fio->old_blkaddr);
3344 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3345 	}
3346 
3347 	/* writeout dirty page into bdev */
3348 	f2fs_submit_page_write(fio);
3349 	if (fio->retry) {
3350 		fio->old_blkaddr = fio->new_blkaddr;
3351 		goto reallocate;
3352 	}
3353 
3354 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3355 
3356 	if (keep_order)
3357 		f2fs_up_read(&fio->sbi->io_order_lock);
3358 }
3359 
3360 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3361 					enum iostat_type io_type)
3362 {
3363 	struct f2fs_io_info fio = {
3364 		.sbi = sbi,
3365 		.type = META,
3366 		.temp = HOT,
3367 		.op = REQ_OP_WRITE,
3368 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3369 		.old_blkaddr = page->index,
3370 		.new_blkaddr = page->index,
3371 		.page = page,
3372 		.encrypted_page = NULL,
3373 		.in_list = false,
3374 	};
3375 
3376 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3377 		fio.op_flags &= ~REQ_META;
3378 
3379 	set_page_writeback(page);
3380 	ClearPageError(page);
3381 	f2fs_submit_page_write(&fio);
3382 
3383 	stat_inc_meta_count(sbi, page->index);
3384 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3385 }
3386 
3387 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3388 {
3389 	struct f2fs_summary sum;
3390 
3391 	set_summary(&sum, nid, 0, 0);
3392 	do_write_page(&sum, fio);
3393 
3394 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3395 }
3396 
3397 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3398 					struct f2fs_io_info *fio)
3399 {
3400 	struct f2fs_sb_info *sbi = fio->sbi;
3401 	struct f2fs_summary sum;
3402 
3403 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3404 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3405 	do_write_page(&sum, fio);
3406 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3407 
3408 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3409 }
3410 
3411 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3412 {
3413 	int err;
3414 	struct f2fs_sb_info *sbi = fio->sbi;
3415 	unsigned int segno;
3416 
3417 	fio->new_blkaddr = fio->old_blkaddr;
3418 	/* i/o temperature is needed for passing down write hints */
3419 	__get_segment_type(fio);
3420 
3421 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3422 
3423 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3424 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3425 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3426 			  __func__, segno);
3427 		err = -EFSCORRUPTED;
3428 		goto drop_bio;
3429 	}
3430 
3431 	if (f2fs_cp_error(sbi)) {
3432 		err = -EIO;
3433 		goto drop_bio;
3434 	}
3435 
3436 	invalidate_mapping_pages(META_MAPPING(sbi),
3437 				fio->new_blkaddr, fio->new_blkaddr);
3438 
3439 	stat_inc_inplace_blocks(fio->sbi);
3440 
3441 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3442 		err = f2fs_merge_page_bio(fio);
3443 	else
3444 		err = f2fs_submit_page_bio(fio);
3445 	if (!err) {
3446 		f2fs_update_device_state(fio->sbi, fio->ino,
3447 						fio->new_blkaddr, 1);
3448 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3449 	}
3450 
3451 	return err;
3452 drop_bio:
3453 	if (fio->bio && *(fio->bio)) {
3454 		struct bio *bio = *(fio->bio);
3455 
3456 		bio->bi_status = BLK_STS_IOERR;
3457 		bio_endio(bio);
3458 		*(fio->bio) = NULL;
3459 	}
3460 	return err;
3461 }
3462 
3463 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3464 						unsigned int segno)
3465 {
3466 	int i;
3467 
3468 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3469 		if (CURSEG_I(sbi, i)->segno == segno)
3470 			break;
3471 	}
3472 	return i;
3473 }
3474 
3475 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3476 				block_t old_blkaddr, block_t new_blkaddr,
3477 				bool recover_curseg, bool recover_newaddr,
3478 				bool from_gc)
3479 {
3480 	struct sit_info *sit_i = SIT_I(sbi);
3481 	struct curseg_info *curseg;
3482 	unsigned int segno, old_cursegno;
3483 	struct seg_entry *se;
3484 	int type;
3485 	unsigned short old_blkoff;
3486 	unsigned char old_alloc_type;
3487 
3488 	segno = GET_SEGNO(sbi, new_blkaddr);
3489 	se = get_seg_entry(sbi, segno);
3490 	type = se->type;
3491 
3492 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3493 
3494 	if (!recover_curseg) {
3495 		/* for recovery flow */
3496 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3497 			if (old_blkaddr == NULL_ADDR)
3498 				type = CURSEG_COLD_DATA;
3499 			else
3500 				type = CURSEG_WARM_DATA;
3501 		}
3502 	} else {
3503 		if (IS_CURSEG(sbi, segno)) {
3504 			/* se->type is volatile as SSR allocation */
3505 			type = __f2fs_get_curseg(sbi, segno);
3506 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3507 		} else {
3508 			type = CURSEG_WARM_DATA;
3509 		}
3510 	}
3511 
3512 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3513 	curseg = CURSEG_I(sbi, type);
3514 
3515 	mutex_lock(&curseg->curseg_mutex);
3516 	down_write(&sit_i->sentry_lock);
3517 
3518 	old_cursegno = curseg->segno;
3519 	old_blkoff = curseg->next_blkoff;
3520 	old_alloc_type = curseg->alloc_type;
3521 
3522 	/* change the current segment */
3523 	if (segno != curseg->segno) {
3524 		curseg->next_segno = segno;
3525 		change_curseg(sbi, type, true);
3526 	}
3527 
3528 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3529 	__add_sum_entry(sbi, type, sum);
3530 
3531 	if (!recover_curseg || recover_newaddr) {
3532 		if (!from_gc)
3533 			update_segment_mtime(sbi, new_blkaddr, 0);
3534 		update_sit_entry(sbi, new_blkaddr, 1);
3535 	}
3536 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3537 		invalidate_mapping_pages(META_MAPPING(sbi),
3538 					old_blkaddr, old_blkaddr);
3539 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3540 		if (!from_gc)
3541 			update_segment_mtime(sbi, old_blkaddr, 0);
3542 		update_sit_entry(sbi, old_blkaddr, -1);
3543 	}
3544 
3545 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3546 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3547 
3548 	locate_dirty_segment(sbi, old_cursegno);
3549 
3550 	if (recover_curseg) {
3551 		if (old_cursegno != curseg->segno) {
3552 			curseg->next_segno = old_cursegno;
3553 			change_curseg(sbi, type, true);
3554 		}
3555 		curseg->next_blkoff = old_blkoff;
3556 		curseg->alloc_type = old_alloc_type;
3557 	}
3558 
3559 	up_write(&sit_i->sentry_lock);
3560 	mutex_unlock(&curseg->curseg_mutex);
3561 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3562 }
3563 
3564 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3565 				block_t old_addr, block_t new_addr,
3566 				unsigned char version, bool recover_curseg,
3567 				bool recover_newaddr)
3568 {
3569 	struct f2fs_summary sum;
3570 
3571 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3572 
3573 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3574 					recover_curseg, recover_newaddr, false);
3575 
3576 	f2fs_update_data_blkaddr(dn, new_addr);
3577 }
3578 
3579 void f2fs_wait_on_page_writeback(struct page *page,
3580 				enum page_type type, bool ordered, bool locked)
3581 {
3582 	if (PageWriteback(page)) {
3583 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3584 
3585 		/* submit cached LFS IO */
3586 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3587 		/* sbumit cached IPU IO */
