1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 192 if (!f2fs_is_atomic_file(inode)) 193 return; 194 195 if (clean) 196 truncate_inode_pages_final(inode->i_mapping); 197 198 release_atomic_write_cnt(inode); 199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED); 200 clear_inode_flag(inode, FI_ATOMIC_REPLACE); 201 clear_inode_flag(inode, FI_ATOMIC_FILE); 202 stat_dec_atomic_inode(inode); 203 204 F2FS_I(inode)->atomic_write_task = NULL; 205 206 if (clean) { 207 f2fs_i_size_write(inode, fi->original_i_size); 208 fi->original_i_size = 0; 209 } 210 /* avoid stale dirty inode during eviction */ 211 sync_inode_metadata(inode, 0); 212 } 213 214 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 215 block_t new_addr, block_t *old_addr, bool recover) 216 { 217 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 218 struct dnode_of_data dn; 219 struct node_info ni; 220 int err; 221 222 retry: 223 set_new_dnode(&dn, inode, NULL, NULL, 0); 224 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 225 if (err) { 226 if (err == -ENOMEM) { 227 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 228 goto retry; 229 } 230 return err; 231 } 232 233 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 234 if (err) { 235 f2fs_put_dnode(&dn); 236 return err; 237 } 238 239 if (recover) { 240 /* dn.data_blkaddr is always valid */ 241 if (!__is_valid_data_blkaddr(new_addr)) { 242 if (new_addr == NULL_ADDR) 243 dec_valid_block_count(sbi, inode, 1); 244 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 245 f2fs_update_data_blkaddr(&dn, new_addr); 246 } else { 247 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 248 new_addr, ni.version, true, true); 249 } 250 } else { 251 blkcnt_t count = 1; 252 253 err = inc_valid_block_count(sbi, inode, &count, true); 254 if (err) { 255 f2fs_put_dnode(&dn); 256 return err; 257 } 258 259 *old_addr = dn.data_blkaddr; 260 f2fs_truncate_data_blocks_range(&dn, 1); 261 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 262 263 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 264 ni.version, true, false); 265 } 266 267 f2fs_put_dnode(&dn); 268 269 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode, 270 index, old_addr ? *old_addr : 0, new_addr, recover); 271 return 0; 272 } 273 274 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 275 bool revoke) 276 { 277 struct revoke_entry *cur, *tmp; 278 pgoff_t start_index = 0; 279 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); 280 281 list_for_each_entry_safe(cur, tmp, head, list) { 282 if (revoke) { 283 __replace_atomic_write_block(inode, cur->index, 284 cur->old_addr, NULL, true); 285 } else if (truncate) { 286 f2fs_truncate_hole(inode, start_index, cur->index); 287 start_index = cur->index + 1; 288 } 289 290 list_del(&cur->list); 291 kmem_cache_free(revoke_entry_slab, cur); 292 } 293 294 if (!revoke && truncate) 295 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false); 296 } 297 298 static int __f2fs_commit_atomic_write(struct inode *inode) 299 { 300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 301 struct f2fs_inode_info *fi = F2FS_I(inode); 302 struct inode *cow_inode = fi->cow_inode; 303 struct revoke_entry *new; 304 struct list_head revoke_list; 305 block_t blkaddr; 306 struct dnode_of_data dn; 307 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 308 pgoff_t off = 0, blen, index; 309 int ret = 0, i; 310 311 INIT_LIST_HEAD(&revoke_list); 312 313 while (len) { 314 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 315 316 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 317 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 318 if (ret && ret != -ENOENT) { 319 goto out; 320 } else if (ret == -ENOENT) { 321 ret = 0; 322 if (dn.max_level == 0) 323 goto out; 324 goto next; 325 } 326 327 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 328 len); 329 index = off; 330 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 331 blkaddr = f2fs_data_blkaddr(&dn); 332 333 if (!__is_valid_data_blkaddr(blkaddr)) { 334 continue; 335 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 336 DATA_GENERIC_ENHANCE)) { 337 f2fs_put_dnode(&dn); 338 ret = -EFSCORRUPTED; 339 goto out; 340 } 341 342 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 343 true, NULL); 344 345 ret = __replace_atomic_write_block(inode, index, blkaddr, 346 &new->old_addr, false); 347 if (ret) { 348 f2fs_put_dnode(&dn); 349 kmem_cache_free(revoke_entry_slab, new); 350 goto out; 351 } 352 353 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 354 new->index = index; 355 list_add_tail(&new->list, &revoke_list); 356 } 357 f2fs_put_dnode(&dn); 358 next: 359 off += blen; 360 len -= blen; 361 } 362 363 out: 364 if (ret) { 365 sbi->revoked_atomic_block += fi->atomic_write_cnt; 366 } else { 367 sbi->committed_atomic_block += fi->atomic_write_cnt; 368 set_inode_flag(inode, FI_ATOMIC_COMMITTED); 369 } 370 371 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 372 373 return ret; 374 } 375 376 int f2fs_commit_atomic_write(struct inode *inode) 377 { 378 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 379 struct f2fs_inode_info *fi = F2FS_I(inode); 380 int err; 381 382 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 383 if (err) 384 return err; 385 386 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 387 f2fs_lock_op(sbi); 388 389 err = __f2fs_commit_atomic_write(inode); 390 391 f2fs_unlock_op(sbi); 392 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 393 394 return err; 395 } 396 397 /* 398 * This function balances dirty node and dentry pages. 399 * In addition, it controls garbage collection. 400 */ 401 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 402 { 403 if (f2fs_cp_error(sbi)) 404 return; 405 406 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 407 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); 408 409 /* balance_fs_bg is able to be pending */ 410 if (need && excess_cached_nats(sbi)) 411 f2fs_balance_fs_bg(sbi, false); 412 413 if (!f2fs_is_checkpoint_ready(sbi)) 414 return; 415 416 /* 417 * We should do GC or end up with checkpoint, if there are so many dirty 418 * dir/node pages without enough free segments. 419 */ 420 if (has_enough_free_secs(sbi, 0, 0)) 421 return; 422 423 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 424 sbi->gc_thread->f2fs_gc_task) { 425 DEFINE_WAIT(wait); 426 427 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 428 TASK_UNINTERRUPTIBLE); 429 wake_up(&sbi->gc_thread->gc_wait_queue_head); 430 io_schedule(); 431 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 432 } else { 433 struct f2fs_gc_control gc_control = { 434 .victim_segno = NULL_SEGNO, 435 .init_gc_type = BG_GC, 436 .no_bg_gc = true, 437 .should_migrate_blocks = false, 438 .err_gc_skipped = false, 439 .nr_free_secs = 1 }; 440 f2fs_down_write(&sbi->gc_lock); 441 stat_inc_gc_call_count(sbi, FOREGROUND); 442 f2fs_gc(sbi, &gc_control); 443 } 444 } 445 446 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 447 { 448 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 449 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 450 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 451 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 452 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 453 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 454 unsigned int threshold = 455 SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD)); 456 unsigned int global_threshold = threshold * 3 / 2; 457 458 if (dents >= threshold || qdata >= threshold || 459 nodes >= threshold || meta >= threshold || 460 imeta >= threshold) 461 return true; 462 return dents + qdata + nodes + meta + imeta > global_threshold; 463 } 464 465 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 466 { 467 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 468 return; 469 470 /* try to shrink extent cache when there is no enough memory */ 471 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) 472 f2fs_shrink_read_extent_tree(sbi, 473 READ_EXTENT_CACHE_SHRINK_NUMBER); 474 475 /* try to shrink age extent cache when there is no enough memory */ 476 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) 477 f2fs_shrink_age_extent_tree(sbi, 478 AGE_EXTENT_CACHE_SHRINK_NUMBER); 479 480 /* check the # of cached NAT entries */ 481 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 482 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 483 484 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 485 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 486 else 487 f2fs_build_free_nids(sbi, false, false); 488 489 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 490 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 491 goto do_sync; 492 493 /* there is background inflight IO or foreground operation recently */ 494 if (is_inflight_io(sbi, REQ_TIME) || 495 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 496 return; 497 498 /* exceed periodical checkpoint timeout threshold */ 499 if (f2fs_time_over(sbi, CP_TIME)) 500 goto do_sync; 501 502 /* checkpoint is the only way to shrink partial cached entries */ 503 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 504 f2fs_available_free_memory(sbi, INO_ENTRIES)) 505 return; 506 507 do_sync: 508 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 509 struct blk_plug plug; 510 511 mutex_lock(&sbi->flush_lock); 512 513 blk_start_plug(&plug); 514 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); 515 blk_finish_plug(&plug); 516 517 mutex_unlock(&sbi->flush_lock); 518 } 519 stat_inc_cp_call_count(sbi, BACKGROUND); 520 f2fs_sync_fs(sbi->sb, 1); 521 } 522 523 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 524 struct block_device *bdev) 525 { 526 int ret = blkdev_issue_flush(bdev); 527 528 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 529 test_opt(sbi, FLUSH_MERGE), ret); 530 if (!ret) 531 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0); 532 return ret; 533 } 534 535 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 536 { 537 int ret = 0; 538 int i; 539 540 if (!f2fs_is_multi_device(sbi)) 541 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 542 543 for (i = 0; i < sbi->s_ndevs; i++) { 544 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 545 continue; 546 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 547 if (ret) 548 break; 549 } 550 return ret; 551 } 552 553 static int issue_flush_thread(void *data) 554 { 555 struct f2fs_sb_info *sbi = data; 556 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 557 wait_queue_head_t *q = &fcc->flush_wait_queue; 558 repeat: 559 if (kthread_should_stop()) 560 return 0; 561 562 if (!llist_empty(&fcc->issue_list)) { 563 struct flush_cmd *cmd, *next; 564 int ret; 565 566 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 567 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 568 569 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 570 571 ret = submit_flush_wait(sbi, cmd->ino); 572 atomic_inc(&fcc->issued_flush); 573 574 llist_for_each_entry_safe(cmd, next, 575 fcc->dispatch_list, llnode) { 576 cmd->ret = ret; 577 complete(&cmd->wait); 578 } 579 fcc->dispatch_list = NULL; 580 } 581 582 wait_event_interruptible(*q, 583 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 584 goto repeat; 585 } 586 587 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 588 { 589 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 590 struct flush_cmd cmd; 591 int ret; 592 593 if (test_opt(sbi, NOBARRIER)) 594 return 0; 595 596 if (!test_opt(sbi, FLUSH_MERGE)) { 597 atomic_inc(&fcc->queued_flush); 598 ret = submit_flush_wait(sbi, ino); 599 atomic_dec(&fcc->queued_flush); 600 atomic_inc(&fcc->issued_flush); 601 return ret; 602 } 603 604 if (atomic_inc_return(&fcc->queued_flush) == 1 || 605 f2fs_is_multi_device(sbi)) { 606 ret = submit_flush_wait(sbi, ino); 607 atomic_dec(&fcc->queued_flush); 608 609 atomic_inc(&fcc->issued_flush); 610 return ret; 611 } 612 613 cmd.ino = ino; 614 init_completion(&cmd.wait); 615 616 llist_add(&cmd.llnode, &fcc->issue_list); 617 618 /* 619 * update issue_list before we wake up issue_flush thread, this 620 * smp_mb() pairs with another barrier in ___wait_event(), see 621 * more details in comments of waitqueue_active(). 622 */ 623 smp_mb(); 624 625 if (waitqueue_active(&fcc->flush_wait_queue)) 626 wake_up(&fcc->flush_wait_queue); 627 628 if (fcc->f2fs_issue_flush) { 629 wait_for_completion(&cmd.wait); 630 atomic_dec(&fcc->queued_flush); 631 } else { 632 struct llist_node *list; 633 634 list = llist_del_all(&fcc->issue_list); 635 if (!list) { 636 wait_for_completion(&cmd.wait); 637 atomic_dec(&fcc->queued_flush); 638 } else { 639 struct flush_cmd *tmp, *next; 640 641 ret = submit_flush_wait(sbi, ino); 642 643 llist_for_each_entry_safe(tmp, next, list, llnode) { 644 if (tmp == &cmd) { 645 cmd.ret = ret; 646 atomic_dec(&fcc->queued_flush); 647 continue; 648 } 649 tmp->ret = ret; 650 complete(&tmp->wait); 651 } 652 } 653 } 654 655 return cmd.ret; 656 } 657 658 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 659 { 660 dev_t dev = sbi->sb->s_bdev->bd_dev; 661 struct flush_cmd_control *fcc; 662 663 if (SM_I(sbi)->fcc_info) { 664 fcc = SM_I(sbi)->fcc_info; 665 if (fcc->f2fs_issue_flush) 666 return 0; 667 goto init_thread; 668 } 669 670 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 671 if (!fcc) 672 return -ENOMEM; 673 atomic_set(&fcc->issued_flush, 0); 674 atomic_set(&fcc->queued_flush, 0); 675 init_waitqueue_head(&fcc->flush_wait_queue); 676 init_llist_head(&fcc->issue_list); 677 SM_I(sbi)->fcc_info = fcc; 678 if (!test_opt(sbi, FLUSH_MERGE)) 679 return 0; 680 681 init_thread: 682 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 683 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 684 if (IS_ERR(fcc->f2fs_issue_flush)) { 685 int err = PTR_ERR(fcc->f2fs_issue_flush); 686 687 fcc->f2fs_issue_flush = NULL; 688 return err; 689 } 690 691 return 0; 692 } 693 694 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 695 { 696 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 697 698 if (fcc && fcc->f2fs_issue_flush) { 699 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 700 701 fcc->f2fs_issue_flush = NULL; 702 kthread_stop(flush_thread); 703 } 704 if (free) { 705 kfree(fcc); 706 SM_I(sbi)->fcc_info = NULL; 707 } 708 } 709 710 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 711 { 712 int ret = 0, i; 713 714 if (!f2fs_is_multi_device(sbi)) 715 return 0; 716 717 if (test_opt(sbi, NOBARRIER)) 718 return 0; 719 720 for (i = 1; i < sbi->s_ndevs; i++) { 721 int count = DEFAULT_RETRY_IO_COUNT; 722 723 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 724 continue; 725 726 do { 727 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 728 if (ret) 729 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 730 } while (ret && --count); 731 732 if (ret) { 733 f2fs_stop_checkpoint(sbi, false, 734 STOP_CP_REASON_FLUSH_FAIL); 735 break; 736 } 737 738 spin_lock(&sbi->dev_lock); 739 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 740 spin_unlock(&sbi->dev_lock); 741 } 742 743 return ret; 744 } 745 746 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 747 enum dirty_type dirty_type) 748 { 749 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 750 751 /* need not be added */ 752 if (IS_CURSEG(sbi, segno)) 753 return; 754 755 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 756 dirty_i->nr_dirty[dirty_type]++; 757 758 if (dirty_type == DIRTY) { 759 struct seg_entry *sentry = get_seg_entry(sbi, segno); 760 enum dirty_type t = sentry->type; 761 762 if (unlikely(t >= DIRTY)) { 763 f2fs_bug_on(sbi, 1); 764 return; 765 } 766 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 767 dirty_i->nr_dirty[t]++; 768 769 if (__is_large_section(sbi)) { 770 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 771 block_t valid_blocks = 772 get_valid_blocks(sbi, segno, true); 773 774 f2fs_bug_on(sbi, unlikely(!valid_blocks || 775 valid_blocks == CAP_BLKS_PER_SEC(sbi))); 776 777 if (!IS_CURSEC(sbi, secno)) 778 set_bit(secno, dirty_i->dirty_secmap); 779 } 780 } 781 } 782 783 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 784 enum dirty_type dirty_type) 785 { 786 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 787 block_t valid_blocks; 788 789 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 790 dirty_i->nr_dirty[dirty_type]--; 791 792 if (dirty_type == DIRTY) { 793 struct seg_entry *sentry = get_seg_entry(sbi, segno); 794 enum dirty_type t = sentry->type; 795 796 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 797 dirty_i->nr_dirty[t]--; 798 799 valid_blocks = get_valid_blocks(sbi, segno, true); 800 if (valid_blocks == 0) { 801 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 802 dirty_i->victim_secmap); 803 #ifdef CONFIG_F2FS_CHECK_FS 804 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 805 #endif 806 } 807 if (__is_large_section(sbi)) { 808 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 809 810 if (!valid_blocks || 811 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 812 clear_bit(secno, dirty_i->dirty_secmap); 813 return; 814 } 815 816 if (!IS_CURSEC(sbi, secno)) 817 set_bit(secno, dirty_i->dirty_secmap); 818 } 819 } 820 } 821 822 /* 823 * Should not occur error such as -ENOMEM. 824 * Adding dirty entry into seglist is not critical operation. 825 * If a given segment is one of current working segments, it won't be added. 