1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 192 if (!f2fs_is_atomic_file(inode)) 193 return; 194 195 if (clean) 196 truncate_inode_pages_final(inode->i_mapping); 197 198 release_atomic_write_cnt(inode); 199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED); 200 clear_inode_flag(inode, FI_ATOMIC_REPLACE); 201 clear_inode_flag(inode, FI_ATOMIC_FILE); 202 stat_dec_atomic_inode(inode); 203 204 F2FS_I(inode)->atomic_write_task = NULL; 205 206 if (clean) { 207 f2fs_i_size_write(inode, fi->original_i_size); 208 fi->original_i_size = 0; 209 } 210 /* avoid stale dirty inode during eviction */ 211 sync_inode_metadata(inode, 0); 212 } 213 214 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 215 block_t new_addr, block_t *old_addr, bool recover) 216 { 217 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 218 struct dnode_of_data dn; 219 struct node_info ni; 220 int err; 221 222 retry: 223 set_new_dnode(&dn, inode, NULL, NULL, 0); 224 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 225 if (err) { 226 if (err == -ENOMEM) { 227 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 228 goto retry; 229 } 230 return err; 231 } 232 233 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 234 if (err) { 235 f2fs_put_dnode(&dn); 236 return err; 237 } 238 239 if (recover) { 240 /* dn.data_blkaddr is always valid */ 241 if (!__is_valid_data_blkaddr(new_addr)) { 242 if (new_addr == NULL_ADDR) 243 dec_valid_block_count(sbi, inode, 1); 244 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 245 f2fs_update_data_blkaddr(&dn, new_addr); 246 } else { 247 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 248 new_addr, ni.version, true, true); 249 } 250 } else { 251 blkcnt_t count = 1; 252 253 err = inc_valid_block_count(sbi, inode, &count, true); 254 if (err) { 255 f2fs_put_dnode(&dn); 256 return err; 257 } 258 259 *old_addr = dn.data_blkaddr; 260 f2fs_truncate_data_blocks_range(&dn, 1); 261 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 262 263 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 264 ni.version, true, false); 265 } 266 267 f2fs_put_dnode(&dn); 268 269 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode, 270 index, old_addr ? *old_addr : 0, new_addr, recover); 271 return 0; 272 } 273 274 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 275 bool revoke) 276 { 277 struct revoke_entry *cur, *tmp; 278 pgoff_t start_index = 0; 279 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); 280 281 list_for_each_entry_safe(cur, tmp, head, list) { 282 if (revoke) { 283 __replace_atomic_write_block(inode, cur->index, 284 cur->old_addr, NULL, true); 285 } else if (truncate) { 286 f2fs_truncate_hole(inode, start_index, cur->index); 287 start_index = cur->index + 1; 288 } 289 290 list_del(&cur->list); 291 kmem_cache_free(revoke_entry_slab, cur); 292 } 293 294 if (!revoke && truncate) 295 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false); 296 } 297 298 static int __f2fs_commit_atomic_write(struct inode *inode) 299 { 300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 301 struct f2fs_inode_info *fi = F2FS_I(inode); 302 struct inode *cow_inode = fi->cow_inode; 303 struct revoke_entry *new; 304 struct list_head revoke_list; 305 block_t blkaddr; 306 struct dnode_of_data dn; 307 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 308 pgoff_t off = 0, blen, index; 309 int ret = 0, i; 310 311 INIT_LIST_HEAD(&revoke_list); 312 313 while (len) { 314 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 315 316 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 317 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 318 if (ret && ret != -ENOENT) { 319 goto out; 320 } else if (ret == -ENOENT) { 321 ret = 0; 322 if (dn.max_level == 0) 323 goto out; 324 goto next; 325 } 326 327 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 328 len); 329 index = off; 330 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 331 blkaddr = f2fs_data_blkaddr(&dn); 332 333 if (!__is_valid_data_blkaddr(blkaddr)) { 334 continue; 335 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 336 DATA_GENERIC_ENHANCE)) { 337 f2fs_put_dnode(&dn); 338 ret = -EFSCORRUPTED; 339 goto out; 340 } 341 342 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 343 true, NULL); 344 345 ret = __replace_atomic_write_block(inode, index, blkaddr, 346 &new->old_addr, false); 347 if (ret) { 348 f2fs_put_dnode(&dn); 349 kmem_cache_free(revoke_entry_slab, new); 350 goto out; 351 } 352 353 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 354 new->index = index; 355 list_add_tail(&new->list, &revoke_list); 356 } 357 f2fs_put_dnode(&dn); 358 next: 359 off += blen; 360 len -= blen; 361 } 362 363 out: 364 if (ret) { 365 sbi->revoked_atomic_block += fi->atomic_write_cnt; 366 } else { 367 sbi->committed_atomic_block += fi->atomic_write_cnt; 368 set_inode_flag(inode, FI_ATOMIC_COMMITTED); 369 } 370 371 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 372 373 return ret; 374 } 375 376 int f2fs_commit_atomic_write(struct inode *inode) 377 { 378 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 379 struct f2fs_inode_info *fi = F2FS_I(inode); 380 int err; 381 382 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 383 if (err) 384 return err; 385 386 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 387 f2fs_lock_op(sbi); 388 389 err = __f2fs_commit_atomic_write(inode); 390 391 f2fs_unlock_op(sbi); 392 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 393 394 return err; 395 } 396 397 /* 398 * This function balances dirty node and dentry pages. 399 * In addition, it controls garbage collection. 400 */ 401 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 402 { 403 if (f2fs_cp_error(sbi)) 404 return; 405 406 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 407 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); 408 409 /* balance_fs_bg is able to be pending */ 410 if (need && excess_cached_nats(sbi)) 411 f2fs_balance_fs_bg(sbi, false); 412 413 if (!f2fs_is_checkpoint_ready(sbi)) 414 return; 415 416 /* 417 * We should do GC or end up with checkpoint, if there are so many dirty 418 * dir/node pages without enough free segments. 419 */ 420 if (has_enough_free_secs(sbi, 0, 0)) 421 return; 422 423 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 424 sbi->gc_thread->f2fs_gc_task) { 425 DEFINE_WAIT(wait); 426 427 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 428 TASK_UNINTERRUPTIBLE); 429 wake_up(&sbi->gc_thread->gc_wait_queue_head); 430 io_schedule(); 431 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 432 } else { 433 struct f2fs_gc_control gc_control = { 434 .victim_segno = NULL_SEGNO, 435 .init_gc_type = BG_GC, 436 .no_bg_gc = true, 437 .should_migrate_blocks = false, 438 .err_gc_skipped = false, 439 .nr_free_secs = 1 }; 440 f2fs_down_write(&sbi->gc_lock); 441 stat_inc_gc_call_count(sbi, FOREGROUND); 442 f2fs_gc(sbi, &gc_control); 443 } 444 } 445 446 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 447 { 448 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 449 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 450 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 451 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 452 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 453 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 454 unsigned int threshold = 455 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD)); 456 unsigned int global_threshold = threshold * 3 / 2; 457 458 if (dents >= threshold || qdata >= threshold || 459 nodes >= threshold || meta >= threshold || 460 imeta >= threshold) 461 return true; 462 return dents + qdata + nodes + meta + imeta > global_threshold; 463 } 464 465 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 466 { 467 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 468 return; 469 470 /* try to shrink extent cache when there is no enough memory */ 471 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) 472 f2fs_shrink_read_extent_tree(sbi, 473 READ_EXTENT_CACHE_SHRINK_NUMBER); 474 475 /* try to shrink age extent cache when there is no enough memory */ 476 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) 477 f2fs_shrink_age_extent_tree(sbi, 478 AGE_EXTENT_CACHE_SHRINK_NUMBER); 479 480 /* check the # of cached NAT entries */ 481 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 482 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 483 484 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 485 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 486 else 487 f2fs_build_free_nids(sbi, false, false); 488 489 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 490 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 491 goto do_sync; 492 493 /* there is background inflight IO or foreground operation recently */ 494 if (is_inflight_io(sbi, REQ_TIME) || 495 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 496 return; 497 498 /* exceed periodical checkpoint timeout threshold */ 499 if (f2fs_time_over(sbi, CP_TIME)) 500 goto do_sync; 501 502 /* checkpoint is the only way to shrink partial cached entries */ 503 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 504 f2fs_available_free_memory(sbi, INO_ENTRIES)) 505 return; 506 507 do_sync: 508 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 509 struct blk_plug plug; 510 511 mutex_lock(&sbi->flush_lock); 512 513 blk_start_plug(&plug); 514 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); 515 blk_finish_plug(&plug); 516 517 mutex_unlock(&sbi->flush_lock); 518 } 519 stat_inc_cp_call_count(sbi, BACKGROUND); 520 f2fs_sync_fs(sbi->sb, 1); 521 } 522 523 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 524 struct block_device *bdev) 525 { 526 int ret = blkdev_issue_flush(bdev); 527 528 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 529 test_opt(sbi, FLUSH_MERGE), ret); 530 if (!ret) 531 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0); 532 return ret; 533 } 534 535 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 536 { 537 int ret = 0; 538 int i; 539 540 if (!f2fs_is_multi_device(sbi)) 541 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 542 543 for (i = 0; i < sbi->s_ndevs; i++) { 544 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 545 continue; 546 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 547 if (ret) 548 break; 549 } 550 return ret; 551 } 552 553 static int issue_flush_thread(void *data) 554 { 555 struct f2fs_sb_info *sbi = data; 556 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 557 wait_queue_head_t *q = &fcc->flush_wait_queue; 558 repeat: 559 if (kthread_should_stop()) 560 return 0; 561 562 if (!llist_empty(&fcc->issue_list)) { 563 struct flush_cmd *cmd, *next; 564 int ret; 565 566 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 567 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 568 569 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 570 571 ret = submit_flush_wait(sbi, cmd->ino); 572 atomic_inc(&fcc->issued_flush); 573 574 llist_for_each_entry_safe(cmd, next, 575 fcc->dispatch_list, llnode) { 576 cmd->ret = ret; 577 complete(&cmd->wait); 578 } 579 fcc->dispatch_list = NULL; 580 } 581 582 wait_event_interruptible(*q, 583 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 584 goto repeat; 585 } 586 587 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 588 { 589 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 590 struct flush_cmd cmd; 591 int ret; 592 593 if (test_opt(sbi, NOBARRIER)) 594 return 0; 595 596 if (!test_opt(sbi, FLUSH_MERGE)) { 597 atomic_inc(&fcc->queued_flush); 598 ret = submit_flush_wait(sbi, ino); 599 atomic_dec(&fcc->queued_flush); 600 atomic_inc(&fcc->issued_flush); 601 return ret; 602 } 603 604 if (atomic_inc_return(&fcc->queued_flush) == 1 || 605 f2fs_is_multi_device(sbi)) { 606 ret = submit_flush_wait(sbi, ino); 607 atomic_dec(&fcc->queued_flush); 608 609 atomic_inc(&fcc->issued_flush); 610 return ret; 611 } 612 613 cmd.ino = ino; 614 init_completion(&cmd.wait); 615 616 llist_add(&cmd.llnode, &fcc->issue_list); 617 618 /* 619 * update issue_list before we wake up issue_flush thread, this 620 * smp_mb() pairs with another barrier in ___wait_event(), see 621 * more details in comments of waitqueue_active(). 622 */ 623 smp_mb(); 624 625 if (waitqueue_active(&fcc->flush_wait_queue)) 626 wake_up(&fcc->flush_wait_queue); 627 628 if (fcc->f2fs_issue_flush) { 629 wait_for_completion(&cmd.wait); 630 atomic_dec(&fcc->queued_flush); 631 } else { 632 struct llist_node *list; 633 634 list = llist_del_all(&fcc->issue_list); 635 if (!list) { 636 wait_for_completion(&cmd.wait); 637 atomic_dec(&fcc->queued_flush); 638 } else { 639 struct flush_cmd *tmp, *next; 640 641 ret = submit_flush_wait(sbi, ino); 642 643 llist_for_each_entry_safe(tmp, next, list, llnode) { 644 if (tmp == &cmd) { 645 cmd.ret = ret; 646 atomic_dec(&fcc->queued_flush); 647 continue; 648 } 649 tmp->ret = ret; 650 complete(&tmp->wait); 651 } 652 } 653 } 654 655 return cmd.ret; 656 } 657 658 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 659 { 660 dev_t dev = sbi->sb->s_bdev->bd_dev; 661 struct flush_cmd_control *fcc; 662 663 if (SM_I(sbi)->fcc_info) { 664 fcc = SM_I(sbi)->fcc_info; 665 if (fcc->f2fs_issue_flush) 666 return 0; 667 goto init_thread; 668 } 669 670 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 671 if (!fcc) 672 return -ENOMEM; 673 atomic_set(&fcc->issued_flush, 0); 674 atomic_set(&fcc->queued_flush, 0); 675 init_waitqueue_head(&fcc->flush_wait_queue); 676 init_llist_head(&fcc->issue_list); 677 SM_I(sbi)->fcc_info = fcc; 678 if (!test_opt(sbi, FLUSH_MERGE)) 679 return 0; 680 681 init_thread: 682 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 683 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 684 if (IS_ERR(fcc->f2fs_issue_flush)) { 685 int err = PTR_ERR(fcc->f2fs_issue_flush); 686 687 fcc->f2fs_issue_flush = NULL; 688 return err; 689 } 690 691 return 0; 692 } 693 694 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 695 { 696 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 697 698 if (fcc && fcc->f2fs_issue_flush) { 699 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 700 701 fcc->f2fs_issue_flush = NULL; 702 kthread_stop(flush_thread); 703 } 704 if (free) { 705 kfree(fcc); 706 SM_I(sbi)->fcc_info = NULL; 707 } 708 } 709 710 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 711 { 712 int ret = 0, i; 713 714 if (!f2fs_is_multi_device(sbi)) 715 return 0; 716 717 if (test_opt(sbi, NOBARRIER)) 718 return 0; 719 720 for (i = 1; i < sbi->s_ndevs; i++) { 721 int count = DEFAULT_RETRY_IO_COUNT; 722 723 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 724 continue; 725 726 do { 727 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 728 if (ret) 729 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 730 } while (ret && --count); 731 732 if (ret) { 733 f2fs_stop_checkpoint(sbi, false, 734 STOP_CP_REASON_FLUSH_FAIL); 735 break; 736 } 737 738 spin_lock(&sbi->dev_lock); 739 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 740 spin_unlock(&sbi->dev_lock); 741 } 742 743 return ret; 744 } 745 746 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 747 enum dirty_type dirty_type) 748 { 749 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 750 751 /* need not be added */ 752 if (IS_CURSEG(sbi, segno)) 753 return; 754 755 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 756 dirty_i->nr_dirty[dirty_type]++; 757 758 if (dirty_type == DIRTY) { 759 struct seg_entry *sentry = get_seg_entry(sbi, segno); 760 enum dirty_type t = sentry->type; 761 762 if (unlikely(t >= DIRTY)) { 763 f2fs_bug_on(sbi, 1); 764 return; 765 } 766 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 767 dirty_i->nr_dirty[t]++; 768 769 if (__is_large_section(sbi)) { 770 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 771 block_t valid_blocks = 772 get_valid_blocks(sbi, segno, true); 773 774 f2fs_bug_on(sbi, 775 (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 776 !valid_blocks) || 777 valid_blocks == CAP_BLKS_PER_SEC(sbi)); 778 779 if (!IS_CURSEC(sbi, secno)) 780 set_bit(secno, dirty_i->dirty_secmap); 781 } 782 } 783 } 784 785 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 786 enum dirty_type dirty_type) 787 { 788 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 789 block_t valid_blocks; 790 791 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 792 dirty_i->nr_dirty[dirty_type]--; 793 794 if (dirty_type == DIRTY) { 795 struct seg_entry *sentry = get_seg_entry(sbi, segno); 796 enum dirty_type t = sentry->type; 797 798 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 799 dirty_i->nr_dirty[t]--; 800 801 valid_blocks = get_valid_blocks(sbi, segno, true); 802 if (valid_blocks == 0) { 803 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 804 dirty_i->victim_secmap); 805 #ifdef CONFIG_F2FS_CHECK_FS 806 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 807 #endif 808 } 809 if (__is_large_section(sbi)) { 810 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 811 812 if (!valid_blocks || 813 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 814 clear_bit(secno, dirty_i->dirty_secmap); 815 return; 816 } 817 818 if (!IS_CURSEC(sbi, secno)) 819 set_bit(secno, dirty_i->dirty_secmap); 820 } 821 } 822 } 823 824 /* 825 * Should not occur error such as -ENOMEM. 826 * Adding dirty entry into seglist is not critical operation. 827 * If a given segment is one of current working segments, it won't be added. 