3588 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3589 		if (ordered) {
3590 			wait_on_page_writeback(page);
3591 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3592 		} else {
3593 			wait_for_stable_page(page);
3594 		}
3595 	}
3596 }
3597 
3598 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3599 {
3600 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3601 	struct page *cpage;
3602 
3603 	if (!f2fs_post_read_required(inode))
3604 		return;
3605 
3606 	if (!__is_valid_data_blkaddr(blkaddr))
3607 		return;
3608 
3609 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3610 	if (cpage) {
3611 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3612 		f2fs_put_page(cpage, 1);
3613 	}
3614 }
3615 
3616 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3617 								block_t len)
3618 {
3619 	block_t i;
3620 
3621 	for (i = 0; i < len; i++)
3622 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3623 }
3624 
3625 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3626 {
3627 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3628 	struct curseg_info *seg_i;
3629 	unsigned char *kaddr;
3630 	struct page *page;
3631 	block_t start;
3632 	int i, j, offset;
3633 
3634 	start = start_sum_block(sbi);
3635 
3636 	page = f2fs_get_meta_page(sbi, start++);
3637 	if (IS_ERR(page))
3638 		return PTR_ERR(page);
3639 	kaddr = (unsigned char *)page_address(page);
3640 
3641 	/* Step 1: restore nat cache */
3642 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3643 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3644 
3645 	/* Step 2: restore sit cache */
3646 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3647 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3648 	offset = 2 * SUM_JOURNAL_SIZE;
3649 
3650 	/* Step 3: restore summary entries */
3651 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3652 		unsigned short blk_off;
3653 		unsigned int segno;
3654 
3655 		seg_i = CURSEG_I(sbi, i);
3656 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3657 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3658 		seg_i->next_segno = segno;
3659 		reset_curseg(sbi, i, 0);
3660 		seg_i->alloc_type = ckpt->alloc_type[i];
3661 		seg_i->next_blkoff = blk_off;
3662 
3663 		if (seg_i->alloc_type == SSR)
3664 			blk_off = sbi->blocks_per_seg;
3665 
3666 		for (j = 0; j < blk_off; j++) {
3667 			struct f2fs_summary *s;
3668 
3669 			s = (struct f2fs_summary *)(kaddr + offset);
3670 			seg_i->sum_blk->entries[j] = *s;
3671 			offset += SUMMARY_SIZE;
3672 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3673 						SUM_FOOTER_SIZE)
3674 				continue;
3675 
3676 			f2fs_put_page(page, 1);
3677 			page = NULL;
3678 
3679 			page = f2fs_get_meta_page(sbi, start++);
3680 			if (IS_ERR(page))
3681 				return PTR_ERR(page);
3682 			kaddr = (unsigned char *)page_address(page);
3683 			offset = 0;
3684 		}
3685 	}
3686 	f2fs_put_page(page, 1);
3687 	return 0;
3688 }
3689 
3690 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3691 {
3692 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3693 	struct f2fs_summary_block *sum;
3694 	struct curseg_info *curseg;
3695 	struct page *new;
3696 	unsigned short blk_off;
3697 	unsigned int segno = 0;
3698 	block_t blk_addr = 0;
3699 	int err = 0;
3700 
3701 	/* get segment number and block addr */
3702 	if (IS_DATASEG(type)) {
3703 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3704 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3705 							CURSEG_HOT_DATA]);
3706 		if (__exist_node_summaries(sbi))
3707 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3708 		else
3709 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3710 	} else {
3711 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3712 							CURSEG_HOT_NODE]);
3713 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3714 							CURSEG_HOT_NODE]);
3715 		if (__exist_node_summaries(sbi))
3716 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3717 							type - CURSEG_HOT_NODE);
3718 		else
3719 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3720 	}
3721 
3722 	new = f2fs_get_meta_page(sbi, blk_addr);
3723 	if (IS_ERR(new))
3724 		return PTR_ERR(new);
3725 	sum = (struct f2fs_summary_block *)page_address(new);
3726 
3727 	if (IS_NODESEG(type)) {
3728 		if (__exist_node_summaries(sbi)) {
3729 			struct f2fs_summary *ns = &sum->entries[0];
3730 			int i;
3731 
3732 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3733 				ns->version = 0;
3734 				ns->ofs_in_node = 0;
3735 			}
3736 		} else {
3737 			err = f2fs_restore_node_summary(sbi, segno, sum);
3738 			if (err)
3739 				goto out;
3740 		}
3741 	}
3742 
3743 	/* set uncompleted segment to curseg */
3744 	curseg = CURSEG_I(sbi, type);
3745 	mutex_lock(&curseg->curseg_mutex);
3746 
3747 	/* update journal info */
3748 	down_write(&curseg->journal_rwsem);
3749 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3750 	up_write(&curseg->journal_rwsem);
3751 
3752 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3753 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3754 	curseg->next_segno = segno;
3755 	reset_curseg(sbi, type, 0);
3756 	curseg->alloc_type = ckpt->alloc_type[type];
3757 	curseg->next_blkoff = blk_off;
3758 	mutex_unlock(&curseg->curseg_mutex);
3759 out:
3760 	f2fs_put_page(new, 1);
3761 	return err;
3762 }
3763 
3764 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3765 {
3766 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3767 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3768 	int type = CURSEG_HOT_DATA;
3769 	int err;
3770 
3771 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3772 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3773 
3774 		if (npages >= 2)
3775 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3776 							META_CP, true);
3777 
3778 		/* restore for compacted data summary */
3779 		err = read_compacted_summaries(sbi);
3780 		if (err)
3781 			return err;
3782 		type = CURSEG_HOT_NODE;
3783 	}
3784 
3785 	if (__exist_node_summaries(sbi))
3786 		f2fs_ra_meta_pages(sbi,
3787 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3788 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3789 
3790 	for (; type <= CURSEG_COLD_NODE; type++) {
3791 		err = read_normal_summaries(sbi, type);
3792 		if (err)
3793 			return err;
3794 	}
3795 
3796 	/* sanity check for summary blocks */
3797 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3798 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3799 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3800 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3801 		return -EINVAL;
3802 	}
3803 
3804 	return 0;
3805 }
3806 
3807 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3808 {
3809 	struct page *page;
3810 	unsigned char *kaddr;
3811 	struct f2fs_summary *summary;
3812 	struct curseg_info *seg_i;
3813 	int written_size = 0;
3814 	int i, j;
3815 
3816 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3817 	kaddr = (unsigned char *)page_address(page);
3818 	memset(kaddr, 0, PAGE_SIZE);
3819 
3820 	/* Step 1: write nat cache */
3821 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3822 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3823 	written_size += SUM_JOURNAL_SIZE;