826 */ 827 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 828 { 829 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 830 unsigned short valid_blocks, ckpt_valid_blocks; 831 unsigned int usable_blocks; 832 833 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 834 return; 835 836 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 837 mutex_lock(&dirty_i->seglist_lock); 838 839 valid_blocks = get_valid_blocks(sbi, segno, false); 840 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 841 842 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 843 ckpt_valid_blocks == usable_blocks)) { 844 __locate_dirty_segment(sbi, segno, PRE); 845 __remove_dirty_segment(sbi, segno, DIRTY); 846 } else if (valid_blocks < usable_blocks) { 847 __locate_dirty_segment(sbi, segno, DIRTY); 848 } else { 849 /* Recovery routine with SSR needs this */ 850 __remove_dirty_segment(sbi, segno, DIRTY); 851 } 852 853 mutex_unlock(&dirty_i->seglist_lock); 854 } 855 856 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 857 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 858 { 859 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 860 unsigned int segno; 861 862 mutex_lock(&dirty_i->seglist_lock); 863 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 864 if (get_valid_blocks(sbi, segno, false)) 865 continue; 866 if (IS_CURSEG(sbi, segno)) 867 continue; 868 __locate_dirty_segment(sbi, segno, PRE); 869 __remove_dirty_segment(sbi, segno, DIRTY); 870 } 871 mutex_unlock(&dirty_i->seglist_lock); 872 } 873 874 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 875 { 876 int ovp_hole_segs = 877 (overprovision_segments(sbi) - reserved_segments(sbi)); 878 block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs); 879 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 880 block_t holes[2] = {0, 0}; /* DATA and NODE */ 881 block_t unusable; 882 struct seg_entry *se; 883 unsigned int segno; 884 885 mutex_lock(&dirty_i->seglist_lock); 886 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 887 se = get_seg_entry(sbi, segno); 888 if (IS_NODESEG(se->type)) 889 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 890 se->valid_blocks; 891 else 892 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 893 se->valid_blocks; 894 } 895 mutex_unlock(&dirty_i->seglist_lock); 896 897 unusable = max(holes[DATA], holes[NODE]); 898 if (unusable > ovp_holes) 899 return unusable - ovp_holes; 900 return 0; 901 } 902 903 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 904 { 905 int ovp_hole_segs = 906 (overprovision_segments(sbi) - reserved_segments(sbi)); 907 908 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 909 return 0; 910 if (unusable > F2FS_OPTION(sbi).unusable_cap) 911 return -EAGAIN; 912 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 913 dirty_segments(sbi) > ovp_hole_segs) 914 return -EAGAIN; 915 if (has_not_enough_free_secs(sbi, 0, 0)) 916 return -EAGAIN; 917 return 0; 918 } 919 920 /* This is only used by SBI_CP_DISABLED */ 921 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 922 { 923 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 924 unsigned int segno = 0; 925 926 mutex_lock(&dirty_i->seglist_lock); 927 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 928 if (get_valid_blocks(sbi, segno, false)) 929 continue; 930 if (get_ckpt_valid_blocks(sbi, segno, false)) 931 continue; 932 mutex_unlock(&dirty_i->seglist_lock); 933 return segno; 934 } 935 mutex_unlock(&dirty_i->seglist_lock); 936 return NULL_SEGNO; 937 } 938 939 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 940 struct block_device *bdev, block_t lstart, 941 block_t start, block_t len) 942 { 943 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 944 struct list_head *pend_list; 945 struct discard_cmd *dc; 946 947 f2fs_bug_on(sbi, !len); 948 949 pend_list = &dcc->pend_list[plist_idx(len)]; 950 951 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 952 INIT_LIST_HEAD(&dc->list); 953 dc->bdev = bdev; 954 dc->di.lstart = lstart; 955 dc->di.start = start; 956 dc->di.len = len; 957 dc->ref = 0; 958 dc->state = D_PREP; 959 dc->queued = 0; 960 dc->error = 0; 961 init_completion(&dc->wait); 962 list_add_tail(&dc->list, pend_list); 963 spin_lock_init(&dc->lock); 964 dc->bio_ref = 0; 965 atomic_inc(&dcc->discard_cmd_cnt); 966 dcc->undiscard_blks += len; 967 968 return dc; 969 } 970 971 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi) 972 { 973 #ifdef CONFIG_F2FS_CHECK_FS 974 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 975 struct rb_node *cur = rb_first_cached(&dcc->root), *next; 976 struct discard_cmd *cur_dc, *next_dc; 977 978 while (cur) { 979 next = rb_next(cur); 980 if (!next) 981 return true; 982 983 cur_dc = rb_entry(cur, struct discard_cmd, rb_node); 984 next_dc = rb_entry(next, struct discard_cmd, rb_node); 985 986 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) { 987 f2fs_info(sbi, "broken discard_rbtree, " 988 "cur(%u, %u) next(%u, %u)", 989 cur_dc->di.lstart, cur_dc->di.len, 990 next_dc->di.lstart, next_dc->di.len); 991 return false; 992 } 993 cur = next; 994 } 995 #endif 996 return true; 997 } 998 999 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi, 1000 block_t blkaddr) 1001 { 1002 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1003 struct rb_node *node = dcc->root.rb_root.rb_node; 1004 struct discard_cmd *dc; 1005 1006 while (node) { 1007 dc = rb_entry(node, struct discard_cmd, rb_node); 1008 1009 if (blkaddr < dc->di.lstart) 1010 node = node->rb_left; 1011 else if (blkaddr >= dc->di.lstart + dc->di.len) 1012 node = node->rb_right; 1013 else 1014 return dc; 1015 } 1016 return NULL; 1017 } 1018 1019 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root, 1020 block_t blkaddr, 1021 struct discard_cmd **prev_entry, 1022 struct discard_cmd **next_entry, 1023 struct rb_node ***insert_p, 1024 struct rb_node **insert_parent) 1025 { 1026 struct rb_node **pnode = &root->rb_root.rb_node; 1027 struct rb_node *parent = NULL, *tmp_node; 1028 struct discard_cmd *dc; 1029 1030 *insert_p = NULL; 1031 *insert_parent = NULL; 1032 *prev_entry = NULL; 1033 *next_entry = NULL; 1034 1035 if (RB_EMPTY_ROOT(&root->rb_root)) 1036 return NULL; 1037 1038 while (*pnode) { 1039 parent = *pnode; 1040 dc = rb_entry(*pnode, struct discard_cmd, rb_node); 1041 1042 if (blkaddr < dc->di.lstart) 1043 pnode = &(*pnode)->rb_left; 1044 else if (blkaddr >= dc->di.lstart + dc->di.len) 1045 pnode = &(*pnode)->rb_right; 1046 else 1047 goto lookup_neighbors; 1048 } 1049 1050 *insert_p = pnode; 1051 *insert_parent = parent; 1052 1053 dc = rb_entry(parent, struct discard_cmd, rb_node); 1054 tmp_node = parent; 1055 if (parent && blkaddr > dc->di.lstart) 1056 tmp_node = rb_next(parent); 1057 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1058 1059 tmp_node = parent; 1060 if (parent && blkaddr < dc->di.lstart) 1061 tmp_node = rb_prev(parent); 1062 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1063 return NULL; 1064 1065 lookup_neighbors: 1066 /* lookup prev node for merging backward later */ 1067 tmp_node = rb_prev(&dc->rb_node); 1068 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1069 1070 /* lookup next node for merging frontward later */ 1071 tmp_node = rb_next(&dc->rb_node); 1072 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1073 return dc; 1074 } 1075 1076 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1077 struct discard_cmd *dc) 1078 { 1079 if (dc->state == D_DONE) 1080 atomic_sub(dc->queued, &dcc->queued_discard); 1081 1082 list_del(&dc->list); 1083 rb_erase_cached(&dc->rb_node, &dcc->root); 1084 dcc->undiscard_blks -= dc->di.len; 1085 1086 kmem_cache_free(discard_cmd_slab, dc); 1087 1088 atomic_dec(&dcc->discard_cmd_cnt); 1089 } 1090 1091 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1092 struct discard_cmd *dc) 1093 { 1094 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1095 unsigned long flags; 1096 1097 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len); 1098 1099 spin_lock_irqsave(&dc->lock, flags); 1100 if (dc->bio_ref) { 1101 spin_unlock_irqrestore(&dc->lock, flags); 1102 return; 1103 } 1104 spin_unlock_irqrestore(&dc->lock, flags); 1105 1106 f2fs_bug_on(sbi, dc->ref); 1107 1108 if (dc->error == -EOPNOTSUPP) 1109 dc->error = 0; 1110 1111 if (dc->error) 1112 printk_ratelimited( 1113 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1114 KERN_INFO, sbi->sb->s_id, 1115 dc->di.lstart, dc->di.start, dc->di.len, dc->error); 1116 __detach_discard_cmd(dcc, dc); 1117 } 1118 1119 static void f2fs_submit_discard_endio(struct bio *bio) 1120 { 1121 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1122 unsigned long flags; 1123 1124 spin_lock_irqsave(&dc->lock, flags); 1125 if (!dc->error) 1126 dc->error = blk_status_to_errno(bio->bi_status); 1127 dc->bio_ref--; 1128 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1129 dc->state = D_DONE; 1130 complete_all(&dc->wait); 1131 } 1132 spin_unlock_irqrestore(&dc->lock, flags); 1133 bio_put(bio); 1134 } 1135 1136 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1137 block_t start, block_t end) 1138 { 1139 #ifdef CONFIG_F2FS_CHECK_FS 1140 struct seg_entry *sentry; 1141 unsigned int segno; 1142 block_t blk = start; 1143 unsigned long offset, size, *map; 1144 1145 while (blk < end) { 1146 segno = GET_SEGNO(sbi, blk); 1147 sentry = get_seg_entry(sbi, segno); 1148 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1149 1150 if (end < START_BLOCK(sbi, segno + 1)) 1151 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1152 else 1153 size = BLKS_PER_SEG(sbi); 1154 map = (unsigned long *)(sentry->cur_valid_map); 1155 offset = __find_rev_next_bit(map, size, offset); 1156 f2fs_bug_on(sbi, offset != size); 1157 blk = START_BLOCK(sbi, segno + 1); 1158 } 1159 #endif 1160 } 1161 1162 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1163 struct discard_policy *dpolicy, 1164 int discard_type, unsigned int granularity) 1165 { 1166 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1167 1168 /* common policy */ 1169 dpolicy->type = discard_type; 1170 dpolicy->sync = true; 1171 dpolicy->ordered = false; 1172 dpolicy->granularity = granularity; 1173 1174 dpolicy->max_requests = dcc->max_discard_request; 1175 dpolicy->io_aware_gran = dcc->discard_io_aware_gran; 1176 dpolicy->timeout = false; 1177 1178 if (discard_type == DPOLICY_BG) { 1179 dpolicy->min_interval = dcc->min_discard_issue_time; 1180 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1181 dpolicy->max_interval = dcc->max_discard_issue_time; 1182 if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE) 1183 dpolicy->io_aware = true; 1184 else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE) 1185 dpolicy->io_aware = false; 1186 dpolicy->sync = false; 1187 dpolicy->ordered = true; 1188 if (utilization(sbi) > dcc->discard_urgent_util) { 1189 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1190 if (atomic_read(&dcc->discard_cmd_cnt)) 1191 dpolicy->max_interval = 1192 dcc->min_discard_issue_time; 1193 } 1194 } else if (discard_type == DPOLICY_FORCE) { 1195 dpolicy->min_interval = dcc->min_discard_issue_time; 1196 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1197 dpolicy->max_interval = dcc->max_discard_issue_time; 1198 dpolicy->io_aware = false; 1199 } else if (discard_type == DPOLICY_FSTRIM) { 1200 dpolicy->io_aware = false; 1201 } else if (discard_type == DPOLICY_UMOUNT) { 1202 dpolicy->io_aware = false; 1203 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1204 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1205 dpolicy->timeout = true; 1206 } 1207 } 1208 1209 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1210 struct block_device *bdev, block_t lstart, 1211 block_t start, block_t len); 1212 1213 #ifdef CONFIG_BLK_DEV_ZONED 1214 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi, 1215 struct discard_cmd *dc, blk_opf_t flag, 1216 struct list_head *wait_list, 1217 unsigned int *issued) 1218 { 1219 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1220 struct block_device *bdev = dc->bdev; 1221 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS); 1222 unsigned long flags; 1223 1224 trace_f2fs_issue_reset_zone(bdev, dc->di.start); 1225 1226 spin_lock_irqsave(&dc->lock, flags); 1227 dc->state = D_SUBMIT; 1228 dc->bio_ref++; 1229 spin_unlock_irqrestore(&dc->lock, flags); 1230 1231 if (issued) 1232 (*issued)++; 1233 1234 atomic_inc(&dcc->queued_discard); 1235 dc->queued++; 1236 list_move_tail(&dc->list, wait_list); 1237 1238 /* sanity check on discard range */ 1239 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len); 1240 1241 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start); 1242 bio->bi_private = dc; 1243 bio->bi_end_io = f2fs_submit_discard_endio; 1244 submit_bio(bio); 1245 1246 atomic_inc(&dcc->issued_discard); 1247 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE); 1248 } 1249 #endif 1250 1251 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1252 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1253 struct discard_policy *dpolicy, 1254 struct discard_cmd *dc, int *issued) 1255 { 1256 struct block_device *bdev = dc->bdev; 1257 unsigned int max_discard_blocks = 1258 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1259 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1260 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1261 &(dcc->fstrim_list) : &(dcc->wait_list); 1262 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1263 block_t lstart, start, len, total_len; 1264 int err = 0; 1265 1266 if (dc->state != D_PREP) 1267 return 0; 1268 1269 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1270 return 0; 1271 1272 #ifdef CONFIG_BLK_DEV_ZONED 1273 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) { 1274 int devi = f2fs_bdev_index(sbi, bdev); 1275 1276 if (devi < 0) 1277 return -EINVAL; 1278 1279 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1280 __submit_zone_reset_cmd(sbi, dc, flag, 1281 wait_list, issued); 1282 return 0; 1283 } 1284 } 1285 #endif 1286 1287 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len); 1288 1289 lstart = dc->di.lstart; 1290 start = dc->di.start; 1291 len = dc->di.len; 1292 total_len = len; 1293 1294 dc->di.len = 0; 1295 1296 while (total_len && *issued < dpolicy->max_requests && !err) { 1297 struct bio *bio = NULL; 1298 unsigned long flags; 1299 bool last = true; 1300 1301 if (len > max_discard_blocks) { 1302 len = max_discard_blocks; 1303 last = false; 1304 } 1305 1306 (*issued)++; 1307 if (*issued == dpolicy->max_requests) 1308 last = true; 1309 1310 dc->di.len += len; 1311 1312 if (time_to_inject(sbi, FAULT_DISCARD)) { 1313 err = -EIO; 1314 } else { 1315 err = __blkdev_issue_discard(bdev, 1316 SECTOR_FROM_BLOCK(start), 1317 SECTOR_FROM_BLOCK(len), 1318 GFP_NOFS, &bio); 1319 } 1320 if (err) { 1321 spin_lock_irqsave(&dc->lock, flags); 1322 if (dc->state == D_PARTIAL) 1323 dc->state = D_SUBMIT; 1324 spin_unlock_irqrestore(&dc->lock, flags); 1325 1326 break; 1327 } 1328 1329 f2fs_bug_on(sbi, !bio); 1330 1331 /* 1332 * should keep before submission to avoid D_DONE 1333 * right away 1334 */ 1335 spin_lock_irqsave(&dc->lock, flags); 1336 if (last) 1337 dc->state = D_SUBMIT; 1338 else 1339 dc->state = D_PARTIAL; 1340 dc->bio_ref++; 1341 spin_unlock_irqrestore(&dc->lock, flags); 1342 1343 atomic_inc(&dcc->queued_discard); 1344 dc->queued++; 1345 list_move_tail(&dc->list, wait_list); 1346 1347 /* sanity check on discard range */ 1348 __check_sit_bitmap(sbi, lstart, lstart + len); 1349 1350 bio->bi_private = dc; 1351 bio->bi_end_io = f2fs_submit_discard_endio; 1352 bio->bi_opf |= flag; 1353 submit_bio(bio); 1354 1355 atomic_inc(&dcc->issued_discard); 1356 1357 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE); 1358 1359 lstart += len; 1360 start += len; 1361 total_len -= len; 1362 len = total_len; 1363 } 1364 1365 if (!err && len) { 1366 dcc->undiscard_blks -= len; 1367 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1368 } 1369 return err; 1370 } 1371 1372 static void __insert_discard_cmd(struct f2fs_sb_info *sbi, 1373 struct block_device *bdev, block_t lstart, 1374 block_t start, block_t len) 1375 { 1376 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1377 struct rb_node **p = &dcc->root.rb_root.rb_node; 1378 struct rb_node *parent = NULL; 1379 struct discard_cmd *dc; 1380 bool leftmost = true; 1381 1382 /* look up rb tree to find parent node */ 1383 while (*p) { 1384 parent = *p; 1385 dc = rb_entry(parent, struct discard_cmd, rb_node); 1386 1387 if (lstart < dc->di.lstart) { 1388 p = &(*p)->rb_left; 1389 } else if (lstart >= dc->di.lstart + dc->di.len) { 1390 p = &(*p)->rb_right; 1391 leftmost = false; 1392 } else { 1393 /* Let's skip to add, if exists */ 1394 return; 1395 } 1396 } 1397 1398 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1399 1400 rb_link_node(&dc->rb_node, parent, p); 1401 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1402 } 1403 1404 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1405 struct discard_cmd *dc) 1406 { 1407 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]); 1408 } 1409 1410 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1411 struct discard_cmd *dc, block_t blkaddr) 1412 { 1413 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1414 struct discard_info di = dc->di; 1415 bool modified = false; 1416 1417 if (dc->state == D_DONE || dc->di.len == 1) { 1418 __remove_discard_cmd(sbi, dc); 1419 return; 1420 } 1421 1422 dcc->undiscard_blks -= di.len; 1423 1424 if (blkaddr > di.lstart) { 1425 dc->di.len = blkaddr - dc->di.lstart; 1426 dcc->undiscard_blks += dc->di.len; 1427 __relocate_discard_cmd(dcc, dc); 1428 modified = true; 1429 } 1430 1431 if (blkaddr < di.lstart + di.len - 1) { 1432 if (modified) { 1433 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1, 1434 di.start + blkaddr + 1 - di.lstart, 1435 di.lstart + di.len - 1 - blkaddr); 1436 } else { 1437 dc->di.lstart++; 1438 dc->di.len--; 1439 dc->di.start++; 1440 dcc->undiscard_blks += dc->di.len; 1441 __relocate_discard_cmd(dcc, dc); 1442 } 1443 } 1444 } 1445 1446 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1447 struct block_device *bdev, block_t lstart, 1448 block_t start, block_t len) 1449 { 1450 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1451 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1452 struct discard_cmd *dc; 1453 struct discard_info di = {0}; 1454 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1455 unsigned int max_discard_blocks = 1456 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1457 block_t end = lstart + len; 1458 1459 dc = __lookup_discard_cmd_ret(&dcc->root, lstart, 1460 &prev_dc, &next_dc, &insert_p, &insert_parent); 1461 if (dc) 1462 prev_dc = dc; 1463 1464 if (!prev_dc) { 1465 di.lstart = lstart; 1466 di.len = next_dc ? next_dc->di.lstart - lstart : len; 1467 di.len = min(di.len, len); 1468 di.start = start; 1469 } 1470 1471 while (1) { 1472 struct rb_node *node; 1473 bool merged = false; 1474 struct discard_cmd *tdc = NULL; 1475 1476 if (prev_dc) { 1477 di.lstart = prev_dc->di.lstart + prev_dc->di.len; 1478 if (di.lstart < lstart) 1479 di.lstart = lstart; 1480 if (di.lstart >= end) 1481 break; 1482 1483 if (!next_dc || next_dc->di.lstart > end) 1484 di.len = end - di.lstart; 1485 else 1486 di.len = next_dc->di.lstart - di.lstart; 1487 di.start = start + di.lstart - lstart; 1488 } 1489 1490 if (!di.len) 1491 goto next; 1492 1493 if (prev_dc && prev_dc->state == D_PREP && 1494 prev_dc->bdev == bdev && 1495 __is_discard_back_mergeable(&di, &prev_dc->di, 1496 max_discard_blocks)) { 1497 prev_dc->di.len += di.len; 1498 dcc->undiscard_blks += di.len; 1499 __relocate_discard_cmd(dcc, prev_dc); 1500 di = prev_dc->di; 1501 tdc = prev_dc; 1502 merged = true; 1503 } 1504 1505 if (next_dc && next_dc->state == D_PREP && 1506 next_dc->bdev == bdev && 1507 __is_discard_front_mergeable(&di, &next_dc->di, 1508 max_discard_blocks)) { 1509 next_dc->di.lstart = di.lstart; 1510 next_dc->di.len += di.len; 1511 next_dc->di.start = di.start; 1512 dcc->undiscard_blks += di.len; 1513 __relocate_discard_cmd(dcc, next_dc); 1514 if (tdc) 1515 __remove_discard_cmd(sbi, tdc); 1516 merged = true; 1517 } 1518 1519 if (!merged) 1520 __insert_discard_cmd(sbi, bdev, 1521 di.lstart, di.start, di.len); 1522 next: 1523 prev_dc = next_dc; 1524 if (!prev_dc) 1525 break; 1526 1527 node = rb_next(&prev_dc->rb_node); 1528 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1529 } 1530 } 1531 1532 #ifdef CONFIG_BLK_DEV_ZONED 1533 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi, 1534 struct block_device *bdev, block_t blkstart, block_t lblkstart, 1535 block_t blklen) 1536 { 1537 trace_f2fs_queue_reset_zone(bdev, blkstart); 1538 1539 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1540 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen); 1541 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1542 } 1543 #endif 1544 1545 static void __queue_discard_cmd(struct f2fs_sb_info *sbi, 1546 struct block_device *bdev, block_t blkstart, block_t blklen) 1547 { 1548 block_t lblkstart = blkstart; 1549 1550 if (!f2fs_bdev_support_discard(bdev)) 1551 return; 1552 1553 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1554 1555 if (f2fs_is_multi_device(sbi)) { 1556 int devi = f2fs_target_device_index(sbi, blkstart); 1557 1558 blkstart -= FDEV(devi).start_blk; 1559 } 1560 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1561 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1562 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1563 } 1564 1565 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1566 struct discard_policy *dpolicy, int *issued) 1567 { 1568 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1569 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1570 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1571 struct discard_cmd *dc; 1572 struct blk_plug plug; 1573 bool io_interrupted = false; 1574 1575 mutex_lock(&dcc->cmd_lock); 1576 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos, 1577 &prev_dc, &next_dc, &insert_p, &insert_parent); 1578 if (!dc) 1579 dc = next_dc; 1580 1581 blk_start_plug(&plug); 1582 1583 while (dc) { 1584 struct rb_node *node; 1585 int err = 0; 1586 1587 if (dc->state != D_PREP) 1588 goto next; 1589 1590 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1591 io_interrupted = true; 1592 break; 1593 } 1594 1595 dcc->next_pos = dc->di.lstart + dc->di.len; 1596 err = __submit_discard_cmd(sbi, dpolicy, dc, issued); 1597 1598 if (*issued >= dpolicy->max_requests) 1599 break; 1600 next: 1601 node = rb_next(&dc->rb_node); 1602 if (err) 1603 __remove_discard_cmd(sbi, dc); 1604 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1605 } 1606 1607 blk_finish_plug(&plug); 1608 1609 if (!dc) 1610 dcc->next_pos = 0; 1611 1612 mutex_unlock(&dcc->cmd_lock); 1613 1614 if (!