xref: /linux/fs/f2fs/segment.c (revision 163e9fc6957fc24d1d6c0a30a3febfd2ecade039)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	stat_dec_atomic_inode(inode);
203 
204 	F2FS_I(inode)->atomic_write_task = NULL;
205 
206 	if (clean) {
207 		f2fs_i_size_write(inode, fi->original_i_size);
208 		fi->original_i_size = 0;
209 	}
210 	/* avoid stale dirty inode during eviction */
211 	sync_inode_metadata(inode, 0);
212 }
213 
214 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
215 			block_t new_addr, block_t *old_addr, bool recover)
216 {
217 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
218 	struct dnode_of_data dn;
219 	struct node_info ni;
220 	int err;
221 
222 retry:
223 	set_new_dnode(&dn, inode, NULL, NULL, 0);
224 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
225 	if (err) {
226 		if (err == -ENOMEM) {
227 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
228 			goto retry;
229 		}
230 		return err;
231 	}
232 
233 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
234 	if (err) {
235 		f2fs_put_dnode(&dn);
236 		return err;
237 	}
238 
239 	if (recover) {
240 		/* dn.data_blkaddr is always valid */
241 		if (!__is_valid_data_blkaddr(new_addr)) {
242 			if (new_addr == NULL_ADDR)
243 				dec_valid_block_count(sbi, inode, 1);
244 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
245 			f2fs_update_data_blkaddr(&dn, new_addr);
246 		} else {
247 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
248 				new_addr, ni.version, true, true);
249 		}
250 	} else {
251 		blkcnt_t count = 1;
252 
253 		err = inc_valid_block_count(sbi, inode, &count, true);
254 		if (err) {
255 			f2fs_put_dnode(&dn);
256 			return err;
257 		}
258 
259 		*old_addr = dn.data_blkaddr;
260 		f2fs_truncate_data_blocks_range(&dn, 1);
261 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
262 
263 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
264 					ni.version, true, false);
265 	}
266 
267 	f2fs_put_dnode(&dn);
268 
269 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
270 			index, old_addr ? *old_addr : 0, new_addr, recover);
271 	return 0;
272 }
273 
274 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
275 					bool revoke)
276 {
277 	struct revoke_entry *cur, *tmp;
278 	pgoff_t start_index = 0;
279 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
280 
281 	list_for_each_entry_safe(cur, tmp, head, list) {
282 		if (revoke) {
283 			__replace_atomic_write_block(inode, cur->index,
284 						cur->old_addr, NULL, true);
285 		} else if (truncate) {
286 			f2fs_truncate_hole(inode, start_index, cur->index);
287 			start_index = cur->index + 1;
288 		}
289 
290 		list_del(&cur->list);
291 		kmem_cache_free(revoke_entry_slab, cur);
292 	}
293 
294 	if (!revoke && truncate)
295 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
296 }
297 
298 static int __f2fs_commit_atomic_write(struct inode *inode)
299 {
300 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301 	struct f2fs_inode_info *fi = F2FS_I(inode);
302 	struct inode *cow_inode = fi->cow_inode;
303 	struct revoke_entry *new;
304 	struct list_head revoke_list;
305 	block_t blkaddr;
306 	struct dnode_of_data dn;
307 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
308 	pgoff_t off = 0, blen, index;
309 	int ret = 0, i;
310 
311 	INIT_LIST_HEAD(&revoke_list);
312 
313 	while (len) {
314 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
315 
316 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
317 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
318 		if (ret && ret != -ENOENT) {
319 			goto out;
320 		} else if (ret == -ENOENT) {
321 			ret = 0;
322 			if (dn.max_level == 0)
323 				goto out;
324 			goto next;
325 		}
326 
327 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
328 				len);
329 		index = off;
330 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
331 			blkaddr = f2fs_data_blkaddr(&dn);
332 
333 			if (!__is_valid_data_blkaddr(blkaddr)) {
334 				continue;
335 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
336 					DATA_GENERIC_ENHANCE)) {
337 				f2fs_put_dnode(&dn);
338 				ret = -EFSCORRUPTED;
339 				goto out;
340 			}
341 
342 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
343 							true, NULL);
344 
345 			ret = __replace_atomic_write_block(inode, index, blkaddr,
346 							&new->old_addr, false);
347 			if (ret) {
348 				f2fs_put_dnode(&dn);
349 				kmem_cache_free(revoke_entry_slab, new);
350 				goto out;
351 			}
352 
353 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
354 			new->index = index;
355 			list_add_tail(&new->list, &revoke_list);
356 		}
357 		f2fs_put_dnode(&dn);
358 next:
359 		off += blen;
360 		len -= blen;
361 	}
362 
363 out:
364 	if (ret) {
365 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
366 	} else {
367 		sbi->committed_atomic_block += fi->atomic_write_cnt;
368 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
369 	}
370 
371 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
372 
373 	return ret;
374 }
375 
376 int f2fs_commit_atomic_write(struct inode *inode)
377 {
378 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
379 	struct f2fs_inode_info *fi = F2FS_I(inode);
380 	int err;
381 
382 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
383 	if (err)
384 		return err;
385 
386 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
387 	f2fs_lock_op(sbi);
388 
389 	err = __f2fs_commit_atomic_write(inode);
390 
391 	f2fs_unlock_op(sbi);
392 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
393 
394 	return err;
395 }
396 
397 /*
398  * This function balances dirty node and dentry pages.