3824 
3825 	/* Step 2: write sit cache */
3826 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3827 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3828 	written_size += SUM_JOURNAL_SIZE;
3829 
3830 	/* Step 3: write summary entries */
3831 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3832 		unsigned short blkoff;
3833 
3834 		seg_i = CURSEG_I(sbi, i);
3835 		if (sbi->ckpt->alloc_type[i] == SSR)
3836 			blkoff = sbi->blocks_per_seg;
3837 		else
3838 			blkoff = curseg_blkoff(sbi, i);
3839 
3840 		for (j = 0; j < blkoff; j++) {
3841 			if (!page) {
3842 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3843 				kaddr = (unsigned char *)page_address(page);
3844 				memset(kaddr, 0, PAGE_SIZE);
3845 				written_size = 0;
3846 			}
3847 			summary = (struct f2fs_summary *)(kaddr + written_size);
3848 			*summary = seg_i->sum_blk->entries[j];
3849 			written_size += SUMMARY_SIZE;
3850 
3851 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3852 							SUM_FOOTER_SIZE)
3853 				continue;
3854 
3855 			set_page_dirty(page);
3856 			f2fs_put_page(page, 1);
3857 			page = NULL;
3858 		}
3859 	}
3860 	if (page) {
3861 		set_page_dirty(page);
3862 		f2fs_put_page(page, 1);
3863 	}
3864 }
3865 
3866 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3867 					block_t blkaddr, int type)
3868 {
3869 	int i, end;
3870 
3871 	if (IS_DATASEG(type))
3872 		end = type + NR_CURSEG_DATA_TYPE;
3873 	else
3874 		end = type + NR_CURSEG_NODE_TYPE;
3875 
3876 	for (i = type; i < end; i++)
3877 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3878 }
3879 
3880 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3881 {
3882 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3883 		write_compacted_summaries(sbi, start_blk);
3884 	else
3885 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3886 }
3887 
3888 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3889 {
3890 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3891 }
3892 
3893 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3894 					unsigned int val, int alloc)
3895 {
3896 	int i;
3897 
3898 	if (type == NAT_JOURNAL) {
3899 		for (i = 0; i < nats_in_cursum(journal); i++) {
3900 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3901 				return i;
3902 		}
3903 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3904 			return update_nats_in_cursum(journal, 1);
3905 	} else if (type == SIT_JOURNAL) {
3906 		for (i = 0; i < sits_in_cursum(journal); i++)
3907 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3908 				return i;
3909 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3910 			return update_sits_in_cursum(journal, 1);
3911 	}
3912 	return -1;
3913 }
3914 
3915 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3916 					unsigned int segno)
3917 {
3918 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3919 }
3920 
3921 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3922 					unsigned int start)
3923 {
3924 	struct sit_info *sit_i = SIT_I(sbi);
3925 	struct page *page;
3926 	pgoff_t src_off, dst_off;
3927 
3928 	src_off = current_sit_addr(sbi, start);
3929 	dst_off = next_sit_addr(sbi, src_off);
3930 
3931 	page = f2fs_grab_meta_page(sbi, dst_off);
3932 	seg_info_to_sit_page(sbi, page, start);
3933 
3934 	set_page_dirty(page);
3935 	set_to_next_sit(sit_i, start);
3936 
3937 	return page;
3938 }
3939 
3940 static struct sit_entry_set *grab_sit_entry_set(void)
3941 {
3942 	struct sit_entry_set *ses =
3943 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
3944 						GFP_NOFS, true, NULL);
3945 
3946 	ses->entry_cnt = 0;
3947 	INIT_LIST_HEAD(&ses->set_list);
3948 	return ses;
3949 }
3950 
3951 static void release_sit_entry_set(struct sit_entry_set *ses)
3952 {
3953 	list_del(&ses->set_list);
3954 	kmem_cache_free(sit_entry_set_slab, ses);
3955 }
3956 
3957 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3958 						struct list_head *head)
3959 {
3960 	struct sit_entry_set *next = ses;
3961 
3962 	if (list_is_last(&ses->set_list, head))
3963 		return;
3964 
3965 	list_for_each_entry_continue(next, head, set_list)
3966 		if (ses->entry_cnt <= next->entry_cnt) {
3967 			list_move_tail(&ses->set_list, &next->set_list);
3968 			return;
3969 		}
3970 
3971 	list_move_tail(&ses->set_list, head);
3972 }
3973 
3974 static void add_sit_entry(unsigned int segno, struct list_head *head)
3975 {
3976 	struct sit_entry_set *ses;
3977 	unsigned int start_segno = START_SEGNO(segno);
3978 
3979 	list_for_each_entry(ses, head, set_list) {
3980 		if (ses->start_segno == start_segno) {
3981 			ses->entry_cnt++;
3982 			adjust_sit_entry_set(ses, head);
3983 			return;
3984 		}
3985 	}
3986 
3987 	ses = grab_sit_entry_set();
3988 
3989 	ses->start_segno = start_segno;
3990 	ses->entry_cnt++;
3991 	list_add(&ses->set_list, head);
3992 }
3993 
3994 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3995 {
3996 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3997 	struct list_head *set_list = &sm_info->sit_entry_set;
3998 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3999 	unsigned int segno;
4000 
4001 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4002 		add_sit_entry(segno, set_list);
4003 }
4004 
4005 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4006 {
4007 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4008 	struct f2fs_journal *journal = curseg->journal;
4009 	int i;
4010 
4011 	down_write(&curseg->journal_rwsem);
4012 	for (i = 0; i < sits_in_cursum(journal); i++) {
4013 		unsigned int segno;
4014 		bool dirtied;
4015 
4016 		segno = le32_to_cpu(segno_in_journal(journal, i));
4017 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4018 
4019 		if (!dirtied)
4020 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4021 	}
4022 	update_sits_in_cursum(journal, -i);
4023 	up_write(&curseg->journal_rwsem);
4024 }
4025 
4026 /*
4027  * CP calls this function, which flushes SIT entries including sit_journal,
4028  * and moves prefree segs to free segs.
4029  */
4030 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4031 {
4032 	struct sit_info *sit_i = SIT_I(sbi);
4033 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4034 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4035 	struct f2fs_journal *journal = curseg->journal;
4036 	struct sit_entry_set *ses, *tmp;
4037 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4038 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4039 	struct seg_entry *se;
4040 
4041 	down_write(&sit_i->sentry_lock);
4042 
4043 	if (!sit_i->dirty_sentries)
4044 		goto out;
4045 
4046 	/*
4047 	 * add and account sit entries of dirty bitmap in sit entry
4048 	 * set temporarily
4049 	 */
4050 	add_sits_in_set(sbi);
4051 
4052 	/*
4053 	 * if there are no enough space in journal to store dirty sit
4054 	 * entries, remove all entries from journal and add and account
4055 	 * them in sit entry set.
4056 	 */
4057 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4058 								!to_journal)
4059 		remove_sits_in_journal(sbi);
4060 
4061 	/*
4062 	 * there are two steps to flush sit entries:
4063 	 * #1, flush sit entries to journal in current cold data summary block.
4064 	 * #2, flush sit entries to sit page.