828 */ 829 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 830 { 831 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 832 unsigned short valid_blocks, ckpt_valid_blocks; 833 unsigned int usable_blocks; 834 835 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 836 return; 837 838 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 839 mutex_lock(&dirty_i->seglist_lock); 840 841 valid_blocks = get_valid_blocks(sbi, segno, false); 842 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 843 844 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 845 ckpt_valid_blocks == usable_blocks)) { 846 __locate_dirty_segment(sbi, segno, PRE); 847 __remove_dirty_segment(sbi, segno, DIRTY); 848 } else if (valid_blocks < usable_blocks) { 849 __locate_dirty_segment(sbi, segno, DIRTY); 850 } else { 851 /* Recovery routine with SSR needs this */ 852 __remove_dirty_segment(sbi, segno, DIRTY); 853 } 854 855 mutex_unlock(&dirty_i->seglist_lock); 856 } 857 858 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 859 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 860 { 861 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 862 unsigned int segno; 863 864 mutex_lock(&dirty_i->seglist_lock); 865 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 866 if (get_valid_blocks(sbi, segno, false)) 867 continue; 868 if (IS_CURSEG(sbi, segno)) 869 continue; 870 __locate_dirty_segment(sbi, segno, PRE); 871 __remove_dirty_segment(sbi, segno, DIRTY); 872 } 873 mutex_unlock(&dirty_i->seglist_lock); 874 } 875 876 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 877 { 878 int ovp_hole_segs = 879 (overprovision_segments(sbi) - reserved_segments(sbi)); 880 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs); 881 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 882 block_t holes[2] = {0, 0}; /* DATA and NODE */ 883 block_t unusable; 884 struct seg_entry *se; 885 unsigned int segno; 886 887 mutex_lock(&dirty_i->seglist_lock); 888 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 889 se = get_seg_entry(sbi, segno); 890 if (IS_NODESEG(se->type)) 891 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 892 se->valid_blocks; 893 else 894 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 895 se->valid_blocks; 896 } 897 mutex_unlock(&dirty_i->seglist_lock); 898 899 unusable = max(holes[DATA], holes[NODE]); 900 if (unusable > ovp_holes) 901 return unusable - ovp_holes; 902 return 0; 903 } 904 905 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 906 { 907 int ovp_hole_segs = 908 (overprovision_segments(sbi) - reserved_segments(sbi)); 909 910 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 911 return 0; 912 if (unusable > F2FS_OPTION(sbi).unusable_cap) 913 return -EAGAIN; 914 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 915 dirty_segments(sbi) > ovp_hole_segs) 916 return -EAGAIN; 917 if (has_not_enough_free_secs(sbi, 0, 0)) 918 return -EAGAIN; 919 return 0; 920 } 921 922 /* This is only used by SBI_CP_DISABLED */ 923 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 924 { 925 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 926 unsigned int segno = 0; 927 928 mutex_lock(&dirty_i->seglist_lock); 929 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 930 if (get_valid_blocks(sbi, segno, false)) 931 continue; 932 if (get_ckpt_valid_blocks(sbi, segno, false)) 933 continue; 934 mutex_unlock(&dirty_i->seglist_lock); 935 return segno; 936 } 937 mutex_unlock(&dirty_i->seglist_lock); 938 return NULL_SEGNO; 939 } 940 941 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 942 struct block_device *bdev, block_t lstart, 943 block_t start, block_t len) 944 { 945 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 946 struct list_head *pend_list; 947 struct discard_cmd *dc; 948 949 f2fs_bug_on(sbi, !len); 950 951 pend_list = &dcc->pend_list[plist_idx(len)]; 952 953 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 954 INIT_LIST_HEAD(&dc->list); 955 dc->bdev = bdev; 956 dc->di.lstart = lstart; 957 dc->di.start = start; 958 dc->di.len = len; 959 dc->ref = 0; 960 dc->state = D_PREP; 961 dc->queued = 0; 962 dc->error = 0; 963 init_completion(&dc->wait); 964 list_add_tail(&dc->list, pend_list); 965 spin_lock_init(&dc->lock); 966 dc->bio_ref = 0; 967 atomic_inc(&dcc->discard_cmd_cnt); 968 dcc->undiscard_blks += len; 969 970 return dc; 971 } 972 973 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi) 974 { 975 #ifdef CONFIG_F2FS_CHECK_FS 976 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 977 struct rb_node *cur = rb_first_cached(&dcc->root), *next; 978 struct discard_cmd *cur_dc, *next_dc; 979 980 while (cur) { 981 next = rb_next(cur); 982 if (!next) 983 return true; 984 985 cur_dc = rb_entry(cur, struct discard_cmd, rb_node); 986 next_dc = rb_entry(next, struct discard_cmd, rb_node); 987 988 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) { 989 f2fs_info(sbi, "broken discard_rbtree, " 990 "cur(%u, %u) next(%u, %u)", 991 cur_dc->di.lstart, cur_dc->di.len, 992 next_dc->di.lstart, next_dc->di.len); 993 return false; 994 } 995 cur = next; 996 } 997 #endif 998 return true; 999 } 1000 1001 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi, 1002 block_t blkaddr) 1003 { 1004 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1005 struct rb_node *node = dcc->root.rb_root.rb_node; 1006 struct discard_cmd *dc; 1007 1008 while (node) { 1009 dc = rb_entry(node, struct discard_cmd, rb_node); 1010 1011 if (blkaddr < dc->di.lstart) 1012 node = node->rb_left; 1013 else if (blkaddr >= dc->di.lstart + dc->di.len) 1014 node = node->rb_right; 1015 else 1016 return dc; 1017 } 1018 return NULL; 1019 } 1020 1021 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root, 1022 block_t blkaddr, 1023 struct discard_cmd **prev_entry, 1024 struct discard_cmd **next_entry, 1025 struct rb_node ***insert_p, 1026 struct rb_node **insert_parent) 1027 { 1028 struct rb_node **pnode = &root->rb_root.rb_node; 1029 struct rb_node *parent = NULL, *tmp_node; 1030 struct discard_cmd *dc; 1031 1032 *insert_p = NULL; 1033 *insert_parent = NULL; 1034 *prev_entry = NULL; 1035 *next_entry = NULL; 1036 1037 if (RB_EMPTY_ROOT(&root->rb_root)) 1038 return NULL; 1039 1040 while (*pnode) { 1041 parent = *pnode; 1042 dc = rb_entry(*pnode, struct discard_cmd, rb_node); 1043 1044 if (blkaddr < dc->di.lstart) 1045 pnode = &(*pnode)->rb_left; 1046 else if (blkaddr >= dc->di.lstart + dc->di.len) 1047 pnode = &(*pnode)->rb_right; 1048 else 1049 goto lookup_neighbors; 1050 } 1051 1052 *insert_p = pnode; 1053 *insert_parent = parent; 1054 1055 dc = rb_entry(parent, struct discard_cmd, rb_node); 1056 tmp_node = parent; 1057 if (parent && blkaddr > dc->di.lstart) 1058 tmp_node = rb_next(parent); 1059 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1060 1061 tmp_node = parent; 1062 if (parent && blkaddr < dc->di.lstart) 1063 tmp_node = rb_prev(parent); 1064 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1065 return NULL; 1066 1067 lookup_neighbors: 1068 /* lookup prev node for merging backward later */ 1069 tmp_node = rb_prev(&dc->rb_node); 1070 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1071 1072 /* lookup next node for merging frontward later */ 1073 tmp_node = rb_next(&dc->rb_node); 1074 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1075 return dc; 1076 } 1077 1078 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1079 struct discard_cmd *dc) 1080 { 1081 if (dc->state == D_DONE) 1082 atomic_sub(dc->queued, &dcc->queued_discard); 1083 1084 list_del(&dc->list); 1085 rb_erase_cached(&dc->rb_node, &dcc->root); 1086 dcc->undiscard_blks -= dc->di.len; 1087 1088 kmem_cache_free(discard_cmd_slab, dc); 1089 1090 atomic_dec(&dcc->discard_cmd_cnt); 1091 } 1092 1093 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1094 struct discard_cmd *dc) 1095 { 1096 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1097 unsigned long flags; 1098 1099 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len); 1100 1101 spin_lock_irqsave(&dc->lock, flags); 1102 if (dc->bio_ref) { 1103 spin_unlock_irqrestore(&dc->lock, flags); 1104 return; 1105 } 1106 spin_unlock_irqrestore(&dc->lock, flags); 1107 1108 f2fs_bug_on(sbi, dc->ref); 1109 1110 if (dc->error == -EOPNOTSUPP) 1111 dc->error = 0; 1112 1113 if (dc->error) 1114 f2fs_info_ratelimited(sbi, 1115 "Issue discard(%u, %u, %u) failed, ret: %d", 1116 dc->di.lstart, dc->di.start, dc->di.len, dc->error); 1117 __detach_discard_cmd(dcc, dc); 1118 } 1119 1120 static void f2fs_submit_discard_endio(struct bio *bio) 1121 { 1122 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1123 unsigned long flags; 1124 1125 spin_lock_irqsave(&dc->lock, flags); 1126 if (!dc->error) 1127 dc->error = blk_status_to_errno(bio->bi_status); 1128 dc->bio_ref--; 1129 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1130 dc->state = D_DONE; 1131 complete_all(&dc->wait); 1132 } 1133 spin_unlock_irqrestore(&dc->lock, flags); 1134 bio_put(bio); 1135 } 1136 1137 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1138 block_t start, block_t end) 1139 { 1140 #ifdef CONFIG_F2FS_CHECK_FS 1141 struct seg_entry *sentry; 1142 unsigned int segno; 1143 block_t blk = start; 1144 unsigned long offset, size, *map; 1145 1146 while (blk < end) { 1147 segno = GET_SEGNO(sbi, blk); 1148 sentry = get_seg_entry(sbi, segno); 1149 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1150 1151 if (end < START_BLOCK(sbi, segno + 1)) 1152 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1153 else 1154 size = BLKS_PER_SEG(sbi); 1155 map = (unsigned long *)(sentry->cur_valid_map); 1156 offset = __find_rev_next_bit(map, size, offset); 1157 f2fs_bug_on(sbi, offset != size); 1158 blk = START_BLOCK(sbi, segno + 1); 1159 } 1160 #endif 1161 } 1162 1163 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1164 struct discard_policy *dpolicy, 1165 int discard_type, unsigned int granularity) 1166 { 1167 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1168 1169 /* common policy */ 1170 dpolicy->type = discard_type; 1171 dpolicy->sync = true; 1172 dpolicy->ordered = false; 1173 dpolicy->granularity = granularity; 1174 1175 dpolicy->max_requests = dcc->max_discard_request; 1176 dpolicy->io_aware_gran = dcc->discard_io_aware_gran; 1177 dpolicy->timeout = false; 1178 1179 if (discard_type == DPOLICY_BG) { 1180 dpolicy->min_interval = dcc->min_discard_issue_time; 1181 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1182 dpolicy->max_interval = dcc->max_discard_issue_time; 1183 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE) 1184 dpolicy->io_aware = true; 1185 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE) 1186 dpolicy->io_aware = false; 1187 dpolicy->sync = false; 1188 dpolicy->ordered = true; 1189 if (utilization(sbi) > dcc->discard_urgent_util) { 1190 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1191 if (atomic_read(&dcc->discard_cmd_cnt)) 1192 dpolicy->max_interval = 1193 dcc->min_discard_issue_time; 1194 } 1195 } else if (discard_type == DPOLICY_FORCE) { 1196 dpolicy->min_interval = dcc->min_discard_issue_time; 1197 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1198 dpolicy->max_interval = dcc->max_discard_issue_time; 1199 dpolicy->io_aware = false; 1200 } else if (discard_type == DPOLICY_FSTRIM) { 1201 dpolicy->io_aware = false; 1202 } else if (discard_type == DPOLICY_UMOUNT) { 1203 dpolicy->io_aware = false; 1204 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1205 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1206 dpolicy->timeout = true; 1207 } 1208 } 1209 1210 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1211 struct block_device *bdev, block_t lstart, 1212 block_t start, block_t len); 1213 1214 #ifdef CONFIG_BLK_DEV_ZONED 1215 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi, 1216 struct discard_cmd *dc, blk_opf_t flag, 1217 struct list_head *wait_list, 1218 unsigned int *issued) 1219 { 1220 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1221 struct block_device *bdev = dc->bdev; 1222 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS); 1223 unsigned long flags; 1224 1225 trace_f2fs_issue_reset_zone(bdev, dc->di.start); 1226 1227 spin_lock_irqsave(&dc->lock, flags); 1228 dc->state = D_SUBMIT; 1229 dc->bio_ref++; 1230 spin_unlock_irqrestore(&dc->lock, flags); 1231 1232 if (issued) 1233 (*issued)++; 1234 1235 atomic_inc(&dcc->queued_discard); 1236 dc->queued++; 1237 list_move_tail(&dc->list, wait_list); 1238 1239 /* sanity check on discard range */ 1240 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len); 1241 1242 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start); 1243 bio->bi_private = dc; 1244 bio->bi_end_io = f2fs_submit_discard_endio; 1245 submit_bio(bio); 1246 1247 atomic_inc(&dcc->issued_discard); 1248 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE); 1249 } 1250 #endif 1251 1252 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1253 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1254 struct discard_policy *dpolicy, 1255 struct discard_cmd *dc, int *issued) 1256 { 1257 struct block_device *bdev = dc->bdev; 1258 unsigned int max_discard_blocks = 1259 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1260 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1261 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1262 &(dcc->fstrim_list) : &(dcc->wait_list); 1263 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1264 block_t lstart, start, len, total_len; 1265 int err = 0; 1266 1267 if (dc->state != D_PREP) 1268 return 0; 1269 1270 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1271 return 0; 1272 1273 #ifdef CONFIG_BLK_DEV_ZONED 1274 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) { 1275 int devi = f2fs_bdev_index(sbi, bdev); 1276 1277 if (devi < 0) 1278 return -EINVAL; 1279 1280 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1281 __submit_zone_reset_cmd(sbi, dc, flag, 1282 wait_list, issued); 1283 return 0; 1284 } 1285 } 1286 #endif 1287 1288 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len); 1289 1290 lstart = dc->di.lstart; 1291 start = dc->di.start; 1292 len = dc->di.len; 1293 total_len = len; 1294 1295 dc->di.len = 0; 1296 1297 while (total_len && *issued < dpolicy->max_requests && !err) { 1298 struct bio *bio = NULL; 1299 unsigned long flags; 1300 bool last = true; 1301 1302 if (len > max_discard_blocks) { 1303 len = max_discard_blocks; 1304 last = false; 1305 } 1306 1307 (*issued)++; 1308 if (*issued == dpolicy->max_requests) 1309 last = true; 1310 1311 dc->di.len += len; 1312 1313 if (time_to_inject(sbi, FAULT_DISCARD)) { 1314 err = -EIO; 1315 } else { 1316 err = __blkdev_issue_discard(bdev, 1317 SECTOR_FROM_BLOCK(start), 1318 SECTOR_FROM_BLOCK(len), 1319 GFP_NOFS, &bio); 1320 } 1321 if (err) { 1322 spin_lock_irqsave(&dc->lock, flags); 1323 if (dc->state == D_PARTIAL) 1324 dc->state = D_SUBMIT; 1325 spin_unlock_irqrestore(&dc->lock, flags); 1326 1327 break; 1328 } 1329 1330 f2fs_bug_on(sbi, !bio); 1331 1332 /* 1333 * should keep before submission to avoid D_DONE 1334 * right away 1335 */ 1336 spin_lock_irqsave(&dc->lock, flags); 1337 if (last) 1338 dc->state = D_SUBMIT; 1339 else 1340 dc->state = D_PARTIAL; 1341 dc->bio_ref++; 1342 spin_unlock_irqrestore(&dc->lock, flags); 1343 1344 atomic_inc(&dcc->queued_discard); 1345 dc->queued++; 1346 list_move_tail(&dc->list, wait_list); 1347 1348 /* sanity check on discard range */ 1349 __check_sit_bitmap(sbi, lstart, lstart + len); 1350 1351 bio->bi_private = dc; 1352 bio->bi_end_io = f2fs_submit_discard_endio; 1353 bio->bi_opf |= flag; 1354 submit_bio(bio); 1355 1356 atomic_inc(&dcc->issued_discard); 1357 1358 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE); 1359 1360 lstart += len; 1361 start += len; 1362 total_len -= len; 1363 len = total_len; 1364 } 1365 1366 if (!err && len) { 1367 dcc->undiscard_blks -= len; 1368 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1369 } 1370 return err; 1371 } 1372 1373 static void __insert_discard_cmd(struct f2fs_sb_info *sbi, 1374 struct block_device *bdev, block_t lstart, 1375 block_t start, block_t len) 1376 { 1377 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1378 struct rb_node **p = &dcc->root.rb_root.rb_node; 1379 struct rb_node *parent = NULL; 1380 struct discard_cmd *dc; 1381 bool leftmost = true; 1382 1383 /* look up rb tree to find parent node */ 1384 while (*p) { 1385 parent = *p; 1386 dc = rb_entry(parent, struct discard_cmd, rb_node); 1387 1388 if (lstart < dc->di.lstart) { 1389 p = &(*p)->rb_left; 1390 } else if (lstart >= dc->di.lstart + dc->di.len) { 1391 p = &(*p)->rb_right; 1392 leftmost = false; 1393 } else { 1394 /* Let's skip to add, if exists */ 1395 return; 1396 } 1397 } 1398 1399 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1400 1401 rb_link_node(&dc->rb_node, parent, p); 1402 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1403 } 1404 1405 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1406 struct discard_cmd *dc) 1407 { 1408 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]); 1409 } 1410 1411 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1412 struct discard_cmd *dc, block_t blkaddr) 1413 { 1414 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1415 struct discard_info di = dc->di; 1416 bool modified = false; 1417 1418 if (dc->state == D_DONE || dc->di.len == 1) { 1419 __remove_discard_cmd(sbi, dc); 1420 return; 1421 } 1422 1423 dcc->undiscard_blks -= di.len; 1424 1425 if (blkaddr > di.lstart) { 1426 dc->di.len = blkaddr - dc->di.lstart; 1427 dcc->undiscard_blks += dc->di.len; 1428 __relocate_discard_cmd(dcc, dc); 1429 modified = true; 1430 } 1431 1432 if (blkaddr < di.lstart + di.len - 1) { 1433 if (modified) { 1434 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1, 1435 di.start + blkaddr + 1 - di.lstart, 1436 di.lstart + di.len - 1 - blkaddr); 1437 } else { 1438 dc->di.lstart++; 1439 dc->di.len--; 1440 dc->di.start++; 1441 dcc->undiscard_blks += dc->di.len; 1442 __relocate_discard_cmd(dcc, dc); 1443 } 1444 } 1445 } 1446 1447 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1448 struct block_device *bdev, block_t lstart, 1449 block_t start, block_t len) 1450 { 1451 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1452 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1453 struct discard_cmd *dc; 1454 struct discard_info di = {0}; 1455 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1456 unsigned int max_discard_blocks = 1457 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1458 block_t end = lstart + len; 1459 1460 dc = __lookup_discard_cmd_ret(&dcc->root, lstart, 1461 &prev_dc, &next_dc, &insert_p, &insert_parent); 1462 if (dc) 1463 prev_dc = dc; 1464 1465 if (!prev_dc) { 1466 di.lstart = lstart; 1467 di.len = next_dc ? next_dc->di.lstart - lstart : len; 1468 di.len = min(di.len, len); 1469 di.start = start; 1470 } 1471 1472 while (1) { 1473 struct rb_node *node; 1474 bool merged = false; 1475 struct discard_cmd *tdc = NULL; 1476 1477 if (prev_dc) { 1478 di.lstart = prev_dc->di.lstart + prev_dc->di.len; 1479 if (di.lstart < lstart) 1480 di.lstart = lstart; 1481 if (di.lstart >= end) 1482 break; 1483 1484 if (!next_dc || next_dc->di.lstart > end) 1485 di.len = end - di.lstart; 1486 else 1487 di.len = next_dc->di.lstart - di.lstart; 1488 di.start = start + di.lstart - lstart; 1489 } 1490 1491 if (!di.len) 1492 goto next; 1493 1494 if (prev_dc && prev_dc->state == D_PREP && 1495 prev_dc->bdev == bdev && 1496 __is_discard_back_mergeable(&di, &prev_dc->di, 1497 max_discard_blocks)) { 1498 prev_dc->di.len += di.len; 1499 dcc->undiscard_blks += di.len; 1500 __relocate_discard_cmd(dcc, prev_dc); 1501 di = prev_dc->di; 1502 tdc = prev_dc; 1503 merged = true; 1504 } 1505 1506 if (next_dc && next_dc->state == D_PREP && 1507 next_dc->bdev == bdev && 1508 __is_discard_front_mergeable(&di, &next_dc->di, 1509 max_discard_blocks)) { 1510 next_dc->di.lstart = di.lstart; 1511 next_dc->di.len += di.len; 1512 next_dc->di.start = di.start; 1513 dcc->undiscard_blks += di.len; 1514 __relocate_discard_cmd(dcc, next_dc); 1515 if (tdc) 1516 __remove_discard_cmd(sbi, tdc); 1517 merged = true; 1518 } 1519 1520 if (!merged) 1521 __insert_discard_cmd(sbi, bdev, 1522 di.lstart, di.start, di.len); 1523 next: 1524 prev_dc = next_dc; 1525 if (!prev_dc) 1526 break; 1527 1528 node = rb_next(&prev_dc->rb_node); 1529 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1530 } 1531 } 1532 1533 #ifdef CONFIG_BLK_DEV_ZONED 1534 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi, 1535 struct block_device *bdev, block_t blkstart, block_t lblkstart, 1536 block_t blklen) 1537 { 1538 trace_f2fs_queue_reset_zone(bdev, blkstart); 1539 1540 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1541 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen); 1542 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1543 } 1544 #endif 1545 1546 static void __queue_discard_cmd(struct f2fs_sb_info *sbi, 1547 struct block_device *bdev, block_t blkstart, block_t blklen) 1548 { 1549 block_t lblkstart = blkstart; 1550 1551 if (!f2fs_bdev_support_discard(bdev)) 1552 return; 1553 1554 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1555 1556 if (f2fs_is_multi_device(sbi)) { 1557 int devi = f2fs_target_device_index(sbi, blkstart); 1558 1559 blkstart -= FDEV(devi).start_blk; 1560 } 1561 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1562 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1563 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1564 } 1565 1566 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1567 struct discard_policy *dpolicy, int *issued) 1568 { 1569 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1570 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1571 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1572 struct discard_cmd *dc; 1573 struct blk_plug plug; 1574 bool io_interrupted = false; 1575 1576 mutex_lock(&dcc->cmd_lock); 1577 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos, 1578 &prev_dc, &next_dc, &insert_p, &insert_parent); 1579 if (!dc) 1580 dc = next_dc; 1581 1582 blk_start_plug(&plug); 1583 1584 while (dc) { 1585 struct rb_node *node; 1586 int err = 0; 1587 1588 if (dc->state != D_PREP) 1589 goto next; 1590 1591 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1592 io_interrupted = true; 1593 break; 1594 } 1595 1596 dcc->next_pos = dc->di.lstart + dc->di.len; 1597 err = __submit_discard_cmd(sbi, dpolicy, dc, issued); 1598 1599 if (*issued >= dpolicy->max_requests) 1600 break; 1601 next: 1602 node = rb_next(&dc->rb_node); 1603 if (err) 1604 __remove_discard_cmd(sbi, dc); 1605 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1606 } 1607 1608 blk_finish_plug(&plug); 1609 1610 if (!dc) 1611 dcc->next_pos = 0; 1612 1613 mutex_unlock(&dcc->cmd_lock); 1614 1615 if (!