399  * In addition, it controls garbage collection.
400  */
401 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
402 {
403 	if (f2fs_cp_error(sbi))
404 		return;
405 
406 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
407 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
408 
409 	/* balance_fs_bg is able to be pending */
410 	if (need && excess_cached_nats(sbi))
411 		f2fs_balance_fs_bg(sbi, false);
412 
413 	if (!f2fs_is_checkpoint_ready(sbi))
414 		return;
415 
416 	/*
417 	 * We should do GC or end up with checkpoint, if there are so many dirty
418 	 * dir/node pages without enough free segments.
419 	 */
420 	if (has_enough_free_secs(sbi, 0, 0))
421 		return;
422 
423 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
424 				sbi->gc_thread->f2fs_gc_task) {
425 		DEFINE_WAIT(wait);
426 
427 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
428 					TASK_UNINTERRUPTIBLE);
429 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
430 		io_schedule();
431 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
432 	} else {
433 		struct f2fs_gc_control gc_control = {
434 			.victim_segno = NULL_SEGNO,
435 			.init_gc_type = BG_GC,
436 			.no_bg_gc = true,
437 			.should_migrate_blocks = false,
438 			.err_gc_skipped = false,
439 			.nr_free_secs = 1 };
440 		f2fs_down_write(&sbi->gc_lock);
441 		stat_inc_gc_call_count(sbi, FOREGROUND);
442 		f2fs_gc(sbi, &gc_control);
443 	}
444 }
445 
446 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
447 {
448 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
449 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
450 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
451 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
452 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
453 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
454 	unsigned int threshold =
455 		SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
456 	unsigned int global_threshold = threshold * 3 / 2;
457 
458 	if (dents >= threshold || qdata >= threshold ||
459 		nodes >= threshold || meta >= threshold ||
460 		imeta >= threshold)
461 		return true;
462 	return dents + qdata + nodes + meta + imeta >  global_threshold;
463 }
464 
465 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
466 {
467 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
468 		return;
469 
470 	/* try to shrink extent cache when there is no enough memory */
471 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
472 		f2fs_shrink_read_extent_tree(sbi,
473 				READ_EXTENT_CACHE_SHRINK_NUMBER);
474 
475 	/* try to shrink age extent cache when there is no enough memory */
476 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
477 		f2fs_shrink_age_extent_tree(sbi,
478 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
479 
480 	/* check the # of cached NAT entries */
481 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
482 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
483 
484 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
485 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
486 	else
487 		f2fs_build_free_nids(sbi, false, false);
488 
489 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
490 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
491 		goto do_sync;
492 
493 	/* there is background inflight IO or foreground operation recently */
494 	if (is_inflight_io(sbi, REQ_TIME) ||
495 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