(*issued) && io_interrupted) 1615 *issued = -1; 1616 } 1617 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1618 struct discard_policy *dpolicy); 1619 1620 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1621 struct discard_policy *dpolicy) 1622 { 1623 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1624 struct list_head *pend_list; 1625 struct discard_cmd *dc, *tmp; 1626 struct blk_plug plug; 1627 int i, issued; 1628 bool io_interrupted = false; 1629 1630 if (dpolicy->timeout) 1631 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1632 1633 retry: 1634 issued = 0; 1635 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1636 if (dpolicy->timeout && 1637 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1638 break; 1639 1640 if (i + 1 < dpolicy->granularity) 1641 break; 1642 1643 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) { 1644 __issue_discard_cmd_orderly(sbi, dpolicy, &issued); 1645 return issued; 1646 } 1647 1648 pend_list = &dcc->pend_list[i]; 1649 1650 mutex_lock(&dcc->cmd_lock); 1651 if (list_empty(pend_list)) 1652 goto next; 1653 if (unlikely(dcc->rbtree_check)) 1654 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 1655 blk_start_plug(&plug); 1656 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1657 f2fs_bug_on(sbi, dc->state != D_PREP); 1658 1659 if (dpolicy->timeout && 1660 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1661 break; 1662 1663 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1664 !is_idle(sbi, DISCARD_TIME)) { 1665 io_interrupted = true; 1666 break; 1667 } 1668 1669 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1670 1671 if (issued >= dpolicy->max_requests) 1672 break; 1673 } 1674 blk_finish_plug(&plug); 1675 next: 1676 mutex_unlock(&dcc->cmd_lock); 1677 1678 if (issued >= dpolicy->max_requests || io_interrupted) 1679 break; 1680 } 1681 1682 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1683 __wait_all_discard_cmd(sbi, dpolicy); 1684 goto retry; 1685 } 1686 1687 if (!issued && io_interrupted) 1688 issued = -1; 1689 1690 return issued; 1691 } 1692 1693 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1694 { 1695 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1696 struct list_head *pend_list; 1697 struct discard_cmd *dc, *tmp; 1698 int i; 1699 bool dropped = false; 1700 1701 mutex_lock(&dcc->cmd_lock); 1702 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1703 pend_list = &dcc->pend_list[i]; 1704 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1705 f2fs_bug_on(sbi, dc->state != D_PREP); 1706 __remove_discard_cmd(sbi, dc); 1707 dropped = true; 1708 } 1709 } 1710 mutex_unlock(&dcc->cmd_lock); 1711 1712 return dropped; 1713 } 1714 1715 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1716 { 1717 __drop_discard_cmd(sbi); 1718 } 1719 1720 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1721 struct discard_cmd *dc) 1722 { 1723 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1724 unsigned int len = 0; 1725 1726 wait_for_completion_io(&dc->wait); 1727 mutex_lock(&dcc->cmd_lock); 1728 f2fs_bug_on(sbi, dc->state != D_DONE); 1729 dc->ref--; 1730 if (!dc->ref) { 1731 if (!dc->error) 1732 len = dc->di.len; 1733 __remove_discard_cmd(sbi, dc); 1734 } 1735 mutex_unlock(&dcc->cmd_lock); 1736 1737 return len; 1738 } 1739 1740 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1741 struct discard_policy *dpolicy, 1742 block_t start, block_t end) 1743 { 1744 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1745 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1746 &(dcc->fstrim_list) : &(dcc->wait_list); 1747 struct discard_cmd *dc = NULL, *iter, *tmp; 1748 unsigned int trimmed = 0; 1749 1750 next: 1751 dc = NULL; 1752 1753 mutex_lock(&dcc->cmd_lock); 1754 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1755 if (iter->di.lstart + iter->di.len <= start || 1756 end <= iter->di.lstart) 1757 continue; 1758 if (iter->di.len < dpolicy->granularity) 1759 continue; 1760 if (iter->state == D_DONE && !iter->ref) { 1761 wait_for_completion_io(&iter->wait); 1762 if (!iter->error) 1763 trimmed += iter->di.len; 1764 __remove_discard_cmd(sbi, iter); 1765 } else { 1766 iter->ref++; 1767 dc = iter; 1768 break; 1769 } 1770 } 1771 mutex_unlock(&dcc->cmd_lock); 1772 1773 if (dc) { 1774 trimmed += __wait_one_discard_bio(sbi, dc); 1775 goto next; 1776 } 1777 1778 return trimmed; 1779 } 1780 1781 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1782 struct discard_policy *dpolicy) 1783 { 1784 struct discard_policy dp; 1785 unsigned int discard_blks; 1786 1787 if (dpolicy) 1788 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1789 1790 /* wait all */ 1791 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY); 1792 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1793 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY); 1794 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1795 1796 return discard_blks; 1797 } 1798 1799 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1800 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1801 { 1802 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1803 struct discard_cmd *dc; 1804 bool need_wait = false; 1805 1806 mutex_lock(&dcc->cmd_lock); 1807 dc = __lookup_discard_cmd(sbi, blkaddr); 1808 #ifdef CONFIG_BLK_DEV_ZONED 1809 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) { 1810 int devi = f2fs_bdev_index(sbi, dc->bdev); 1811 1812 if (devi < 0) { 1813 mutex_unlock(&dcc->cmd_lock); 1814 return; 1815 } 1816 1817 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1818 /* force submit zone reset */ 1819 if (dc->state == D_PREP) 1820 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC, 1821 &dcc->wait_list, NULL); 1822 dc->ref++; 1823 mutex_unlock(&dcc->cmd_lock); 1824 /* wait zone reset */ 1825 __wait_one_discard_bio(sbi, dc); 1826 return; 1827 } 1828 } 1829 #endif 1830 if (dc) { 1831 if (dc->state == D_PREP) { 1832 __punch_discard_cmd(sbi, dc, blkaddr); 1833 } else { 1834 dc->ref++; 1835 need_wait = true; 1836 } 1837 } 1838 mutex_unlock(&dcc->cmd_lock); 1839 1840 if (need_wait) 1841 __wait_one_discard_bio(sbi, dc); 1842 } 1843 1844 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1845 { 1846 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1847 1848 if (dcc && dcc->f2fs_issue_discard) { 1849 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1850 1851 dcc->f2fs_issue_discard = NULL; 1852 kthread_stop(discard_thread); 1853 } 1854 } 1855 1856 /** 1857 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT 1858 * @sbi: the f2fs_sb_info data for discard cmd to issue 1859 * 1860 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped 1861 * 1862 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false. 1863 */ 1864 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1865 { 1866 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1867 struct discard_policy dpolicy; 1868 bool dropped; 1869 1870 if (!atomic_read(&dcc->discard_cmd_cnt)) 1871 return true; 1872 1873 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1874 dcc->discard_granularity); 1875 __issue_discard_cmd(sbi, &dpolicy); 1876 dropped = __drop_discard_cmd(sbi); 1877 1878 /* just to make sure there is no pending discard commands */ 1879 __wait_all_discard_cmd(sbi, NULL); 1880 1881 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1882 return !dropped; 1883 } 1884 1885 static int issue_discard_thread(void *data) 1886 { 1887 struct f2fs_sb_info *sbi = data; 1888 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1889 wait_queue_head_t *q = &dcc->discard_wait_queue; 1890 struct discard_policy dpolicy; 1891 unsigned int wait_ms = dcc->min_discard_issue_time; 1892 int issued; 1893 1894 set_freezable(); 1895 1896 do { 1897 wait_event_freezable_timeout(*q, 1898 kthread_should_stop() || dcc->discard_wake, 1899 msecs_to_jiffies(wait_ms)); 1900 1901 if (sbi->gc_mode == GC_URGENT_HIGH || 1902 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1903 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1904 MIN_DISCARD_GRANULARITY); 1905 else 1906 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1907 dcc->discard_granularity); 1908 1909 if (dcc->discard_wake) 1910 dcc->discard_wake = false; 1911 1912 /* clean up pending candidates before going to sleep */ 1913 if (atomic_read(&dcc->queued_discard)) 1914 __wait_all_discard_cmd(sbi, NULL); 1915 1916 if (f2fs_readonly(sbi->sb)) 1917 continue; 1918 if (kthread_should_stop()) 1919 return 0; 1920 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1921 !atomic_read(&dcc->discard_cmd_cnt)) { 1922 wait_ms = dpolicy.max_interval; 1923 continue; 1924 } 1925 1926 sb_start_intwrite(sbi->sb); 1927 1928 issued = __issue_discard_cmd(sbi, &dpolicy); 1929 if (issued > 0) { 1930 __wait_all_discard_cmd(sbi, &dpolicy); 1931 wait_ms = dpolicy.min_interval; 1932 } else if (issued == -1) { 1933 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1934 if (!wait_ms) 1935 wait_ms = dpolicy.mid_interval; 1936 } else { 1937 wait_ms = dpolicy.max_interval; 1938 } 1939 if (!atomic_read(&dcc->discard_cmd_cnt)) 1940 wait_ms = dpolicy.max_interval; 1941 1942 sb_end_intwrite(sbi->sb); 1943 1944 } while (!kthread_should_stop()); 1945 return 0; 1946 } 1947 1948 #ifdef CONFIG_BLK_DEV_ZONED 1949 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1950 struct block_device *bdev, block_t blkstart, block_t blklen) 1951 { 1952 sector_t sector, nr_sects; 1953 block_t lblkstart = blkstart; 1954 int devi = 0; 1955 u64 remainder = 0; 1956 1957 if (f2fs_is_multi_device(sbi)) { 1958 devi = f2fs_target_device_index(sbi, blkstart); 1959 if (blkstart < FDEV(devi).start_blk || 1960 blkstart > FDEV(devi).end_blk) { 1961 f2fs_err(sbi, "Invalid block %x", blkstart); 1962 return -EIO; 1963 } 1964 blkstart -= FDEV(devi).start_blk; 1965 } 1966 1967 /* For sequential zones, reset the zone write pointer */ 1968 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1969 sector = SECTOR_FROM_BLOCK(blkstart); 1970 nr_sects = SECTOR_FROM_BLOCK(blklen); 1971 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder); 1972 1973 if (remainder || nr_sects != bdev_zone_sectors(bdev)) { 1974 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1975 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1976 blkstart, blklen); 1977 return -EIO; 1978 } 1979 1980 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) { 1981 unsigned int nofs_flags; 1982 int ret; 1983 1984 trace_f2fs_issue_reset_zone(bdev, blkstart); 1985 nofs_flags = memalloc_nofs_save(); 1986 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1987 sector, nr_sects); 1988 memalloc_nofs_restore(nofs_flags); 1989 return ret; 1990 } 1991 1992 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen); 1993 return 0; 1994 } 1995 1996 /* For conventional zones, use regular discard if supported */ 1997 __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1998 return 0; 1999 } 2000 #endif 2001 2002 static int __issue_discard_async(struct f2fs_sb_info *sbi, 2003 struct block_device *bdev, block_t blkstart, block_t blklen) 2004 { 2005 #ifdef CONFIG_BLK_DEV_ZONED 2006 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 2007 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 2008 #endif 2009 __queue_discard_cmd(sbi, bdev, blkstart, blklen); 2010 return 0; 2011 } 2012 2013 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 2014 block_t blkstart, block_t blklen) 2015 { 2016 sector_t start = blkstart, len = 0; 2017 struct block_device *bdev; 2018 struct seg_entry *se; 2019 unsigned int offset; 2020 block_t i; 2021 int err = 0; 2022 2023 bdev = f2fs_target_device(sbi, blkstart, NULL); 2024 2025 for (i = blkstart; i < blkstart + blklen; i++, len++) { 2026 if (i != start) { 2027 struct block_device *bdev2 = 2028 f2fs_target_device(sbi, i, NULL); 2029 2030 if (bdev2 != bdev) { 2031 err = __issue_discard_async(sbi, bdev, 2032 start, len); 2033 if (err) 2034 return err; 2035 bdev = bdev2; 2036 start = i; 2037 len = 0; 2038 } 2039 } 2040 2041 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 2042 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 2043 2044 if (f2fs_block_unit_discard(sbi) && 2045 !f2fs_test_and_set_bit(offset, se->discard_map)) 2046 sbi->discard_blks--; 2047 } 2048 2049 if (len) 2050 err = __issue_discard_async(sbi, bdev, start, len); 2051 return err; 2052 } 2053 2054 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 2055 bool check_only) 2056 { 2057 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2058 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 2059 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2060 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2061 unsigned long *discard_map = (unsigned long *)se->discard_map; 2062 unsigned long *dmap = SIT_I(sbi)->tmp_map; 2063 unsigned int start = 0, end = -1; 2064 bool force = (cpc->reason & CP_DISCARD); 2065 struct discard_entry *de = NULL; 2066 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 2067 int i; 2068 2069 if (se->valid_blocks == BLKS_PER_SEG(sbi) || 2070 !f2fs_hw_support_discard(sbi) || 2071 !f2fs_block_unit_discard(sbi)) 2072 return false; 2073 2074 if (!force) { 2075 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 2076 SM_I(sbi)->dcc_info->nr_discards >= 2077 SM_I(sbi)->dcc_info->max_discards) 2078 return false; 2079 } 2080 2081 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 2082 for (i = 0; i < entries; i++) 2083 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 2084 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 2085 2086 while (force || SM_I(sbi)->dcc_info->nr_discards <= 2087 SM_I(sbi)->dcc_info->max_discards) { 2088 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1); 2089 if (start >= BLKS_PER_SEG(sbi)) 2090 break; 2091 2092 end = __find_rev_next_zero_bit(dmap, 2093 BLKS_PER_SEG(sbi), start + 1); 2094 if (force && start && end != BLKS_PER_SEG(sbi) && 2095 (end - start) < cpc->trim_minlen) 2096 continue; 2097 2098 if (check_only) 2099 return true; 2100 2101 if (!de) { 2102 de = f2fs_kmem_cache_alloc(discard_entry_slab, 2103 GFP_F2FS_ZERO, true, NULL); 2104 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 2105 list_add_tail(&de->list, head); 2106 } 2107 2108 for (i = start; i < end; i++) 2109 __set_bit_le(i, (void *)de->discard_map); 2110 2111 SM_I(sbi)->dcc_info->nr_discards += end - start; 2112 } 2113 return false; 2114 } 2115 2116 static void release_discard_addr(struct discard_entry *entry) 2117 { 2118 list_del(&entry->list); 2119 kmem_cache_free(discard_entry_slab, entry); 2120 } 2121 2122 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 2123 { 2124 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 2125 struct discard_entry *entry, *this; 2126 2127 /* drop caches */ 2128 list_for_each_entry_safe(entry, this, head, list) 2129 release_discard_addr(entry); 2130 } 2131 2132 /* 2133 * Should call f2fs_clear_prefree_segments after checkpoint is done. 2134 */ 2135 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 2136 { 2137 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2138 unsigned int segno; 2139 2140 mutex_lock(&dirty_i->seglist_lock); 2141 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 2142 __set_test_and_free(sbi, segno, false); 2143 mutex_unlock(&dirty_i->seglist_lock); 2144 } 2145 2146 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2147 struct cp_control *cpc) 2148 { 2149 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2150 struct list_head *head = &dcc->entry_list; 2151 struct discard_entry *entry, *this; 2152 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2153 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2154 unsigned int start = 0, end = -1; 2155 unsigned int secno, start_segno; 2156 bool force = (cpc->reason & CP_DISCARD); 2157 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 2158 DISCARD_UNIT_SECTION; 2159 2160 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 2161 section_alignment = true; 2162 2163 mutex_lock(&dirty_i->seglist_lock); 2164 2165 while (1) { 2166 int i; 2167 2168 if (section_alignment && end != -1) 2169 end--; 2170 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2171 if (start >= MAIN_SEGS(sbi)) 2172 break; 2173 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2174 start + 1); 2175 2176 if (section_alignment) { 2177 start = rounddown(start, SEGS_PER_SEC(sbi)); 2178 end = roundup(end, SEGS_PER_SEC(sbi)); 2179 } 2180 2181 for (i = start; i < end; i++) { 2182 if (test_and_clear_bit(i, prefree_map)) 2183 dirty_i->nr_dirty[PRE]--; 2184 } 2185 2186 if (!f2fs_realtime_discard_enable(sbi)) 2187 continue; 2188 2189 if (force && start >= cpc->trim_start && 2190 (end - 1) <= cpc->trim_end) 2191 continue; 2192 2193 /* Should cover 2MB zoned device for zone-based reset */ 2194 if (!f2fs_sb_has_blkzoned(sbi) && 2195 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) { 2196 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2197 SEGS_TO_BLKS(sbi, end - start)); 2198 continue; 2199 } 2200 next: 2201 secno = GET_SEC_FROM_SEG(sbi, start); 2202 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2203 if (!IS_CURSEC(sbi, secno) && 2204 !get_valid_blocks(sbi, start, true)) 2205 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2206 BLKS_PER_SEC(sbi)); 2207 2208 start = start_segno + SEGS_PER_SEC(sbi); 2209 if (start < end) 2210 goto next; 2211 else 2212 end = start - 1; 2213 } 2214 mutex_unlock(&dirty_i->seglist_lock); 2215 2216 if (!f2fs_block_unit_discard(sbi)) 2217 goto wakeup; 2218 2219 /* send small discards */ 2220 list_for_each_entry_safe(entry, this, head, list) { 2221 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2222 bool is_valid = test_bit_le(0, entry->discard_map); 2223 2224 find_next: 2225 if (is_valid) { 2226 next_pos = find_next_zero_bit_le(entry->discard_map, 2227 BLKS_PER_SEG(sbi), cur_pos); 2228 len = next_pos - cur_pos; 2229 2230 if (f2fs_sb_has_blkzoned(sbi) || 2231 (force && len < cpc->trim_minlen)) 2232 goto skip; 2233 2234 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2235 