(*issued) && io_interrupted) 1616 *issued = -1; 1617 } 1618 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1619 struct discard_policy *dpolicy); 1620 1621 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1622 struct discard_policy *dpolicy) 1623 { 1624 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1625 struct list_head *pend_list; 1626 struct discard_cmd *dc, *tmp; 1627 struct blk_plug plug; 1628 int i, issued; 1629 bool io_interrupted = false; 1630 1631 if (dpolicy->timeout) 1632 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1633 1634 retry: 1635 issued = 0; 1636 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1637 if (dpolicy->timeout && 1638 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1639 break; 1640 1641 if (i + 1 < dpolicy->granularity) 1642 break; 1643 1644 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) { 1645 __issue_discard_cmd_orderly(sbi, dpolicy, &issued); 1646 return issued; 1647 } 1648 1649 pend_list = &dcc->pend_list[i]; 1650 1651 mutex_lock(&dcc->cmd_lock); 1652 if (list_empty(pend_list)) 1653 goto next; 1654 if (unlikely(dcc->rbtree_check)) 1655 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 1656 blk_start_plug(&plug); 1657 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1658 f2fs_bug_on(sbi, dc->state != D_PREP); 1659 1660 if (dpolicy->timeout && 1661 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1662 break; 1663 1664 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1665 !is_idle(sbi, DISCARD_TIME)) { 1666 io_interrupted = true; 1667 break; 1668 } 1669 1670 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1671 1672 if (issued >= dpolicy->max_requests) 1673 break; 1674 } 1675 blk_finish_plug(&plug); 1676 next: 1677 mutex_unlock(&dcc->cmd_lock); 1678 1679 if (issued >= dpolicy->max_requests || io_interrupted) 1680 break; 1681 } 1682 1683 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1684 __wait_all_discard_cmd(sbi, dpolicy); 1685 goto retry; 1686 } 1687 1688 if (!issued && io_interrupted) 1689 issued = -1; 1690 1691 return issued; 1692 } 1693 1694 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1695 { 1696 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1697 struct list_head *pend_list; 1698 struct discard_cmd *dc, *tmp; 1699 int i; 1700 bool dropped = false; 1701 1702 mutex_lock(&dcc->cmd_lock); 1703 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1704 pend_list = &dcc->pend_list[i]; 1705 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1706 f2fs_bug_on(sbi, dc->state != D_PREP); 1707 __remove_discard_cmd(sbi, dc); 1708 dropped = true; 1709 } 1710 } 1711 mutex_unlock(&dcc->cmd_lock); 1712 1713 return dropped; 1714 } 1715 1716 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1717 { 1718 __drop_discard_cmd(sbi); 1719 } 1720 1721 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1722 struct discard_cmd *dc) 1723 { 1724 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1725 unsigned int len = 0; 1726 1727 wait_for_completion_io(&dc->wait); 1728 mutex_lock(&dcc->cmd_lock); 1729 f2fs_bug_on(sbi, dc->state != D_DONE); 1730 dc->ref--; 1731 if (!dc->ref) { 1732 if (!dc->error) 1733 len = dc->di.len; 1734 __remove_discard_cmd(sbi, dc); 1735 } 1736 mutex_unlock(&dcc->cmd_lock); 1737 1738 return len; 1739 } 1740 1741 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1742 struct discard_policy *dpolicy, 1743 block_t start, block_t end) 1744 { 1745 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1746 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1747 &(dcc->fstrim_list) : &(dcc->wait_list); 1748 struct discard_cmd *dc = NULL, *iter, *tmp; 1749 unsigned int trimmed = 0; 1750 1751 next: 1752 dc = NULL; 1753 1754 mutex_lock(&dcc->cmd_lock); 1755 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1756 if (iter->di.lstart + iter->di.len <= start || 1757 end <= iter->di.lstart) 1758 continue; 1759 if (iter->di.len < dpolicy->granularity) 1760 continue; 1761 if (iter->state == D_DONE && !iter->ref) { 1762 wait_for_completion_io(&iter->wait); 1763 if (!iter->error) 1764 trimmed += iter->di.len; 1765 __remove_discard_cmd(sbi, iter); 1766 } else { 1767 iter->ref++; 1768 dc = iter; 1769 break; 1770 } 1771 } 1772 mutex_unlock(&dcc->cmd_lock); 1773 1774 if (dc) { 1775 trimmed += __wait_one_discard_bio(sbi, dc); 1776 goto next; 1777 } 1778 1779 return trimmed; 1780 } 1781 1782 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1783 struct discard_policy *dpolicy) 1784 { 1785 struct discard_policy dp; 1786 unsigned int discard_blks; 1787 1788 if (dpolicy) 1789 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1790 1791 /* wait all */ 1792 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY); 1793 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1794 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY); 1795 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1796 1797 return discard_blks; 1798 } 1799 1800 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1801 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1802 { 1803 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1804 struct discard_cmd *dc; 1805 bool need_wait = false; 1806 1807 mutex_lock(&dcc->cmd_lock); 1808 dc = __lookup_discard_cmd(sbi, blkaddr); 1809 #ifdef CONFIG_BLK_DEV_ZONED 1810 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) { 1811 int devi = f2fs_bdev_index(sbi, dc->bdev); 1812 1813 if (devi < 0) { 1814 mutex_unlock(&dcc->cmd_lock); 1815 return; 1816 } 1817 1818 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1819 /* force submit zone reset */ 1820 if (dc->state == D_PREP) 1821 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC, 1822 &dcc->wait_list, NULL); 1823 dc->ref++; 1824 mutex_unlock(&dcc->cmd_lock); 1825 /* wait zone reset */ 1826 __wait_one_discard_bio(sbi, dc); 1827 return; 1828 } 1829 } 1830 #endif 1831 if (dc) { 1832 if (dc->state == D_PREP) { 1833 __punch_discard_cmd(sbi, dc, blkaddr); 1834 } else { 1835 dc->ref++; 1836 need_wait = true; 1837 } 1838 } 1839 mutex_unlock(&dcc->cmd_lock); 1840 1841 if (need_wait) 1842 __wait_one_discard_bio(sbi, dc); 1843 } 1844 1845 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1846 { 1847 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1848 1849 if (dcc && dcc->f2fs_issue_discard) { 1850 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1851 1852 dcc->f2fs_issue_discard = NULL; 1853 kthread_stop(discard_thread); 1854 } 1855 } 1856 1857 /** 1858 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT 1859 * @sbi: the f2fs_sb_info data for discard cmd to issue 1860 * 1861 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped 1862 * 1863 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false. 1864 */ 1865 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1866 { 1867 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1868 struct discard_policy dpolicy; 1869 bool dropped; 1870 1871 if (!atomic_read(&dcc->discard_cmd_cnt)) 1872 return true; 1873 1874 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1875 dcc->discard_granularity); 1876 __issue_discard_cmd(sbi, &dpolicy); 1877 dropped = __drop_discard_cmd(sbi); 1878 1879 /* just to make sure there is no pending discard commands */ 1880 __wait_all_discard_cmd(sbi, NULL); 1881 1882 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1883 return !dropped; 1884 } 1885 1886 static int issue_discard_thread(void *data) 1887 { 1888 struct f2fs_sb_info *sbi = data; 1889 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1890 wait_queue_head_t *q = &dcc->discard_wait_queue; 1891 struct discard_policy dpolicy; 1892 unsigned int wait_ms = dcc->min_discard_issue_time; 1893 int issued; 1894 1895 set_freezable(); 1896 1897 do { 1898 wait_event_freezable_timeout(*q, 1899 kthread_should_stop() || dcc->discard_wake, 1900 msecs_to_jiffies(wait_ms)); 1901 1902 if (sbi->gc_mode == GC_URGENT_HIGH || 1903 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1904 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1905 MIN_DISCARD_GRANULARITY); 1906 else 1907 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1908 dcc->discard_granularity); 1909 1910 if (dcc->discard_wake) 1911 dcc->discard_wake = false; 1912 1913 /* clean up pending candidates before going to sleep */ 1914 if (atomic_read(&dcc->queued_discard)) 1915 __wait_all_discard_cmd(sbi, NULL); 1916 1917 if (f2fs_readonly(sbi->sb)) 1918 continue; 1919 if (kthread_should_stop()) 1920 return 0; 1921 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1922 !atomic_read(&dcc->discard_cmd_cnt)) { 1923 wait_ms = dpolicy.max_interval; 1924 continue; 1925 } 1926 1927 sb_start_intwrite(sbi->sb); 1928 1929 issued = __issue_discard_cmd(sbi, &dpolicy); 1930 if (issued > 0) { 1931 __wait_all_discard_cmd(sbi, &dpolicy); 1932 wait_ms = dpolicy.min_interval; 1933 } else if (issued == -1) { 1934 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1935 if (!wait_ms) 1936 wait_ms = dpolicy.mid_interval; 1937 } else { 1938 wait_ms = dpolicy.max_interval; 1939 } 1940 if (!atomic_read(&dcc->discard_cmd_cnt)) 1941 wait_ms = dpolicy.max_interval; 1942 1943 sb_end_intwrite(sbi->sb); 1944 1945 } while (!kthread_should_stop()); 1946 return 0; 1947 } 1948 1949 #ifdef CONFIG_BLK_DEV_ZONED 1950 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1951 struct block_device *bdev, block_t blkstart, block_t blklen) 1952 { 1953 sector_t sector, nr_sects; 1954 block_t lblkstart = blkstart; 1955 int devi = 0; 1956 u64 remainder = 0; 1957 1958 if (f2fs_is_multi_device(sbi)) { 1959 devi = f2fs_target_device_index(sbi, blkstart); 1960 if (blkstart < FDEV(devi).start_blk || 1961 blkstart > FDEV(devi).end_blk) { 1962 f2fs_err(sbi, "Invalid block %x", blkstart); 1963 return -EIO; 1964 } 1965 blkstart -= FDEV(devi).start_blk; 1966 } 1967 1968 /* For sequential zones, reset the zone write pointer */ 1969 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1970 sector = SECTOR_FROM_BLOCK(blkstart); 1971 nr_sects = SECTOR_FROM_BLOCK(blklen); 1972 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder); 1973 1974 if (remainder || nr_sects != bdev_zone_sectors(bdev)) { 1975 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1976 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1977 blkstart, blklen); 1978 return -EIO; 1979 } 1980 1981 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) { 1982 unsigned int nofs_flags; 1983 int ret; 1984 1985 trace_f2fs_issue_reset_zone(bdev, blkstart); 1986 nofs_flags = memalloc_nofs_save(); 1987 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1988 sector, nr_sects); 1989 memalloc_nofs_restore(nofs_flags); 1990 return ret; 1991 } 1992 1993 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen); 1994 return 0; 1995 } 1996 1997 /* For conventional zones, use regular discard if supported */ 1998 __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1999 return 0; 2000 } 2001 #endif 2002 2003 static int __issue_discard_async(struct f2fs_sb_info *sbi, 2004 struct block_device *bdev, block_t blkstart, block_t blklen) 2005 { 2006 #ifdef CONFIG_BLK_DEV_ZONED 2007 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 2008 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 2009 #endif 2010 __queue_discard_cmd(sbi, bdev, blkstart, blklen); 2011 return 0; 2012 } 2013 2014 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 2015 block_t blkstart, block_t blklen) 2016 { 2017 sector_t start = blkstart, len = 0; 2018 struct block_device *bdev; 2019 struct seg_entry *se; 2020 unsigned int offset; 2021 block_t i; 2022 int err = 0; 2023 2024 bdev = f2fs_target_device(sbi, blkstart, NULL); 2025 2026 for (i = blkstart; i < blkstart + blklen; i++, len++) { 2027 if (i != start) { 2028 struct block_device *bdev2 = 2029 f2fs_target_device(sbi, i, NULL); 2030 2031 if (bdev2 != bdev) { 2032 err = __issue_discard_async(sbi, bdev, 2033 start, len); 2034 if (err) 2035 return err; 2036 bdev = bdev2; 2037 start = i; 2038 len = 0; 2039 } 2040 } 2041 2042 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 2043 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 2044 2045 if (f2fs_block_unit_discard(sbi) && 2046 !f2fs_test_and_set_bit(offset, se->discard_map)) 2047 sbi->discard_blks--; 2048 } 2049 2050 if (len) 2051 err = __issue_discard_async(sbi, bdev, start, len); 2052 return err; 2053 } 2054 2055 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 2056 bool check_only) 2057 { 2058 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2059 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 2060 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2061 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2062 unsigned long *discard_map = (unsigned long *)se->discard_map; 2063 unsigned long *dmap = SIT_I(sbi)->tmp_map; 2064 unsigned int start = 0, end = -1; 2065 bool force = (cpc->reason & CP_DISCARD); 2066 struct discard_entry *de = NULL; 2067 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 2068 int i; 2069 2070 if (se->valid_blocks == BLKS_PER_SEG(sbi) || 2071 !f2fs_hw_support_discard(sbi) || 2072 !f2fs_block_unit_discard(sbi)) 2073 return false; 2074 2075 if (!force) { 2076 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 2077 SM_I(sbi)->dcc_info->nr_discards >= 2078 SM_I(sbi)->dcc_info->max_discards) 2079 return false; 2080 } 2081 2082 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 2083 for (i = 0; i < entries; i++) 2084 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 2085 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 2086 2087 while (force || SM_I(sbi)->dcc_info->nr_discards <= 2088 SM_I(sbi)->dcc_info->max_discards) { 2089 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1); 2090 if (start >= BLKS_PER_SEG(sbi)) 2091 break; 2092 2093 end = __find_rev_next_zero_bit(dmap, 2094 BLKS_PER_SEG(sbi), start + 1); 2095 if (force && start && end != BLKS_PER_SEG(sbi) && 2096 (end - start) < cpc->trim_minlen) 2097 continue; 2098 2099 if (check_only) 2100 return true; 2101 2102 if (!de) { 2103 de = f2fs_kmem_cache_alloc(discard_entry_slab, 2104 GFP_F2FS_ZERO, true, NULL); 2105 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 2106 list_add_tail(&de->list, head); 2107 } 2108 2109 for (i = start; i < end; i++) 2110 __set_bit_le(i, (void *)de->discard_map); 2111 2112 SM_I(sbi)->dcc_info->nr_discards += end - start; 2113 } 2114 return false; 2115 } 2116 2117 static void release_discard_addr(struct discard_entry *entry) 2118 { 2119 list_del(&entry->list); 2120 kmem_cache_free(discard_entry_slab, entry); 2121 } 2122 2123 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 2124 { 2125 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 2126 struct discard_entry *entry, *this; 2127 2128 /* drop caches */ 2129 list_for_each_entry_safe(entry, this, head, list) 2130 release_discard_addr(entry); 2131 } 2132 2133 /* 2134 * Should call f2fs_clear_prefree_segments after checkpoint is done. 2135 */ 2136 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 2137 { 2138 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2139 unsigned int segno; 2140 2141 mutex_lock(&dirty_i->seglist_lock); 2142 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 2143 __set_test_and_free(sbi, segno, false); 2144 mutex_unlock(&dirty_i->seglist_lock); 2145 } 2146 2147 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2148 struct cp_control *cpc) 2149 { 2150 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2151 struct list_head *head = &dcc->entry_list; 2152 struct discard_entry *entry, *this; 2153 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2154 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2155 unsigned int start = 0, end = -1; 2156 unsigned int secno, start_segno; 2157 bool force = (cpc->reason & CP_DISCARD); 2158 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 2159 DISCARD_UNIT_SECTION; 2160 2161 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 2162 section_alignment = true; 2163 2164 mutex_lock(&dirty_i->seglist_lock); 2165 2166 while (1) { 2167 int i; 2168 2169 if (section_alignment && end != -1) 2170 end--; 2171 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2172 if (start >= MAIN_SEGS(sbi)) 2173 break; 2174 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2175 start + 1); 2176 2177 if (section_alignment) { 2178 start = rounddown(start, SEGS_PER_SEC(sbi)); 2179 end = roundup(end, SEGS_PER_SEC(sbi)); 2180 } 2181 2182 for (i = start; i < end; i++) { 2183 if (test_and_clear_bit(i, prefree_map)) 2184 dirty_i->nr_dirty[PRE]--; 2185 } 2186 2187 if (!f2fs_realtime_discard_enable(sbi)) 2188 continue; 2189 2190 if (force && start >= cpc->trim_start && 2191 (end - 1) <= cpc->trim_end) 2192 continue; 2193 2194 /* Should cover 2MB zoned device for zone-based reset */ 2195 if (!f2fs_sb_has_blkzoned(sbi) && 2196 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) { 2197 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2198 SEGS_TO_BLKS(sbi, end - start)); 2199 continue; 2200 } 2201 next: 2202 secno = GET_SEC_FROM_SEG(sbi, start); 2203 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2204 if (!IS_CURSEC(sbi, secno) && 2205 !get_valid_blocks(sbi, start, true)) 2206 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2207 BLKS_PER_SEC(sbi)); 2208 2209 start = start_segno + SEGS_PER_SEC(sbi); 2210 if (start < end) 2211 goto next; 2212 else 2213 end = start - 1; 2214 } 2215 mutex_unlock(&dirty_i->seglist_lock); 2216 2217 if (!f2fs_block_unit_discard(sbi)) 2218 goto wakeup; 2219 2220 /* send small discards */ 2221 list_for_each_entry_safe(entry, this, head, list) { 2222 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2223 bool is_valid = test_bit_le(0, entry->discard_map); 2224 2225 find_next: 2226 if (is_valid) { 2227 next_pos = find_next_zero_bit_le(entry->discard_map, 2228 BLKS_PER_SEG(sbi), cur_pos); 2229 len = next_pos - cur_pos; 2230 2231 if (f2fs_sb_has_blkzoned(sbi) || 2232 (force && len < cpc->trim_minlen)) 2233 goto skip; 2234 2235 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2236 len); 2237 total_len += len; 2238 } else { 2239 next_pos = find_next_bit_le(entry->discard_map, 2240 BLKS_PER_SEG(sbi), cur_pos); 2241 } 2242 skip: 2243 cur_pos = next_pos; 2244 is_valid = !is_valid; 2245 2246 if (cur_pos < BLKS_PER_SEG(sbi)) 2247 goto find_next; 2248 2249 release_discard_addr(entry); 2250 dcc->nr_discards -= total_len; 2251 } 2252 2253 wakeup: 2254 wake_up_discard_thread(sbi, false); 2255 } 2256 2257 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2258 { 2259 dev_t dev = sbi->sb->s_bdev->bd_dev; 2260 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2261 