496 		return;
497 
498 	/* exceed periodical checkpoint timeout threshold */
499 	if (f2fs_time_over(sbi, CP_TIME))
500 		goto do_sync;
501 
502 	/* checkpoint is the only way to shrink partial cached entries */
503 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
504 		f2fs_available_free_memory(sbi, INO_ENTRIES))
505 		return;
506 
507 do_sync:
508 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
509 		struct blk_plug plug;
510 
511 		mutex_lock(&sbi->flush_lock);
512 
513 		blk_start_plug(&plug);
514 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
515 		blk_finish_plug(&plug);
516 
517 		mutex_unlock(&sbi->flush_lock);
518 	}
519 	stat_inc_cp_call_count(sbi, BACKGROUND);
520 	f2fs_sync_fs(sbi->sb, 1);
521 }
522 
523 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
524 				struct block_device *bdev)
525 {
526 	int ret = blkdev_issue_flush(bdev);
527 
528 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
529 				test_opt(sbi, FLUSH_MERGE), ret);
530 	if (!ret)
531 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
532 	return ret;
533 }
534 
535 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
536 {
537 	int ret = 0;
538 	int i;
539 
540 	if (!f2fs_is_multi_device(sbi))
541 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
542 
543 	for (i = 0; i < sbi->s_ndevs; i++) {
544 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
545 			continue;
546 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
547 		if (ret)
548 			break;
549 	}
550 	return ret;
551 }
552 
553 static int issue_flush_thread(void *data)
554 {
555 	struct f2fs_sb_info *sbi = data;
556 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
557 	wait_queue_head_t *q = &fcc->flush_wait_queue;
558 repeat:
559 	if (kthread_should_stop())
560 		return 0;
561 
562 	if (!llist_empty(&fcc->issue_list)) {
563 		struct flush_cmd *cmd, *next;
564 		int ret;
565 
566 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
567 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
568 
569 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
570 
571 		ret = submit_flush_wait(sbi, cmd->ino);
572 		atomic_inc(&fcc->issued_flush);
573 
574 		llist_for_each_entry_safe(cmd, next,
575 					  fcc->dispatch_list, llnode) {
576 			cmd->ret = ret;
577 			complete(&cmd->wait);
578 		}
579 		fcc->dispatch_list = NULL;
580 	}
581 
582 	wait_event_interruptible(*q,
583 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
584 	goto repeat;
585 }
586 
587 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
588 {
589 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
590 	struct flush_cmd cmd;
591 	int ret;
592 
593 	if (test_opt(sbi, NOBARRIER))
594 		return 0;
595 
596 	if (!test_opt(sbi, FLUSH_MERGE)) {
597 		atomic_inc(&fcc->queued_flush);
598 		ret = submit_flush_wait(sbi, ino);
599 		atomic_dec(&fcc->queued_flush);
600 		atomic_inc(&fcc->issued_flush);
601 		return ret;
602 	}
603 
604 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
605 	    f2fs_is_multi_device(sbi)) {
606 		ret = submit_flush_wait(sbi, ino);
607 		atomic_dec(&fcc->queued_flush);
608 
609 		atomic_inc(&fcc->issued_flush);
610 		return ret;
611 	}
612 
613 	cmd.ino = ino;
614 	init_completion(&cmd.wait);
615 
616 	llist_add(&cmd.llnode, &fcc->issue_list);
617 
618 	/*
619 	 * update issue_list before we wake up issue_flush thread, this
620 	 * smp_mb() pairs with another barrier in ___wait_event(), see
621 	 * more details in comments of waitqueue_active().