len); 2236 total_len += len; 2237 } else { 2238 next_pos = find_next_bit_le(entry->discard_map, 2239 BLKS_PER_SEG(sbi), cur_pos); 2240 } 2241 skip: 2242 cur_pos = next_pos; 2243 is_valid = !is_valid; 2244 2245 if (cur_pos < BLKS_PER_SEG(sbi)) 2246 goto find_next; 2247 2248 release_discard_addr(entry); 2249 dcc->nr_discards -= total_len; 2250 } 2251 2252 wakeup: 2253 wake_up_discard_thread(sbi, false); 2254 } 2255 2256 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2257 { 2258 dev_t dev = sbi->sb->s_bdev->bd_dev; 2259 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2260 int err = 0; 2261 2262 if (f2fs_sb_has_readonly(sbi)) { 2263 f2fs_info(sbi, 2264 "Skip to start discard thread for readonly image"); 2265 return 0; 2266 } 2267 2268 if (!f2fs_realtime_discard_enable(sbi)) 2269 return 0; 2270 2271 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2272 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2273 if (IS_ERR(dcc->f2fs_issue_discard)) { 2274 err = PTR_ERR(dcc->f2fs_issue_discard); 2275 dcc->f2fs_issue_discard = NULL; 2276 } 2277 2278 return err; 2279 } 2280 2281 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2282 { 2283 struct discard_cmd_control *dcc; 2284 int err = 0, i; 2285 2286 if (SM_I(sbi)->dcc_info) { 2287 dcc = SM_I(sbi)->dcc_info; 2288 goto init_thread; 2289 } 2290 2291 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2292 if (!dcc) 2293 return -ENOMEM; 2294 2295 dcc->discard_io_aware_gran = MAX_PLIST_NUM; 2296 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2297 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; 2298 dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE; 2299 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2300 dcc->discard_granularity = BLKS_PER_SEG(sbi); 2301 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2302 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2303 2304 INIT_LIST_HEAD(&dcc->entry_list); 2305 for (i = 0; i < MAX_PLIST_NUM; i++) 2306 INIT_LIST_HEAD(&dcc->pend_list[i]); 2307 INIT_LIST_HEAD(&dcc->wait_list); 2308 INIT_LIST_HEAD(&dcc->fstrim_list); 2309 mutex_init(&dcc->cmd_lock); 2310 atomic_set(&dcc->issued_discard, 0); 2311 atomic_set(&dcc->queued_discard, 0); 2312 atomic_set(&dcc->discard_cmd_cnt, 0); 2313 dcc->nr_discards = 0; 2314 dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi)); 2315 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2316 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2317 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2318 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2319 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; 2320 dcc->undiscard_blks = 0; 2321 dcc->next_pos = 0; 2322 dcc->root = RB_ROOT_CACHED; 2323 dcc->rbtree_check = false; 2324 2325 init_waitqueue_head(&dcc->discard_wait_queue); 2326 SM_I(sbi)->dcc_info = dcc; 2327 init_thread: 2328 err = f2fs_start_discard_thread(sbi); 2329 if (err) { 2330 kfree(dcc); 2331 SM_I(sbi)->dcc_info = NULL; 2332 } 2333 2334 return err; 2335 } 2336 2337 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2338 { 2339 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2340 2341 if (!dcc) 2342 return; 2343 2344 f2fs_stop_discard_thread(sbi); 2345 2346 /* 2347 * Recovery can cache discard commands, so in error path of 2348 * fill_super(), it needs to give a chance to handle them. 2349 */ 2350 f2fs_issue_discard_timeout(sbi); 2351 2352 kfree(dcc); 2353 SM_I(sbi)->dcc_info = NULL; 2354 } 2355 2356 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2357 { 2358 struct sit_info *sit_i = SIT_I(sbi); 2359 2360 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2361 sit_i->dirty_sentries++; 2362 return false; 2363 } 2364 2365 return true; 2366 } 2367 2368 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2369 unsigned int segno, int modified) 2370 { 2371 struct seg_entry *se = get_seg_entry(sbi, segno); 2372 2373 se->type = type; 2374 if (modified) 2375 __mark_sit_entry_dirty(sbi, segno); 2376 } 2377 2378 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2379 block_t blkaddr) 2380 { 2381 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2382 2383 if (segno == NULL_SEGNO) 2384 return 0; 2385 return get_seg_entry(sbi, segno)->mtime; 2386 } 2387 2388 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2389 unsigned long long old_mtime) 2390 { 2391 struct seg_entry *se; 2392 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2393 unsigned long long ctime = get_mtime(sbi, false); 2394 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2395 2396 if (segno == NULL_SEGNO) 2397 return; 2398 2399 se = get_seg_entry(sbi, segno); 2400 2401 if (!se->mtime) 2402 se->mtime = mtime; 2403 else 2404 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2405 se->valid_blocks + 1); 2406 2407 if (ctime > SIT_I(sbi)->max_mtime) 2408 SIT_I(sbi)->max_mtime = ctime; 2409 } 2410 2411 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2412 { 2413 struct seg_entry *se; 2414 unsigned int segno, offset; 2415 long int new_vblocks; 2416 bool exist; 2417 #ifdef CONFIG_F2FS_CHECK_FS 2418 bool mir_exist; 2419 #endif 2420 2421 segno = GET_SEGNO(sbi, blkaddr); 2422 if (segno == NULL_SEGNO) 2423 return; 2424 2425 se = get_seg_entry(sbi, segno); 2426 new_vblocks = se->valid_blocks + del; 2427 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2428 2429 f2fs_bug_on(sbi, (new_vblocks < 0 || 2430 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2431 2432 se->valid_blocks = new_vblocks; 2433 2434 /* Update valid block bitmap */ 2435 if (del > 0) { 2436 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2437 #ifdef CONFIG_F2FS_CHECK_FS 2438 mir_exist = f2fs_test_and_set_bit(offset, 2439 se->cur_valid_map_mir); 2440 if (unlikely(exist != mir_exist)) { 2441 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2442 blkaddr, exist); 2443 f2fs_bug_on(sbi, 1); 2444 } 2445 #endif 2446 if (unlikely(exist)) { 2447 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2448 blkaddr); 2449 f2fs_bug_on(sbi, 1); 2450 se->valid_blocks--; 2451 del = 0; 2452 } 2453 2454 if (f2fs_block_unit_discard(sbi) && 2455 !f2fs_test_and_set_bit(offset, se->discard_map)) 2456 sbi->discard_blks--; 2457 2458 /* 2459 * SSR should never reuse block which is checkpointed 2460 * or newly invalidated. 2461 */ 2462 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2463 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2464 se->ckpt_valid_blocks++; 2465 } 2466 } else { 2467 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2468 #ifdef CONFIG_F2FS_CHECK_FS 2469 mir_exist = f2fs_test_and_clear_bit(offset, 2470 se->cur_valid_map_mir); 2471 if (unlikely(exist != mir_exist)) { 2472 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2473 blkaddr, exist); 2474 f2fs_bug_on(sbi, 1); 2475 } 2476 #endif 2477 if (unlikely(!exist)) { 2478 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2479 blkaddr); 2480 f2fs_bug_on(sbi, 1); 2481 se->valid_blocks++; 2482 del = 0; 2483 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2484 /* 2485 * If checkpoints are off, we must not reuse data that 2486 * was used in the previous checkpoint. If it was used 2487 * before, we must track that to know how much space we 2488 * really have. 2489 */ 2490 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2491 spin_lock(&sbi->stat_lock); 2492 sbi->unusable_block_count++; 2493 spin_unlock(&sbi->stat_lock); 2494 } 2495 } 2496 2497 if (f2fs_block_unit_discard(sbi) && 2498 f2fs_test_and_clear_bit(offset, se->discard_map)) 2499 sbi->discard_blks++; 2500 } 2501 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2502 se->ckpt_valid_blocks += del; 2503 2504 __mark_sit_entry_dirty(sbi, segno); 2505 2506 /* update total number of valid blocks to be written in ckpt area */ 2507 SIT_I(sbi)->written_valid_blocks += del; 2508 2509 if (__is_large_section(sbi)) 2510 get_sec_entry(sbi, segno)->valid_blocks += del; 2511 } 2512 2513 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2514 { 2515 unsigned int segno = GET_SEGNO(sbi, addr); 2516 struct sit_info *sit_i = SIT_I(sbi); 2517 2518 f2fs_bug_on(sbi, addr == NULL_ADDR); 2519 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2520 return; 2521 2522 f2fs_invalidate_internal_cache(sbi, addr); 2523 2524 /* add it into sit main buffer */ 2525 down_write(&sit_i->sentry_lock); 2526 2527 update_segment_mtime(sbi, addr, 0); 2528 update_sit_entry(sbi, addr, -1); 2529 2530 /* add it into dirty seglist */ 2531 locate_dirty_segment(sbi, segno); 2532 2533 up_write(&sit_i->sentry_lock); 2534 } 2535 2536 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2537 { 2538 struct sit_info *sit_i = SIT_I(sbi); 2539 unsigned int segno, offset; 2540 struct seg_entry *se; 2541 bool is_cp = false; 2542 2543 if (!__is_valid_data_blkaddr(blkaddr)) 2544 return true; 2545 2546 down_read(&sit_i->sentry_lock); 2547 2548 segno = GET_SEGNO(sbi, blkaddr); 2549 se = get_seg_entry(sbi, segno); 2550 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2551 2552 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2553 is_cp = true; 2554 2555 up_read(&sit_i->sentry_lock); 2556 2557 return is_cp; 2558 } 2559 2560 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type) 2561 { 2562 struct curseg_info *curseg = CURSEG_I(sbi, type); 2563 2564 if (sbi->ckpt->alloc_type[type] == SSR) 2565 return BLKS_PER_SEG(sbi); 2566 return curseg->next_blkoff; 2567 } 2568 2569 /* 2570 * Calculate the number of current summary pages for writing 2571 */ 2572 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2573 { 2574 int valid_sum_count = 0; 2575 int i, sum_in_page; 2576 2577 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2578 if (sbi->ckpt->alloc_type[i] != SSR && for_ra) 2579 valid_sum_count += 2580 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2581 else 2582 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i); 2583 } 2584 2585 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2586 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2587 if (valid_sum_count <= sum_in_page) 2588 return 1; 2589 else if ((valid_sum_count - sum_in_page) <= 2590 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2591 return 2; 2592 return 3; 2593 } 2594 2595 /* 2596 * Caller should put this summary page 2597 */ 2598 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2599 { 2600 if (unlikely(f2fs_cp_error(sbi))) 2601 return ERR_PTR(-EIO); 2602 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2603 } 2604 2605 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2606 void *src, block_t blk_addr) 2607 { 2608 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2609 2610 memcpy(page_address(page), src, PAGE_SIZE); 2611 set_page_dirty(page); 2612 f2fs_put_page(page, 1); 2613 } 2614 2615 static void write_sum_page(struct f2fs_sb_info *sbi, 2616 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2617 { 2618 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2619 } 2620 2621 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2622 int type, block_t blk_addr) 2623 { 2624 struct curseg_info *curseg = CURSEG_I(sbi, type); 2625 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2626 struct f2fs_summary_block *src = curseg->sum_blk; 2627 struct f2fs_summary_block *dst; 2628 2629 dst = (struct f2fs_summary_block *)page_address(page); 2630 memset(dst, 0, PAGE_SIZE); 2631 2632 mutex_lock(&curseg->curseg_mutex); 2633 2634 down_read(&curseg->journal_rwsem); 2635 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2636 up_read(&curseg->journal_rwsem); 2637 2638 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2639 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2640 2641 mutex_unlock(&curseg->curseg_mutex); 2642 2643 set_page_dirty(page); 2644 f2fs_put_page(page, 1); 2645 } 2646 2647 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2648 struct curseg_info *curseg, int type) 2649 { 2650 unsigned int segno = curseg->segno + 1; 2651 struct free_segmap_info *free_i = FREE_I(sbi); 2652 2653 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi)) 2654 return !test_bit(segno, free_i->free_segmap); 2655 return 0; 2656 } 2657 2658 /* 2659 * Find a new segment from the free segments bitmap to right order 2660 * This function should be returned with success, otherwise BUG 2661 */ 2662 static int get_new_segment(struct f2fs_sb_info *sbi, 2663 unsigned int *newseg, bool new_sec, bool pinning) 2664 { 2665 struct free_segmap_info *free_i = FREE_I(sbi); 2666 unsigned int segno, secno, zoneno; 2667 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2668 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2669 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2670 bool init = true; 2671 int i; 2672 int ret = 0; 2673 2674 spin_lock(&free_i->segmap_lock); 2675 2676 if (time_to_inject(sbi, FAULT_NO_SEGMENT)) { 2677 ret = -ENOSPC; 2678 goto out_unlock; 2679 } 2680 2681 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) { 2682 segno = find_next_zero_bit(free_i->free_segmap, 2683 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2684 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2685 goto got_it; 2686 } 2687 2688 /* 2689 * If we format f2fs on zoned storage, let's try to get pinned sections 2690 * from beginning of the storage, which should be a conventional one. 2691 */ 2692 if (f2fs_sb_has_blkzoned(sbi)) { 2693 segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg); 2694 hint = GET_SEC_FROM_SEG(sbi, segno); 2695 } 2696 2697 find_other_zone: 2698 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2699 if (secno >= MAIN_SECS(sbi)) { 2700 secno = find_first_zero_bit(free_i->free_secmap, 2701 MAIN_SECS(sbi)); 2702 if (secno >= MAIN_SECS(sbi)) { 2703 ret = -ENOSPC; 2704 goto out_unlock; 2705 } 2706 } 2707 segno = GET_SEG_FROM_SEC(sbi, secno); 2708 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2709 2710 /* give up on finding another zone */ 2711 if (!init) 2712 goto got_it; 2713 if (sbi->secs_per_zone == 1) 2714 goto got_it; 2715 if (zoneno == old_zoneno) 2716 goto got_it; 2717 for (i = 0; i < NR_CURSEG_TYPE; i++) 2718 if (CURSEG_I(sbi, i)->zone == zoneno) 2719 break; 2720 2721 if (i < NR_CURSEG_TYPE) { 2722 /* zone is in user, try another */ 2723 if (zoneno + 1 >= total_zones) 2724 hint = 0; 2725 else 2726 hint = (zoneno + 1) * sbi->secs_per_zone; 2727 init = false; 2728 goto find_other_zone; 2729 } 2730 got_it: 2731 /* set it as dirty segment in free segmap */ 2732 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2733 2734 /* no free section in conventional zone */ 2735 if (new_sec && pinning && 2736 !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) { 2737 ret = -EAGAIN; 2738 goto out_unlock; 2739 } 2740 __set_inuse(sbi, segno); 2741 *newseg = segno; 2742 out_unlock: 2743 spin_unlock(&free_i->segmap_lock); 2744 2745 if (ret == -ENOSPC) { 2746 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT); 2747 f2fs_bug_on(sbi, 1); 2748 } 2749 return ret; 2750 } 2751 2752 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2753 { 2754 struct curseg_info *curseg = CURSEG_I(sbi, type); 2755 struct summary_footer *sum_footer; 2756 unsigned short seg_type = curseg->seg_type; 2757 2758 /* only happen when get_new_segment() fails */ 2759 if (curseg->next_segno == NULL_SEGNO) 2760 return; 2761 2762 curseg->inited = true; 2763 curseg->segno = curseg->next_segno; 2764 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2765 curseg->next_blkoff = 0; 2766 curseg->next_segno = NULL_SEGNO; 2767 2768 sum_footer = &(curseg->sum_blk->footer); 2769 memset(sum_footer, 0, sizeof(struct summary_footer)); 2770 2771 sanity_check_seg_type(sbi, seg_type); 2772 2773 if (IS_DATASEG(seg_type)) 2774 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2775 if (IS_NODESEG(seg_type)) 2776 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2777 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2778 } 2779 2780 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2781 { 2782 struct curseg_info *curseg = CURSEG_I(sbi, type); 2783 unsigned short seg_type = curseg->seg_type; 2784 2785 sanity_check_seg_type(sbi, seg_type); 2786 if (f2fs_need_rand_seg(sbi)) 2787 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi)); 2788 2789 if (__is_large_section(sbi)) 2790 return curseg->segno; 2791 2792 /* inmem log may not locate on any segment after mount */ 2793 if (!curseg->inited) 2794 return 0; 2795 2796 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2797 return 0; 2798 2799 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)) 2800 return 0; 2801 2802 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2803 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2804 2805 /* find segments from 0 to reuse freed segments */ 2806 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2807 return 0; 2808 2809 return curseg->segno; 2810 } 2811 2812 /* 2813 * Allocate a current working segment. 2814 * This function always allocates a free segment in LFS manner. 