4065 	 */
4066 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4067 		struct page *page = NULL;
4068 		struct f2fs_sit_block *raw_sit = NULL;
4069 		unsigned int start_segno = ses->start_segno;
4070 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4071 						(unsigned long)MAIN_SEGS(sbi));
4072 		unsigned int segno = start_segno;
4073 
4074 		if (to_journal &&
4075 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4076 			to_journal = false;
4077 
4078 		if (to_journal) {
4079 			down_write(&curseg->journal_rwsem);
4080 		} else {
4081 			page = get_next_sit_page(sbi, start_segno);
4082 			raw_sit = page_address(page);
4083 		}
4084 
4085 		/* flush dirty sit entries in region of current sit set */
4086 		for_each_set_bit_from(segno, bitmap, end) {
4087 			int offset, sit_offset;
4088 
4089 			se = get_seg_entry(sbi, segno);
4090 #ifdef CONFIG_F2FS_CHECK_FS
4091 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4092 						SIT_VBLOCK_MAP_SIZE))
4093 				f2fs_bug_on(sbi, 1);
4094 #endif
4095 
4096 			/* add discard candidates */
4097 			if (!(cpc->reason & CP_DISCARD)) {
4098 				cpc->trim_start = segno;
4099 				add_discard_addrs(sbi, cpc, false);
4100 			}
4101 
4102 			if (to_journal) {
4103 				offset = f2fs_lookup_journal_in_cursum(journal,
4104 							SIT_JOURNAL, segno, 1);
4105 				f2fs_bug_on(sbi, offset < 0);
4106 				segno_in_journal(journal, offset) =
4107 							cpu_to_le32(segno);
4108 				seg_info_to_raw_sit(se,
4109 					&sit_in_journal(journal, offset));
4110 				check_block_count(sbi, segno,
4111 					&sit_in_journal(journal, offset));
4112 			} else {
4113 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4114 				seg_info_to_raw_sit(se,
4115 						&raw_sit->entries[sit_offset]);
4116 				check_block_count(sbi, segno,
4117 						&raw_sit->entries[sit_offset]);
4118 			}
4119 
4120 			__clear_bit(segno, bitmap);
4121 			sit_i->dirty_sentries--;
4122 			ses->entry_cnt--;
4123 		}
4124 
4125 		if (to_journal)
4126 			up_write(&curseg->journal_rwsem);
4127 		else
4128 			f2fs_put_page(page, 1);
4129 
4130 		f2fs_bug_on(sbi, ses->entry_cnt);
4131 		release_sit_entry_set(ses);
4132 	}
4133 
4134 	f2fs_bug_on(sbi, !list_empty(head));
4135 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4136 out:
4137 	if (cpc->reason & CP_DISCARD) {
4138 		__u64 trim_start = cpc->trim_start;
4139 
4140 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4141 			add_discard_addrs(sbi, cpc, false);
4142 
4143 		cpc->trim_start = trim_start;
4144 	}
4145 	up_write(&sit_i->sentry_lock);
4146 
4147 	set_prefree_as_free_segments(sbi);
4148 }
4149 
4150 static int build_sit_info(struct f2fs_sb_info *sbi)
4151 {
4152 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4153 	struct sit_info *sit_i;
4154 	unsigned int sit_segs, start;
4155 	char *src_bitmap, *bitmap;
4156 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4157 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4158 
4159 	/* allocate memory for SIT information */
4160 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4161 	if (!sit_i)
4162 		return -ENOMEM;
4163 
4164 	SM_I(sbi)->sit_info = sit_i;
4165 
4166 	sit_i->sentries =
4167 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4168 					      MAIN_SEGS(sbi)),
4169 			      GFP_KERNEL);
4170 	if (!sit_i->sentries)
4171 		return -ENOMEM;
4172 
4173 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4174 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4175 								GFP_KERNEL);
4176 	if (!sit_i->dirty_sentries_bitmap)
4177 		return -ENOMEM;
4178 
4179 #ifdef CONFIG_F2FS_CHECK_FS
4180 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4181 #else
4182 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4183 #endif
4184 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4185 	if (!sit_i->bitmap)
4186 		return -ENOMEM;
4187 
4188 	bitmap = sit_i->bitmap;
4189 
4190 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4191 		sit_i->sentries[start].cur_valid_map = bitmap;
4192 		bitmap += SIT_VBLOCK_MAP_SIZE;
4193 
4194 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4195 		bitmap += SIT_VBLOCK_MAP_SIZE;
4196 
4197 #ifdef CONFIG_F2FS_CHECK_FS
4198 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4199 		bitmap += SIT_VBLOCK_MAP_SIZE;
4200 #endif
4201 
4202 		if (discard_map) {
4203 			sit_i->sentries[start].discard_map = bitmap;
4204 			bitmap += SIT_VBLOCK_MAP_SIZE;
4205 		}
4206 	}
4207 
4208 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4209 	if (!sit_i->tmp_map)
4210 		return -ENOMEM;
4211 
4212 	if (__is_large_section(sbi)) {
4213 		sit_i->sec_entries =
4214 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4215 						      MAIN_SECS(sbi)),
4216 				      GFP_KERNEL);
4217 		if (!sit_i->sec_entries)
4218 			return -ENOMEM;
4219 	}
4220 
4221 	/* get information related with SIT */
4222 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4223 
4224 	/* setup SIT bitmap from ckeckpoint pack */
4225 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4226 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4227 
4228 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4229 	if (!sit_i->sit_bitmap)
4230 		return -ENOMEM;
4231 
4232 #ifdef CONFIG_F2FS_CHECK_FS
4233 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4234 					sit_bitmap_size, GFP_KERNEL);
4235 	if (!sit_i->sit_bitmap_mir)
4236 		return -ENOMEM;
4237 
4238 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4239 					main_bitmap_size, GFP_KERNEL);
4240 	if (!sit_i->invalid_segmap)
4241 		return -ENOMEM;
4242 #endif
4243 
4244 	/* init SIT information */
4245 	sit_i->s_ops = &default_salloc_ops;
4246 
4247 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4248 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4249 	sit_i->written_valid_blocks = 0;
4250 	sit_i->bitmap_size = sit_bitmap_size;
4251 	sit_i->dirty_sentries = 0;
4252 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4253 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4254 	sit_i->mounted_time = ktime_get_boottime_seconds();
4255 	init_rwsem(&sit_i->sentry_lock);
4256 	return 0;
4257 }
4258 
4259 static int build_free_segmap(struct f2fs_sb_info *sbi)
4260 {
4261 	struct free_segmap_info *free_i;
4262 	unsigned int bitmap_size, sec_bitmap_size;
4263 
4264 	/* allocate memory for free segmap information */
4265 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4266 	if (!free_i)
4267 		return -ENOMEM;
4268 
4269 	SM_I(sbi)->free_info = free_i;
4270 
4271 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4272 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4273 	if (!free_i->free_segmap)
4274 		return -ENOMEM;