622 	 */
623 	smp_mb();
624 
625 	if (waitqueue_active(&fcc->flush_wait_queue))
626 		wake_up(&fcc->flush_wait_queue);
627 
628 	if (fcc->f2fs_issue_flush) {
629 		wait_for_completion(&cmd.wait);
630 		atomic_dec(&fcc->queued_flush);
631 	} else {
632 		struct llist_node *list;
633 
634 		list = llist_del_all(&fcc->issue_list);
635 		if (!list) {
636 			wait_for_completion(&cmd.wait);
637 			atomic_dec(&fcc->queued_flush);
638 		} else {
639 			struct flush_cmd *tmp, *next;
640 
641 			ret = submit_flush_wait(sbi, ino);
642 
643 			llist_for_each_entry_safe(tmp, next, list, llnode) {
644 				if (tmp == &cmd) {
645 					cmd.ret = ret;
646 					atomic_dec(&fcc->queued_flush);
647 					continue;
648 				}
649 				tmp->ret = ret;
650 				complete(&tmp->wait);
651 			}
652 		}
653 	}
654 
655 	return cmd.ret;
656 }
657 
658 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
659 {
660 	dev_t dev = sbi->sb->s_bdev->bd_dev;
661 	struct flush_cmd_control *fcc;
662 
663 	if (SM_I(sbi)->fcc_info) {
664 		fcc = SM_I(sbi)->fcc_info;
665 		if (fcc->f2fs_issue_flush)
666 			return 0;
667 		goto init_thread;
668 	}
669 
670 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
671 	if (!fcc)
672 		return -ENOMEM;
673 	atomic_set(&fcc->issued_flush, 0);
674 	atomic_set(&fcc->queued_flush, 0);
675 	init_waitqueue_head(&fcc->flush_wait_queue);
676 	init_llist_head(&fcc->issue_list);
677 	SM_I(sbi)->fcc_info = fcc;
678 	if (!test_opt(sbi, FLUSH_MERGE))
679 		return 0;
680 
681 init_thread:
682 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
683 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
684 	if (IS_ERR(fcc->f2fs_issue_flush)) {
685 		int err = PTR_ERR(fcc->f2fs_issue_flush);
686 
687 		fcc->f2fs_issue_flush = NULL;
688 		return err;
689 	}
690 
691 	return 0;
692 }
693 
694 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
695 {
696 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
697 
698 	if (fcc && fcc->f2fs_issue_flush) {
699 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
700 
701 		fcc->f2fs_issue_flush = NULL;
702 		kthread_stop(flush_thread);
703 	}
704 	if (free) {
705 		kfree(fcc);
706 		SM_I(sbi)->fcc_info = NULL;
707 	}
708 }
709 
710 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
711 {
712 	int ret = 0, i;
713 
714 	if (!f2fs_is_multi_device(sbi))
715 		return 0;
716 
717 	if (test_opt(sbi, NOBARRIER))
718 		return 0;
719 
720 	for (i = 1; i < sbi->s_ndevs; i++) {
721 		int count = DEFAULT_RETRY_IO_COUNT;
722 
723 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
724 			continue;
725 
726 		do {
727 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
728 			if (ret)
729 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
730 		} while (ret && --count);
731 
732 		if (ret) {
733 			f2fs_stop_checkpoint(sbi, false,
734 					STOP_CP_REASON_FLUSH_FAIL);
735 			break;
736 		}
737 
738 		spin_lock(&sbi->dev_lock);
739 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
740 		spin_unlock(&sbi->dev_lock);
741 	}
742 
743 	return ret;
744 }
745 
746 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
747 		enum dirty_type dirty_type)
748 {
749 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
750 
751 	/* need not be added */
752 	if (IS_CURSEG(sbi, segno))
753 		return;
754 
755 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
756 		dirty_i->nr_dirty[dirty_type]++;
757 
758 	if (dirty_type == DIRTY) {
759 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
760 		enum dirty_type t = sentry->type;
761 
762 		if (unlikely(t >= DIRTY)) {
763 			f2fs_bug_on(sbi, 1);
764 			return;
765 		}
766 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
767 			dirty_i->nr_dirty[t]++;
768 
769 		if (__is_large_section(sbi)) {
770 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
771 			block_t valid_blocks =
772 				get_valid_blocks(sbi, segno, true);
773 
774 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
775 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
776 
777 			if (!IS_CURSEC(sbi, secno))
778 				set_bit(secno, dirty_i->dirty_secmap);
779 		}
780 	}
781 }
782 
783 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
784 		enum dirty_type dirty_type)
785 {
786 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
787 	block_t valid_blocks;
788 
789 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
790 		dirty_i->nr_dirty[dirty_type]--;
791 
792 	if (dirty_type == DIRTY) {
793 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
794 		enum dirty_type t = sentry->type;
795 
796 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
797 			dirty_i->nr_dirty[t]--;
798 
799 		valid_blocks = get_valid_blocks(sbi, segno, true);
800 		if (valid_blocks == 0) {
801 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
802 						dirty_i->victim_secmap);
803 #ifdef CONFIG_F2FS_CHECK_FS
804 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
805 #endif
806 		}
807 		if (__is_large_section(sbi)) {
808 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
809 
810 			if (!valid_blocks ||
811 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
812 				clear_bit(secno, dirty_i->dirty_secmap);
813 				return;
814 			}
815 
816 			if (!IS_CURSEC(sbi, secno))
817 				set_bit(secno, dirty_i->dirty_secmap);
818 		}
819 	}
820 }
821 
822 /*
823  * Should not occur error such as -ENOMEM.