2815 */ 2816 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2817 { 2818 struct curseg_info *curseg = CURSEG_I(sbi, type); 2819 unsigned int segno = curseg->segno; 2820 bool pinning = type == CURSEG_COLD_DATA_PINNED; 2821 int ret; 2822 2823 if (curseg->inited) 2824 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno)); 2825 2826 segno = __get_next_segno(sbi, type); 2827 ret = get_new_segment(sbi, &segno, new_sec, pinning); 2828 if (ret) { 2829 if (ret == -ENOSPC) 2830 curseg->segno = NULL_SEGNO; 2831 return ret; 2832 } 2833 2834 curseg->next_segno = segno; 2835 reset_curseg(sbi, type, 1); 2836 curseg->alloc_type = LFS; 2837 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2838 curseg->fragment_remained_chunk = 2839 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2840 return 0; 2841 } 2842 2843 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2844 int segno, block_t start) 2845 { 2846 struct seg_entry *se = get_seg_entry(sbi, segno); 2847 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2848 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2849 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2850 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2851 int i; 2852 2853 for (i = 0; i < entries; i++) 2854 target_map[i] = ckpt_map[i] | cur_map[i]; 2855 2856 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start); 2857 } 2858 2859 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi, 2860 struct curseg_info *seg) 2861 { 2862 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1); 2863 } 2864 2865 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2866 { 2867 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi); 2868 } 2869 2870 /* 2871 * This function always allocates a used segment(from dirty seglist) by SSR 2872 * manner, so it should recover the existing segment information of valid blocks 2873 */ 2874 static int change_curseg(struct f2fs_sb_info *sbi, int type) 2875 { 2876 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2877 struct curseg_info *curseg = CURSEG_I(sbi, type); 2878 unsigned int new_segno = curseg->next_segno; 2879 struct f2fs_summary_block *sum_node; 2880 struct page *sum_page; 2881 2882 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); 2883 2884 __set_test_and_inuse(sbi, new_segno); 2885 2886 mutex_lock(&dirty_i->seglist_lock); 2887 __remove_dirty_segment(sbi, new_segno, PRE); 2888 __remove_dirty_segment(sbi, new_segno, DIRTY); 2889 mutex_unlock(&dirty_i->seglist_lock); 2890 2891 reset_curseg(sbi, type, 1); 2892 curseg->alloc_type = SSR; 2893 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2894 2895 sum_page = f2fs_get_sum_page(sbi, new_segno); 2896 if (IS_ERR(sum_page)) { 2897 /* GC won't be able to use stale summary pages by cp_error */ 2898 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2899 return PTR_ERR(sum_page); 2900 } 2901 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2902 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2903 f2fs_put_page(sum_page, 1); 2904 return 0; 2905 } 2906 2907 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2908 int alloc_mode, unsigned long long age); 2909 2910 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2911 int target_type, int alloc_mode, 2912 unsigned long long age) 2913 { 2914 struct curseg_info *curseg = CURSEG_I(sbi, type); 2915 int ret = 0; 2916 2917 curseg->seg_type = target_type; 2918 2919 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2920 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2921 2922 curseg->seg_type = se->type; 2923 ret = change_curseg(sbi, type); 2924 } else { 2925 /* allocate cold segment by default */ 2926 curseg->seg_type = CURSEG_COLD_DATA; 2927 ret = new_curseg(sbi, type, true); 2928 } 2929 stat_inc_seg_type(sbi, curseg); 2930 return ret; 2931 } 2932 2933 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2934 { 2935 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2936 int ret = 0; 2937 2938 if (!sbi->am.atgc_enabled) 2939 return 0; 2940 2941 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2942 2943 mutex_lock(&curseg->curseg_mutex); 2944 down_write(&SIT_I(sbi)->sentry_lock); 2945 2946 ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, 2947 CURSEG_COLD_DATA, SSR, 0); 2948 2949 up_write(&SIT_I(sbi)->sentry_lock); 2950 mutex_unlock(&curseg->curseg_mutex); 2951 2952 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2953 return ret; 2954 } 2955 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2956 { 2957 return __f2fs_init_atgc_curseg(sbi); 2958 } 2959 2960 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2961 { 2962 struct curseg_info *curseg = CURSEG_I(sbi, type); 2963 2964 mutex_lock(&curseg->curseg_mutex); 2965 if (!curseg->inited) 2966 goto out; 2967 2968 if (get_valid_blocks(sbi, curseg->segno, false)) { 2969 write_sum_page(sbi, curseg->sum_blk, 2970 GET_SUM_BLOCK(sbi, curseg->segno)); 2971 } else { 2972 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2973 __set_test_and_free(sbi, curseg->segno, true); 2974 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2975 } 2976 out: 2977 mutex_unlock(&curseg->curseg_mutex); 2978 } 2979 2980 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2981 { 2982 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2983 2984 if (sbi->am.atgc_enabled) 2985 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2986 } 2987 2988 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2989 { 2990 struct curseg_info *curseg = CURSEG_I(sbi, type); 2991 2992 mutex_lock(&curseg->curseg_mutex); 2993 if (!curseg->inited) 2994 goto out; 2995 if (get_valid_blocks(sbi, curseg->segno, false)) 2996 goto out; 2997 2998 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2999 __set_test_and_inuse(sbi, curseg->segno); 3000 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 3001 out: 3002 mutex_unlock(&curseg->curseg_mutex); 3003 } 3004 3005 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 3006 { 3007 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 3008 3009 if (sbi->am.atgc_enabled) 3010 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 3011 } 3012 3013 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 3014 int alloc_mode, unsigned long long age) 3015 { 3016 struct curseg_info *curseg = CURSEG_I(sbi, type); 3017 unsigned segno = NULL_SEGNO; 3018 unsigned short seg_type = curseg->seg_type; 3019 int i, cnt; 3020 bool reversed = false; 3021 3022 sanity_check_seg_type(sbi, seg_type); 3023 3024 /* f2fs_need_SSR() already forces to do this */ 3025 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 3026 curseg->next_segno = segno; 3027 return 1; 3028 } 3029 3030 /* For node segments, let's do SSR more intensively */ 3031 if (IS_NODESEG(seg_type)) { 3032 if (seg_type >= CURSEG_WARM_NODE) { 3033 reversed = true; 3034 i = CURSEG_COLD_NODE; 3035 } else { 3036 i = CURSEG_HOT_NODE; 3037 } 3038 cnt = NR_CURSEG_NODE_TYPE; 3039 } else { 3040 if (seg_type >= CURSEG_WARM_DATA) { 3041 reversed = true; 3042 i = CURSEG_COLD_DATA; 3043 } else { 3044 i = CURSEG_HOT_DATA; 3045 } 3046 cnt = NR_CURSEG_DATA_TYPE; 3047 } 3048 3049 for (; cnt-- > 0; reversed ? i-- : i++) { 3050 if (i == seg_type) 3051 continue; 3052 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 3053 curseg->next_segno = segno; 3054 return 1; 3055 } 3056 } 3057 3058 /* find valid_blocks=0 in dirty list */ 3059 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 3060 segno = get_free_segment(sbi); 3061 if (segno != NULL_SEGNO) { 3062 curseg->next_segno = segno; 3063 return 1; 3064 } 3065 } 3066 return 0; 3067 } 3068 3069 static bool need_new_seg(struct f2fs_sb_info *sbi, int type) 3070 { 3071 struct curseg_info *curseg = CURSEG_I(sbi, type); 3072 3073 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 3074 curseg->seg_type == CURSEG_WARM_NODE) 3075 return true; 3076 if (curseg->alloc_type == LFS && 3077 is_next_segment_free(sbi, curseg, type) && 3078 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3079 return true; 3080 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) 3081 return true; 3082 return false; 3083 } 3084 3085 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3086 unsigned int start, unsigned int end) 3087 { 3088 struct curseg_info *curseg = CURSEG_I(sbi, type); 3089 unsigned int segno; 3090 int ret = 0; 3091 3092 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3093 mutex_lock(&curseg->curseg_mutex); 3094 down_write(&SIT_I(sbi)->sentry_lock); 3095 3096 segno = CURSEG_I(sbi, type)->segno; 3097 if (segno < start || segno > end) 3098 goto unlock; 3099 3100 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 3101 ret = change_curseg(sbi, type); 3102 else 3103 ret = new_curseg(sbi, type, true); 3104 3105 stat_inc_seg_type(sbi, curseg); 3106 3107 locate_dirty_segment(sbi, segno); 3108 unlock: 3109 up_write(&SIT_I(sbi)->sentry_lock); 3110 3111 if (segno != curseg->segno) 3112 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 3113 type, segno, curseg->segno); 3114 3115 mutex_unlock(&curseg->curseg_mutex); 3116 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3117 return ret; 3118 } 3119 3120 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 3121 bool new_sec, bool force) 3122 { 3123 struct curseg_info *curseg = CURSEG_I(sbi, type); 3124 unsigned int old_segno; 3125 int err = 0; 3126 3127 if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited) 3128 goto allocate; 3129 3130 if (!force && curseg->inited && 3131 !curseg->next_blkoff && 3132 !get_valid_blocks(sbi, curseg->segno, new_sec) && 3133 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 3134 return 0; 3135 3136 allocate: 3137 old_segno = curseg->segno; 3138 err = new_curseg(sbi, type, true); 3139 if (err) 3140 return err; 3141 stat_inc_seg_type(sbi, curseg); 3142 locate_dirty_segment(sbi, old_segno); 3143 return 0; 3144 } 3145 3146 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 3147 { 3148 int ret; 3149 3150 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3151 down_write(&SIT_I(sbi)->sentry_lock); 3152 ret = __allocate_new_segment(sbi, type, true, force); 3153 up_write(&SIT_I(sbi)->sentry_lock); 3154 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3155 3156 return ret; 3157 } 3158 3159 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi) 3160 { 3161 int err; 3162 bool gc_required = true; 3163 3164 retry: 3165 f2fs_lock_op(sbi); 3166 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3167 f2fs_unlock_op(sbi); 3168 3169 if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) { 3170 f2fs_down_write(&sbi->gc_lock); 3171 err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1); 3172 f2fs_up_write(&sbi->gc_lock); 3173 3174 gc_required = false; 3175 if (!err) 3176 goto retry; 3177 } 3178 3179 return err; 3180 } 3181 3182 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 3183 { 3184 int i; 3185 int err = 0; 3186 3187 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3188 down_write(&SIT_I(sbi)->sentry_lock); 3189 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 3190 err += __allocate_new_segment(sbi, i, false, false); 3191 up_write(&SIT_I(sbi)->sentry_lock); 3192 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3193 3194 return err; 3195 } 3196 3197 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3198 struct cp_control *cpc) 3199 { 3200 __u64 trim_start = cpc->trim_start; 3201 bool has_candidate = false; 3202 3203 down_write(&SIT_I(sbi)->sentry_lock); 3204 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 3205 if (add_discard_addrs(sbi, cpc, true)) { 3206 has_candidate = true; 3207 break; 3208 } 3209 } 3210 up_write(&SIT_I(sbi)->sentry_lock); 3211 3212 cpc->trim_start = trim_start; 3213 return has_candidate; 3214 } 3215 3216 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3217 struct discard_policy *dpolicy, 3218 unsigned int start, unsigned int end) 3219 { 3220 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3221 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3222 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3223 struct discard_cmd *dc; 3224 struct blk_plug plug; 3225 int issued; 3226 unsigned int trimmed = 0; 3227 3228 next: 3229 issued = 0; 3230 3231 mutex_lock(&dcc->cmd_lock); 3232 if (unlikely(dcc->rbtree_check)) 3233 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 3234 3235 dc = __lookup_discard_cmd_ret(&dcc->root, start, 3236 &prev_dc, &next_dc, &insert_p, &insert_parent); 3237 if (!dc) 3238 dc = next_dc; 3239 3240 blk_start_plug(&plug); 3241 3242 while (dc && dc->di.lstart <= end) { 3243 struct rb_node *node; 3244 int err = 0; 3245 3246 if (dc->di.len < dpolicy->granularity) 3247 goto skip; 3248 3249 if (dc->state != D_PREP) { 3250 list_move_tail(&dc->list, &dcc->fstrim_list); 3251 goto skip; 3252 } 3253 3254 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3255 3256 if (issued >= dpolicy->max_requests) { 3257 start = dc->di.lstart + dc->di.len; 3258 3259 if (err) 3260 __remove_discard_cmd(sbi, dc); 3261 3262 blk_finish_plug(&plug); 3263 mutex_unlock(&dcc->cmd_lock); 3264 trimmed += __wait_all_discard_cmd(sbi, NULL); 3265 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3266 goto next; 3267 } 3268 skip: 3269 node = rb_next(&dc->rb_node); 3270 if (err) 3271 __remove_discard_cmd(sbi, dc); 3272 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3273 3274 if (fatal_signal_pending(current)) 3275 break; 3276 } 3277 3278 blk_finish_plug(&plug); 3279 mutex_unlock(&dcc->cmd_lock); 3280 3281 return trimmed; 3282 } 3283 3284 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3285 { 3286 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3287 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3288 unsigned int start_segno, end_segno; 3289 block_t start_block, end_block; 3290 struct cp_control cpc; 3291 struct discard_policy dpolicy; 3292 unsigned long long trimmed = 0; 3293 int err = 0; 3294 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3295 3296 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3297 return -EINVAL; 3298 3299 if (end < MAIN_BLKADDR(sbi)) 3300 goto out; 3301 3302 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3303 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3304 return -EFSCORRUPTED; 3305 } 3306 3307 /* start/end segment number in main_area */ 3308 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3309 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3310 GET_SEGNO(sbi, end); 3311 if (need_align) { 3312 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi)); 3313 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1; 3314 } 3315 3316 cpc.reason = CP_DISCARD; 3317 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3318 cpc.trim_start = start_segno; 3319 cpc.trim_end = end_segno; 3320 3321 if (sbi->discard_blks == 0) 3322 goto out; 3323 3324 f2fs_down_write(&sbi->gc_lock); 3325 stat_inc_cp_call_count(sbi, TOTAL_CALL); 3326 err = f2fs_write_checkpoint(sbi, &cpc); 3327 f2fs_up_write(&sbi->gc_lock); 3328 if (err) 3329 goto out; 3330 3331 /* 3332 * We filed discard candidates, but actually we don't need to wait for 3333 * all of them, since they'll be issued in idle time along with runtime 3334 * discard option. User configuration looks like using runtime discard 3335 * or periodic fstrim instead of it. 3336 */ 3337 if (f2fs_realtime_discard_enable(sbi)) 3338 goto out; 3339 3340 start_block = START_BLOCK(sbi, start_segno); 3341 end_block = START_BLOCK(sbi, end_segno + 1); 3342 3343 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3344 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3345 start_block, end_block); 3346 3347 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3348 start_block, end_block); 3349 out: 3350 if (!err) 3351 range->len = F2FS_BLK_TO_BYTES(trimmed); 3352 return err; 3353 } 3354 3355 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3356 { 3357 switch (hint) { 3358 case WRITE_LIFE_SHORT: 3359 return CURSEG_HOT_DATA; 3360 case WRITE_LIFE_EXTREME: 3361 return CURSEG_COLD_DATA; 3362 default: 3363 return CURSEG_WARM_DATA; 3364 } 3365 } 3366 3367 static int __get_segment_type_2(struct f2fs_io_info *fio) 3368 { 3369 if (fio->type == DATA) 3370 return CURSEG_HOT_DATA; 3371 else 3372 return CURSEG_HOT_NODE; 3373 } 3374 3375 static int __get_segment_type_4(struct f2fs_io_info *fio) 3376 { 3377 if (fio->type == DATA) { 3378 struct inode *inode = fio->page->mapping->host; 3379 3380 if (S_ISDIR(inode->i_mode)) 3381 return CURSEG_HOT_DATA; 3382 else 3383 return CURSEG_COLD_DATA; 3384 } else { 3385 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3386 return CURSEG_WARM_NODE; 3387 else 3388 return CURSEG_COLD_NODE; 3389 } 3390 } 3391 3392 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) 3393 { 3394 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3395 struct extent_info ei = {}; 3396 3397 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { 3398 if (!ei.age) 3399 return NO_CHECK_TYPE; 3400 if (ei.age <= sbi->hot_data_age_threshold) 3401 return CURSEG_HOT_DATA; 3402 if (ei.age <= sbi->warm_data_age_threshold) 3403 return CURSEG_WARM_DATA; 3404 return CURSEG_COLD_DATA; 3405 } 3406 return NO_CHECK_TYPE; 3407 } 3408 3409 static int __get_segment_type_6(struct f2fs_io_info *fio) 3410 { 3411 if (fio->type == DATA) { 3412 struct inode *inode = fio->page->mapping->host; 3413 int type; 3414 3415 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3416 return CURSEG_COLD_DATA_PINNED; 3417 3418 if (page_private_gcing(fio->page)) { 3419 if (fio->sbi->am.atgc_enabled && 3420 (fio->io_type == FS_DATA_IO) && 3421 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3422 return CURSEG_ALL_DATA_ATGC; 3423 else 3424 return CURSEG_COLD_DATA; 3425 } 3426 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3427 return CURSEG_COLD_DATA; 3428 3429 type = __get_age_segment_type(inode, fio->page->index); 3430 if (type != NO_CHECK_TYPE) 3431 return type; 3432 3433 if (file_is_hot(inode) || 3434 is_inode_flag_set(inode, FI_HOT_DATA) || 3435 f2fs_is_cow_file(inode)) 3436 return CURSEG_HOT_DATA; 3437 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3438 } else { 3439 if (IS_DNODE(fio->page)) 3440 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3441 CURSEG_HOT_NODE; 3442 return CURSEG_COLD_NODE; 3443 } 3444 } 3445 3446 static int __get_segment_type(struct f2fs_io_info *fio) 3447 { 3448 int type = 0; 3449 3450 switch (F2FS_OPTION(fio->sbi).active_logs) { 3451 case 2: 3452 type = __get_segment_type_2(fio); 3453 break; 3454 case 4: 3455 type = __get_segment_type_4(fio); 3456 break; 3457 case 6: 3458 type = __get_segment_type_6(fio); 3459 break; 3460 default: 3461 f2fs_bug_on(fio->sbi, true); 3462 } 3463 3464 if (IS_HOT(type)) 3465 fio->temp = HOT; 3466 else if (IS_WARM(type)) 3467 fio->temp = WARM; 3468 else 3469 fio->temp = COLD; 3470 return type; 3471 } 3472 3473 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi, 3474 struct curseg_info *seg) 3475 { 3476 /* To allocate block chunks in different sizes, use random number */ 3477 if (--seg->fragment_remained_chunk > 0) 3478 return; 3479 3480 seg->fragment_remained_chunk = 3481 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 3482 seg->next_blkoff += 3483 get_random_u32_inclusive(1, sbi->max_fragment_hole); 3484 } 3485 3486 static void reset_curseg_fields(struct curseg_info *curseg) 3487 { 3488 curseg->inited = false; 3489 curseg->segno = NULL_SEGNO; 3490 curseg->next_segno = 0; 3491 } 3492 3493 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3494 block_t old_blkaddr, block_t *new_blkaddr, 3495 struct f2fs_summary *sum, int type, 3496 struct f2fs_io_info *fio) 3497 { 3498 struct sit_info *sit_i = SIT_I(sbi); 3499 struct curseg_info *curseg = CURSEG_I(sbi, type); 3500 unsigned long long old_mtime; 3501 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3502 struct seg_entry *se = NULL; 3503 bool segment_full = false; 3504 int ret = 0; 3505 3506 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3507 3508 mutex_lock(&curseg->curseg_mutex); 3509 down_write(&sit_i->sentry_lock); 3510 3511 if (curseg->segno == NULL_SEGNO) { 3512 ret = -ENOSPC; 3513 goto out_err; 3514 } 3515 3516 if (from_gc) { 3517 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3518 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3519 sanity_check_seg_type(sbi, se->type); 3520 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3521 } 3522 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3523 3524 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi)); 3525 3526 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3527 3528 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3529 if (curseg->alloc_type == SSR) { 3530 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg); 3531 } else { 3532 curseg->next_blkoff++; 3533 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 3534 f2fs_randomize_chunk(sbi, curseg); 3535 } 3536 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno)) 3537 segment_full = true; 3538 stat_inc_block_count(sbi, curseg); 3539 3540 if (from_gc) { 3541 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3542 } else { 3543 update_segment_mtime(sbi, old_blkaddr, 0); 3544 old_mtime = 0; 3545 } 3546 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3547 3548 /* 3549 * SIT information should be updated before segment allocation, 3550 * since SSR needs latest valid block information. 3551 */ 3552 update_sit_entry(sbi, *new_blkaddr, 1); 3553 update_sit_entry(sbi, old_blkaddr, -1); 3554 3555 /* 3556 * If the current segment is full, flush it out and replace it with a 3557 * new segment. 3558 */ 3559 if (segment_full) { 3560 if (type == CURSEG_COLD_DATA_PINNED && 3561 !