int err = 0; 2262 2263 if (f2fs_sb_has_readonly(sbi)) { 2264 f2fs_info(sbi, 2265 "Skip to start discard thread for readonly image"); 2266 return 0; 2267 } 2268 2269 if (!f2fs_realtime_discard_enable(sbi)) 2270 return 0; 2271 2272 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2273 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2274 if (IS_ERR(dcc->f2fs_issue_discard)) { 2275 err = PTR_ERR(dcc->f2fs_issue_discard); 2276 dcc->f2fs_issue_discard = NULL; 2277 } 2278 2279 return err; 2280 } 2281 2282 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2283 { 2284 struct discard_cmd_control *dcc; 2285 int err = 0, i; 2286 2287 if (SM_I(sbi)->dcc_info) { 2288 dcc = SM_I(sbi)->dcc_info; 2289 goto init_thread; 2290 } 2291 2292 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2293 if (!dcc) 2294 return -ENOMEM; 2295 2296 dcc->discard_io_aware_gran = MAX_PLIST_NUM; 2297 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2298 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; 2299 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE; 2300 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2301 dcc->discard_granularity = BLKS_PER_SEG(sbi); 2302 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2303 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2304 2305 INIT_LIST_HEAD(&dcc->entry_list); 2306 for (i = 0; i < MAX_PLIST_NUM; i++) 2307 INIT_LIST_HEAD(&dcc->pend_list[i]); 2308 INIT_LIST_HEAD(&dcc->wait_list); 2309 INIT_LIST_HEAD(&dcc->fstrim_list); 2310 mutex_init(&dcc->cmd_lock); 2311 atomic_set(&dcc->issued_discard, 0); 2312 atomic_set(&dcc->queued_discard, 0); 2313 atomic_set(&dcc->discard_cmd_cnt, 0); 2314 dcc->nr_discards = 0; 2315 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi)); 2316 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2317 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2318 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2319 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2320 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; 2321 dcc->undiscard_blks = 0; 2322 dcc->next_pos = 0; 2323 dcc->root = RB_ROOT_CACHED; 2324 dcc->rbtree_check = false; 2325 2326 init_waitqueue_head(&dcc->discard_wait_queue); 2327 SM_I(sbi)->dcc_info = dcc; 2328 init_thread: 2329 err = f2fs_start_discard_thread(sbi); 2330 if (err) { 2331 kfree(dcc); 2332 SM_I(sbi)->dcc_info = NULL; 2333 } 2334 2335 return err; 2336 } 2337 2338 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2339 { 2340 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2341 2342 if (!dcc) 2343 return; 2344 2345 f2fs_stop_discard_thread(sbi); 2346 2347 /* 2348 * Recovery can cache discard commands, so in error path of 2349 * fill_super(), it needs to give a chance to handle them. 2350 */ 2351 f2fs_issue_discard_timeout(sbi); 2352 2353 kfree(dcc); 2354 SM_I(sbi)->dcc_info = NULL; 2355 } 2356 2357 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2358 { 2359 struct sit_info *sit_i = SIT_I(sbi); 2360 2361 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2362 sit_i->dirty_sentries++; 2363 return false; 2364 } 2365 2366 return true; 2367 } 2368 2369 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2370 unsigned int segno, int modified) 2371 { 2372 struct seg_entry *se = get_seg_entry(sbi, segno); 2373 2374 se->type = type; 2375 if (modified) 2376 __mark_sit_entry_dirty(sbi, segno); 2377 } 2378 2379 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2380 block_t blkaddr) 2381 { 2382 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2383 2384 if (segno == NULL_SEGNO) 2385 return 0; 2386 return get_seg_entry(sbi, segno)->mtime; 2387 } 2388 2389 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2390 unsigned long long old_mtime) 2391 { 2392 struct seg_entry *se; 2393 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2394 unsigned long long ctime = get_mtime(sbi, false); 2395 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2396 2397 if (segno == NULL_SEGNO) 2398 return; 2399 2400 se = get_seg_entry(sbi, segno); 2401 2402 if (!se->mtime) 2403 se->mtime = mtime; 2404 else 2405 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2406 se->valid_blocks + 1); 2407 2408 if (ctime > SIT_I(sbi)->max_mtime) 2409 SIT_I(sbi)->max_mtime = ctime; 2410 } 2411 2412 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2413 { 2414 struct seg_entry *se; 2415 unsigned int segno, offset; 2416 long int new_vblocks; 2417 bool exist; 2418 #ifdef CONFIG_F2FS_CHECK_FS 2419 bool mir_exist; 2420 #endif 2421 2422 segno = GET_SEGNO(sbi, blkaddr); 2423 if (segno == NULL_SEGNO) 2424 return; 2425 2426 se = get_seg_entry(sbi, segno); 2427 new_vblocks = se->valid_blocks + del; 2428 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2429 2430 f2fs_bug_on(sbi, (new_vblocks < 0 || 2431 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2432 2433 se->valid_blocks = new_vblocks; 2434 2435 /* Update valid block bitmap */ 2436 if (del > 0) { 2437 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2438 #ifdef CONFIG_F2FS_CHECK_FS 2439 mir_exist = f2fs_test_and_set_bit(offset, 2440 se->cur_valid_map_mir); 2441 if (unlikely(exist != mir_exist)) { 2442 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2443 blkaddr, exist); 2444 f2fs_bug_on(sbi, 1); 2445 } 2446 #endif 2447 if (unlikely(exist)) { 2448 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2449 blkaddr); 2450 f2fs_bug_on(sbi, 1); 2451 se->valid_blocks--; 2452 del = 0; 2453 } 2454 2455 if (f2fs_block_unit_discard(sbi) && 2456 !f2fs_test_and_set_bit(offset, se->discard_map)) 2457 sbi->discard_blks--; 2458 2459 /* 2460 * SSR should never reuse block which is checkpointed 2461 * or newly invalidated. 2462 */ 2463 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2464 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2465 se->ckpt_valid_blocks++; 2466 } 2467 } else { 2468 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2469 #ifdef CONFIG_F2FS_CHECK_FS 2470 mir_exist = f2fs_test_and_clear_bit(offset, 2471 se->cur_valid_map_mir); 2472 if (unlikely(exist != mir_exist)) { 2473 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2474 blkaddr, exist); 2475 f2fs_bug_on(sbi, 1); 2476 } 2477 #endif 2478 if (unlikely(!exist)) { 2479 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2480 blkaddr); 2481 f2fs_bug_on(sbi, 1); 2482 se->valid_blocks++; 2483 del = 0; 2484 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2485 /* 2486 * If checkpoints are off, we must not reuse data that 2487 * was used in the previous checkpoint. If it was used 2488 * before, we must track that to know how much space we 2489 * really have. 2490 */ 2491 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2492 spin_lock(&sbi->stat_lock); 2493 sbi->unusable_block_count++; 2494 spin_unlock(&sbi->stat_lock); 2495 } 2496 } 2497 2498 if (f2fs_block_unit_discard(sbi) && 2499 f2fs_test_and_clear_bit(offset, se->discard_map)) 2500 sbi->discard_blks++; 2501 } 2502 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2503 se->ckpt_valid_blocks += del; 2504 2505 __mark_sit_entry_dirty(sbi, segno); 2506 2507 /* update total number of valid blocks to be written in ckpt area */ 2508 SIT_I(sbi)->written_valid_blocks += del; 2509 2510 if (__is_large_section(sbi)) 2511 get_sec_entry(sbi, segno)->valid_blocks += del; 2512 } 2513 2514 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2515 { 2516 unsigned int segno = GET_SEGNO(sbi, addr); 2517 struct sit_info *sit_i = SIT_I(sbi); 2518 2519 f2fs_bug_on(sbi, addr == NULL_ADDR); 2520 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2521 return; 2522 2523 f2fs_invalidate_internal_cache(sbi, addr); 2524 2525 /* add it into sit main buffer */ 2526 down_write(&sit_i->sentry_lock); 2527 2528 update_segment_mtime(sbi, addr, 0); 2529 update_sit_entry(sbi, addr, -1); 2530 2531 /* add it into dirty seglist */ 2532 locate_dirty_segment(sbi, segno); 2533 2534 up_write(&sit_i->sentry_lock); 2535 } 2536 2537 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2538 { 2539 struct sit_info *sit_i = SIT_I(sbi); 2540 unsigned int segno, offset; 2541 struct seg_entry *se; 2542 bool is_cp = false; 2543 2544 if (!__is_valid_data_blkaddr(blkaddr)) 2545 return true; 2546 2547 down_read(&sit_i->sentry_lock); 2548 2549 segno = GET_SEGNO(sbi, blkaddr); 2550 se = get_seg_entry(sbi, segno); 2551 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2552 2553 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2554 is_cp = true; 2555 2556 up_read(&sit_i->sentry_lock); 2557 2558 return is_cp; 2559 } 2560 2561 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type) 2562 { 2563 struct curseg_info *curseg = CURSEG_I(sbi, type); 2564 2565 if (sbi->ckpt->alloc_type[type] == SSR) 2566 return BLKS_PER_SEG(sbi); 2567 return curseg->next_blkoff; 2568 } 2569 2570 /* 2571 * Calculate the number of current summary pages for writing 2572 */ 2573 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2574 { 2575 int valid_sum_count = 0; 2576 int i, sum_in_page; 2577 2578 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2579 if (sbi->ckpt->alloc_type[i] != SSR && for_ra) 2580 valid_sum_count += 2581 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2582 else 2583 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i); 2584 } 2585 2586 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2587 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2588 if (valid_sum_count <= sum_in_page) 2589 return 1; 2590 else if ((valid_sum_count - sum_in_page) <= 2591 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2592 return 2; 2593 return 3; 2594 } 2595 2596 /* 2597 * Caller should put this summary page 2598 */ 2599 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2600 { 2601 if (unlikely(f2fs_cp_error(sbi))) 2602 return ERR_PTR(-EIO); 2603 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2604 } 2605 2606 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2607 void *src, block_t blk_addr) 2608 { 2609 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2610 2611 memcpy(page_address(page), src, PAGE_SIZE); 2612 set_page_dirty(page); 2613 f2fs_put_page(page, 1); 2614 } 2615 2616 static void write_sum_page(struct f2fs_sb_info *sbi, 2617 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2618 { 2619 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2620 } 2621 2622 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2623 int type, block_t blk_addr) 2624 { 2625 struct curseg_info *curseg = CURSEG_I(sbi, type); 2626 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2627 struct f2fs_summary_block *src = curseg->sum_blk; 2628 struct f2fs_summary_block *dst; 2629 2630 dst = (struct f2fs_summary_block *)page_address(page); 2631 memset(dst, 0, PAGE_SIZE); 2632 2633 mutex_lock(&curseg->curseg_mutex); 2634 2635 down_read(&curseg->journal_rwsem); 2636 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2637 up_read(&curseg->journal_rwsem); 2638 2639 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2640 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2641 2642 mutex_unlock(&curseg->curseg_mutex); 2643 2644 set_page_dirty(page); 2645 f2fs_put_page(page, 1); 2646 } 2647 2648 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2649 struct curseg_info *curseg) 2650 { 2651 unsigned int segno = curseg->segno + 1; 2652 struct free_segmap_info *free_i = FREE_I(sbi); 2653 2654 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi)) 2655 return !test_bit(segno, free_i->free_segmap); 2656 return 0; 2657 } 2658 2659 /* 2660 * Find a new segment from the free segments bitmap to right order 2661 * This function should be returned with success, otherwise BUG 2662 */ 2663 static int get_new_segment(struct f2fs_sb_info *sbi, 2664 unsigned int *newseg, bool new_sec, bool pinning) 2665 { 2666 struct free_segmap_info *free_i = FREE_I(sbi); 2667 unsigned int segno, secno, zoneno; 2668 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2669 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2670 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2671 bool init = true; 2672 int i; 2673 int ret = 0; 2674 2675 spin_lock(&free_i->segmap_lock); 2676 2677 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) { 2678 ret = -ENOSPC; 2679 goto out_unlock; 2680 } 2681 2682 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) { 2683 segno = find_next_zero_bit(free_i->free_segmap, 2684 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2685 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2686 goto got_it; 2687 } 2688 2689 /* 2690 * If we format f2fs on zoned storage, let's try to get pinned sections 2691 * from beginning of the storage, which should be a conventional one. 2692 */ 2693 if (f2fs_sb_has_blkzoned(sbi)) { 2694 segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg); 2695 hint = GET_SEC_FROM_SEG(sbi, segno); 2696 } 2697 2698 find_other_zone: 2699 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2700 if (secno >= MAIN_SECS(sbi)) { 2701 secno = find_first_zero_bit(free_i->free_secmap, 2702 MAIN_SECS(sbi)); 2703 if (secno >= MAIN_SECS(sbi)) { 2704 ret = -ENOSPC; 2705 goto out_unlock; 2706 } 2707 } 2708 segno = GET_SEG_FROM_SEC(sbi, secno); 2709 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2710 2711 /* give up on finding another zone */ 2712 if (!init) 2713 goto got_it; 2714 if (sbi->secs_per_zone == 1) 2715 goto got_it; 2716 if (zoneno == old_zoneno) 2717 goto got_it; 2718 for (i = 0; i < NR_CURSEG_TYPE; i++) 2719 if (CURSEG_I(sbi, i)->zone == zoneno) 2720 break; 2721 2722 if (i < NR_CURSEG_TYPE) { 2723 /* zone is in user, try another */ 2724 if (zoneno + 1 >= total_zones) 2725 hint = 0; 2726 else 2727 hint = (zoneno + 1) * sbi->secs_per_zone; 2728 init = false; 2729 goto find_other_zone; 2730 } 2731 got_it: 2732 /* set it as dirty segment in free segmap */ 2733 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2734 2735 /* no free section in conventional zone */ 2736 if (new_sec && pinning && 2737 !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) { 2738 ret = -EAGAIN; 2739 goto out_unlock; 2740 } 2741 __set_inuse(sbi, segno); 2742 *newseg = segno; 2743 out_unlock: 2744 spin_unlock(&free_i->segmap_lock); 2745 2746 if (ret == -ENOSPC) { 2747 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT); 2748 f2fs_bug_on(sbi, 1); 2749 } 2750 return ret; 2751 } 2752 2753 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2754 { 2755 struct curseg_info *curseg = CURSEG_I(sbi, type); 2756 struct summary_footer *sum_footer; 2757 unsigned short seg_type = curseg->seg_type; 2758 2759 /* only happen when get_new_segment() fails */ 2760 if (curseg->next_segno == NULL_SEGNO) 2761 return; 2762 2763 curseg->inited = true; 2764 curseg->segno = curseg->next_segno; 2765 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2766 curseg->next_blkoff = 0; 2767 curseg->next_segno = NULL_SEGNO; 2768 2769 sum_footer = &(curseg->sum_blk->footer); 2770 memset(sum_footer, 0, sizeof(struct summary_footer)); 2771 2772 sanity_check_seg_type(sbi, seg_type); 2773 2774 if (IS_DATASEG(seg_type)) 2775 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2776 if (IS_NODESEG(seg_type)) 2777 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2778 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2779 } 2780 2781 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2782 { 2783 struct curseg_info *curseg = CURSEG_I(sbi, type); 2784 unsigned short seg_type = curseg->seg_type; 2785 2786 sanity_check_seg_type(sbi, seg_type); 2787 if (f2fs_need_rand_seg(sbi)) 2788 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi)); 2789 2790 if (__is_large_section(sbi)) 2791 return curseg->segno; 2792 2793 /* inmem log may not locate on any segment after mount */ 2794 if (!curseg->inited) 2795 return 0; 2796 2797 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2798 return 0; 2799 2800 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)) 2801 return 0; 2802 2803 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2804 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2805 2806 /* find segments from 0 to reuse freed segments */ 2807 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2808 return 0; 2809 2810 return curseg->segno; 2811 } 2812 2813 /* 2814 * Allocate a current working segment. 2815 * This function always allocates a free segment in LFS manner. 2816 */ 2817 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2818 { 2819 struct curseg_info *curseg = CURSEG_I(sbi, type); 2820 unsigned int segno = curseg->segno; 2821 bool pinning = type == CURSEG_COLD_DATA_PINNED; 2822 int ret; 2823 2824 if (curseg->inited) 2825 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno)); 2826 2827 segno = __get_next_segno(sbi, type); 2828 ret = get_new_segment(sbi, &segno, new_sec, pinning); 2829 if (ret) { 2830 if (ret == -ENOSPC) 2831 curseg->segno = NULL_SEGNO; 2832 return ret; 2833 } 2834 2835 curseg->next_segno = segno; 2836 reset_curseg(sbi, type, 1); 2837 curseg->alloc_type = LFS; 2838 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2839 curseg->fragment_remained_chunk = 2840 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2841 return 0; 2842 } 2843 2844 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2845 int segno, block_t start) 2846 { 2847 struct seg_entry *se = get_seg_entry(sbi, segno); 2848 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2849 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2850 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2851 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2852 int i; 2853 2854 for (i = 0; i < entries; i++) 2855 target_map[i] = ckpt_map[i] | cur_map[i]; 2856 2857 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start); 2858 } 2859 2860 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi, 2861 struct curseg_info *seg) 2862 { 2863 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1); 2864 } 2865 2866 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2867 { 2868 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi); 2869 } 2870 2871 /* 2872 * This function always allocates a used segment(from dirty seglist) by SSR 2873 * manner, so it should recover the existing segment information of valid blocks 2874 */ 2875 static int change_curseg(struct f2fs_sb_info *sbi, int type) 2876 { 2877 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2878 struct curseg_info *curseg = CURSEG_I(sbi, type); 2879 unsigned int new_segno = curseg->next_segno; 2880 struct f2fs_summary_block *sum_node; 2881 struct page *sum_page; 2882 2883 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); 2884 2885 __set_test_and_inuse(sbi, new_segno); 2886 2887 mutex_lock(&dirty_i->seglist_lock); 2888 __remove_dirty_segment(sbi, new_segno, PRE); 2889 __remove_dirty_segment(sbi, new_segno, DIRTY); 2890 mutex_unlock(&dirty_i->seglist_lock); 2891 2892 reset_curseg(sbi, type, 1); 2893 curseg->alloc_type = SSR; 2894 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2895 2896 sum_page = f2fs_get_sum_page(sbi, new_segno); 2897 if (IS_ERR(sum_page)) { 2898 /* GC won't be able to use stale summary pages by cp_error */ 2899 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2900 return PTR_ERR(sum_page); 2901 } 2902 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2903 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2904 f2fs_put_page(sum_page, 1); 2905 return 0; 2906 } 2907 2908 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2909 int alloc_mode, unsigned long long age); 2910 2911 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2912 int target_type, int alloc_mode, 2913 unsigned long long age) 2914 { 2915 