4275 
4276 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4277 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4278 	if (!free_i->free_secmap)
4279 		return -ENOMEM;
4280 
4281 	/* set all segments as dirty temporarily */
4282 	memset(free_i->free_segmap, 0xff, bitmap_size);
4283 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4284 
4285 	/* init free segmap information */
4286 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4287 	free_i->free_segments = 0;
4288 	free_i->free_sections = 0;
4289 	spin_lock_init(&free_i->segmap_lock);
4290 	return 0;
4291 }
4292 
4293 static int build_curseg(struct f2fs_sb_info *sbi)
4294 {
4295 	struct curseg_info *array;
4296 	int i;
4297 
4298 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4299 					sizeof(*array)), GFP_KERNEL);
4300 	if (!array)
4301 		return -ENOMEM;
4302 
4303 	SM_I(sbi)->curseg_array = array;
4304 
4305 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4306 		mutex_init(&array[i].curseg_mutex);
4307 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4308 		if (!array[i].sum_blk)
4309 			return -ENOMEM;
4310 		init_rwsem(&array[i].journal_rwsem);
4311 		array[i].journal = f2fs_kzalloc(sbi,
4312 				sizeof(struct f2fs_journal), GFP_KERNEL);
4313 		if (!array[i].journal)
4314 			return -ENOMEM;
4315 		if (i < NR_PERSISTENT_LOG)
4316 			array[i].seg_type = CURSEG_HOT_DATA + i;
4317 		else if (i == CURSEG_COLD_DATA_PINNED)
4318 			array[i].seg_type = CURSEG_COLD_DATA;
4319 		else if (i == CURSEG_ALL_DATA_ATGC)
4320 			array[i].seg_type = CURSEG_COLD_DATA;
4321 		array[i].segno = NULL_SEGNO;
4322 		array[i].next_blkoff = 0;
4323 		array[i].inited = false;
4324 	}
4325 	return restore_curseg_summaries(sbi);
4326 }
4327 
4328 static int build_sit_entries(struct f2fs_sb_info *sbi)
4329 {
4330 	struct sit_info *sit_i = SIT_I(sbi);
4331 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4332 	struct f2fs_journal *journal = curseg->journal;
4333 	struct seg_entry *se;
4334 	struct f2fs_sit_entry sit;
4335 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4336 	unsigned int i, start, end;
4337 	unsigned int readed, start_blk = 0;
4338 	int err = 0;
4339 	block_t sit_valid_blocks[2] = {0, 0};
4340 
4341 	do {
4342 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4343 							META_SIT, true);
4344 
4345 		start = start_blk * sit_i->sents_per_block;
4346 		end = (start_blk + readed) * sit_i->sents_per_block;
4347 
4348 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4349 			struct f2fs_sit_block *sit_blk;
4350 			struct page *page;
4351 
4352 			se = &sit_i->sentries[start];
4353 			page = get_current_sit_page(sbi, start);
4354 			if (IS_ERR(page))
4355 				return PTR_ERR(page);
4356 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4357 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4358 			f2fs_put_page(page, 1);
4359 
4360 			err = check_block_count(sbi, start, &sit);
4361 			if (err)
4362 				return err;
4363 			seg_info_from_raw_sit(se, &sit);
4364 
4365 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4366 
4367 			if (f2fs_block_unit_discard(sbi)) {
4368 				/* build discard map only one time */
4369 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4370 					memset(se->discard_map, 0xff,
4371 						SIT_VBLOCK_MAP_SIZE);
4372 				} else {
4373 					memcpy(se->discard_map,
4374 						se->cur_valid_map,
4375 						SIT_VBLOCK_MAP_SIZE);
4376 					sbi->discard_blks +=
4377 						sbi->blocks_per_seg -
4378 						se->valid_blocks;
4379 				}
4380 			}
4381 
4382 			if (__is_large_section(sbi))
4383 				get_sec_entry(sbi, start)->valid_blocks +=
4384 							se->valid_blocks;
4385 		}
4386 		start_blk += readed;
4387 	} while (start_blk < sit_blk_cnt);
4388 
4389 	down_read(&curseg->journal_rwsem);
4390 	for (i = 0; i < sits_in_cursum(journal); i++) {
4391 		unsigned int old_valid_blocks;
4392 
4393 		start = le32_to_cpu(segno_in_journal(journal, i));
4394 		if (start >= MAIN_SEGS(sbi)) {
4395 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4396 				 start);
4397 			err = -EFSCORRUPTED;
4398 			break;
4399 		}
4400 
4401 		se = &sit_i->sentries[start];
4402 		sit = sit_in_journal(journal, i);
4403 
4404 		old_valid_blocks = se->valid_blocks;
4405 
4406 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4407 
4408 		err = check_block_count(sbi, start, &sit);
4409 		if (err)
4410 			break;
4411 		seg_info_from_raw_sit(se, &sit);
4412 
4413 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4414 
4415 		if (f2fs_block_unit_discard(sbi)) {
4416 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4417 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4418 			} else {
4419 				memcpy(se->discard_map, se->cur_valid_map,
4420 							SIT_VBLOCK_MAP_SIZE);
4421 				sbi->discard_blks += old_valid_blocks;
4422 				sbi->discard_blks -= se->valid_blocks;
4423 			}
4424 		}
4425 
4426 		if (__is_large_section(sbi)) {
4427 			get_sec_entry(sbi, start)->valid_blocks +=
4428 							se->valid_blocks;
4429 			get_sec_entry(sbi, start)->valid_blocks -=
4430 							old_valid_blocks;
4431 		}
4432 	}
4433 	up_read(&curseg->journal_rwsem);
4434 
4435 	if (err)
4436 		return err;
4437 
4438 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4439 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4440 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4441 		return -EFSCORRUPTED;
4442 	}
4443 
4444 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4445 				valid_user_blocks(sbi)) {
4446 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4447 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4448 			 valid_user_blocks(sbi));
4449 		return -EFSCORRUPTED;
4450 	}
4451 
4452 	return 0;
4453 }
4454 
4455 static void init_free_segmap(struct f2fs_sb_info *sbi)
4456 {
4457 	unsigned int start;
4458 	int type;
4459 	struct seg_entry *sentry;
4460 
4461 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4462 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4463 			continue;
4464 		sentry = get_seg_entry(sbi, start);
4465 		if (!sentry->valid_blocks)
4466 			__set_free(sbi, start);
4467 		else
4468 			SIT_I(sbi)->written_valid_blocks +=
4469 						sentry->valid_blocks;
4470 	}
4471 
4472 	/* set use the current segments */
4473 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4474 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4475 
4476 		__set_test_and_inuse(sbi, curseg_t->segno);
4477 	}
4478 }
4479 
4480 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4481 {
4482 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4483 	struct free_segmap_info *free_i = FREE_I(sbi);
4484 	unsigned int segno = 0, offset = 0, secno;