824  * Adding dirty entry into seglist is not critical operation.
825  * If a given segment is one of current working segments, it won't be added.
826  */
827 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
828 {
829 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
830 	unsigned short valid_blocks, ckpt_valid_blocks;
831 	unsigned int usable_blocks;
832 
833 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
834 		return;
835 
836 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
837 	mutex_lock(&dirty_i->seglist_lock);
838 
839 	valid_blocks = get_valid_blocks(sbi, segno, false);
840 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
841 
842 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
843 		ckpt_valid_blocks == usable_blocks)) {
844 		__locate_dirty_segment(sbi, segno, PRE);
845 		__remove_dirty_segment(sbi, segno, DIRTY);
846 	} else if (valid_blocks < usable_blocks) {
847 		__locate_dirty_segment(sbi, segno, DIRTY);
848 	} else {
849 		/* Recovery routine with SSR needs this */
850 		__remove_dirty_segment(sbi, segno, DIRTY);
851 	}
852 
853 	mutex_unlock(&dirty_i->seglist_lock);
854 }
855 
856 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
857 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
858 {
859 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
860 	unsigned int segno;
861 
862 	mutex_lock(&dirty_i->seglist_lock);
863 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
864 		if (get_valid_blocks(sbi, segno, false))
865 			continue;
866 		if (IS_CURSEG(sbi, segno))
867 			continue;
868 		__locate_dirty_segment(sbi, segno, PRE);
869 		__remove_dirty_segment(sbi, segno, DIRTY);
870 	}
871 	mutex_unlock(&dirty_i->seglist_lock);
872 }
873 
874 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
875 {
876 	int ovp_hole_segs =
877 		(overprovision_segments(sbi) - reserved_segments(sbi));
878 	block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
879 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
880 	block_t holes[2] = {0, 0};	/* DATA and NODE */
881 	block_t unusable;
882 	struct seg_entry *se;
883 	unsigned int segno;
884 
885 	mutex_lock(&dirty_i->seglist_lock);
886 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
887 		se = get_seg_entry(sbi, segno);
888 		if (IS_NODESEG(se->type))
889 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
890 							se->valid_blocks;
891 		else
892 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
893 							se->valid_blocks;
894 	}
895 	mutex_unlock(&dirty_i->seglist_lock);
896 
897 	unusable = max(holes[DATA], holes[NODE]);
898 	if (unusable > ovp_holes)
899 		return unusable - ovp_holes;
900 	return 0;
901 }
902 
903 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
904 {
905 	int ovp_hole_segs =
906 		(overprovision_segments(sbi) - reserved_segments(sbi));
907 
908 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
909 		return 0;
910 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
911 		return -EAGAIN;
912 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
913 		dirty_segments(sbi) > ovp_hole_segs)
914 		return -EAGAIN;
915 	if (has_not_enough_free_secs(sbi, 0, 0))
916 		return -EAGAIN;
917 	return 0;
918 }
919 
920 /* This is only used by SBI_CP_DISABLED */
921 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
922 {
923 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
924 	unsigned int segno = 0;
925 
926 	mutex_lock(&dirty_i->seglist_lock);
927 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
928 		if (get_valid_blocks(sbi, segno, false))
929 			continue;
930 		if (get_ckpt_valid_blocks(sbi, segno, false))
931 			continue;
932 		mutex_unlock(&dirty_i->seglist_lock);
933 		return segno;
934 	}
935 	mutex_unlock(&dirty_i->seglist_lock);
936 	return NULL_SEGNO;
937 }
938 
939 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
940 		struct block_device *bdev, block_t lstart,
941 		block_t start, block_t len)
942 {
943 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