struct curseg_info *curseg = CURSEG_I(sbi, type); 2916 int ret = 0; 2917 2918 curseg->seg_type = target_type; 2919 2920 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2921 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2922 2923 curseg->seg_type = se->type; 2924 ret = change_curseg(sbi, type); 2925 } else { 2926 /* allocate cold segment by default */ 2927 curseg->seg_type = CURSEG_COLD_DATA; 2928 ret = new_curseg(sbi, type, true); 2929 } 2930 stat_inc_seg_type(sbi, curseg); 2931 return ret; 2932 } 2933 2934 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2935 { 2936 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2937 int ret = 0; 2938 2939 if (!sbi->am.atgc_enabled) 2940 return 0; 2941 2942 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2943 2944 mutex_lock(&curseg->curseg_mutex); 2945 down_write(&SIT_I(sbi)->sentry_lock); 2946 2947 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, 2948 CURSEG_COLD_DATA, SSR, 0); 2949 2950 up_write(&SIT_I(sbi)->sentry_lock); 2951 mutex_unlock(&curseg->curseg_mutex); 2952 2953 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2954 return ret; 2955 } 2956 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2957 { 2958 return __f2fs_init_atgc_curseg(sbi); 2959 } 2960 2961 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2962 { 2963 struct curseg_info *curseg = CURSEG_I(sbi, type); 2964 2965 mutex_lock(&curseg->curseg_mutex); 2966 if (!curseg->inited) 2967 goto out; 2968 2969 if (get_valid_blocks(sbi, curseg->segno, false)) { 2970 write_sum_page(sbi, curseg->sum_blk, 2971 GET_SUM_BLOCK(sbi, curseg->segno)); 2972 } else { 2973 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2974 __set_test_and_free(sbi, curseg->segno, true); 2975 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2976 } 2977 out: 2978 mutex_unlock(&curseg->curseg_mutex); 2979 } 2980 2981 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2982 { 2983 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2984 2985 if (sbi->am.atgc_enabled) 2986 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2987 } 2988 2989 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2990 { 2991 struct curseg_info *curseg = CURSEG_I(sbi, type); 2992 2993 mutex_lock(&curseg->curseg_mutex); 2994 if (!curseg->inited) 2995 goto out; 2996 if (get_valid_blocks(sbi, curseg->segno, false)) 2997 goto out; 2998 2999 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 3000 __set_test_and_inuse(sbi, curseg->segno); 3001 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 3002 out: 3003 mutex_unlock(&curseg->curseg_mutex); 3004 } 3005 3006 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 3007 { 3008 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 3009 3010 if (sbi->am.atgc_enabled) 3011 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 3012 } 3013 3014 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 3015 int alloc_mode, unsigned long long age) 3016 { 3017 struct curseg_info *curseg = CURSEG_I(sbi, type); 3018 unsigned segno = NULL_SEGNO; 3019 unsigned short seg_type = curseg->seg_type; 3020 int i, cnt; 3021 bool reversed = false; 3022 3023 sanity_check_seg_type(sbi, seg_type); 3024 3025 /* f2fs_need_SSR() already forces to do this */ 3026 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 3027 curseg->next_segno = segno; 3028 return 1; 3029 } 3030 3031 /* For node segments, let's do SSR more intensively */ 3032 if (IS_NODESEG(seg_type)) { 3033 if (seg_type >= CURSEG_WARM_NODE) { 3034 reversed = true; 3035 i = CURSEG_COLD_NODE; 3036 } else { 3037 i = CURSEG_HOT_NODE; 3038 } 3039 cnt = NR_CURSEG_NODE_TYPE; 3040 } else { 3041 if (seg_type >= CURSEG_WARM_DATA) { 3042 reversed = true; 3043 i = CURSEG_COLD_DATA; 3044 } else { 3045 i = CURSEG_HOT_DATA; 3046 } 3047 cnt = NR_CURSEG_DATA_TYPE; 3048 } 3049 3050 for (; cnt-- > 0; reversed ? i-- : i++) { 3051 if (i == seg_type) 3052 continue; 3053 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 3054 curseg->next_segno = segno; 3055 return 1; 3056 } 3057 } 3058 3059 /* find valid_blocks=0 in dirty list */ 3060 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 3061 segno = get_free_segment(sbi); 3062 if (segno != NULL_SEGNO) { 3063 curseg->next_segno = segno; 3064 return 1; 3065 } 3066 } 3067 return 0; 3068 } 3069 3070 static bool need_new_seg(struct f2fs_sb_info *sbi, int type) 3071 { 3072 struct curseg_info *curseg = CURSEG_I(sbi, type); 3073 3074 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 3075 curseg->seg_type == CURSEG_WARM_NODE) 3076 return true; 3077 if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) && 3078 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3079 return true; 3080 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) 3081 return true; 3082 return false; 3083 } 3084 3085 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3086 unsigned int start, unsigned int end) 3087 { 3088 struct curseg_info *curseg = CURSEG_I(sbi, type); 3089 unsigned int segno; 3090 int ret = 0; 3091 3092 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3093 mutex_lock(&curseg->curseg_mutex); 3094 down_write(&SIT_I(sbi)->sentry_lock); 3095 3096 segno = CURSEG_I(sbi, type)->segno; 3097 if (segno < start || segno > end) 3098 goto unlock; 3099 3100 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 3101 ret = change_curseg(sbi, type); 3102 else 3103 ret = new_curseg(sbi, type, true); 3104 3105 stat_inc_seg_type(sbi, curseg); 3106 3107 locate_dirty_segment(sbi, segno); 3108 unlock: 3109 up_write(&SIT_I(sbi)->sentry_lock); 3110 3111 if (segno != curseg->segno) 3112 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 3113 type, segno, curseg->segno); 3114 3115 mutex_unlock(&curseg->curseg_mutex); 3116 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3117 return ret; 3118 } 3119 3120 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 3121 bool new_sec, bool force) 3122 { 3123 struct curseg_info *curseg = CURSEG_I(sbi, type); 3124 unsigned int old_segno; 3125 int err = 0; 3126 3127 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited) 3128 goto allocate; 3129 3130 if (!force && curseg->inited && 3131 !curseg->next_blkoff && 3132 !get_valid_blocks(sbi, curseg->segno, new_sec) && 3133 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 3134 return 0; 3135 3136 allocate: 3137 old_segno = curseg->segno; 3138 err = new_curseg(sbi, type, true); 3139 if (err) 3140 return err; 3141 stat_inc_seg_type(sbi, curseg); 3142 locate_dirty_segment(sbi, old_segno); 3143 return 0; 3144 } 3145 3146 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 3147 { 3148 int ret; 3149 3150 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3151 down_write(&SIT_I(sbi)->sentry_lock); 3152 ret = __allocate_new_segment(sbi, type, true, force); 3153 up_write(&SIT_I(sbi)->sentry_lock); 3154 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3155 3156 return ret; 3157 } 3158 3159 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi) 3160 { 3161 int err; 3162 bool gc_required = true; 3163 3164 retry: 3165 f2fs_lock_op(sbi); 3166 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3167 f2fs_unlock_op(sbi); 3168 3169 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) { 3170 f2fs_down_write(&sbi->gc_lock); 3171 err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1); 3172 f2fs_up_write(&sbi->gc_lock); 3173 3174 gc_required = false; 3175 if (!err) 3176 goto retry; 3177 } 3178 3179 return err; 3180 } 3181 3182 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 3183 { 3184 int i; 3185 int err = 0; 3186 3187 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3188 down_write(&SIT_I(sbi)->sentry_lock); 3189 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 3190 err += __allocate_new_segment(sbi, i, false, false); 3191 up_write(&SIT_I(sbi)->sentry_lock); 3192 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3193 3194 return err; 3195 } 3196 3197 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3198 struct cp_control *cpc) 3199 { 3200 __u64 trim_start = cpc->trim_start; 3201 bool has_candidate = false; 3202 3203 down_write(&SIT_I(sbi)->sentry_lock); 3204 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 3205 if (add_discard_addrs(sbi, cpc, true)) { 3206 has_candidate = true; 3207 break; 3208 } 3209 } 3210 up_write(&SIT_I(sbi)->sentry_lock); 3211 3212 cpc->trim_start = trim_start; 3213 return has_candidate; 3214 } 3215 3216 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3217 struct discard_policy *dpolicy, 3218 unsigned int start, unsigned int end) 3219 { 3220 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3221 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3222 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3223 struct discard_cmd *dc; 3224 struct blk_plug plug; 3225 int issued; 3226 unsigned int trimmed = 0; 3227 3228 next: 3229 issued = 0; 3230 3231 mutex_lock(&dcc->cmd_lock); 3232 if (unlikely(dcc->rbtree_check)) 3233 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 3234 3235 dc = __lookup_discard_cmd_ret(&dcc->root, start, 3236 &prev_dc, &next_dc, &insert_p, &insert_parent); 3237 if (!dc) 3238 dc = next_dc; 3239 3240 blk_start_plug(&plug); 3241 3242 while (dc && dc->di.lstart <= end) { 3243 struct rb_node *node; 3244 int err = 0; 3245 3246 if (dc->di.len < dpolicy->granularity) 3247 goto skip; 3248 3249 if (dc->state != D_PREP) { 3250 list_move_tail(&dc->list, &dcc->fstrim_list); 3251 goto skip; 3252 } 3253 3254 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3255 3256 if (issued >= dpolicy->max_requests) { 3257 start = dc->di.lstart + dc->di.len; 3258 3259 if (err) 3260 __remove_discard_cmd(sbi, dc); 3261 3262 blk_finish_plug(&plug); 3263 mutex_unlock(&dcc->cmd_lock); 3264 trimmed += __wait_all_discard_cmd(sbi, NULL); 3265 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3266 goto next; 3267 } 3268 skip: 3269 node = rb_next(&dc->rb_node); 3270 if (err) 3271 __remove_discard_cmd(sbi, dc); 3272 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3273 3274 if (fatal_signal_pending(current)) 3275 break; 3276 } 3277 3278 blk_finish_plug(&plug); 3279 mutex_unlock(&dcc->cmd_lock); 3280 3281 return trimmed; 3282 } 3283 3284 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3285 { 3286 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3287 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3288 unsigned int start_segno, end_segno; 3289 block_t start_block, end_block; 3290 struct cp_control cpc; 3291 struct discard_policy dpolicy; 3292 unsigned long long trimmed = 0; 3293 int err = 0; 3294 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3295 3296 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3297 return -EINVAL; 3298 3299 if (end < MAIN_BLKADDR(sbi)) 3300 goto out; 3301 3302 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3303 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3304 return -EFSCORRUPTED; 3305 } 3306 3307 /* start/end segment number in main_area */ 3308 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3309 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3310 GET_SEGNO(sbi, end); 3311 if (need_align) { 3312 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi)); 3313 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1; 3314 } 3315 3316 cpc.reason = CP_DISCARD; 3317 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3318 cpc.trim_start = start_segno; 3319 cpc.trim_end = end_segno; 3320 3321 if (sbi->discard_blks == 0) 3322 goto out; 3323 3324 f2fs_down_write(&sbi->gc_lock); 3325 stat_inc_cp_call_count(sbi, TOTAL_CALL); 3326 err = f2fs_write_checkpoint(sbi, &cpc); 3327 f2fs_up_write(&sbi->gc_lock); 3328 if (err) 3329 goto out; 3330 3331 /* 3332 * We filed discard candidates, but actually we don't need to wait for 3333 * all of them, since they'll be issued in idle time along with runtime 3334 * discard option. User configuration looks like using runtime discard 3335 * or periodic fstrim instead of it. 3336 */ 3337 if (f2fs_realtime_discard_enable(sbi)) 3338 goto out; 3339 3340 start_block = START_BLOCK(sbi, start_segno); 3341 end_block = START_BLOCK(sbi, end_segno + 1); 3342 3343 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3344 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3345 start_block, end_block); 3346 3347 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3348 start_block, end_block); 3349 out: 3350 if (!err) 3351 range->len = F2FS_BLK_TO_BYTES(trimmed); 3352 return err; 3353 } 3354 3355 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint) 3356 { 3357 if (F2FS_OPTION(sbi).active_logs == 2) 3358 return CURSEG_HOT_DATA; 3359 else if (F2FS_OPTION(sbi).active_logs == 4) 3360 return CURSEG_COLD_DATA; 3361 3362 /* active_log == 6 */ 3363 switch (hint) { 3364 case WRITE_LIFE_SHORT: 3365 return CURSEG_HOT_DATA; 3366 case WRITE_LIFE_EXTREME: 3367 return CURSEG_COLD_DATA; 3368 default: 3369 return CURSEG_WARM_DATA; 3370 } 3371 } 3372 3373 /* 3374 * This returns write hints for each segment type. This hints will be 3375 * passed down to block layer as below by default. 3376 * 3377 * User F2FS Block 3378 * ---- ---- ----- 3379 * META WRITE_LIFE_NONE|REQ_META 3380 * HOT_NODE WRITE_LIFE_NONE 3381 * WARM_NODE WRITE_LIFE_MEDIUM 3382 * COLD_NODE WRITE_LIFE_LONG 3383 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3384 * extension list " " 3385 * 3386 * -- buffered io 3387 * COLD_DATA WRITE_LIFE_EXTREME 3388 * HOT_DATA WRITE_LIFE_SHORT 3389 * WARM_DATA WRITE_LIFE_NOT_SET 3390 * 3391 * -- direct io 3392 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3393 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3394 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3395 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3396 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3397 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3398 */ 3399 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3400 enum page_type type, enum temp_type temp) 3401 { 3402 switch (type) { 3403 case DATA: 3404 switch (temp) { 3405 case WARM: 3406 return WRITE_LIFE_NOT_SET; 3407 case HOT: 3408 return WRITE_LIFE_SHORT; 3409 case COLD: 3410 return WRITE_LIFE_EXTREME; 3411 default: 3412 return WRITE_LIFE_NONE; 3413 } 3414 case NODE: 3415 switch (temp) { 3416 case WARM: 3417 return WRITE_LIFE_MEDIUM; 3418 case HOT: 3419 return WRITE_LIFE_NONE; 3420 case COLD: 3421 return WRITE_LIFE_LONG; 3422 default: 3423 return WRITE_LIFE_NONE; 3424 } 3425 case META: 3426 return WRITE_LIFE_NONE; 3427 default: 3428 return WRITE_LIFE_NONE; 3429 } 3430 } 3431 3432 static int __get_segment_type_2(struct f2fs_io_info *fio) 3433 { 3434 if (fio->type == DATA) 3435 return CURSEG_HOT_DATA; 3436 else 3437 return CURSEG_HOT_NODE; 3438 } 3439 3440 static int __get_segment_type_4(struct f2fs_io_info *fio) 3441 { 3442 if (fio->type == DATA) { 3443 struct inode *inode = fio->page->mapping->host; 3444 3445 if (S_ISDIR(inode->i_mode)) 3446 return CURSEG_HOT_DATA; 3447 else 3448 return CURSEG_COLD_DATA; 3449 } else { 3450 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3451 return CURSEG_WARM_NODE; 3452 else 3453 return CURSEG_COLD_NODE; 3454 } 3455 } 3456 3457 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) 3458 { 3459 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3460 struct extent_info ei = {}; 3461 3462 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { 3463 if (!ei.age) 3464 return NO_CHECK_TYPE; 3465 if (ei.age <= sbi->hot_data_age_threshold) 3466 return CURSEG_HOT_DATA; 3467 if (ei.age <= sbi->warm_data_age_threshold) 3468 return CURSEG_WARM_DATA; 3469 return CURSEG_COLD_DATA; 3470 } 3471 return NO_CHECK_TYPE; 3472 } 3473 3474 static int __get_segment_type_6(struct f2fs_io_info *fio) 3475 { 3476 if (fio->type == DATA) { 3477 struct inode *inode = fio->page->mapping->host; 3478 int type; 3479 3480 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3481 return CURSEG_COLD_DATA_PINNED; 3482 3483 if (page_private_gcing(fio->page)) { 3484 if (fio->sbi->am.atgc_enabled && 3485 (fio->io_type == FS_DATA_IO) && 3486 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3487 return CURSEG_ALL_DATA_ATGC; 3488 else 3489 return CURSEG_COLD_DATA; 3490 } 3491 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3492 return CURSEG_COLD_DATA; 3493 3494 type = __get_age_segment_type(inode, fio->page->index); 3495 if (type != NO_CHECK_TYPE) 3496 return type; 3497 3498 if (file_is_hot(inode) || 3499 is_inode_flag_set(inode, FI_HOT_DATA) || 3500 f2fs_is_cow_file(inode)) 3501 return CURSEG_HOT_DATA; 3502 return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode), 3503 inode->i_write_hint); 3504 } else { 3505 if (IS_DNODE(fio->page)) 3506 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3507 CURSEG_HOT_NODE; 3508 return CURSEG_COLD_NODE; 3509 } 3510 } 3511 3512 int f2fs_get_segment_temp(int seg_type) 3513 { 3514 if (IS_HOT(seg_type)) 3515 return HOT; 3516 else if (IS_WARM(seg_type)) 3517 return WARM; 3518 return COLD; 3519 } 3520 3521 static int __get_segment_type(struct f2fs_io_info *fio) 3522 { 3523 int type = 0; 3524 3525 switch (F2FS_OPTION(fio->sbi).active_logs) { 3526 case 2: 3527 type = __get_segment_type_2(fio); 3528 break; 3529 case 4: 3530 type = __get_segment_type_4(fio); 3531 break; 3532 case 6: 3533 type = __get_segment_type_6(fio); 3534 break; 3535 default: 3536 f2fs_bug_on(fio->sbi, true); 3537 } 3538 3539 fio->temp = f2fs_get_segment_temp(type); 3540 3541 return type; 3542 } 3543 3544 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi, 3545 struct curseg_info *seg) 3546 { 3547 /* To allocate block chunks in different sizes, use random number */ 3548 if (--seg->fragment_remained_chunk > 0) 3549 return; 3550 3551 seg->fragment_remained_chunk = 3552 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 3553 seg->next_blkoff += 3554 get_random_u32_inclusive(1, sbi->max_fragment_hole); 3555 } 3556 3557 static void reset_curseg_fields(struct curseg_info *curseg) 3558 { 3559 curseg->inited = false; 3560 curseg->segno = NULL_SEGNO; 3561 curseg->next_segno = 0; 3562 } 3563 3564 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3565 block_t old_blkaddr, block_t *new_blkaddr, 3566 struct f2fs_summary *sum, int type, 3567 struct f2fs_io_info *fio) 3568 { 3569 struct sit_info *sit_i = SIT_I(sbi); 3570 struct curseg_info *curseg = CURSEG_I(sbi, type); 3571 unsigned long long old_mtime; 3572 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3573 struct seg_entry *se = NULL; 3574 bool segment_full = false; 3575 int ret = 0; 3576 3577 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3578 3579 mutex_lock(&curseg->curseg_mutex); 3580 down_write(&sit_i->sentry_lock); 3581 3582 if (curseg->segno == NULL_SEGNO) { 3583 ret = -ENOSPC; 3584 goto out_err; 3585 } 3586 3587 if (from_gc) { 3588 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3589 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3590 sanity_check_seg_type(sbi, se->type); 3591 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3592 } 3593 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3594 3595 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi)); 3596 3597 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3598 3599 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3600 if (curseg->alloc_type == SSR) { 3601 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg); 3602 } else { 3603 curseg->next_blkoff++; 3604 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 3605 f2fs_randomize_chunk(sbi, curseg); 3606 } 3607 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno)) 3608 segment_full = true; 3609 stat_inc_block_count(sbi, curseg); 3610 3611 if (from_gc) { 3612 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3613 } else { 3614 update_segment_mtime(sbi, old_blkaddr, 0); 3615 old_mtime = 0; 3616 } 3617 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3618 3619 /* 3620 * SIT information should be updated before segment allocation, 3621 * since SSR needs latest valid block information. 