4485 	block_t valid_blocks, usable_blks_in_seg;
4486 	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4487 
4488 	while (1) {
4489 		/* find dirty segment based on free segmap */
4490 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4491 		if (segno >= MAIN_SEGS(sbi))
4492 			break;
4493 		offset = segno + 1;
4494 		valid_blocks = get_valid_blocks(sbi, segno, false);
4495 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4496 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4497 			continue;
4498 		if (valid_blocks > usable_blks_in_seg) {
4499 			f2fs_bug_on(sbi, 1);
4500 			continue;
4501 		}
4502 		mutex_lock(&dirty_i->seglist_lock);
4503 		__locate_dirty_segment(sbi, segno, DIRTY);
4504 		mutex_unlock(&dirty_i->seglist_lock);
4505 	}
4506 
4507 	if (!__is_large_section(sbi))
4508 		return;
4509 
4510 	mutex_lock(&dirty_i->seglist_lock);
4511 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4512 		valid_blocks = get_valid_blocks(sbi, segno, true);
4513 		secno = GET_SEC_FROM_SEG(sbi, segno);
4514 
4515 		if (!valid_blocks || valid_blocks == blks_per_sec)
4516 			continue;
4517 		if (IS_CURSEC(sbi, secno))
4518 			continue;
4519 		set_bit(secno, dirty_i->dirty_secmap);
4520 	}
4521 	mutex_unlock(&dirty_i->seglist_lock);
4522 }
4523 
4524 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4525 {
4526 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4527 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4528 
4529 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4530 	if (!dirty_i->victim_secmap)
4531 		return -ENOMEM;
4532 
4533 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4534 	if (!dirty_i->pinned_secmap)
4535 		return -ENOMEM;
4536 
4537 	dirty_i->pinned_secmap_cnt = 0;
4538 	dirty_i->enable_pin_section = true;
4539 	return 0;
4540 }
4541 
4542 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4543 {
4544 	struct dirty_seglist_info *dirty_i;
4545 	unsigned int bitmap_size, i;
4546 
4547 	/* allocate memory for dirty segments list information */
4548 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4549 								GFP_KERNEL);
4550 	if (!dirty_i)
4551 		return -ENOMEM;
4552 
4553 	SM_I(sbi)->dirty_info = dirty_i;
4554 	mutex_init(&dirty_i->seglist_lock);
4555 
4556 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4557 
4558 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4559 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4560 								GFP_KERNEL);
4561 		if (!dirty_i->dirty_segmap[i])
4562 			return -ENOMEM;
4563 	}
4564 
4565 	if (__is_large_section(sbi)) {
4566 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4567 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4568 						bitmap_size, GFP_KERNEL);
4569 		if (!dirty_i->dirty_secmap)
4570 			return -ENOMEM;
4571 	}
4572 
4573 	init_dirty_segmap(sbi);
4574 	return init_victim_secmap(sbi);
4575 }
4576 
4577 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4578 {
4579 	int i;
4580 
4581 	/*
4582 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4583 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4584 	 */
4585 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4586 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4587 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4588 		unsigned int blkofs = curseg->next_blkoff;
4589 
4590 		if (f2fs_sb_has_readonly(sbi) &&
4591 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4592 			continue;
4593 
4594 		sanity_check_seg_type(sbi, curseg->seg_type);
4595 
4596 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4597 			f2fs_err(sbi,
4598 				 "Current segment has invalid alloc_type:%d",
4599 				 curseg->alloc_type);
4600 			return -EFSCORRUPTED;
4601 		}
4602 
4603 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4604 			goto out;
4605 
4606 		if (curseg->alloc_type == SSR)
4607 			continue;
4608 
4609 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4610 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4611 				continue;
4612 out:
4613 			f2fs_err(sbi,
4614 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4615 				 i, curseg->segno, curseg->alloc_type,
4616 				 curseg->next_blkoff, blkofs);
4617 			return -EFSCORRUPTED;
4618 		}
4619 	}
4620 	return 0;
4621 }
4622 
4623 #ifdef CONFIG_BLK_DEV_ZONED
4624 
4625 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4626 				    struct f2fs_dev_info *fdev,
4627 				    struct blk_zone *zone)
4628 {
4629 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4630 	block_t zone_block, wp_block, last_valid_block;
4631 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4632 	int i, s, b, ret;
4633 	struct seg_entry *se;
4634 
4635 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4636 		return 0;
4637 
4638 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4639 	wp_segno = GET_SEGNO(sbi, wp_block);
4640 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4641 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4642 	zone_segno = GET_SEGNO(sbi, zone_block);
4643 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4644 
4645 	if (zone_segno >= MAIN_SEGS(sbi))
4646 		return 0;
4647 
4648 	/*
4649 	 * Skip check of zones cursegs point to, since
4650 	 * fix_curseg_write_pointer() checks them.
4651 	 */
4652 	for (i = 0; i < NO_CHECK_TYPE; i++)
4653 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4654 						   CURSEG_I(sbi, i)->segno))
4655 			return 0;
4656 
4657 	/*
4658 	 * Get last valid block of the zone.
4659 	 */
4660 	last_valid_block = zone_block - 1;
4661 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4662 		segno = zone_segno + s;
4663 		se = get_seg_entry(sbi, segno);
4664 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4665 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4666 				last_valid_block = START_BLOCK(sbi, segno) + b;
4667 				break;
4668 			}
4669 		if (last_valid_block >= zone_block)
4670 			break;
4671 	}
4672 
4673 	/*
4674 	 * If last valid block is beyond the write pointer, report the
4675 	 * inconsistency. This inconsistency does not cause write error
4676 	 * because the zone will not be selected for write operation until
4677 	 * it get discarded. Just report it.
4678 	 */
4679 	if (last_valid_block >= wp_block) {
4680 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4681 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4682 			    GET_SEGNO(sbi, last_valid_block),
4683 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4684 			    wp_segno, wp_blkoff);
4685 		return 0;
4686 	}
4687 
4688 	/*
4689 	 * If there is no valid block in the zone and if write pointer is
4690 	 * not at zone start, reset the write pointer.