((curseg->segno + 1) % sbi->segs_per_sec)) { 3562 reset_curseg_fields(curseg); 3563 goto skip_new_segment; 3564 } 3565 3566 if (from_gc) { 3567 ret = get_atssr_segment(sbi, type, se->type, 3568 AT_SSR, se->mtime); 3569 } else { 3570 if (need_new_seg(sbi, type)) 3571 ret = new_curseg(sbi, type, false); 3572 else 3573 ret = change_curseg(sbi, type); 3574 stat_inc_seg_type(sbi, curseg); 3575 } 3576 3577 if (ret) 3578 goto out_err; 3579 } 3580 3581 skip_new_segment: 3582 /* 3583 * segment dirty status should be updated after segment allocation, 3584 * so we just need to update status only one time after previous 3585 * segment being closed. 3586 */ 3587 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3588 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3589 3590 if (IS_DATASEG(curseg->seg_type)) 3591 atomic64_inc(&sbi->allocated_data_blocks); 3592 3593 up_write(&sit_i->sentry_lock); 3594 3595 if (page && IS_NODESEG(curseg->seg_type)) { 3596 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3597 3598 f2fs_inode_chksum_set(sbi, page); 3599 } 3600 3601 if (fio) { 3602 struct f2fs_bio_info *io; 3603 3604 INIT_LIST_HEAD(&fio->list); 3605 fio->in_list = 1; 3606 io = sbi->write_io[fio->type] + fio->temp; 3607 spin_lock(&io->io_lock); 3608 list_add_tail(&fio->list, &io->io_list); 3609 spin_unlock(&io->io_lock); 3610 } 3611 3612 mutex_unlock(&curseg->curseg_mutex); 3613 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3614 return 0; 3615 out_err: 3616 *new_blkaddr = NULL_ADDR; 3617 up_write(&sit_i->sentry_lock); 3618 mutex_unlock(&curseg->curseg_mutex); 3619 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3620 return ret; 3621 3622 } 3623 3624 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3625 block_t blkaddr, unsigned int blkcnt) 3626 { 3627 if (!f2fs_is_multi_device(sbi)) 3628 return; 3629 3630 while (1) { 3631 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3632 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3633 3634 /* update device state for fsync */ 3635 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3636 3637 /* update device state for checkpoint */ 3638 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3639 spin_lock(&sbi->dev_lock); 3640 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3641 spin_unlock(&sbi->dev_lock); 3642 } 3643 3644 if (blkcnt <= blks) 3645 break; 3646 blkcnt -= blks; 3647 blkaddr += blks; 3648 } 3649 } 3650 3651 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3652 { 3653 int type = __get_segment_type(fio); 3654 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3655 3656 if (keep_order) 3657 f2fs_down_read(&fio->sbi->io_order_lock); 3658 3659 if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3660 &fio->new_blkaddr, sum, type, fio)) { 3661 if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host)) 3662 fscrypt_finalize_bounce_page(&fio->encrypted_page); 3663 if (PageWriteback(fio->page)) 3664 end_page_writeback(fio->page); 3665 if (f2fs_in_warm_node_list(fio->sbi, fio->page)) 3666 f2fs_del_fsync_node_entry(fio->sbi, fio->page); 3667 goto out; 3668 } 3669 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3670 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr); 3671 3672 /* writeout dirty page into bdev */ 3673 f2fs_submit_page_write(fio); 3674 3675 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3676 out: 3677 if (keep_order) 3678 f2fs_up_read(&fio->sbi->io_order_lock); 3679 } 3680 3681 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3682 enum iostat_type io_type) 3683 { 3684 struct f2fs_io_info fio = { 3685 .sbi = sbi, 3686 .type = META, 3687 .temp = HOT, 3688 .op = REQ_OP_WRITE, 3689 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3690 .old_blkaddr = page->index, 3691 .new_blkaddr = page->index, 3692 .page = page, 3693 .encrypted_page = NULL, 3694 .in_list = 0, 3695 }; 3696 3697 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3698 fio.op_flags &= ~REQ_META; 3699 3700 set_page_writeback(page); 3701 f2fs_submit_page_write(&fio); 3702 3703 stat_inc_meta_count(sbi, page->index); 3704 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); 3705 } 3706 3707 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3708 { 3709 struct f2fs_summary sum; 3710 3711 set_summary(&sum, nid, 0, 0); 3712 do_write_page(&sum, fio); 3713 3714 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); 3715 } 3716 3717 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3718 struct f2fs_io_info *fio) 3719 { 3720 struct f2fs_sb_info *sbi = fio->sbi; 3721 struct f2fs_summary sum; 3722 3723 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3724 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) 3725 f2fs_update_age_extent_cache(dn); 3726 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3727 do_write_page(&sum, fio); 3728 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3729 3730 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); 3731 } 3732 3733 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3734 { 3735 int err; 3736 struct f2fs_sb_info *sbi = fio->sbi; 3737 unsigned int segno; 3738 3739 fio->new_blkaddr = fio->old_blkaddr; 3740 /* i/o temperature is needed for passing down write hints */ 3741 __get_segment_type(fio); 3742 3743 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3744 3745 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3746 set_sbi_flag(sbi, SBI_NEED_FSCK); 3747 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3748 __func__, segno); 3749 err = -EFSCORRUPTED; 3750 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 3751 goto drop_bio; 3752 } 3753 3754 if (f2fs_cp_error(sbi)) { 3755 err = -EIO; 3756 goto drop_bio; 3757 } 3758 3759 if (fio->post_read) 3760 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1); 3761 3762 stat_inc_inplace_blocks(fio->sbi); 3763 3764 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi)) 3765 err = f2fs_merge_page_bio(fio); 3766 else 3767 err = f2fs_submit_page_bio(fio); 3768 if (!err) { 3769 f2fs_update_device_state(fio->sbi, fio->ino, 3770 fio->new_blkaddr, 1); 3771 f2fs_update_iostat(fio->sbi, fio->page->mapping->host, 3772 fio->io_type, F2FS_BLKSIZE); 3773 } 3774 3775 return err; 3776 drop_bio: 3777 if (fio->bio && *(fio->bio)) { 3778 struct bio *bio = *(fio->bio); 3779 3780 bio->bi_status = BLK_STS_IOERR; 3781 bio_endio(bio); 3782 *(fio->bio) = NULL; 3783 } 3784 return err; 3785 } 3786 3787 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3788 unsigned int segno) 3789 { 3790 int i; 3791 3792 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3793 if (CURSEG_I(sbi, i)->segno == segno) 3794 break; 3795 } 3796 return i; 3797 } 3798 3799 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3800 block_t old_blkaddr, block_t new_blkaddr, 3801 bool recover_curseg, bool recover_newaddr, 3802 bool from_gc) 3803 { 3804 struct sit_info *sit_i = SIT_I(sbi); 3805 struct curseg_info *curseg; 3806 unsigned int segno, old_cursegno; 3807 struct seg_entry *se; 3808 int type; 3809 unsigned short old_blkoff; 3810 unsigned char old_alloc_type; 3811 3812 segno = GET_SEGNO(sbi, new_blkaddr); 3813 se = get_seg_entry(sbi, segno); 3814 type = se->type; 3815 3816 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3817 3818 if (!recover_curseg) { 3819 /* for recovery flow */ 3820 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3821 if (old_blkaddr == NULL_ADDR) 3822 type = CURSEG_COLD_DATA; 3823 else 3824 type = CURSEG_WARM_DATA; 3825 } 3826 } else { 3827 if (IS_CURSEG(sbi, segno)) { 3828 /* se->type is volatile as SSR allocation */ 3829 type = __f2fs_get_curseg(sbi, segno); 3830 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3831 } else { 3832 type = CURSEG_WARM_DATA; 3833 } 3834 } 3835 3836 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3837 curseg = CURSEG_I(sbi, type); 3838 3839 mutex_lock(&curseg->curseg_mutex); 3840 down_write(&sit_i->sentry_lock); 3841 3842 old_cursegno = curseg->segno; 3843 old_blkoff = curseg->next_blkoff; 3844 old_alloc_type = curseg->alloc_type; 3845 3846 /* change the current segment */ 3847 if (segno != curseg->segno) { 3848 curseg->next_segno = segno; 3849 if (change_curseg(sbi, type)) 3850 goto out_unlock; 3851 } 3852 3853 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3854 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3855 3856 if (!recover_curseg || recover_newaddr) { 3857 if (!from_gc) 3858 update_segment_mtime(sbi, new_blkaddr, 0); 3859 update_sit_entry(sbi, new_blkaddr, 1); 3860 } 3861 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3862 f2fs_invalidate_internal_cache(sbi, old_blkaddr); 3863 if (!from_gc) 3864 update_segment_mtime(sbi, old_blkaddr, 0); 3865 update_sit_entry(sbi, old_blkaddr, -1); 3866 } 3867 3868 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3869 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3870 3871 locate_dirty_segment(sbi, old_cursegno); 3872 3873 if (recover_curseg) { 3874 if (old_cursegno != curseg->segno) { 3875 curseg->next_segno = old_cursegno; 3876 if (change_curseg(sbi, type)) 3877 goto out_unlock; 3878 } 3879 curseg->next_blkoff = old_blkoff; 3880 curseg->alloc_type = old_alloc_type; 3881 } 3882 3883 out_unlock: 3884 up_write(&sit_i->sentry_lock); 3885 mutex_unlock(&curseg->curseg_mutex); 3886 f2fs_up_write(&SM_I(sbi)->curseg_lock); 3887 } 3888 3889 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3890 block_t old_addr, block_t new_addr, 3891 unsigned char version, bool recover_curseg, 3892 bool recover_newaddr) 3893 { 3894 struct f2fs_summary sum; 3895 3896 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3897 3898 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3899 recover_curseg, recover_newaddr, false); 3900 3901 f2fs_update_data_blkaddr(dn, new_addr); 3902 } 3903 3904 void f2fs_wait_on_page_writeback(struct page *page, 3905 enum page_type type, bool ordered, bool locked) 3906 { 3907 if (PageWriteback(page)) { 3908 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3909 3910 /* submit cached LFS IO */ 3911 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3912 /* submit cached IPU IO */ 3913 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3914 if (ordered) { 3915 wait_on_page_writeback(page); 3916 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3917 } else { 3918 wait_for_stable_page(page); 3919 } 3920 } 3921 } 3922 3923 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3924 { 3925 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3926 struct page *cpage; 3927 3928 if (!f2fs_post_read_required(inode)) 3929 return; 3930 3931 if (!__is_valid_data_blkaddr(blkaddr)) 3932 return; 3933 3934 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3935 if (cpage) { 3936 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3937 f2fs_put_page(cpage, 1); 3938 } 3939 } 3940 3941 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3942 block_t len) 3943 { 3944 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3945 block_t i; 3946 3947 if (!f2fs_post_read_required(inode)) 3948 return; 3949 3950 for (i = 0; i < len; i++) 3951 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3952 3953 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len); 3954 } 3955 3956 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3957 { 3958 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3959 struct curseg_info *seg_i; 3960 unsigned char *kaddr; 3961 struct page *page; 3962 block_t start; 3963 int i, j, offset; 3964 3965 start = start_sum_block(sbi); 3966 3967 page = f2fs_get_meta_page(sbi, start++); 3968 if (IS_ERR(page)) 3969 return PTR_ERR(page); 3970 kaddr = (unsigned char *)page_address(page); 3971 3972 /* Step 1: restore nat cache */ 3973 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3974 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3975 3976 /* Step 2: restore sit cache */ 3977 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3978 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3979 offset = 2 * SUM_JOURNAL_SIZE; 3980 3981 /* Step 3: restore summary entries */ 3982 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3983 unsigned short blk_off; 3984 unsigned int segno; 3985 3986 seg_i = CURSEG_I(sbi, i); 3987 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3988 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3989 seg_i->next_segno = segno; 3990 reset_curseg(sbi, i, 0); 3991 seg_i->alloc_type = ckpt->alloc_type[i]; 3992 seg_i->next_blkoff = blk_off; 3993 3994 if (seg_i->alloc_type == SSR) 3995 blk_off = BLKS_PER_SEG(sbi); 3996 3997 for (j = 0; j < blk_off; j++) { 3998 struct f2fs_summary *s; 3999 4000 s = (struct f2fs_summary *)(kaddr + offset); 4001 seg_i->sum_blk->entries[j] = *s; 4002 offset += SUMMARY_SIZE; 4003 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 4004 SUM_FOOTER_SIZE) 4005 continue; 4006 4007 f2fs_put_page(page, 1); 4008 page = NULL; 4009 4010 page = f2fs_get_meta_page(sbi, start++); 4011 if (IS_ERR(page)) 4012 return PTR_ERR(page); 4013 kaddr = (unsigned char *)page_address(page); 4014 offset = 0; 4015 } 4016 } 4017 f2fs_put_page(page, 1); 4018 return 0; 4019 } 4020 4021 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 4022 { 4023 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4024 struct f2fs_summary_block *sum; 4025 struct curseg_info *curseg; 4026 struct page *new; 4027 unsigned short blk_off; 4028 unsigned int segno = 0; 4029 block_t blk_addr = 0; 4030 int err = 0; 4031 4032 /* get segment number and block addr */ 4033 if (IS_DATASEG(type)) { 4034 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 4035 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 4036 CURSEG_HOT_DATA]); 4037 if (__exist_node_summaries(sbi)) 4038 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 4039 else 4040 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 4041 } else { 4042 segno = le32_to_cpu(ckpt->cur_node_segno[type - 4043 CURSEG_HOT_NODE]); 4044 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 4045 CURSEG_HOT_NODE]); 4046 if (__exist_node_summaries(sbi)) 4047 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 4048 type - CURSEG_HOT_NODE); 4049 else 4050 blk_addr = GET_SUM_BLOCK(sbi, segno); 4051 } 4052 4053 new = f2fs_get_meta_page(sbi, blk_addr); 4054 if (IS_ERR(new)) 4055 return PTR_ERR(new); 4056 sum = (struct f2fs_summary_block *)page_address(new); 4057 4058 if (IS_NODESEG(type)) { 4059 if (__exist_node_summaries(sbi)) { 4060 struct f2fs_summary *ns = &sum->entries[0]; 4061 int i; 4062 4063 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) { 4064 ns->version = 0; 4065 ns->ofs_in_node = 0; 4066 } 4067 } else { 4068 err = f2fs_restore_node_summary(sbi, segno, sum); 4069 if (err) 4070 goto out; 4071 } 4072 } 4073 4074 /* set uncompleted segment to curseg */ 4075 curseg = CURSEG_I(sbi, type); 4076 mutex_lock(&curseg->curseg_mutex); 4077 4078 /* update journal info */ 4079 down_write(&curseg->journal_rwsem); 4080 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 4081 up_write(&curseg->journal_rwsem); 4082 4083 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 4084 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 4085 curseg->next_segno = segno; 4086 reset_curseg(sbi, type, 0); 4087 curseg->alloc_type = ckpt->alloc_type[type]; 4088 curseg->next_blkoff = blk_off; 4089 mutex_unlock(&curseg->curseg_mutex); 4090 out: 4091 f2fs_put_page(new, 1); 4092 return err; 4093 } 4094 4095 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 4096 { 4097 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 4098 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 4099 int type = CURSEG_HOT_DATA; 4100 int err; 4101 4102 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 4103 int npages = f2fs_npages_for_summary_flush(sbi, true); 4104 4105 if (npages >= 2) 4106 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 4107 META_CP, true); 4108 4109 /* restore for compacted data summary */ 4110 err = read_compacted_summaries(sbi); 4111 if (err) 4112 return err; 4113 type = CURSEG_HOT_NODE; 4114 } 4115 4116 if (__exist_node_summaries(sbi)) 4117 f2fs_ra_meta_pages(sbi, 4118 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 4119 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 4120 4121 for (; type <= CURSEG_COLD_NODE; type++) { 4122 err = read_normal_summaries(sbi, type); 4123 if (err) 4124 return err; 4125 } 4126 4127 /* sanity check for summary blocks */ 4128 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 4129 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 4130 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 4131 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 4132 return -EINVAL; 4133 } 4134 4135 return 0; 4136 } 4137 4138 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 4139 { 4140 struct page *page; 4141 unsigned char *kaddr; 4142 struct f2fs_summary *summary; 4143 struct curseg_info *seg_i; 4144 int written_size = 0; 4145 int i, j; 4146 4147 page = f2fs_grab_meta_page(sbi, blkaddr++); 4148 kaddr = (unsigned char *)page_address(page); 4149 memset(kaddr, 0, PAGE_SIZE); 4150 4151 /* Step 1: write nat cache */ 4152 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4153 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 4154 written_size += SUM_JOURNAL_SIZE; 4155 4156 /* Step 2: write sit cache */ 4157 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4158 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 4159 written_size += SUM_JOURNAL_SIZE; 4160 4161 /* Step 3: write summary entries */ 4162 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4163 seg_i = CURSEG_I(sbi, i); 4164 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) { 4165 if (!page) { 4166 page = f2fs_grab_meta_page(sbi, blkaddr++); 4167 kaddr = (unsigned char *)page_address(page); 4168 memset(kaddr, 0, PAGE_SIZE); 4169 written_size = 0; 4170 } 4171 summary = (struct f2fs_summary *)(kaddr + written_size); 4172 *summary = seg_i->sum_blk->entries[j]; 4173 written_size += SUMMARY_SIZE; 4174 4175 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 4176 SUM_FOOTER_SIZE) 4177 continue; 4178 4179 set_page_dirty(page); 4180 f2fs_put_page(page, 1); 4181 page = NULL; 4182 } 4183 } 4184 if (page) { 4185 set_page_dirty(page); 4186 f2fs_put_page(page, 1); 4187 } 4188 } 4189 4190 static void write_normal_summaries(struct f2fs_sb_info *sbi, 4191 block_t blkaddr, int type) 4192 { 4193 int i, end; 4194 4195 if (IS_DATASEG(type)) 4196 end = type + NR_CURSEG_DATA_TYPE; 4197 else 4198 end = type + NR_CURSEG_NODE_TYPE; 4199 4200 for (i = type; i < end; i++) 4201 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4202 } 4203 4204 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4205 { 4206 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4207 write_compacted_summaries(sbi, start_blk); 4208 else 4209 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4210 } 4211 4212 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4213 { 4214 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4215 } 4216 4217 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4218 unsigned int val, int alloc) 4219 { 4220 int i; 4221 4222 if (type == NAT_JOURNAL) { 4223 for (i = 0; i < nats_in_cursum(journal); i++) { 4224 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4225 return i; 4226 } 4227 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4228 return update_nats_in_cursum(journal, 1); 4229 } else if (type == SIT_JOURNAL) { 4230 for (i = 0; i < sits_in_cursum(journal); i++) 4231 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4232 return i; 4233 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4234 return update_sits_in_cursum(journal, 1); 4235 } 4236 return -1; 4237 } 4238 4239 