3622 */ 3623 update_sit_entry(sbi, *new_blkaddr, 1); 3624 update_sit_entry(sbi, old_blkaddr, -1); 3625 3626 /* 3627 * If the current segment is full, flush it out and replace it with a 3628 * new segment. 3629 */ 3630 if (segment_full) { 3631 if (type == CURSEG_COLD_DATA_PINNED && 3632 !((curseg->segno + 1) % sbi->segs_per_sec)) { 3633 write_sum_page(sbi, curseg->sum_blk, 3634 GET_SUM_BLOCK(sbi, curseg->segno)); 3635 reset_curseg_fields(curseg); 3636 goto skip_new_segment; 3637 } 3638 3639 if (from_gc) { 3640 ret = get_atssr_segment(sbi, type, se->type, 3641 AT_SSR, se->mtime); 3642 } else { 3643 if (need_new_seg(sbi, type)) 3644 ret = new_curseg(sbi, type, false); 3645 else 3646 ret = change_curseg(sbi, type); 3647 stat_inc_seg_type(sbi, curseg); 3648 } 3649 3650 if (ret) 3651 goto out_err; 3652 } 3653 3654 skip_new_segment: 3655 /* 3656 * segment dirty status should be updated after segment allocation, 3657 * so we just need to update status only one time after previous 3658 * segment being closed. 3659 */ 3660 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3661 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3662 3663 if (IS_DATASEG(curseg->seg_type)) 3664 atomic64_inc(&sbi->allocated_data_blocks); 3665 3666 up_write(&sit_i->sentry_lock); 3667 3668 if (page && IS_NODESEG(curseg->seg_type)) { 3669 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3670 3671 f2fs_inode_chksum_set(sbi, page); 3672 } 3673 3674 if (fio) { 3675 struct f2fs_bio_info *io; 3676 3677 INIT_LIST_HEAD(&fio->list); 3678 fio->in_list = 1; 3679 io = sbi->write_io[fio->type] + fio->temp; 3680 spin_lock(&io->io_lock); 3681 list_add_tail(&fio->list, &io->io_list); 3682 spin_unlock(&io->io_lock); 3683 } 3684 3685 mutex_unlock(&curseg->curseg_mutex); 3686 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3687 return 0; 3688 3689 out_err: 3690 *new_blkaddr = NULL_ADDR; 3691 up_write(&sit_i->sentry_lock); 3692 mutex_unlock(&curseg->curseg_mutex); 3693 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3694 return ret; 3695 } 3696 3697 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3698 block_t blkaddr, unsigned int blkcnt) 3699 { 3700 if (!f2fs_is_multi_device(sbi)) 3701 return; 3702 3703 while (1) { 3704 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3705 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3706 3707 /* update device state for fsync */ 3708 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3709 3710 /* update device state for checkpoint */ 3711 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3712 spin_lock(&sbi->dev_lock); 3713 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3714 spin_unlock(&sbi->dev_lock); 3715 } 3716 3717 if (blkcnt <= blks) 3718 break; 3719 blkcnt -= blks; 3720 blkaddr += blks; 3721 } 3722 } 3723 3724 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3725 { 3726 int type = __get_segment_type(fio); 3727 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3728 3729 if (keep_order) 3730 f2fs_down_read(&fio->sbi->io_order_lock); 3731 3732 if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3733 &fio->new_blkaddr, sum, type, fio)) { 3734 if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host)) 3735 fscrypt_finalize_bounce_page(&fio->encrypted_page); 3736 end_page_writeback(fio->page); 3737 if (f2fs_in_warm_node_list(fio->sbi, fio->page)) 3738 f2fs_del_fsync_node_entry(fio->sbi, fio->page); 3739 goto out; 3740 } 3741 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3742 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr); 3743 3744 /* writeout dirty page into bdev */ 3745 f2fs_submit_page_write(fio); 3746 3747 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3748 out: 3749 if (keep_order) 3750 f2fs_up_read(&fio->sbi->io_order_lock); 3751 } 3752 3753 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3754 enum iostat_type io_type) 3755 { 3756 struct f2fs_io_info fio = { 3757 .sbi = sbi, 3758 .type = META, 3759 .temp = HOT, 3760 .op = REQ_OP_WRITE, 3761 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3762 .old_blkaddr = page->index, 3763 .new_blkaddr = page->index, 3764 .page = page, 3765 .encrypted_page = NULL, 3766 .in_list = 0, 3767 }; 3768 3769 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3770 fio.op_flags &= ~REQ_META; 3771 3772 set_page_writeback(page); 3773 f2fs_submit_page_write(&fio); 3774 3775 stat_inc_meta_count(sbi, page->index); 3776 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); 3777 } 3778 3779 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3780 { 3781 struct f2fs_summary sum; 3782 3783 set_summary(&sum, nid, 0, 0); 3784 do_write_page(&sum, fio); 3785 3786 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); 3787 } 3788 3789 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3790 struct f2fs_io_info *fio) 3791 { 3792 struct f2fs_sb_info *sbi = fio->sbi; 3793 struct f2fs_summary sum; 3794 3795 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3796 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) 3797 f2fs_update_age_extent_cache(dn); 3798 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3799 do_write_page(&sum, fio); 3800 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3801 3802 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); 3803 } 3804 3805 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3806 { 3807 int err; 3808 struct f2fs_sb_info *sbi = fio->sbi; 3809 unsigned int segno; 3810 3811 fio->new_blkaddr = fio->old_blkaddr; 3812 /* i/o temperature is needed for passing down write hints */ 3813 __get_segment_type(fio); 3814 3815 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3816 3817 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3818 set_sbi_flag(sbi, SBI_NEED_FSCK); 3819 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3820 __func__, segno); 3821 err = -EFSCORRUPTED; 3822 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 3823 goto drop_bio; 3824 } 3825 3826 if (f2fs_cp_error(sbi)) { 3827 err = -EIO; 3828 goto drop_bio; 3829 } 3830 3831 if (fio->post_read) 3832 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1); 3833 3834 stat_inc_inplace_blocks(fio->sbi); 3835 3836 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi)) 3837 err = f2fs_merge_page_bio(fio); 3838 else 3839 err = f2fs_submit_page_bio(fio); 3840 if (!err) { 3841 f2fs_update_device_state(fio->sbi, fio->ino, 3842 fio->new_blkaddr, 1); 3843 f2fs_update_iostat(fio->sbi, fio->page->mapping->host, 3844 fio->io_type, F2FS_BLKSIZE); 3845 } 3846 3847 return err; 3848 drop_bio: 3849 if (fio->bio && *(fio->bio)) { 3850 struct bio *bio = *(fio->bio); 3851 3852 bio->bi_status = BLK_STS_IOERR; 3853 bio_endio(bio); 3854 *(fio->bio) = NULL; 3855 } 3856 return err; 3857 } 3858 3859 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3860 unsigned int segno) 3861 { 3862 int i; 3863 3864 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3865 if (CURSEG_I(sbi, i)->segno == segno) 3866 break; 3867 } 3868 return i; 3869 } 3870 3871 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3872 block_t old_blkaddr, block_t new_blkaddr, 3873 bool recover_curseg, bool recover_newaddr, 3874 bool from_gc) 3875 { 3876 struct sit_info *sit_i = SIT_I(sbi); 3877 struct curseg_info *curseg; 3878 unsigned int segno, old_cursegno; 3879 struct seg_entry *se; 3880 int type; 3881 unsigned short old_blkoff; 3882 unsigned char old_alloc_type; 3883 3884 segno = GET_SEGNO(sbi, new_blkaddr); 3885 se = get_seg_entry(sbi, segno); 3886 type = se->type; 3887 3888 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3889 3890 if (!recover_curseg) { 3891 /* for recovery flow */ 3892 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3893 if (old_blkaddr == NULL_ADDR) 3894 type = CURSEG_COLD_DATA; 3895 else 3896 type = CURSEG_WARM_DATA; 3897 } 3898 } else { 3899 if (IS_CURSEG(sbi, segno)) { 3900 /* se->type is volatile as SSR allocation */ 3901 type = __f2fs_get_curseg(sbi, segno); 3902 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3903 } else { 3904 type = CURSEG_WARM_DATA; 3905 } 3906 } 3907 3908 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3909 curseg = CURSEG_I(sbi, type); 3910 3911 mutex_lock(&curseg->curseg_mutex); 3912 down_write(&sit_i->sentry_lock); 3913 3914 old_cursegno = curseg->segno; 3915 old_blkoff = curseg->next_blkoff; 3916 old_alloc_type = curseg->alloc_type; 3917 3918 /* change the current segment */ 3919 if (segno != curseg->segno) { 3920 curseg->next_segno = segno; 3921 if (change_curseg(sbi, type)) 3922 goto out_unlock; 3923 } 3924 3925 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3926 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3927 3928 if (!recover_curseg || recover_newaddr) { 3929 if (!from_gc) 3930 update_segment_mtime(sbi, new_blkaddr, 0); 3931 update_sit_entry(sbi, new_blkaddr, 1); 3932 } 3933 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3934 f2fs_invalidate_internal_cache(sbi, old_blkaddr); 3935 if (!from_gc) 3936 update_segment_mtime(sbi, old_blkaddr, 0); 3937 update_sit_entry(sbi, old_blkaddr, -1); 3938 } 3939 3940 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3941 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3942 3943 locate_dirty_segment(sbi, old_cursegno); 3944 3945 if (recover_curseg) { 3946 if (old_cursegno != curseg->segno) { 3947 curseg->next_segno = old_cursegno; 3948 if (change_curseg(sbi, type)) 3949 goto out_unlock; 3950 } 3951 curseg->next_blkoff = old_blkoff; 3952 curseg->alloc_type = old_alloc_type; 3953 } 3954 3955 out_unlock: 3956 up_write(&sit_i->sentry_lock); 3957 mutex_unlock(&curseg->curseg_mutex); 3958 f2fs_up_write(&SM_I(sbi)->curseg_lock); 3959 } 3960 3961 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3962 block_t old_addr, block_t new_addr, 3963 unsigned char version, bool recover_curseg, 3964 bool recover_newaddr) 3965 { 3966 struct f2fs_summary sum; 3967 3968 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3969 3970 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3971 recover_curseg, recover_newaddr, false); 3972 3973 f2fs_update_data_blkaddr(dn, new_addr); 3974 } 3975 3976 void f2fs_wait_on_page_writeback(struct page *page, 3977 enum page_type type, bool ordered, bool locked) 3978 { 3979 if (folio_test_writeback(page_folio(page))) { 3980 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3981 3982 /* submit cached LFS IO */ 3983 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3984 /* submit cached IPU IO */ 3985 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3986 if (ordered) { 3987 wait_on_page_writeback(page); 3988 f2fs_bug_on(sbi, locked && 3989 folio_test_writeback(page_folio(page))); 3990 } else { 3991 wait_for_stable_page(page); 3992 } 3993 } 3994 } 3995 3996 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3997 { 3998 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3999 struct page *cpage; 4000 4001 if (!f2fs_post_read_required(inode)) 4002 return; 4003 4004 if (!__is_valid_data_blkaddr(blkaddr)) 4005 return; 4006 4007 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 4008 if (cpage) { 4009 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 4010 f2fs_put_page(cpage, 1); 4011 } 4012 } 4013 4014 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 4015 block_t len) 4016 { 4017 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4018 block_t i; 4019 4020 if (!f2fs_post_read_required(inode)) 4021 return; 4022 4023 for (i = 0; i < len; i++) 4024 f2fs_wait_on_block_writeback(inode, blkaddr + i); 4025 4026 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len); 4027 } 4028 4029 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 4030 { 4031 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4032 struct curseg_info *seg_i; 4033 unsigned char *kaddr; 4034 struct page *page; 4035 block_t start; 4036 int i, j, offset; 4037 4038 start = start_sum_block(sbi); 4039 4040 page = f2fs_get_meta_page(sbi, start++); 4041 if (IS_ERR(page)) 4042 return PTR_ERR(page); 4043 kaddr = (unsigned char *)page_address(page); 4044 4045 /* Step 1: restore nat cache */ 4046 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4047 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 4048 4049 /* Step 2: restore sit cache */ 4050 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4051 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 4052 offset = 2 * SUM_JOURNAL_SIZE; 4053 4054 /* Step 3: restore summary entries */ 4055 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4056 unsigned short blk_off; 4057 unsigned int segno; 4058 4059 seg_i = CURSEG_I(sbi, i); 4060 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 4061 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 4062 seg_i->next_segno = segno; 4063 reset_curseg(sbi, i, 0); 4064 seg_i->alloc_type = ckpt->alloc_type[i]; 4065 seg_i->next_blkoff = blk_off; 4066 4067 if (seg_i->alloc_type == SSR) 4068 blk_off = BLKS_PER_SEG(sbi); 4069 4070 for (j = 0; j < blk_off; j++) { 4071 struct f2fs_summary *s; 4072 4073 s = (struct f2fs_summary *)(kaddr + offset); 4074 seg_i->sum_blk->entries[j] = *s; 4075 offset += SUMMARY_SIZE; 4076 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 4077 SUM_FOOTER_SIZE) 4078 continue; 4079 4080 f2fs_put_page(page, 1); 4081 page = NULL; 4082 4083 page = f2fs_get_meta_page(sbi, start++); 4084 if (IS_ERR(page)) 4085 return PTR_ERR(page); 4086 kaddr = (unsigned char *)page_address(page); 4087 offset = 0; 4088 } 4089 } 4090 f2fs_put_page(page, 1); 4091 return 0; 4092 } 4093 4094 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 4095 { 4096 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4097 struct f2fs_summary_block *sum; 4098 struct curseg_info *curseg; 4099 struct page *new; 4100 unsigned short blk_off; 4101 unsigned int segno = 0; 4102 block_t blk_addr = 0; 4103 int err = 0; 4104 4105 /* get segment number and block addr */ 4106 if (IS_DATASEG(type)) { 4107 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 4108 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 4109 CURSEG_HOT_DATA]); 4110 if (__exist_node_summaries(sbi)) 4111 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 4112 else 4113 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 4114 } else { 4115 segno = le32_to_cpu(ckpt->cur_node_segno[type - 4116 CURSEG_HOT_NODE]); 4117 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 4118 CURSEG_HOT_NODE]); 4119 if (__exist_node_summaries(sbi)) 4120 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 4121 type - CURSEG_HOT_NODE); 4122 else 4123 blk_addr = GET_SUM_BLOCK(sbi, segno); 4124 } 4125 4126 new = f2fs_get_meta_page(sbi, blk_addr); 4127 if (IS_ERR(new)) 4128 return PTR_ERR(new); 4129 sum = (struct f2fs_summary_block *)page_address(new); 4130 4131 if (IS_NODESEG(type)) { 4132 if (__exist_node_summaries(sbi)) { 4133 struct f2fs_summary *ns = &sum->entries[0]; 4134 int i; 4135 4136 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) { 4137 ns->version = 0; 4138 ns->ofs_in_node = 0; 4139 } 4140 } else { 4141 err = f2fs_restore_node_summary(sbi, segno, sum); 4142 if (err) 4143 goto out; 4144 } 4145 } 4146 4147 /* set uncompleted segment to curseg */ 4148 curseg = CURSEG_I(sbi, type); 4149 mutex_lock(&curseg->curseg_mutex); 4150 4151 /* update journal info */ 4152 down_write(&curseg->journal_rwsem); 4153 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 4154 up_write(&curseg->journal_rwsem); 4155 4156 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 4157 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 4158 curseg->next_segno = segno; 4159 reset_curseg(sbi, type, 0); 4160 curseg->alloc_type = ckpt->alloc_type[type]; 4161 curseg->next_blkoff = blk_off; 4162 mutex_unlock(&curseg->curseg_mutex); 4163 out: 4164 f2fs_put_page(new, 1); 4165 return err; 4166 } 4167 4168 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 4169 { 4170 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 4171 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 4172 int type = CURSEG_HOT_DATA; 4173 int err; 4174 4175 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 4176 int npages = f2fs_npages_for_summary_flush(sbi, true); 4177 4178 if (npages >= 2) 4179 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 4180 META_CP, true); 4181 4182 /* restore for compacted data summary */ 4183 err = read_compacted_summaries(sbi); 4184 if (err) 4185 return err; 4186 type = CURSEG_HOT_NODE; 4187 } 4188 4189 if (__exist_node_summaries(sbi)) 4190 f2fs_ra_meta_pages(sbi, 4191 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 4192 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 4193 4194 for (; type <= CURSEG_COLD_NODE; type++) { 4195 err = read_normal_summaries(sbi, type); 4196 if (err) 4197 return err; 4198 } 4199 4200 /* sanity check for summary blocks */ 4201 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 4202 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 4203 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 4204 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 4205 return -EINVAL; 4206 } 4207 4208 return 0; 4209 } 4210 4211 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 4212 { 4213 struct page *page; 4214 unsigned char *kaddr; 4215 struct f2fs_summary *summary; 4216 struct curseg_info *seg_i; 4217 int written_size = 0; 4218 int i, j; 4219 4220 page = f2fs_grab_meta_page(sbi, blkaddr++); 4221 kaddr = (unsigned char *)page_address(page); 4222 memset(kaddr, 0, PAGE_SIZE); 4223 4224 /* Step 1: write nat cache */ 4225 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4226 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 4227 written_size += SUM_JOURNAL_SIZE; 4228 4229 /* Step 2: write sit cache */ 4230 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4231 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 4232 written_size += SUM_JOURNAL_SIZE; 4233 4234 /* Step 3: write summary entries */ 4235 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4236 seg_i = CURSEG_I(sbi, i); 4237 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) { 4238 if (!page) { 4239 page = f2fs_grab_meta_page(sbi, blkaddr++); 4240 kaddr = (unsigned char *)page_address(page); 4241 memset(kaddr, 0, PAGE_SIZE); 4242 written_size = 0; 4243 } 4244 summary = (struct f2fs_summary *)(kaddr + written_size); 4245 *summary = seg_i->sum_blk->entries[j]; 4246 written_size += SUMMARY_SIZE; 4247 4248 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 4249 SUM_FOOTER_SIZE) 4250 continue; 4251 4252 set_page_dirty(page); 4253 f2fs_put_page(page, 1); 4254 page = NULL; 4255 } 4256 } 4257 if (page) { 4258 set_page_dirty(page); 4259 f2fs_put_page(page, 1); 4260 } 4261 } 4262 4263 static void write_normal_summaries(struct f2fs_sb_info *sbi, 4264 block_t blkaddr, int type) 4265 { 4266 int i, end; 4267 4268 if (IS_DATASEG(type)) 4269 end = type + NR_CURSEG_DATA_TYPE; 4270 else 4271 end = type + NR_CURSEG_NODE_TYPE; 4272 4273 for (i = type; i < end; i++) 4274 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4275 } 4276 4277 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4278 { 4279 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4280 write_compacted_summaries(sbi, start_blk); 4281 else 4282 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4283 } 4284 4285 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4286 { 4287 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4288 } 4289 4290 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4291 unsigned int val, int alloc) 4292 { 4293 int i; 4294 4295 if (type == NAT_JOURNAL) { 4296 for (i = 0; i < nats_in_cursum(journal); i++) { 4297 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4298 return i; 4299 } 4300 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4301 return update_nats_in_cursum(journal, 1); 4302 } else if (type == SIT_JOURNAL) { 4303 for (i = 0; i < sits_in_cursum(journal); i++) 4304 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4305 return i; 4306 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4307 return update_sits_in_cursum(journal, 1); 4308 } 4309 return -1; 4310 } 4311 4312 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4313 unsigned int segno) 4314 { 4315 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4316 } 4317 4318 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4319 unsigned int start) 4320 { 4321 struct sit_info *sit_i = SIT_I(sbi); 4322 struct page *page; 4323 pgoff_t src_off, dst_off; 4324 4325 src_off = current_sit_addr(sbi, start); 4326 dst_off = next_sit_addr(sbi, src_off); 4327 4328 page = f2fs_grab_meta_page(sbi, dst_off); 4329 seg_info_to_sit_page(sbi, page, start); 4330 4331 set_page_dirty(page); 4332 set_to_next_sit(sit_i, start); 4333 4334 return page; 4335 } 4336 4337 static struct sit_entry_set *grab_sit_entry_set(void) 4338 { 4339 struct sit_entry_set *ses = 4340 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4341 GFP_NOFS, true, NULL); 4342 4343 ses->entry_cnt = 0; 4344 INIT_LIST_HEAD(&ses->set_list); 4345 return ses; 4346 } 4347 4348 static void release_sit_entry_set(struct sit_entry_set *ses) 4349 { 4350 list_del(&ses->set_list); 4351 kmem_cache_free(sit_entry_set_slab, ses); 4352 } 4353 4354 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4355 struct list_head *head) 4356 { 4357 struct sit_entry_set *next = ses; 4358 4359 if (list_is_last(&ses->set_list, head)) 4360 return; 4361 4362 list_for_each_entry_continue(next, head, set_list) 4363 if (ses->entry_cnt <= next->entry_cnt) { 4364 list_move_tail(&ses->set_list, &next->set_list); 4365 return; 4366 } 4367 4368 list_move_tail(&ses->set_list, head); 4369 } 4370 4371 static void add_sit_entry(unsigned int segno, struct list_head *head) 4372 { 4373 struct sit_entry_set *ses; 4374 unsigned int start_segno = START_SEGNO(segno); 4375 4376 list_for_each_entry(ses, head, set_list) { 4377 if (ses->start_segno == start_segno) { 4378 ses->entry_cnt++; 4379 adjust_sit_entry_set(ses, head); 4380 return; 4381 } 4382 } 4383 4384 ses = grab_sit_entry_set(); 4385 4386 ses->start_segno = start_segno; 4387 ses->entry_cnt++; 4388 list_add(&ses->set_list, head); 4389 } 4390 4391 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4392 { 4393 struct f2fs_sm_info *sm_info = SM_I(sbi); 4394 struct list_head *set_list = &sm_info->sit_entry_set; 4395 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4396 unsigned int segno; 4397 4398 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4399 add_sit_entry(segno, set_list); 4400 } 4401 4402 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4403 { 4404 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4405 struct f2fs_journal *journal = curseg->journal; 4406 int i; 4407 4408 down_write(&curseg->journal_rwsem); 4409 for (i = 0; i < sits_in_cursum(journal); i++) { 4410 unsigned int segno; 4411 bool dirtied; 4412 4413 segno = le32_to_cpu(segno_in_journal(journal, i)); 4414 dirtied = __mark_sit_entry_dirty(sbi, segno); 4415 4416 if (!dirtied) 4417 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4418 } 4419 update_sits_in_cursum(journal, -i); 4420 up_write(&curseg->journal_rwsem); 4421 } 4422 4423 /* 4424 * CP calls this function, which flushes SIT entries including sit_journal, 4425 * and moves prefree segs to free segs. 4426 */ 4427 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4428 { 4429 struct sit_info *sit_i = SIT_I(sbi); 4430 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4431 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4432 struct f2fs_journal *journal = curseg->journal; 4433 struct sit_entry_set *ses, *tmp; 4434 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4435 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4436 struct seg_entry *se; 4437 4438 down_write(&sit_i->sentry_lock); 4439 4440 if (!sit_i->dirty_sentries) 4441 goto out; 4442 4443 /* 4444 * add and account sit entries of dirty bitmap in sit entry 4445 * set temporarily 4446 */ 4447 add_sits_in_set(sbi); 4448 4449 /* 4450 * if there are no enough space in journal to store dirty sit 4451 * entries, remove all entries from journal and add and account 4452 * them in sit entry set. 4453 */ 4454 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4455 !to_journal) 4456 remove_sits_in_journal(sbi); 4457 4458 /* 4459 * there are two steps to flush sit entries: 4460 * #1, flush sit entries to journal in current cold data summary block. 4461 * #2, flush sit entries to sit page. 4462 */ 4463 list_for_each_entry_safe(ses, tmp, head, set_list) { 4464 struct page *page = NULL; 4465 struct f2fs_sit_block *raw_sit = NULL; 4466 unsigned int start_segno = ses->start_segno; 4467 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4468 (unsigned long)MAIN_SEGS(sbi)); 4469 unsigned int segno = start_segno; 4470 4471 if (to_journal && 4472 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4473 to_journal = false; 4474 4475 if (to_journal) { 4476 down_write(&curseg->journal_rwsem); 4477 } else { 4478 page = get_next_sit_page(sbi, start_segno); 4479 raw_sit = page_address(page); 4480 } 4481 4482 /* flush dirty sit entries in region of current sit set */ 4483 for_each_set_bit_from(segno, bitmap, end) { 4484 int offset, sit_offset; 4485 4486 se = get_seg_entry(sbi, segno); 4487 #ifdef CONFIG_F2FS_CHECK_FS 4488 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4489 SIT_VBLOCK_MAP_SIZE)) 4490 f2fs_bug_on(sbi, 1); 4491 #endif 4492 4493 /* add discard candidates */ 4494 if (!(cpc->reason & CP_DISCARD)) { 4495 cpc->trim_start = segno; 4496 add_discard_addrs(sbi, cpc, false); 4497 } 4498 4499 if (to_journal) { 4500 offset = f2fs_lookup_journal_in_cursum(journal, 4501 SIT_JOURNAL, segno, 1); 4502 f2fs_bug_on(sbi, offset < 0); 4503 segno_in_journal(journal, offset) = 4504 cpu_to_le32(segno); 4505 seg_info_to_raw_sit(se, 4506 &sit_in_journal(journal, offset)); 4507 check_block_count(sbi, segno, 4508 &sit_in_journal(journal, offset)); 4509 } else { 4510 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4511 seg_info_to_raw_sit(se, 4512 &raw_sit->entries[sit_offset]); 4513 check_block_count(sbi, segno, 4514 &raw_sit->entries[sit_offset]); 4515 } 4516 4517 __clear_bit(segno, bitmap); 4518 sit_i->dirty_sentries--; 4519 ses->entry_cnt--; 4520 } 4521 4522 if (to_journal) 4523 up_write(&curseg->journal_rwsem); 4524 else 4525 f2fs_put_page(page, 1); 4526 4527 f2fs_bug_on(sbi, ses->entry_cnt); 4528 release_sit_entry_set(ses); 4529 } 4530 4531 f2fs_bug_on(sbi, !list_empty(head)); 4532 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4533 out: 4534 if (cpc->reason & CP_DISCARD) { 4535 __u64 trim_start = cpc->trim_start; 4536 4537 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4538 add_discard_addrs(sbi, cpc, false); 4539 4540 cpc->trim_start = trim_start; 4541 } 4542 up_write(&sit_i->sentry_lock); 4543 4544 set_prefree_as_free_segments(sbi); 4545 } 4546 4547 static int build_sit_info(struct f2fs_sb_info *sbi) 4548 { 4549 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4550 struct sit_info *sit_i; 4551 unsigned int sit_segs, start; 4552 char *src_bitmap, *bitmap; 4553 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4554 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4555 4556 /* allocate memory for SIT information */ 4557 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4558 if (!sit_i) 4559 return -ENOMEM; 4560 4561 SM_I(sbi)->sit_info = sit_i; 4562 4563 sit_i->sentries = 4564 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4565 MAIN_SEGS(sbi)), 4566 GFP_KERNEL); 4567 if (!sit_i->sentries) 4568 return -ENOMEM; 4569 4570 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4571 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4572 GFP_KERNEL); 4573 if (!sit_i->dirty_sentries_bitmap) 4574 return -ENOMEM; 4575 4576 #ifdef CONFIG_F2FS_CHECK_FS 4577 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4578 #else 4579 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4580 #endif 4581 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4582 if (!sit_i->bitmap) 4583 return -ENOMEM; 4584 4585 bitmap = sit_i->bitmap; 4586 4587 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4588 sit_i->sentries[start].cur_valid_map = bitmap; 4589 bitmap += SIT_VBLOCK_MAP_SIZE; 4590 4591 sit_i->sentries[start].ckpt_valid_map = bitmap; 4592 bitmap += SIT_VBLOCK_MAP_SIZE; 4593 4594 #ifdef CONFIG_F2FS_CHECK_FS 4595 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4596 bitmap += SIT_VBLOCK_MAP_SIZE; 4597 #endif 4598 4599 if (discard_map) { 4600 sit_i->sentries[start].discard_map = bitmap; 4601 bitmap += SIT_VBLOCK_MAP_SIZE; 4602 } 4603 } 4604 4605 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4606 if (!sit_i->tmp_map) 4607 return -ENOMEM; 4608 4609 if (__is_large_section(sbi)) { 4610 sit_i->sec_entries = 4611 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4612 MAIN_SECS(sbi)), 4613 GFP_KERNEL); 4614 if (!sit_i->sec_entries) 4615 return -ENOMEM; 4616 } 4617 4618 /* get information related with SIT */ 4619 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4620 4621 /* setup SIT bitmap from ckeckpoint pack */ 4622 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4623 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4624 4625 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4626 if (!sit_i->sit_bitmap) 4627 return -ENOMEM; 4628 4629 #ifdef CONFIG_F2FS_CHECK_FS 4630 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4631 sit_bitmap_size, GFP_KERNEL); 4632 if (!sit_i->sit_bitmap_mir) 4633 return -ENOMEM; 4634 4635 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4636 main_bitmap_size, GFP_KERNEL); 4637 if (!sit_i->invalid_segmap) 4638 return -ENOMEM; 4639 #endif 4640 4641 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4642 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs); 4643 sit_i->written_valid_blocks = 0; 4644 sit_i->bitmap_size = sit_bitmap_size; 4645 sit_i->dirty_sentries = 0; 4646 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4647 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4648 sit_i->mounted_time = ktime_get_boottime_seconds(); 4649 init_rwsem(&sit_i->sentry_lock); 4650 return 0; 4651 } 4652 4653 static int build_free_segmap(struct f2fs_sb_info *sbi) 4654 { 4655 struct free_segmap_info *free_i; 4656 unsigned int bitmap_size, sec_bitmap_size; 4657 4658 /* allocate memory for free segmap information */ 4659 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4660 if (!free_i) 4661 return -ENOMEM; 4662 4663 SM_I(sbi)->free_info = free_i; 4664 4665 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4666 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4667 if (!free_i->free_segmap) 4668 return -ENOMEM; 4669 4670 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4671 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4672 if (!free_i->free_secmap) 4673 return -ENOMEM; 4674 4675 /* set all segments as dirty temporarily */ 4676 memset(free_i->free_segmap, 0xff, bitmap_size); 4677 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4678 4679 /* init free segmap information */ 4680 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4681 free_i->free_segments = 0; 4682 free_i->free_sections = 0; 4683 spin_lock_init(&free_i->segmap_lock); 4684 return 0; 4685 } 4686 4687 static int build_curseg(struct f2fs_sb_info *sbi) 4688 { 4689 struct curseg_info *array; 4690 int i; 4691 4692 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4693 sizeof(*array)), GFP_KERNEL); 4694 if (!array) 4695 return -ENOMEM; 4696 4697 SM_I(sbi)->curseg_array = array; 4698 4699 for (i = 0; i < NO_CHECK_TYPE; i++) { 4700 mutex_init(&array[i].curseg_mutex); 4701 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4702 if (!array[i].sum_blk) 4703 return -ENOMEM; 4704 init_rwsem(&array[i].journal_rwsem); 4705 array[i].journal = f2fs_kzalloc(sbi, 4706 sizeof(struct f2fs_journal), GFP_KERNEL); 4707 if (!array[i].journal) 4708 return -ENOMEM; 4709 if (i < NR_PERSISTENT_LOG) 4710 array[i].seg_type = CURSEG_HOT_DATA + i; 4711 else if (i == CURSEG_COLD_DATA_PINNED) 4712 array[i].seg_type = CURSEG_COLD_DATA; 4713 else if (i == CURSEG_ALL_DATA_ATGC) 4714 array[i].seg_type = CURSEG_COLD_DATA; 4715 reset_curseg_fields(&array[i]); 4716 } 4717 return restore_curseg_summaries(sbi); 4718 } 4719 4720 static int build_sit_entries(struct f2fs_sb_info *sbi) 4721 { 4722 struct sit_info *sit_i = SIT_I(sbi); 4723 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4724 struct f2fs_journal *journal = curseg->journal; 4725 struct seg_entry *se; 4726 struct f2fs_sit_entry sit; 4727 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4728 unsigned int i, start, end; 4729 unsigned int readed, start_blk = 0; 4730 int err = 0; 4731 block_t sit_valid_blocks[2] = {0, 0}; 4732 4733 do { 4734 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4735 META_SIT, true); 4736 4737 start = start_blk * sit_i->sents_per_block; 4738 end = (start_blk + readed) * sit_i->sents_per_block; 4739 4740 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4741 struct f2fs_sit_block *sit_blk; 4742 struct page *page; 4743 4744 se = &sit_i->sentries[start]; 4745 page = get_current_sit_page(sbi, start); 4746 if (IS_ERR(page)) 4747 return PTR_ERR(page); 4748 sit_blk = (struct f2fs_sit_block *)page_address(page); 4749 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4750 f2fs_put_page(page, 1); 4751 4752 err = check_block_count(sbi, start, &sit); 4753 if (err) 4754 return err; 4755 seg_info_from_raw_sit(se, &sit); 4756 4757 if (se->type >= NR_PERSISTENT_LOG) { 4758 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4759 se->type, start); 4760 f2fs_handle_error(sbi, 4761 ERROR_INCONSISTENT_SUM_TYPE); 4762 return -EFSCORRUPTED; 4763 } 4764 4765 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4766 4767 if (!f2fs_block_unit_discard(sbi)) 4768 goto init_discard_map_done; 4769 4770 /* build discard map only one time */ 4771 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4772 memset(se->discard_map, 0xff, 4773 SIT_VBLOCK_MAP_SIZE); 4774 goto init_discard_map_done; 4775 } 4776 memcpy(se->discard_map, se->cur_valid_map, 4777 SIT_VBLOCK_MAP_SIZE); 4778 sbi->discard_blks += BLKS_PER_SEG(sbi) - 4779 se->valid_blocks; 4780 init_discard_map_done: 4781 if (__is_large_section(sbi)) 4782 get_sec_entry(sbi, start)->valid_blocks += 4783 se->valid_blocks; 4784 } 4785 start_blk += readed; 4786 } while (start_blk < sit_blk_cnt); 4787 4788 down_read(&curseg->journal_rwsem); 4789 for (i = 0; i < sits_in_cursum(journal); i++) { 4790 unsigned int old_valid_blocks; 4791 4792 start = le32_to_cpu(segno_in_journal(journal, i)); 4793 if (start >= MAIN_SEGS(sbi)) { 4794 f2fs_err(sbi, "Wrong journal entry on segno %u", 4795 start); 4796 err = -EFSCORRUPTED; 4797 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); 4798 break; 4799 } 4800 4801 se = &sit_i->sentries[start]; 4802 sit = sit_in_journal(journal, i); 4803 4804 old_valid_blocks = se->valid_blocks; 4805 4806 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4807 4808 err = check_block_count(sbi, start, &sit); 4809 if (err) 4810 break; 4811 seg_info_from_raw_sit(se, &sit); 4812 4813 if (se->type >= NR_PERSISTENT_LOG) { 4814 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4815 se->type, start); 4816 err = -EFSCORRUPTED; 4817 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4818 break; 4819 } 4820 4821 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4822 4823 if (f2fs_block_unit_discard(sbi)) { 4824 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4825 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4826 } else { 4827 memcpy(se->discard_map, se->cur_valid_map, 4828 SIT_VBLOCK_MAP_SIZE); 4829 sbi->discard_blks += old_valid_blocks; 4830 sbi->discard_blks -= se->valid_blocks; 4831 } 4832 } 4833 4834 if (__is_large_section(sbi)) { 4835 get_sec_entry(sbi, start)->valid_blocks += 4836 se->valid_blocks; 4837 get_sec_entry(sbi, start)->valid_blocks -= 4838 old_valid_blocks; 4839 } 4840 } 4841 up_read(&curseg->journal_rwsem); 4842 4843 if (err) 4844 return err; 4845 4846 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4847 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4848 sit_valid_blocks[NODE], valid_node_count(sbi)); 4849 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); 4850 return -EFSCORRUPTED; 4851 } 4852 4853 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4854 valid_user_blocks(sbi)) { 4855 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4856 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4857 valid_user_blocks(sbi)); 4858 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); 4859 return -EFSCORRUPTED; 4860 } 4861 4862 return 0; 4863 } 4864 4865 static void init_free_segmap(struct f2fs_sb_info *sbi) 4866 { 4867 unsigned int start; 4868 int type; 4869 struct seg_entry *sentry; 4870 4871 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4872 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4873 continue; 4874 sentry = get_seg_entry(sbi, start); 4875 if (!sentry->valid_blocks) 4876 __set_free(sbi, start); 4877 else 4878 SIT_I(sbi)->written_valid_blocks += 4879 sentry->valid_blocks; 4880 } 4881 4882 /* set use the current segments */ 4883 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4884 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4885 4886 __set_test_and_inuse(sbi, curseg_t->segno); 4887 } 4888 } 4889 4890 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4891 { 4892 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4893 struct free_segmap_info *free_i = FREE_I(sbi); 4894 unsigned int segno = 0, offset = 0, secno; 4895 block_t valid_blocks, usable_blks_in_seg; 4896 4897 while (1) { 4898 /* find dirty segment based on free segmap */ 4899 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4900 if (segno >= MAIN_SEGS(sbi)) 4901 break; 4902 offset = segno + 1; 4903 valid_blocks = get_valid_blocks(sbi, segno, false); 4904 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4905 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4906 continue; 4907 if (valid_blocks > usable_blks_in_seg) { 4908 f2fs_bug_on(sbi, 1); 4909 continue; 4910 } 4911 mutex_lock(&dirty_i->seglist_lock); 4912 __locate_dirty_segment(sbi, segno, DIRTY); 4913 mutex_unlock(&dirty_i->seglist_lock); 4914 } 4915 4916 if (!