4691 	 */
4692 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4693 		f2fs_notice(sbi,
4694 			    "Zone without valid block has non-zero write "
4695 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4696 			    wp_segno, wp_blkoff);
4697 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4698 					zone->len >> log_sectors_per_block);
4699 		if (ret) {
4700 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4701 				 fdev->path, ret);
4702 			return ret;
4703 		}
4704 	}
4705 
4706 	return 0;
4707 }
4708 
4709 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4710 						  block_t zone_blkaddr)
4711 {
4712 	int i;
4713 
4714 	for (i = 0; i < sbi->s_ndevs; i++) {
4715 		if (!bdev_is_zoned(FDEV(i).bdev))
4716 			continue;
4717 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4718 				zone_blkaddr <= FDEV(i).end_blk))
4719 			return &FDEV(i);
4720 	}
4721 
4722 	return NULL;
4723 }
4724 
4725 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4726 			      void *data)
4727 {
4728 	memcpy(data, zone, sizeof(struct blk_zone));
4729 	return 0;
4730 }
4731 
4732 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4733 {
4734 	struct curseg_info *cs = CURSEG_I(sbi, type);
4735 	struct f2fs_dev_info *zbd;
4736 	struct blk_zone zone;
4737 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4738 	block_t cs_zone_block, wp_block;
4739 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4740 	sector_t zone_sector;
4741 	int err;
4742 
4743 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4744 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4745 
4746 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4747 	if (!zbd)
4748 		return 0;
4749 
4750 	/* report zone for the sector the curseg points to */
4751 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4752 		<< log_sectors_per_block;
4753 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4754 				  report_one_zone_cb, &zone);
4755 	if (err != 1) {
4756 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4757 			 zbd->path, err);
4758 		return err;
4759 	}
4760 
4761 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4762 		return 0;
4763 
4764 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4765 	wp_segno = GET_SEGNO(sbi, wp_block);
4766 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4767 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4768 
4769 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4770 		wp_sector_off == 0)
4771 		return 0;
4772 
4773 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4774 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4775 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4776 
4777 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4778 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4779 
4780 	f2fs_allocate_new_section(sbi, type, true);
4781 
4782 	/* check consistency of the zone curseg pointed to */
4783 	if (check_zone_write_pointer(sbi, zbd, &zone))
4784 		return -EIO;
4785 
4786 	/* check newly assigned zone */
4787 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4788 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4789 
4790 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4791 	if (!zbd)
4792 		return 0;
4793 
4794 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4795 		<< log_sectors_per_block;
4796 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4797 				  report_one_zone_cb, &zone);
4798 	if (err != 1) {
4799 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4800 			 zbd->path, err);
4801 		return err;
4802 	}
4803 
4804 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4805 		return 0;
4806 
4807 	if (zone.wp != zone.start) {
4808 		f2fs_notice(sbi,
4809 			    "New zone for curseg[%d] is not yet discarded. "
4810 			    "Reset the zone: curseg[0x%x,0x%x]",
4811 			    type, cs->segno, cs->next_blkoff);
4812 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4813 				zone_sector >> log_sectors_per_block,
4814 				zone.len >> log_sectors_per_block);
4815 		if (err) {
4816 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4817 				 zbd->path, err);
4818 			return err;
4819 		}
4820 	}
4821 
4822 	return 0;
4823 }
4824 
4825 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4826 {
4827 	int i, ret;
4828 
4829 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4830 		ret = fix_curseg_write_pointer(sbi, i);
4831 		if (ret)
4832 			return ret;
4833 	}
4834 
4835 	return 0;
4836 }
4837 
4838 struct check_zone_write_pointer_args {
4839 	struct f2fs_sb_info *sbi;
4840 	struct f2fs_dev_info *fdev;
4841 };
4842 
4843 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4844 				      void *data)
4845 {
4846 	struct check_zone_write_pointer_args *args;
4847 
4848 	args = (struct check_zone_write_pointer_args *)data;
4849 
4850 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4851 }
4852 
4853 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4854 {
4855 	int i, ret;
4856 	struct check_zone_write_pointer_args args;
4857 
4858 	for (i = 0; i < sbi->s_ndevs; i++) {
4859 		if (!bdev_is_zoned(FDEV(i).bdev))
4860 			continue;
4861 
4862 		args.sbi = sbi;
4863 		args.fdev = &FDEV(i);
4864 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4865 					  check_zone_write_pointer_cb, &args);
4866 		if (ret < 0)
4867 			return ret;
4868 	}
4869 
4870 	return 0;
4871 }
4872 
4873 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4874 						unsigned int dev_idx)
4875 {
4876 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4877 		return true;
4878 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4879 }
4880 
4881 /* Return the zone index in the given device */
4882 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4883 					int dev_idx)
4884 {
4885 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4886 
4887 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4888 						sbi->log_blocks_per_blkz;
4889 }
4890 
4891 /*
4892  * Return the usable segments in a section based on the zone's
4893  * corresponding zone capacity. Zone is equal to a section.
4894  */
4895 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4896 		struct f2fs_sb_info *sbi, unsigned int segno)
4897 {
4898 	unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4899 
4900 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4901 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4902 
4903 	/* Conventional zone's capacity is always equal to zone size */
4904 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4905 		return sbi->segs_per_sec;
4906 
4907 	/*
4908 	 * If the zone_capacity_blocks array is NULL, then zone capacity
4909 	 * is equal to the zone size for all zones
4910 	 */
4911 	if (!FDEV(dev_idx).zone_capacity_blocks)
4912 		return sbi->segs_per_sec;
4913 
4914 	/* Get the segment count beyond zone capacity block */
4915 	unusable_segs_in_sec = (sbi->blocks_per_blkz -
4916 				FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
4917 				sbi->log_blocks_per_seg;
4918 	return sbi->segs_per_sec - unusable_segs_in_sec;
4919 }
4920 
4921 /*
4922  * Return the number of usable blocks in a segment. The number of blocks
4923  * returned is always equal to the number of blocks in a segment for
4924  * segments fully contained within a sequential zone capacity or a
4925  * conventional zone. For segments partially contained in a sequential
4926  * zone capacity, the number of usable blocks up to the zone capacity
4927  * is returned. 0 is returned in all other cases.
4928  */
4929 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4930 			struct f2fs_sb_info *sbi, unsigned int segno)
4931 {
4932 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4933 	unsigned int zone_idx, dev_idx, secno;
4934 
4935 	secno = GET_SEC_FROM_SEG(sbi, segno);
4936 	seg_start = START_BLOCK(sbi, segno);
4937 	dev_idx = f2fs_target_device_index(sbi, seg_start);
4938 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
4939 
4940 	/*
4941 	 * Conventional zone's capacity is always equal to zone size,
4942 	 * so, blocks per segment is unchanged.
4943 	 */
4944 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4945 		return sbi->blocks_per_seg;
4946 
4947 	if (!FDEV(dev_idx).zone_capacity_blocks)
4948 		return sbi->blocks_per_seg;
4949 
4950 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4951 	sec_cap_blkaddr = sec_start_blkaddr +
4952 				FDEV(dev_idx).zone_capacity_blocks[zone_idx];
4953 
4954 	/*
4955 	 * If segment starts before zone capacity and spans beyond
4956 	 * zone capacity, then usable blocks are from seg start to
4957 	 * zone capacity. If the segment starts after the zone capacity,
4958 	 * then there are no usable blocks.