944 	struct list_head *pend_list;
945 	struct discard_cmd *dc;
946 
947 	f2fs_bug_on(sbi, !len);
948 
949 	pend_list = &dcc->pend_list[plist_idx(len)];
950 
951 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
952 	INIT_LIST_HEAD(&dc->list);
953 	dc->bdev = bdev;
954 	dc->di.lstart = lstart;
955 	dc->di.start = start;
956 	dc->di.len = len;
957 	dc->ref = 0;
958 	dc->state = D_PREP;
959 	dc->queued = 0;
960 	dc->error = 0;
961 	init_completion(&dc->wait);
962 	list_add_tail(&dc->list, pend_list);
963 	spin_lock_init(&dc->lock);
964 	dc->bio_ref = 0;
965 	atomic_inc(&dcc->discard_cmd_cnt);
966 	dcc->undiscard_blks += len;
967 
968 	return dc;
969 }
970 
971 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
972 {
973 #ifdef CONFIG_F2FS_CHECK_FS
974 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
975 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
976 	struct discard_cmd *cur_dc, *next_dc;
977 
978 	while (cur) {
979 		next = rb_next(cur);
980 		if (!next)
981 			return true;
982 
983 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
984 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
985 
986 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
987 			f2fs_info(sbi, "broken discard_rbtree, "
988 				"cur(%u, %u) next(%u, %u)",
989 				cur_dc->di.lstart, cur_dc->di.len,
990 				next_dc->di.lstart, next_dc->di.len);
991 			return false;
992 		}
993 		cur = next;
994 	}
995 #endif
996 	return true;
997 }
998 
999 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1000 						block_t blkaddr)
1001 {
1002 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1003 	struct rb_node *node = dcc->root.rb_root.rb_node;
1004 	struct discard_cmd *dc;
1005 
1006 	while (node) {
1007 		dc = rb_entry(node, struct discard_cmd, rb_node);
1008 
1009 		if (blkaddr < dc->di.lstart)
1010 			node = node->rb_left;
1011 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1012 			node = node->rb_right;
1013 		else
1014 			return dc;
1015 	}
1016 	return NULL;
1017 }
1018 
1019 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1020 				block_t blkaddr,
1021 				struct discard_cmd **prev_entry,
1022 				struct discard_cmd **next_entry,
1023 				struct rb_node ***insert_p,
1024 				struct rb_node **insert_parent)
1025 {
1026 	struct rb_node **pnode = &root->rb_root.rb_node;
1027 	struct rb_node *parent = NULL, *tmp_node;
1028 	struct discard_cmd *dc;
1029 
1030 	*insert_p = NULL;
1031 	*insert_parent = NULL;
1032 	*prev_entry = NULL;
1033 	*next_entry = NULL;
1034 
1035 	if (RB_EMPTY_ROOT(&root->rb_root))
1036 		return NULL;
1037 
1038 	while (*pnode) {
1039 		parent = *pnode;
1040 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1041 
1042 		if (blkaddr < dc->di.lstart)
1043 			pnode = &(*pnode)->rb_left;
1044 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1045 			pnode = &(*pnode)->rb_right;
1046 		else
1047 			goto lookup_neighbors;
1048 	}
1049 
1050 	*insert_p = pnode;
1051 	*insert_parent = parent;
1052 
1053 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1054 	tmp_node = parent;
1055 	if (parent && blkaddr > dc->di.lstart)
1056 		tmp_node = rb_next(parent);
1057 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1058 
1059 	tmp_node = parent;
1060 	if (parent && blkaddr < dc->di.lstart)
1061 		tmp_node = rb_prev(parent);
1062 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1063 	return NULL;
1064 
1065 lookup_neighbors:
1066 	/* lookup prev node for merging backward later */
1067 	tmp_node = rb_prev(&dc->rb_node);
1068 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1069 
1070 	/* lookup next node for merging frontward later */
1071 	tmp_node = rb_next(&dc->rb_node);
1072 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1073 	return dc;
1074 }
1075 
1076 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1077 							struct discard_cmd *dc)
1078 {
1079 	if (dc->state == D_DONE)
1080 		atomic_sub(dc->queued, &dcc->queued_discard);
1081 
1082 	list_del(&dc->list);
1083 	rb_erase_cached(&dc->rb_node, &dcc->root);