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4240 unsigned int segno) 4241 { 4242 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4243 } 4244 4245 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4246 unsigned int start) 4247 { 4248 struct sit_info *sit_i = SIT_I(sbi); 4249 struct page *page; 4250 pgoff_t src_off, dst_off; 4251 4252 src_off = current_sit_addr(sbi, start); 4253 dst_off = next_sit_addr(sbi, src_off); 4254 4255 page = f2fs_grab_meta_page(sbi, dst_off); 4256 seg_info_to_sit_page(sbi, page, start); 4257 4258 set_page_dirty(page); 4259 set_to_next_sit(sit_i, start); 4260 4261 return page; 4262 } 4263 4264 static struct sit_entry_set *grab_sit_entry_set(void) 4265 { 4266 struct sit_entry_set *ses = 4267 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4268 GFP_NOFS, true, NULL); 4269 4270 ses->entry_cnt = 0; 4271 INIT_LIST_HEAD(&ses->set_list); 4272 return ses; 4273 } 4274 4275 static void release_sit_entry_set(struct sit_entry_set *ses) 4276 { 4277 list_del(&ses->set_list); 4278 kmem_cache_free(sit_entry_set_slab, ses); 4279 } 4280 4281 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4282 struct list_head *head) 4283 { 4284 struct sit_entry_set *next = ses; 4285 4286 if (list_is_last(&ses->set_list, head)) 4287 return; 4288 4289 list_for_each_entry_continue(next, head, set_list) 4290 if (ses->entry_cnt <= next->entry_cnt) { 4291 list_move_tail(&ses->set_list, &next->set_list); 4292 return; 4293 } 4294 4295 list_move_tail(&ses->set_list, head); 4296 } 4297 4298 static void add_sit_entry(unsigned int segno, struct list_head *head) 4299 { 4300 struct sit_entry_set *ses; 4301 unsigned int start_segno = START_SEGNO(segno); 4302 4303 list_for_each_entry(ses, head, set_list) { 4304 if (ses->start_segno == start_segno) { 4305 ses->entry_cnt++; 4306 adjust_sit_entry_set(ses, head); 4307 return; 4308 } 4309 } 4310 4311 ses = grab_sit_entry_set(); 4312 4313 ses->start_segno = start_segno; 4314 ses->entry_cnt++; 4315 list_add(&ses->set_list, head); 4316 } 4317 4318 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4319 { 4320 struct f2fs_sm_info *sm_info = SM_I(sbi); 4321 struct list_head *set_list = &sm_info->sit_entry_set; 4322 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4323 unsigned int segno; 4324 4325 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4326 add_sit_entry(segno, set_list); 4327 } 4328 4329 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4330 { 4331 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4332 struct f2fs_journal *journal = curseg->journal; 4333 int i; 4334 4335 down_write(&curseg->journal_rwsem); 4336 for (i = 0; i < sits_in_cursum(journal); i++) { 4337 unsigned int segno; 4338 bool dirtied; 4339 4340 segno = le32_to_cpu(segno_in_journal(journal, i)); 4341 dirtied = __mark_sit_entry_dirty(sbi, segno); 4342 4343 if (!dirtied) 4344 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4345 } 4346 update_sits_in_cursum(journal, -i); 4347 up_write(&curseg->journal_rwsem); 4348 } 4349 4350 /* 4351 * CP calls this function, which flushes SIT entries including sit_journal, 4352 * and moves prefree segs to free segs. 4353 */ 4354 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4355 { 4356 struct sit_info *sit_i = SIT_I(sbi); 4357 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4358 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4359 struct f2fs_journal *journal = curseg->journal; 4360 struct sit_entry_set *ses, *tmp; 4361 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4362 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4363 struct seg_entry *se; 4364 4365 down_write(&sit_i->sentry_lock); 4366 4367 if (!sit_i->dirty_sentries) 4368 goto out; 4369 4370 /* 4371 * add and account sit entries of dirty bitmap in sit entry 4372 * set temporarily 4373 */ 4374 add_sits_in_set(sbi); 4375 4376 /* 4377 * if there are no enough space in journal to store dirty sit 4378 * entries, remove all entries from journal and add and account 4379 * them in sit entry set. 4380 */ 4381 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4382 !to_journal) 4383 remove_sits_in_journal(sbi); 4384 4385 /* 4386 * there are two steps to flush sit entries: 4387 * #1, flush sit entries to journal in current cold data summary block. 4388 * #2, flush sit entries to sit page. 4389 */ 4390 list_for_each_entry_safe(ses, tmp, head, set_list) { 4391 struct page *page = NULL; 4392 struct f2fs_sit_block *raw_sit = NULL; 4393 unsigned int start_segno = ses->start_segno; 4394 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4395 (unsigned long)MAIN_SEGS(sbi)); 4396 unsigned int segno = start_segno; 4397 4398 if (to_journal && 4399 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4400 to_journal = false; 4401 4402 if (to_journal) { 4403 down_write(&curseg->journal_rwsem); 4404 } else { 4405 page = get_next_sit_page(sbi, start_segno); 4406 raw_sit = page_address(page); 4407 } 4408 4409 /* flush dirty sit entries in region of current sit set */ 4410 for_each_set_bit_from(segno, bitmap, end) { 4411 int offset, sit_offset; 4412 4413 se = get_seg_entry(sbi, segno); 4414 #ifdef CONFIG_F2FS_CHECK_FS 4415 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4416 SIT_VBLOCK_MAP_SIZE)) 4417 f2fs_bug_on(sbi, 1); 4418 #endif 4419 4420 /* add discard candidates */ 4421 if (!(cpc->reason & CP_DISCARD)) { 4422 cpc->trim_start = segno; 4423 add_discard_addrs(sbi, cpc, false); 4424 } 4425 4426 if (to_journal) { 4427 offset = f2fs_lookup_journal_in_cursum(journal, 4428 SIT_JOURNAL, segno, 1); 4429 f2fs_bug_on(sbi, offset < 0); 4430 segno_in_journal(journal, offset) = 4431 cpu_to_le32(segno); 4432 seg_info_to_raw_sit(se, 4433 &sit_in_journal(journal, offset)); 4434 check_block_count(sbi, segno, 4435 &sit_in_journal(journal, offset)); 4436 } else { 4437 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4438 seg_info_to_raw_sit(se, 4439 &raw_sit->entries[sit_offset]); 4440 check_block_count(sbi, segno, 4441 &raw_sit->entries[sit_offset]); 4442 } 4443 4444 __clear_bit(segno, bitmap); 4445 sit_i->dirty_sentries--; 4446 ses->entry_cnt--; 4447 } 4448 4449 if (to_journal) 4450 up_write(&curseg->journal_rwsem); 4451 else 4452 f2fs_put_page(page, 1); 4453 4454 f2fs_bug_on(sbi, ses->entry_cnt); 4455 release_sit_entry_set(ses); 4456 } 4457 4458 f2fs_bug_on(sbi, !list_empty(head)); 4459 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4460 out: 4461 if (cpc->reason & CP_DISCARD) { 4462 __u64 trim_start = cpc->trim_start; 4463 4464 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4465 add_discard_addrs(sbi, cpc, false); 4466 4467 cpc->trim_start = trim_start; 4468 } 4469 up_write(&sit_i->sentry_lock); 4470 4471 set_prefree_as_free_segments(sbi); 4472 } 4473 4474 static int build_sit_info(struct f2fs_sb_info *sbi) 4475 { 4476 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4477 struct sit_info *sit_i; 4478 unsigned int sit_segs, start; 4479 char *src_bitmap, *bitmap; 4480 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4481 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4482 4483 /* allocate memory for SIT information */ 4484 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4485 if (!sit_i) 4486 return -ENOMEM; 4487 4488 SM_I(sbi)->sit_info = sit_i; 4489 4490 sit_i->sentries = 4491 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4492 MAIN_SEGS(sbi)), 4493 GFP_KERNEL); 4494 if (!sit_i->sentries) 4495 return -ENOMEM; 4496 4497 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4498 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4499 GFP_KERNEL); 4500 if (!sit_i->dirty_sentries_bitmap) 4501 return -ENOMEM; 4502 4503 #ifdef CONFIG_F2FS_CHECK_FS 4504 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4505 #else 4506 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4507 #endif 4508 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4509 if (!sit_i->bitmap) 4510 return -ENOMEM; 4511 4512 bitmap = sit_i->bitmap; 4513 4514 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4515 sit_i->sentries[start].cur_valid_map = bitmap; 4516 bitmap += SIT_VBLOCK_MAP_SIZE; 4517 4518 sit_i->sentries[start].ckpt_valid_map = bitmap; 4519 bitmap += SIT_VBLOCK_MAP_SIZE; 4520 4521 #ifdef CONFIG_F2FS_CHECK_FS 4522 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4523 bitmap += SIT_VBLOCK_MAP_SIZE; 4524 #endif 4525 4526 if (discard_map) { 4527 sit_i->sentries[start].discard_map = bitmap; 4528 bitmap += SIT_VBLOCK_MAP_SIZE; 4529 } 4530 } 4531 4532 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4533 if (!sit_i->tmp_map) 4534 return -ENOMEM; 4535 4536 if (__is_large_section(sbi)) { 4537 sit_i->sec_entries = 4538 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4539 MAIN_SECS(sbi)), 4540 GFP_KERNEL); 4541 if (!sit_i->sec_entries) 4542 return -ENOMEM; 4543 } 4544 4545 /* get information related with SIT */ 4546 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4547 4548 /* setup SIT bitmap from ckeckpoint pack */ 4549 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4550 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4551 4552 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4553 if (!sit_i->sit_bitmap) 4554 return -ENOMEM; 4555 4556 #ifdef CONFIG_F2FS_CHECK_FS 4557 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4558 sit_bitmap_size, GFP_KERNEL); 4559 if (!sit_i->sit_bitmap_mir) 4560 return -ENOMEM; 4561 4562 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4563 main_bitmap_size, GFP_KERNEL); 4564 if (!sit_i->invalid_segmap) 4565 return -ENOMEM; 4566 #endif 4567 4568 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4569 sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs); 4570 sit_i->written_valid_blocks = 0; 4571 sit_i->bitmap_size = sit_bitmap_size; 4572 sit_i->dirty_sentries = 0; 4573 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4574 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4575 sit_i->mounted_time = ktime_get_boottime_seconds(); 4576 init_rwsem(&sit_i->sentry_lock); 4577 return 0; 4578 } 4579 4580 static int build_free_segmap(struct f2fs_sb_info *sbi) 4581 { 4582 struct free_segmap_info *free_i; 4583 unsigned int bitmap_size, sec_bitmap_size; 4584 4585 /* allocate memory for free segmap information */ 4586 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4587 if (!free_i) 4588 return -ENOMEM; 4589 4590 SM_I(sbi)->free_info = free_i; 4591 4592 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4593 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4594 if (!free_i->free_segmap) 4595 return -ENOMEM; 4596 4597 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4598 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4599 if (!free_i->free_secmap) 4600 return -ENOMEM; 4601 4602 /* set all segments as dirty temporarily */ 4603 memset(free_i->free_segmap, 0xff, bitmap_size); 4604 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4605 4606 /* init free segmap information */ 4607 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4608 free_i->free_segments = 0; 4609 free_i->free_sections = 0; 4610 spin_lock_init(&free_i->segmap_lock); 4611 return 0; 4612 } 4613 4614 static int build_curseg(struct f2fs_sb_info *sbi) 4615 { 4616 struct curseg_info *array; 4617 int i; 4618 4619 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4620 sizeof(*array)), GFP_KERNEL); 4621 if (!array) 4622 return -ENOMEM; 4623 4624 SM_I(sbi)->curseg_array = array; 4625 4626 for (i = 0; i < NO_CHECK_TYPE; i++) { 4627 mutex_init(&array[i].curseg_mutex); 4628 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4629 if (!array[i].sum_blk) 4630 return -ENOMEM; 4631 init_rwsem(&array[i].journal_rwsem); 4632 array[i].journal = f2fs_kzalloc(sbi, 4633 sizeof(struct f2fs_journal), GFP_KERNEL); 4634 if (!array[i].journal) 4635 return -ENOMEM; 4636 if (i < NR_PERSISTENT_LOG) 4637 array[i].seg_type = CURSEG_HOT_DATA + i; 4638 else if (i == CURSEG_COLD_DATA_PINNED) 4639 array[i].seg_type = CURSEG_COLD_DATA; 4640 else if (i == CURSEG_ALL_DATA_ATGC) 4641 array[i].seg_type = CURSEG_COLD_DATA; 4642 reset_curseg_fields(&array[i]); 4643 } 4644 return restore_curseg_summaries(sbi); 4645 } 4646 4647 static int build_sit_entries(struct f2fs_sb_info *sbi) 4648 { 4649 struct sit_info *sit_i = SIT_I(sbi); 4650 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4651 struct f2fs_journal *journal = curseg->journal; 4652 struct seg_entry *se; 4653 struct f2fs_sit_entry sit; 4654 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4655 unsigned int i, start, end; 4656 unsigned int readed, start_blk = 0; 4657 int err = 0; 4658 block_t sit_valid_blocks[2] = {0, 0}; 4659 4660 do { 4661 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4662 META_SIT, true); 4663 4664 start = start_blk * sit_i->sents_per_block; 4665 end = (start_blk + readed) * sit_i->sents_per_block; 4666 4667 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4668 struct f2fs_sit_block *sit_blk; 4669 struct page *page; 4670 4671 se = &sit_i->sentries[start]; 4672 page = get_current_sit_page(sbi, start); 4673 if (IS_ERR(page)) 4674 return PTR_ERR(page); 4675 sit_blk = (struct f2fs_sit_block *)page_address(page); 4676 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4677 f2fs_put_page(page, 1); 4678 4679 err = check_block_count(sbi, start, &sit); 4680 if (err) 4681 return err; 4682 seg_info_from_raw_sit(se, &sit); 4683 4684 if (se->type >= NR_PERSISTENT_LOG) { 4685 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4686 se->type, start); 4687 f2fs_handle_error(sbi, 4688 ERROR_INCONSISTENT_SUM_TYPE); 4689 return -EFSCORRUPTED; 4690 } 4691 4692 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4693 4694 if (!f2fs_block_unit_discard(sbi)) 4695 goto init_discard_map_done; 4696 4697 /* build discard map only one time */ 4698 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4699 memset(se->discard_map, 0xff, 4700 SIT_VBLOCK_MAP_SIZE); 4701 goto init_discard_map_done; 4702 } 4703 memcpy(se->discard_map, se->cur_valid_map, 4704 SIT_VBLOCK_MAP_SIZE); 4705 sbi->discard_blks += BLKS_PER_SEG(sbi) - 4706 se->valid_blocks; 4707 init_discard_map_done: 4708 if (__is_large_section(sbi)) 4709 get_sec_entry(sbi, start)->valid_blocks += 4710 se->valid_blocks; 4711 } 4712 start_blk += readed; 4713 } while (start_blk < sit_blk_cnt); 4714 4715 down_read(&curseg->journal_rwsem); 4716 for (i = 0; i < sits_in_cursum(journal); i++) { 4717 unsigned int old_valid_blocks; 4718 4719 start = le32_to_cpu(segno_in_journal(journal, i)); 4720 if (start >= MAIN_SEGS(sbi)) { 4721 f2fs_err(sbi, "Wrong journal entry on segno %u", 4722 start); 4723 err = -EFSCORRUPTED; 4724 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); 4725 break; 4726 } 4727 4728 se = &sit_i->sentries[start]; 4729 sit = sit_in_journal(journal, i); 4730 4731 old_valid_blocks = se->valid_blocks; 4732 4733 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4734 4735 err = check_block_count(sbi, start, &sit); 4736 if (err) 4737 break; 4738 seg_info_from_raw_sit(se, &sit); 4739 4740 if (se->type >= NR_PERSISTENT_LOG) { 4741 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4742 se->type, start); 4743 err = -EFSCORRUPTED; 4744 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4745 break; 4746 } 4747 4748 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4749 4750 if (f2fs_block_unit_discard(sbi)) { 4751 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4752 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4753 } else { 4754 memcpy(se->discard_map, se->cur_valid_map, 4755 SIT_VBLOCK_MAP_SIZE); 4756 sbi->discard_blks += old_valid_blocks; 4757 sbi->discard_blks -= se->valid_blocks; 4758 } 4759 } 4760 4761 if (__is_large_section(sbi)) { 4762 get_sec_entry(sbi, start)->valid_blocks += 4763 se->valid_blocks; 4764 get_sec_entry(sbi, start)->valid_blocks -= 4765 old_valid_blocks; 4766 } 4767 } 4768 up_read(&curseg->journal_rwsem); 4769 4770 if (err) 4771 return err; 4772 4773 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4774 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4775 sit_valid_blocks[NODE], valid_node_count(sbi)); 4776 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); 4777 return -EFSCORRUPTED; 4778 } 4779 4780 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4781 valid_user_blocks(sbi)) { 4782 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4783 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4784 valid_user_blocks(sbi)); 4785 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); 4786 return -EFSCORRUPTED; 4787 } 4788 4789 return 0; 4790 } 4791 4792 static void init_free_segmap(struct f2fs_sb_info *sbi) 4793 { 4794 unsigned int start; 4795 int type; 4796 struct seg_entry *sentry; 4797 4798 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4799 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4800 continue; 4801 sentry = get_seg_entry(sbi, start); 4802 if (!sentry->valid_blocks) 4803 __set_free(sbi, start); 4804 else 4805 SIT_I(sbi)->written_valid_blocks += 4806 sentry->valid_blocks; 4807 } 4808 4809 /* set use the current segments */ 4810 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4811 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4812 4813 __set_test_and_inuse(sbi, curseg_t->segno); 4814 } 4815 } 4816 4817 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4818 { 4819 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4820 struct free_segmap_info *free_i = FREE_I(sbi); 4821 unsigned int segno = 0, offset = 0, secno; 4822 block_t valid_blocks, usable_blks_in_seg; 4823 4824 while (1) { 4825 /* find dirty segment based on free segmap */ 4826 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4827 if (segno >= MAIN_SEGS(sbi)) 4828 break; 4829 offset = segno + 1; 4830 valid_blocks = get_valid_blocks(sbi, segno, false); 4831 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4832 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4833 continue; 4834 if (valid_blocks > usable_blks_in_seg) { 4835 f2fs_bug_on(sbi, 1); 4836 continue; 4837 } 4838 mutex_lock(&dirty_i->seglist_lock); 4839 __locate_dirty_segment(sbi, segno, DIRTY); 4840 mutex_unlock(&dirty_i->seglist_lock); 4841 } 4842 4843 if (!