4959 	 */
4960 	if (seg_start >= sec_cap_blkaddr)
4961 		return 0;
4962 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4963 		return sec_cap_blkaddr - seg_start;
4964 
4965 	return sbi->blocks_per_seg;
4966 }
4967 #else
4968 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4969 {
4970 	return 0;
4971 }
4972 
4973 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4974 {
4975 	return 0;
4976 }
4977 
4978 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
4979 							unsigned int segno)
4980 {
4981 	return 0;
4982 }
4983 
4984 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
4985 							unsigned int segno)
4986 {
4987 	return 0;
4988 }
4989 #endif
4990 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
4991 					unsigned int segno)
4992 {
4993 	if (f2fs_sb_has_blkzoned(sbi))
4994 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
4995 
4996 	return sbi->blocks_per_seg;
4997 }
4998 
4999 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5000 					unsigned int segno)
5001 {
5002 	if (f2fs_sb_has_blkzoned(sbi))
5003 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5004 
5005 	return sbi->segs_per_sec;
5006 }
5007 
5008 /*
5009  * Update min, max modified time for cost-benefit GC algorithm
5010  */
5011 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5012 {
5013 	struct sit_info *sit_i = SIT_I(sbi);
5014 	unsigned int segno;
5015 
5016 	down_write(&sit_i->sentry_lock);
5017 
5018 	sit_i->min_mtime = ULLONG_MAX;
5019 
5020 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5021 		unsigned int i;
5022 		unsigned long long mtime = 0;
5023 
5024 		for (i = 0; i < sbi->segs_per_sec; i++)
5025 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5026 
5027 		mtime = div_u64(mtime, sbi->segs_per_sec);
5028 
5029 		if (sit_i->min_mtime > mtime)
5030 			sit_i->min_mtime = mtime;
5031 	}
5032 	sit_i->max_mtime = get_mtime(sbi, false);
5033 	sit_i->dirty_max_mtime = 0;
5034 	up_write(&sit_i->sentry_lock);
5035 }
5036 
5037 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5038 {
5039 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5040 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5041 	struct f2fs_sm_info *sm_info;
5042 	int err;
5043 
5044 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5045 	if (!sm_info)
5046 		return -ENOMEM;
5047 
5048 	/* init sm info */
5049 	sbi->sm_info = sm_info;
5050 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5051 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5052 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5053 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5054 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5055 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5056 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5057 	sm_info->rec_prefree_segments = sm_info->main_segments *
5058 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5059 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5060 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5061 
5062 	if (!f2fs_lfs_mode(sbi))
5063 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5064 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5065 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5066 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5067 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5068 	sm_info->min_ssr_sections = reserved_sections(sbi);
5069 
5070 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5071 
5072 	init_f2fs_rwsem(&sm_info->curseg_lock);
5073 
5074 	if (!f2fs_readonly(sbi->sb)) {
5075 		err = f2fs_create_flush_cmd_control(sbi);
5076 		if (err)
5077 			return err;
5078 	}
5079 
5080 	err = create_discard_cmd_control(sbi);
5081 	if (err)
5082 		return err;
5083 
5084 	err = build_sit_info(sbi);
5085 	if (err)
5086 		return err;
5087 	err = build_free_segmap(sbi);
5088 	if (err)
5089 		return err;
5090 	err = build_curseg(sbi);
5091 	if (err)
5092 		return err;
5093 
5094 	/* reinit free segmap based on SIT */
5095 	err = build_sit_entries(sbi);
5096 	if (err)
5097 		return err;
5098 
5099 	init_free_segmap(sbi);
5100 	err = build_dirty_segmap(sbi);
5101 	if (err)
5102 		return err;
5103 
5104 	err = sanity_check_curseg(sbi);
5105 	if (err)
5106 		return err;
5107 
5108 	init_min_max_mtime(sbi);
5109 	return 0;
5110 }
5111 
5112 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5113 		enum dirty_type dirty_type)
5114 {
5115 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5116 
5117 	mutex_lock(&dirty_i->seglist_lock);
5118 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5119 	dirty_i->nr_dirty[dirty_type] = 0;
5120 	mutex_unlock(&dirty_i->seglist_lock);
5121 }
5122 
5123 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5124 {
5125 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5126 
5127 	kvfree(dirty_i->pinned_secmap);
5128 	kvfree(dirty_i->victim_secmap);
5129 }
5130 
5131 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5132 {
5133 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5134 	int i;
5135 
5136 	if (!dirty_i)
5137 		return;
5138 
5139 	/* discard pre-free/dirty segments list */
5140 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5141 		discard_dirty_segmap(sbi, i);
5142 
5143 	if (__is_large_section(sbi)) {
5144 		mutex_lock(&dirty_i->seglist_lock);
5145 		kvfree(dirty_i->dirty_secmap);
5146 		mutex_unlock(&dirty_i->seglist_lock);
5147 	}
5148 
5149 	destroy_victim_secmap(sbi);
5150 	SM_I(sbi)->dirty_info = NULL;
5151 	kfree(dirty_i);
5152 }
5153 
5154 static void destroy_curseg(struct f2fs_sb_info *sbi)
5155 {
5156 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5157 	int i;
5158 
5159 	if (!array)
5160 		return;
5161 	SM_I(sbi)->curseg_array = NULL;
5162 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5163 		kfree(array[i].sum_blk);
5164 		kfree(array[i].journal);
5165 	}
5166 	kfree(array);
5167 }
5168 
5169 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5170 {
5171 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5172 
5173 	if (!free_i)
5174 		return;
5175 	SM_I(sbi)->free_info = NULL;
5176 	kvfree(free_i->free_segmap);
5177 	kvfree(free_i->free_secmap);
5178 	kfree(free_i);
5179 }
5180 
5181 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5182 {
5183 	struct sit_info *sit_i = SIT_I(sbi);
5184 
5185 	if (!sit_i)
5186 		return;
5187 
5188 	if (sit_i->sentries)
5189 		kvfree(sit_i->bitmap);
5190 	kfree(sit_i->tmp_map);
5191 
5192 	kvfree(sit_i->sentries);
5193 	kvfree(sit_i->sec_entries);
5194 	kvfree(sit_i->dirty_sentries_bitmap);
5195 
5196 	SM_I(sbi)->sit_info = NULL;
5197 	kvfree(sit_i->sit_bitmap);
5198 #ifdef CONFIG_F2FS_CHECK_FS
5199 	kvfree(sit_i->sit_bitmap_mir);
5200 	kvfree(sit_i->invalid_segmap);
5201 #endif
5202 	kfree(sit_i);
5203 }
5204 
5205 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5206 {
5207 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5208 
5209 	if (!sm_info)
5210 		return;
5211 	f2fs_destroy_flush_cmd_control(sbi, true);
5212 	destroy_discard_cmd_control(sbi);
5213 	destroy_dirty_segmap(sbi);
5214 	destroy_curseg(sbi);
5215 	destroy_free_segmap(sbi);
5216 	destroy_sit_info(sbi);
5217 	sbi->sm_info = NULL;
5218 	kfree(sm_info);
5219 }
5220 
5221 int __init f2fs_create_segment_manager_caches(void)
5222 {
5223 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5224 			sizeof(struct discard_entry));
5225 	if (!discard_entry_slab)
5226 		goto fail;
5227 
5228 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5229 			sizeof(struct discard_cmd));
5230 	if (!discard_cmd_slab)
5231 		goto destroy_discard_entry;
5232 
5233 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5234 			sizeof(struct sit_entry_set));
5235 	if (!sit_entry_set_slab)
5236 		goto destroy_discard_cmd;
5237 
5238 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5239 			sizeof(struct revoke_entry));
5240 	if (!revoke_entry_slab)
5241 		goto destroy_sit_entry_set;
5242 	return 0;
5243 
5244 destroy_sit_entry_set:
5245 	kmem_cache_destroy(sit_entry_set_slab);
5246 destroy_discard_cmd:
5247 	kmem_cache_destroy(discard_cmd_slab);
5248 destroy_discard_entry:
5249 	kmem_cache_destroy(discard_entry_slab);
5250 fail:
5251 	return -ENOMEM;
5252 }
5253 
5254 void f2fs_destroy_segment_manager_caches(void)
5255 {
5256 	kmem_cache_destroy(sit_entry_set_slab);
5257 	kmem_cache_destroy(discard_cmd_slab);
5258 	kmem_cache_destroy(discard_entry_slab);
5259 	kmem_cache_destroy(revoke_entry_slab);
5260 }
5261