1084 	dcc->undiscard_blks -= dc->di.len;
1085 
1086 	kmem_cache_free(discard_cmd_slab, dc);
1087 
1088 	atomic_dec(&dcc->discard_cmd_cnt);
1089 }
1090 
1091 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1092 							struct discard_cmd *dc)
1093 {
1094 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1095 	unsigned long flags;
1096 
1097 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1098 
1099 	spin_lock_irqsave(&dc->lock, flags);
1100 	if (dc->bio_ref) {
1101 		spin_unlock_irqrestore(&dc->lock, flags);
1102 		return;
1103 	}
1104 	spin_unlock_irqrestore(&dc->lock, flags);
1105 
1106 	f2fs_bug_on(sbi, dc->ref);
1107 
1108 	if (dc->error == -EOPNOTSUPP)
1109 		dc->error = 0;
1110 
1111 	if (dc->error)
1112 		printk_ratelimited(
1113 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1114 			KERN_INFO, sbi->sb->s_id,
1115 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1116 	__detach_discard_cmd(dcc, dc);
1117 }
1118 
1119 static void f2fs_submit_discard_endio(struct bio *bio)
1120 {
1121 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1122 	unsigned long flags;
1123 
1124 	spin_lock_irqsave(&dc->lock, flags);
1125 	if (!dc->error)
1126 		dc->error = blk_status_to_errno(bio->bi_status);
1127 	dc->bio_ref--;
1128 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1129 		dc->state = D_DONE;
1130 		complete_all(&dc->wait);
1131 	}
1132 	spin_unlock_irqrestore(&dc->lock, flags);
1133 	bio_put(bio);
1134 }
1135 
1136 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1137 				block_t start, block_t end)
1138 {
1139 #ifdef CONFIG_F2FS_CHECK_FS
1140 	struct seg_entry *sentry;
1141 	unsigned int segno;
1142 	block_t blk = start;
1143 	unsigned long offset, size, *map;
1144 
1145 	while (blk < end) {
1146 		segno = GET_SEGNO(sbi, blk);
1147 		sentry = get_seg_entry(sbi, segno);
1148 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1149 
1150 		if (end < START_BLOCK(sbi, segno + 1))
1151 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1152 		else
1153 			size = BLKS_PER_SEG(sbi);
1154 		map = (unsigned long *)(sentry->cur_valid_map);
1155 		offset = __find_rev_next_bit(map, size, offset);
1156 		f2fs_bug_on(sbi, offset != size);
1157 		blk = START_BLOCK(sbi, segno + 1);
1158 	}
1159 #endif
1160 }
1161 
1162 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1163 				struct discard_policy *dpolicy,
1164 				int discard_type, unsigned int granularity)
1165 {
1166 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1167 
1168 	/* common policy */
1169 	dpolicy->type = discard_type;
1170 	dpolicy->sync = true;
1171 	dpolicy->ordered = false;
1172 	dpolicy->granularity = granularity;
1173 
1174 	dpolicy->max_requests = dcc->max_discard_request;
1175 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1176 	dpolicy->timeout = false;
1177 
1178 	if (discard_type == DPOLICY_BG) {
1179 		dpolicy->min_interval = dcc->min_discard_issue_time;
1180 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1181 		dpolicy->max_interval = dcc->max_discard_issue_time;
1182 		if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1183 			dpolicy->io_aware = true;
1184 		else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1185 			dpolicy->io_aware = false;
1186 		dpolicy->sync = false;
1187 		dpolicy->ordered = true;
1188 		if (utilization(sbi) > dcc->discard_urgent_util) {
1189 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1190 			if (atomic_read(&dcc->discard_cmd_cnt))
1191 				dpolicy->max_interval =
1192 					dcc->min_discard_issue_time;
1193 		}
1194 	} else if (discard_type == DPOLICY_FORCE) {
1195 		dpolicy->min_interval = dcc->min_discard_issue_time;
1196 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1197 		dpolicy->max_interval = dcc->max_discard_issue_time;
1198 		dpolicy->io_aware = false;
1199 	} else if (discard_type == DPOLICY_FSTRIM) {
1200 		dpolicy->io_aware = false;
1201 	} else if (discard_type == DPOLICY_UMOUNT) {
1202 		dpolicy->io_aware = false;