__is_large_section(sbi)) 4844 return; 4845 4846 mutex_lock(&dirty_i->seglist_lock); 4847 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { 4848 valid_blocks = get_valid_blocks(sbi, segno, true); 4849 secno = GET_SEC_FROM_SEG(sbi, segno); 4850 4851 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 4852 continue; 4853 if (IS_CURSEC(sbi, secno)) 4854 continue; 4855 set_bit(secno, dirty_i->dirty_secmap); 4856 } 4857 mutex_unlock(&dirty_i->seglist_lock); 4858 } 4859 4860 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4861 { 4862 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4863 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4864 4865 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4866 if (!dirty_i->victim_secmap) 4867 return -ENOMEM; 4868 4869 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4870 if (!dirty_i->pinned_secmap) 4871 return -ENOMEM; 4872 4873 dirty_i->pinned_secmap_cnt = 0; 4874 dirty_i->enable_pin_section = true; 4875 return 0; 4876 } 4877 4878 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4879 { 4880 struct dirty_seglist_info *dirty_i; 4881 unsigned int bitmap_size, i; 4882 4883 /* allocate memory for dirty segments list information */ 4884 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4885 GFP_KERNEL); 4886 if (!dirty_i) 4887 return -ENOMEM; 4888 4889 SM_I(sbi)->dirty_info = dirty_i; 4890 mutex_init(&dirty_i->seglist_lock); 4891 4892 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4893 4894 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4895 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4896 GFP_KERNEL); 4897 if (!dirty_i->dirty_segmap[i]) 4898 return -ENOMEM; 4899 } 4900 4901 if (__is_large_section(sbi)) { 4902 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4903 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4904 bitmap_size, GFP_KERNEL); 4905 if (!dirty_i->dirty_secmap) 4906 return -ENOMEM; 4907 } 4908 4909 init_dirty_segmap(sbi); 4910 return init_victim_secmap(sbi); 4911 } 4912 4913 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4914 { 4915 int i; 4916 4917 /* 4918 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4919 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4920 */ 4921 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4922 struct curseg_info *curseg = CURSEG_I(sbi, i); 4923 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4924 unsigned int blkofs = curseg->next_blkoff; 4925 4926 if (f2fs_sb_has_readonly(sbi) && 4927 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4928 continue; 4929 4930 sanity_check_seg_type(sbi, curseg->seg_type); 4931 4932 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 4933 f2fs_err(sbi, 4934 "Current segment has invalid alloc_type:%d", 4935 curseg->alloc_type); 4936 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4937 return -EFSCORRUPTED; 4938 } 4939 4940 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4941 goto out; 4942 4943 if (curseg->alloc_type == SSR) 4944 continue; 4945 4946 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) { 4947 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4948 continue; 4949 out: 4950 f2fs_err(sbi, 4951 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4952 i, curseg->segno, curseg->alloc_type, 4953 curseg->next_blkoff, blkofs); 4954 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4955 return -EFSCORRUPTED; 4956 } 4957 } 4958 return 0; 4959 } 4960 4961 #ifdef CONFIG_BLK_DEV_ZONED 4962 static const char *f2fs_zone_status[BLK_ZONE_COND_OFFLINE + 1] = { 4963 [BLK_ZONE_COND_NOT_WP] = "NOT_WP", 4964 [BLK_ZONE_COND_EMPTY] = "EMPTY", 4965 [BLK_ZONE_COND_IMP_OPEN] = "IMPLICIT_OPEN", 4966 [BLK_ZONE_COND_EXP_OPEN] = "EXPLICIT_OPEN", 4967 [BLK_ZONE_COND_CLOSED] = "CLOSED", 4968 [BLK_ZONE_COND_READONLY] = "READONLY", 4969 [BLK_ZONE_COND_FULL] = "FULL", 4970 [BLK_ZONE_COND_OFFLINE] = "OFFLINE", 4971 }; 4972 4973 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4974 struct f2fs_dev_info *fdev, 4975 struct blk_zone *zone) 4976 { 4977 unsigned int zone_segno; 4978 block_t zone_block, valid_block_cnt; 4979 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4980 int ret; 4981 unsigned int nofs_flags; 4982 4983 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4984 return 0; 4985 4986 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4987 zone_segno = GET_SEGNO(sbi, zone_block); 4988 4989 /* 4990 * Skip check of zones cursegs point to, since 4991 * fix_curseg_write_pointer() checks them. 4992 */ 4993 if (zone_segno >= MAIN_SEGS(sbi)) 4994 return 0; 4995 4996 /* 4997 * Get # of valid block of the zone. 4998 */ 4999 valid_block_cnt = get_valid_blocks(sbi, zone_segno, true); 5000 if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) { 5001 f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]", 5002 zone_segno, valid_block_cnt, 5003 f2fs_zone_status[zone->cond]); 5004 return 0; 5005 } 5006 5007 if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) || 5008 (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL)) 5009 return 0; 5010 5011 if (!valid_block_cnt) { 5012 f2fs_notice(sbi, "Zone without valid block has non-zero write " 5013 "pointer. Reset the write pointer: cond[%s]", 5014 f2fs_zone_status[zone->cond]); 5015 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 5016 zone->len >> log_sectors_per_block); 5017 if (ret) 5018 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5019 fdev->path, ret); 5020 return ret; 5021 } 5022 5023 /* 5024 * If there are valid blocks and the write pointer doesn't match 5025 * with them, we need to report the inconsistency and fill 5026 * the zone till the end to close the zone. This inconsistency 5027 * does not cause write error because the zone will not be 5028 * selected for write operation until it get discarded. 5029 */ 5030 f2fs_notice(sbi, "Valid blocks are not aligned with write " 5031 "pointer: valid block[0x%x,0x%x] cond[%s]", 5032 zone_segno, valid_block_cnt, f2fs_zone_status[zone->cond]); 5033 5034 nofs_flags = memalloc_nofs_save(); 5035 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH, 5036 zone->start, zone->len); 5037 memalloc_nofs_restore(nofs_flags); 5038 if (ret == -EOPNOTSUPP) { 5039 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp, 5040 zone->len - (zone->wp - zone->start), 5041 GFP_NOFS, 0); 5042 if (ret) 5043 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)", 5044 fdev->path, ret); 5045 } else if (ret) { 5046 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)", 5047 fdev->path, ret); 5048 } 5049 5050 return ret; 5051 } 5052 5053 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 5054 block_t zone_blkaddr) 5055 { 5056 int i; 5057 5058 for (i = 0; i < sbi->s_ndevs; i++) { 5059 if (!bdev_is_zoned(FDEV(i).bdev)) 5060 continue; 5061 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 5062 zone_blkaddr <= FDEV(i).end_blk)) 5063 return &FDEV(i); 5064 } 5065 5066 return NULL; 5067 } 5068 5069 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 5070 void *data) 5071 { 5072 memcpy(data, zone, sizeof(struct blk_zone)); 5073 return 0; 5074 } 5075 5076 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 5077 { 5078 struct curseg_info *cs = CURSEG_I(sbi, type); 5079 struct f2fs_dev_info *zbd; 5080 struct blk_zone zone; 5081 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 5082 block_t cs_zone_block, wp_block; 5083 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 5084 sector_t zone_sector; 5085 int err; 5086 5087 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5088 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5089 5090 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5091 if (!zbd) 5092 return 0; 5093 5094 /* report zone for the sector the curseg points to */ 5095 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5096 << log_sectors_per_block; 5097 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5098 report_one_zone_cb, &zone); 5099 if (err != 1) { 5100 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5101 zbd->path, err); 5102 return err; 5103 } 5104 5105 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5106 return 0; 5107 5108 /* 5109 * When safely unmounted in the previous mount, we could use current 5110 * segments. Otherwise, allocate new sections. 5111 */ 5112 if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 5113 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 5114 wp_segno = GET_SEGNO(sbi, wp_block); 5115 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 5116 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 5117 5118 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 5119 wp_sector_off == 0) 5120 return 0; 5121 5122 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 5123 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno, 5124 cs->next_blkoff, wp_segno, wp_blkoff); 5125 } 5126 5127 /* Allocate a new section if it's not new. */ 5128 if (cs->next_blkoff) { 5129 unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff; 5130 5131 f2fs_allocate_new_section(sbi, type, true); 5132 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 5133 "[0x%x,0x%x] -> [0x%x,0x%x]", 5134 type, old_segno, old_blkoff, 5135 cs->segno, cs->next_blkoff); 5136 } 5137 5138 /* check consistency of the zone curseg pointed to */ 5139 if (check_zone_write_pointer(sbi, zbd, &zone)) 5140 return -EIO; 5141 5142 /* check newly assigned zone */ 5143 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5144 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5145 5146 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5147 if (!zbd) 5148 return 0; 5149 5150 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5151 << log_sectors_per_block; 5152 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5153 report_one_zone_cb, &zone); 5154 if (err != 1) { 5155 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5156 zbd->path, err); 5157 return err; 5158 } 5159 5160 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5161 return 0; 5162 5163 if (zone.wp != zone.start) { 5164 f2fs_notice(sbi, 5165 "New zone for curseg[%d] is not yet discarded. " 5166 "Reset the zone: curseg[0x%x,0x%x]", 5167 type, cs->segno, cs->next_blkoff); 5168 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block, 5169 zone.len >> log_sectors_per_block); 5170 if (err) { 5171 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5172 zbd->path, err); 5173 return err; 5174 } 5175 } 5176 5177 return 0; 5178 } 5179 5180 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5181 { 5182 int i, ret; 5183 5184 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5185 ret = fix_curseg_write_pointer(sbi, i); 5186 if (ret) 5187 return ret; 5188 } 5189 5190 return 0; 5191 } 5192 5193 struct check_zone_write_pointer_args { 5194 struct f2fs_sb_info *sbi; 5195 struct f2fs_dev_info *fdev; 5196 }; 5197 5198 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 5199 void *data) 5200 { 5201 struct check_zone_write_pointer_args *args; 5202 5203 args = (struct check_zone_write_pointer_args *)data; 5204 5205 return check_zone_write_pointer(args->sbi, args->fdev, zone); 5206 } 5207 5208 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5209 { 5210 int i, ret; 5211 struct check_zone_write_pointer_args args; 5212 5213 for (i = 0; i < sbi->s_ndevs; i++) { 5214 if (!bdev_is_zoned(FDEV(i).bdev)) 5215 continue; 5216 5217 args.sbi = sbi; 5218 args.fdev = &FDEV(i); 5219 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 5220 check_zone_write_pointer_cb, &args); 5221 if (ret < 0) 5222 return ret; 5223 } 5224 5225 return 0; 5226 } 5227 5228 /* 5229 * Return the number of usable blocks in a segment. The number of blocks 5230 * returned is always equal to the number of blocks in a segment for 5231 * segments fully contained within a sequential zone capacity or a 5232 * conventional zone. For segments partially contained in a sequential 5233 * zone capacity, the number of usable blocks up to the zone capacity 5234 * is returned. 0 is returned in all other cases. 5235 */ 5236 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5237 struct f2fs_sb_info *sbi, unsigned int segno) 5238 { 5239 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5240 unsigned int secno; 5241 5242 if (!sbi->unusable_blocks_per_sec) 5243 return BLKS_PER_SEG(sbi); 5244 5245 secno = GET_SEC_FROM_SEG(sbi, segno); 5246 seg_start = START_BLOCK(sbi, segno); 5247 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5248 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 5249 5250 /* 5251 * If segment starts before zone capacity and spans beyond 5252 * zone capacity, then usable blocks are from seg start to 5253 * zone capacity. If the segment starts after the zone capacity, 5254 * then there are no usable blocks. 5255 */ 5256 if (seg_start >= sec_cap_blkaddr) 5257 return 0; 5258 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr) 5259 return sec_cap_blkaddr - seg_start; 5260 5261 return BLKS_PER_SEG(sbi); 5262 } 5263 #else 5264 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5265 { 5266 return 0; 5267 } 5268 5269 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5270 { 5271 return 0; 5272 } 5273 5274 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5275 unsigned int segno) 5276 { 5277 return 0; 5278 } 5279 5280 #endif 5281 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5282 unsigned int segno) 5283 { 5284 if (f2fs_sb_has_blkzoned(sbi)) 5285 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5286 5287 return BLKS_PER_SEG(sbi); 5288 } 5289 5290 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5291 unsigned int segno) 5292 { 5293 if (f2fs_sb_has_blkzoned(sbi)) 5294 return CAP_SEGS_PER_SEC(sbi); 5295 5296 return SEGS_PER_SEC(sbi); 5297 } 5298 5299 /* 5300 * Update min, max modified time for cost-benefit GC algorithm 5301 */ 5302 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5303 { 5304 struct sit_info *sit_i = SIT_I(sbi); 5305 unsigned int segno; 5306 5307 down_write(&sit_i->sentry_lock); 5308 5309 sit_i->min_mtime = ULLONG_MAX; 5310 5311 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { 5312 unsigned int i; 5313 unsigned long long mtime = 0; 5314 5315 for (i = 0; i < SEGS_PER_SEC(sbi); i++) 5316 mtime += get_seg_entry(sbi, segno + i)->mtime; 5317 5318 mtime = div_u64(mtime, SEGS_PER_SEC(sbi)); 5319 5320 if (sit_i->min_mtime > mtime) 5321 sit_i->min_mtime = mtime; 5322 } 5323 sit_i->max_mtime = get_mtime(sbi, false); 5324 sit_i->dirty_max_mtime = 0; 5325 up_write(&sit_i->sentry_lock); 5326 } 5327 5328 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5329 { 5330 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5331 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5332 struct f2fs_sm_info *sm_info; 5333 int err; 5334 5335 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5336 if (!sm_info) 5337 return -ENOMEM; 5338 5339 /* init sm info */ 5340 sbi->sm_info = sm_info; 5341 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5342 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5343 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5344 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5345 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5346 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5347 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5348 sm_info->rec_prefree_segments = sm_info->main_segments * 5349 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5350 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5351 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5352 5353 if (!f2fs_lfs_mode(sbi)) 5354 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC); 5355 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5356 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5357 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi); 5358 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5359 sm_info->min_ssr_sections = reserved_sections(sbi); 5360 5361 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5362 5363 init_f2fs_rwsem(&sm_info->curseg_lock); 5364 5365 err = f2fs_create_flush_cmd_control(sbi); 5366 if (err) 5367 return err; 5368 5369 err = create_discard_cmd_control(sbi); 5370 if (err) 5371 return err; 5372 5373 err = build_sit_info(sbi); 5374 if (err) 5375 return err; 5376 err = build_free_segmap(sbi); 5377 if (err) 5378 return err; 5379 err = build_curseg(sbi); 5380 if (err) 5381 return err; 5382 5383 /* reinit free segmap based on SIT */ 5384 err = build_sit_entries(sbi); 5385 if (err) 5386 return err; 5387 5388 init_free_segmap(sbi); 5389 err = build_dirty_segmap(sbi); 5390 if (err) 5391 return err; 5392 5393 err = sanity_check_curseg(sbi); 5394 if (err) 5395 return err; 5396 5397 init_min_max_mtime(sbi); 5398 return 0; 5399 } 5400 5401 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5402 enum dirty_type dirty_type) 5403 { 5404 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5405 5406 mutex_lock(&dirty_i->seglist_lock); 5407 kvfree(dirty_i->dirty_segmap[dirty_type]); 5408 dirty_i->nr_dirty[dirty_type] = 0; 5409 mutex_unlock(&dirty_i->seglist_lock); 5410 } 5411 5412 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5413 { 5414 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5415 5416 kvfree(dirty_i->pinned_secmap); 5417 kvfree(dirty_i->victim_secmap); 5418 } 5419 5420 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5421 { 5422 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5423 int i; 5424 5425 if (!dirty_i) 5426 return; 5427 5428 /* discard pre-free/dirty segments list */ 5429 for (i = 0; i < NR_DIRTY_TYPE; i++) 5430 discard_dirty_segmap(sbi, i); 5431 5432 if (__is_large_section(sbi)) { 5433 mutex_lock(&dirty_i->seglist_lock); 5434 kvfree(dirty_i->dirty_secmap); 5435 mutex_unlock(&dirty_i->seglist_lock); 5436 } 5437 5438 destroy_victim_secmap(sbi); 5439 SM_I(sbi)->dirty_info = NULL; 5440 kfree(dirty_i); 5441 } 5442 5443 static void destroy_curseg(struct f2fs_sb_info *sbi) 5444 { 5445 struct curseg_info *array = SM_I(sbi)->curseg_array; 5446 int i; 5447 5448 if (!array) 5449 return; 5450 SM_I(sbi)->curseg_array = NULL; 5451 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5452 kfree(array[i].sum_blk); 5453 kfree(array[i].journal); 5454 } 5455 kfree(array); 5456 } 5457 5458 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5459 { 5460 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5461 5462 if (!free_i) 5463 return; 5464 SM_I(sbi)->free_info = NULL; 5465 kvfree(free_i->free_segmap); 5466 kvfree(free_i->free_secmap); 5467 kfree(free_i); 5468 } 5469 5470 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5471 { 5472 struct sit_info *sit_i = SIT_I(sbi); 5473 5474 if (!sit_i) 5475 return; 5476 5477 if (sit_i->sentries) 5478 kvfree(sit_i->bitmap); 5479 kfree(sit_i->tmp_map); 5480 5481 kvfree(sit_i->sentries); 5482 kvfree(sit_i->sec_entries); 5483 kvfree(sit_i->dirty_sentries_bitmap); 5484 5485 SM_I(sbi)->sit_info = NULL; 5486 kvfree(sit_i->sit_bitmap); 5487 #ifdef CONFIG_F2FS_CHECK_FS 5488 kvfree(sit_i->sit_bitmap_mir); 5489 kvfree(sit_i->invalid_segmap); 5490 #endif 5491 kfree(sit_i); 5492 } 5493 5494 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5495 { 5496 struct f2fs_sm_info *sm_info = SM_I(sbi); 5497 5498 if (!sm_info) 5499 return; 5500 f2fs_destroy_flush_cmd_control(sbi, true); 5501 destroy_discard_cmd_control(sbi); 5502 destroy_dirty_segmap(sbi); 5503 destroy_curseg(sbi); 5504 destroy_free_segmap(sbi); 5505 destroy_sit_info(sbi); 5506 sbi->sm_info = NULL; 5507 kfree(sm_info); 5508 } 5509 5510 int __init f2fs_create_segment_manager_caches(void) 5511 { 5512 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5513 sizeof(struct discard_entry)); 5514 if (!discard_entry_slab) 5515 goto fail; 5516 5517 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5518 sizeof(struct discard_cmd)); 5519 if (!discard_cmd_slab) 5520 goto destroy_discard_entry; 5521 5522 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5523 sizeof(struct sit_entry_set)); 5524 if (!sit_entry_set_slab) 5525 goto destroy_discard_cmd; 5526 5527 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5528 sizeof(struct revoke_entry)); 5529 if (!revoke_entry_slab) 5530 goto destroy_sit_entry_set; 5531 return 0; 5532 5533 destroy_sit_entry_set: 5534 kmem_cache_destroy(sit_entry_set_slab); 5535 destroy_discard_cmd: 5536 kmem_cache_destroy(discard_cmd_slab); 5537 destroy_discard_entry: 5538 kmem_cache_destroy(discard_entry_slab); 5539 fail: 5540 return -ENOMEM; 5541 } 5542 5543 void f2fs_destroy_segment_manager_caches(void) 5544 { 5545 kmem_cache_destroy(sit_entry_set_slab); 5546 kmem_cache_destroy(discard_cmd_slab); 5547 kmem_cache_destroy(discard_entry_slab); 5548 kmem_cache_destroy(revoke_entry_slab); 5549 } 5550