__is_large_section(sbi)) 4917 return; 4918 4919 mutex_lock(&dirty_i->seglist_lock); 4920 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { 4921 valid_blocks = get_valid_blocks(sbi, segno, true); 4922 secno = GET_SEC_FROM_SEG(sbi, segno); 4923 4924 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 4925 continue; 4926 if (IS_CURSEC(sbi, secno)) 4927 continue; 4928 set_bit(secno, dirty_i->dirty_secmap); 4929 } 4930 mutex_unlock(&dirty_i->seglist_lock); 4931 } 4932 4933 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4934 { 4935 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4936 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4937 4938 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4939 if (!dirty_i->victim_secmap) 4940 return -ENOMEM; 4941 4942 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4943 if (!dirty_i->pinned_secmap) 4944 return -ENOMEM; 4945 4946 dirty_i->pinned_secmap_cnt = 0; 4947 dirty_i->enable_pin_section = true; 4948 return 0; 4949 } 4950 4951 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4952 { 4953 struct dirty_seglist_info *dirty_i; 4954 unsigned int bitmap_size, i; 4955 4956 /* allocate memory for dirty segments list information */ 4957 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4958 GFP_KERNEL); 4959 if (!dirty_i) 4960 return -ENOMEM; 4961 4962 SM_I(sbi)->dirty_info = dirty_i; 4963 mutex_init(&dirty_i->seglist_lock); 4964 4965 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4966 4967 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4968 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4969 GFP_KERNEL); 4970 if (!dirty_i->dirty_segmap[i]) 4971 return -ENOMEM; 4972 } 4973 4974 if (__is_large_section(sbi)) { 4975 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4976 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4977 bitmap_size, GFP_KERNEL); 4978 if (!dirty_i->dirty_secmap) 4979 return -ENOMEM; 4980 } 4981 4982 init_dirty_segmap(sbi); 4983 return init_victim_secmap(sbi); 4984 } 4985 4986 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4987 { 4988 int i; 4989 4990 /* 4991 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4992 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4993 */ 4994 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4995 struct curseg_info *curseg = CURSEG_I(sbi, i); 4996 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4997 unsigned int blkofs = curseg->next_blkoff; 4998 4999 if (f2fs_sb_has_readonly(sbi) && 5000 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 5001 continue; 5002 5003 sanity_check_seg_type(sbi, curseg->seg_type); 5004 5005 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 5006 f2fs_err(sbi, 5007 "Current segment has invalid alloc_type:%d", 5008 curseg->alloc_type); 5009 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 5010 return -EFSCORRUPTED; 5011 } 5012 5013 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 5014 goto out; 5015 5016 if (curseg->alloc_type == SSR) 5017 continue; 5018 5019 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) { 5020 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 5021 continue; 5022 out: 5023 f2fs_err(sbi, 5024 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 5025 i, curseg->segno, curseg->alloc_type, 5026 curseg->next_blkoff, blkofs); 5027 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 5028 return -EFSCORRUPTED; 5029 } 5030 } 5031 return 0; 5032 } 5033 5034 #ifdef CONFIG_BLK_DEV_ZONED 5035 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 5036 struct f2fs_dev_info *fdev, 5037 struct blk_zone *zone) 5038 { 5039 unsigned int zone_segno; 5040 block_t zone_block, valid_block_cnt; 5041 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 5042 int ret; 5043 unsigned int nofs_flags; 5044 5045 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5046 return 0; 5047 5048 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 5049 zone_segno = GET_SEGNO(sbi, zone_block); 5050 5051 /* 5052 * Skip check of zones cursegs point to, since 5053 * fix_curseg_write_pointer() checks them. 5054 */ 5055 if (zone_segno >= MAIN_SEGS(sbi)) 5056 return 0; 5057 5058 /* 5059 * Get # of valid block of the zone. 5060 */ 5061 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true); 5062 if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) { 5063 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]", 5064 zone_segno, valid_block_cnt, 5065 blk_zone_cond_str(zone->cond)); 5066 return 0; 5067 } 5068 5069 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) || 5070 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL)) 5071 return 0; 5072 5073 if (!valid_block_cnt) { 5074 f2fs_notice(sbi, "Zone without valid block has non-zero write " 5075 "pointer. Reset the write pointer: cond[%s]", 5076 blk_zone_cond_str(zone->cond)); 5077 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 5078 zone->len >> log_sectors_per_block); 5079 if (ret) 5080 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5081 fdev->path, ret); 5082 return ret; 5083 } 5084 5085 /* 5086 * If there are valid blocks and the write pointer doesn't match 5087 * with them, we need to report the inconsistency and fill 5088 * the zone till the end to close the zone. This inconsistency 5089 * does not cause write error because the zone will not be 5090 * selected for write operation until it get discarded. 5091 */ 5092 f2fs_notice(sbi, "Valid blocks are not aligned with write " 5093 "pointer: valid block[0x%x,0x%x] cond[%s]", 5094 zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond)); 5095 5096 nofs_flags = memalloc_nofs_save(); 5097 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH, 5098 zone->start, zone->len); 5099 memalloc_nofs_restore(nofs_flags); 5100 if (ret == -EOPNOTSUPP) { 5101 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp, 5102 zone->len - (zone->wp - zone->start), 5103 GFP_NOFS, 0); 5104 if (ret) 5105 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)", 5106 fdev->path, ret); 5107 } else if (ret) { 5108 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)", 5109 fdev->path, ret); 5110 } 5111 5112 return ret; 5113 } 5114 5115 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 5116 block_t zone_blkaddr) 5117 { 5118 int i; 5119 5120 for (i = 0; i < sbi->s_ndevs; i++) { 5121 if (!bdev_is_zoned(FDEV(i).bdev)) 5122 continue; 5123 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 5124 zone_blkaddr <= FDEV(i).end_blk)) 5125 return &FDEV(i); 5126 } 5127 5128 return NULL; 5129 } 5130 5131 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 5132 void *data) 5133 { 5134 memcpy(data, zone, sizeof(struct blk_zone)); 5135 return 0; 5136 } 5137 5138 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 5139 { 5140 struct curseg_info *cs = CURSEG_I(sbi, type); 5141 struct f2fs_dev_info *zbd; 5142 struct blk_zone zone; 5143 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 5144 block_t cs_zone_block, wp_block; 5145 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 5146 sector_t zone_sector; 5147 int err; 5148 5149 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5150 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5151 5152 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5153 if (!zbd) 5154 return 0; 5155 5156 /* report zone for the sector the curseg points to */ 5157 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5158 << log_sectors_per_block; 5159 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5160 report_one_zone_cb, &zone); 5161 if (err != 1) { 5162 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5163 zbd->path, err); 5164 return err; 5165 } 5166 5167 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5168 return 0; 5169 5170 /* 5171 * When safely unmounted in the previous mount, we could use current 5172 * segments. Otherwise, allocate new sections. 5173 */ 5174 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 5175 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 5176 wp_segno = GET_SEGNO(sbi, wp_block); 5177 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 5178 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 5179 5180 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 5181 wp_sector_off == 0) 5182 return 0; 5183 5184 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 5185 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno, 5186 cs->next_blkoff, wp_segno, wp_blkoff); 5187 } 5188 5189 /* Allocate a new section if it's not new. */ 5190 if (cs->next_blkoff) { 5191 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff; 5192 5193 f2fs_allocate_new_section(sbi, type, true); 5194 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 5195 "[0x%x,0x%x] -> [0x%x,0x%x]", 5196 type, old_segno, old_blkoff, 5197 cs->segno, cs->next_blkoff); 5198 } 5199 5200 /* check consistency of the zone curseg pointed to */ 5201 if (check_zone_write_pointer(sbi, zbd, &zone)) 5202 return -EIO; 5203 5204 /* check newly assigned zone */ 5205 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5206 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5207 5208 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5209 if (!zbd) 5210 return 0; 5211 5212 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5213 << log_sectors_per_block; 5214 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5215 report_one_zone_cb, &zone); 5216 if (err != 1) { 5217 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5218 zbd->path, err); 5219 return err; 5220 } 5221 5222 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5223 return 0; 5224 5225 if (zone.wp != zone.start) { 5226 f2fs_notice(sbi, 5227 "New zone for curseg[%d] is not yet discarded. " 5228 "Reset the zone: curseg[0x%x,0x%x]", 5229 type, cs->segno, cs->next_blkoff); 5230 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block, 5231 zone.len >> log_sectors_per_block); 5232 if (err) { 5233 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5234 zbd->path, err); 5235 return err; 5236 } 5237 } 5238 5239 return 0; 5240 } 5241 5242 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5243 { 5244 int i, ret; 5245 5246 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5247 ret = fix_curseg_write_pointer(sbi, i); 5248 if (ret) 5249 return ret; 5250 } 5251 5252 return 0; 5253 } 5254 5255 struct check_zone_write_pointer_args { 5256 struct f2fs_sb_info *sbi; 5257 struct f2fs_dev_info *fdev; 5258 }; 5259 5260 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 5261 void *data) 5262 { 5263 struct check_zone_write_pointer_args *args; 5264 5265 args = (struct check_zone_write_pointer_args *)data; 5266 5267 return check_zone_write_pointer(args->sbi, args->fdev, zone); 5268 } 5269 5270 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5271 { 5272 int i, ret; 5273 struct check_zone_write_pointer_args args; 5274 5275 for (i = 0; i < sbi->s_ndevs; i++) { 5276 if (!bdev_is_zoned(FDEV(i).bdev)) 5277 continue; 5278 5279 args.sbi = sbi; 5280 args.fdev = &FDEV(i); 5281 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 5282 check_zone_write_pointer_cb, &args); 5283 if (ret < 0) 5284 return ret; 5285 } 5286 5287 return 0; 5288 } 5289 5290 /* 5291 * Return the number of usable blocks in a segment. The number of blocks 5292 * returned is always equal to the number of blocks in a segment for 5293 * segments fully contained within a sequential zone capacity or a 5294 * conventional zone. For segments partially contained in a sequential 5295 * zone capacity, the number of usable blocks up to the zone capacity 5296 * is returned. 0 is returned in all other cases. 5297 */ 5298 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5299 struct f2fs_sb_info *sbi, unsigned int segno) 5300 { 5301 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5302 unsigned int secno; 5303 5304 if (!sbi->unusable_blocks_per_sec) 5305 return BLKS_PER_SEG(sbi); 5306 5307 secno = GET_SEC_FROM_SEG(sbi, segno); 5308 seg_start = START_BLOCK(sbi, segno); 5309 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5310 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 5311 5312 /* 5313 * If segment starts before zone capacity and spans beyond 5314 * zone capacity, then usable blocks are from seg start to 5315 * zone capacity. If the segment starts after the zone capacity, 5316 * then there are no usable blocks. 5317 */ 5318 if (seg_start >= sec_cap_blkaddr) 5319 return 0; 5320 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr) 5321 return sec_cap_blkaddr - seg_start; 5322 5323 return BLKS_PER_SEG(sbi); 5324 } 5325 #else 5326 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5327 { 5328 return 0; 5329 } 5330 5331 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5332 { 5333 return 0; 5334 } 5335 5336 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5337 unsigned int segno) 5338 { 5339 return 0; 5340 } 5341 5342 #endif 5343 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5344 unsigned int segno) 5345 { 5346 if (f2fs_sb_has_blkzoned(sbi)) 5347 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5348 5349 return BLKS_PER_SEG(sbi); 5350 } 5351 5352 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5353 unsigned int segno) 5354 { 5355 if (f2fs_sb_has_blkzoned(sbi)) 5356 return CAP_SEGS_PER_SEC(sbi); 5357 5358 return SEGS_PER_SEC(sbi); 5359 } 5360 5361 /* 5362 * Update min, max modified time for cost-benefit GC algorithm 5363 */ 5364 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5365 { 5366 struct sit_info *sit_i = SIT_I(sbi); 5367 unsigned int segno; 5368 5369 down_write(&sit_i->sentry_lock); 5370 5371 sit_i->min_mtime = ULLONG_MAX; 5372 5373 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { 5374 unsigned int i; 5375 unsigned long long mtime = 0; 5376 5377 for (i = 0; i < SEGS_PER_SEC(sbi); i++) 5378 mtime += get_seg_entry(sbi, segno + i)->mtime; 5379 5380 mtime = div_u64(mtime, SEGS_PER_SEC(sbi)); 5381 5382 if (sit_i->min_mtime > mtime) 5383 sit_i->min_mtime = mtime; 5384 } 5385 sit_i->max_mtime = get_mtime(sbi, false); 5386 sit_i->dirty_max_mtime = 0; 5387 up_write(&sit_i->sentry_lock); 5388 } 5389 5390 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5391 { 5392 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5393 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5394 struct f2fs_sm_info *sm_info; 5395 int err; 5396 5397 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5398 if (!sm_info) 5399 return -ENOMEM; 5400 5401 /* init sm info */ 5402 sbi->sm_info = sm_info; 5403 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5404 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5405 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5406 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5407 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5408 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5409 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5410 sm_info->rec_prefree_segments = sm_info->main_segments * 5411 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5412 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5413 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5414 5415 if (!f2fs_lfs_mode(sbi)) 5416 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC); 5417 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5418 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5419 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi); 5420 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5421 sm_info->min_ssr_sections = reserved_sections(sbi); 5422 5423 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5424 5425 init_f2fs_rwsem(&sm_info->curseg_lock); 5426 5427 err = f2fs_create_flush_cmd_control(sbi); 5428 if (err) 5429 return err; 5430 5431 err = create_discard_cmd_control(sbi); 5432 if (err) 5433 return err; 5434 5435 err = build_sit_info(sbi); 5436 if (err) 5437 return err; 5438 err = build_free_segmap(sbi); 5439 if (err) 5440 return err; 5441 err = build_curseg(sbi); 5442 if (err) 5443 return err; 5444 5445 /* reinit free segmap based on SIT */ 5446 err = build_sit_entries(sbi); 5447 if (err) 5448 return err; 5449 5450 init_free_segmap(sbi); 5451 err = build_dirty_segmap(sbi); 5452 if (err) 5453 return err; 5454 5455 err = sanity_check_curseg(sbi); 5456 if (err) 5457 return err; 5458 5459 init_min_max_mtime(sbi); 5460 return 0; 5461 } 5462 5463 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5464 enum dirty_type dirty_type) 5465 { 5466 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5467 5468 mutex_lock(&dirty_i->seglist_lock); 5469 kvfree(dirty_i->dirty_segmap[dirty_type]); 5470 dirty_i->nr_dirty[dirty_type] = 0; 5471 mutex_unlock(&dirty_i->seglist_lock); 5472 } 5473 5474 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5475 { 5476 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5477 5478 kvfree(dirty_i->pinned_secmap); 5479 kvfree(dirty_i->victim_secmap); 5480 } 5481 5482 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5483 { 5484 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5485 int i; 5486 5487 if (!dirty_i) 5488 return; 5489 5490 /* discard pre-free/dirty segments list */ 5491 for (i = 0; i < NR_DIRTY_TYPE; i++) 5492 discard_dirty_segmap(sbi, i); 5493 5494 if (__is_large_section(sbi)) { 5495 mutex_lock(&dirty_i->seglist_lock); 5496 kvfree(dirty_i->dirty_secmap); 5497 mutex_unlock(&dirty_i->seglist_lock); 5498 } 5499 5500 destroy_victim_secmap(sbi); 5501 SM_I(sbi)->dirty_info = NULL; 5502 kfree(dirty_i); 5503 } 5504 5505 static void destroy_curseg(struct f2fs_sb_info *sbi) 5506 { 5507 struct curseg_info *array = SM_I(sbi)->curseg_array; 5508 int i; 5509 5510 if (!array) 5511 return; 5512 SM_I(sbi)->curseg_array = NULL; 5513 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5514 kfree(array[i].sum_blk); 5515 kfree(array[i].journal); 5516 } 5517 kfree(array); 5518 } 5519 5520 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5521 { 5522 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5523 5524 if (!free_i) 5525 return; 5526 SM_I(sbi)->free_info = NULL; 5527 kvfree(free_i->free_segmap); 5528 kvfree(free_i->free_secmap); 5529 kfree(free_i); 5530 } 5531 5532 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5533 { 5534 struct sit_info *sit_i = SIT_I(sbi); 5535 5536 if (!sit_i) 5537 return; 5538 5539 if (sit_i->sentries) 5540 kvfree(sit_i->bitmap); 5541 kfree(sit_i->tmp_map); 5542 5543 kvfree(sit_i->sentries); 5544 kvfree(sit_i->sec_entries); 5545 kvfree(sit_i->dirty_sentries_bitmap); 5546 5547 SM_I(sbi)->sit_info = NULL; 5548 kvfree(sit_i->sit_bitmap); 5549 #ifdef CONFIG_F2FS_CHECK_FS 5550 kvfree(sit_i->sit_bitmap_mir); 5551 kvfree(sit_i->invalid_segmap); 5552 #endif 5553 kfree(sit_i); 5554 } 5555 5556 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5557 { 5558 struct f2fs_sm_info *sm_info = SM_I(sbi); 5559 5560 if (!sm_info) 5561 return; 5562 f2fs_destroy_flush_cmd_control(sbi, true); 5563 destroy_discard_cmd_control(sbi); 5564 destroy_dirty_segmap(sbi); 5565 destroy_curseg(sbi); 5566 destroy_free_segmap(sbi); 5567 destroy_sit_info(sbi); 5568 sbi->sm_info = NULL; 5569 kfree(sm_info); 5570 } 5571 5572 int __init f2fs_create_segment_manager_caches(void) 5573 { 5574 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5575 sizeof(struct discard_entry)); 5576 if (!discard_entry_slab) 5577 goto fail; 5578 5579 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5580 sizeof(struct discard_cmd)); 5581 if (!discard_cmd_slab) 5582 goto destroy_discard_entry; 5583 5584 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5585 sizeof(struct sit_entry_set)); 5586 if (!sit_entry_set_slab) 5587 goto destroy_discard_cmd; 5588 5589 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5590 sizeof(struct revoke_entry)); 5591 if (!revoke_entry_slab) 5592 goto destroy_sit_entry_set; 5593 return 0; 5594 5595 destroy_sit_entry_set: 5596 kmem_cache_destroy(sit_entry_set_slab); 5597 destroy_discard_cmd: 5598 kmem_cache_destroy(discard_cmd_slab); 5599 destroy_discard_entry: 5600 kmem_cache_destroy(discard_entry_slab); 5601 fail: 5602 return -ENOMEM; 5603 } 5604 5605 void f2fs_destroy_segment_manager_caches(void) 5606 { 5607 kmem_cache_destroy(sit_entry_set_slab); 5608 kmem_cache_destroy(discard_cmd_slab); 5609 kmem_cache_destroy(discard_entry_slab); 5610 kmem_cache_destroy(revoke_entry_slab); 5611 } 5612