1203 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1204 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1205 		dpolicy->timeout = true;
1206 	}
1207 }
1208 
1209 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1210 				struct block_device *bdev, block_t lstart,
1211 				block_t start, block_t len);
1212 
1213 #ifdef CONFIG_BLK_DEV_ZONED
1214 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1215 				   struct discard_cmd *dc, blk_opf_t flag,
1216 				   struct list_head *wait_list,
1217 				   unsigned int *issued)
1218 {
1219 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1220 	struct block_device *bdev = dc->bdev;
1221 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1222 	unsigned long flags;
1223 
1224 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1225 
1226 	spin_lock_irqsave(&dc->lock, flags);
1227 	dc->state = D_SUBMIT;
1228 	dc->bio_ref++;
1229 	spin_unlock_irqrestore(&dc->lock, flags);
1230 
1231 	if (issued)
1232 		(*issued)++;
1233 
1234 	atomic_inc(&dcc->queued_discard);
1235 	dc->queued++;
1236 	list_move_tail(&dc->list, wait_list);
1237 
1238 	/* sanity check on discard range */
1239 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1240 
1241 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1242 	bio->bi_private = dc;
1243 	bio->bi_end_io = f2fs_submit_discard_endio;
1244 	submit_bio(bio);
1245 
1246 	atomic_inc(&dcc->issued_discard);
1247 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1248 }
1249 #endif
1250 
1251 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1252 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1253 				struct discard_policy *dpolicy,
1254 				struct discard_cmd *dc, int *issued)
1255 {
1256 	struct block_device *bdev = dc->bdev;
1257 	unsigned int max_discard_blocks =
1258 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1259 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1260 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1261 					&(dcc->fstrim_list) : &(dcc->wait_list);
1262 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1263 	block_t lstart, start, len, total_len;
1264 	int err = 0;
1265 
1266 	if (dc->state != D_PREP)
1267 		return 0;
1268 
1269 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1270 		return 0;
1271 
1272 #ifdef CONFIG_BLK_DEV_ZONED
1273 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1274 		int devi = f2fs_bdev_index(sbi, bdev);
1275 
1276 		if (devi < 0)
1277 			return -EINVAL;
1278 
1279 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1280 			__submit_zone_reset_cmd(sbi, dc, flag,
1281 						wait_list, issued);
1282 			return 0;
1283 		}
1284 	}
1285 #endif
1286 
1287 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1288 
1289 	lstart = dc->di.lstart;
1290 	start = dc->di.start;
1291 	len = dc->di.len;
1292 	total_len = len;
1293 
1294 	dc->di.len = 0;
1295 
1296 	while (total_len && *issued < dpolicy->max_requests && !err) {
1297 		struct bio *bio = NULL;
1298 		unsigned long flags;
1299 		bool last = true;
1300 
1301 		if (len > max_discard_blocks) {
1302 			len = max_discard_blocks;
1303 			last = false;
1304 		}
1305 
1306 		(*issued)++;
1307 		if (*issued == dpolicy->max_requests)
1308 			last = true;
1309 
1310 		dc->di.len += len;
1311 
1312 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1313 			err = -EIO;
1314 		} else {
1315 			err = __blkdev_issue_discard(bdev,
1316 					SECTOR_FROM_BLOCK(start),
1317 					SECTOR_FROM_BLOCK(len),
1318 					GFP_NOFS, &bio);
1319 		}
1320 		if (err) {
1321 			spin_lock_irqsave(&dc->lock, flags);
1322 			if (dc->state == D_PARTIAL)
1323 				dc->state = D_SUBMIT;
1324 			spin_unlock_irqrestore(&dc->lock, flags);
1325 
1326 			break;
1327 		}
1328 
1329 		f2fs_bug_on(sbi, !bio);
1330 
1331 		/*
1332 		 * should keep before submission to avoid D_DONE
1333 		 * right away
1334 		 */
1335 		spin_lock_irqsave(&dc->lock, flags);
1336 		if (last)
1337 			dc->state = D_SUBMIT;
1338 		else
1339 			dc->state = D_PARTIAL;
1340 		dc->bio_ref++;
1341 		spin_unlock_irqrestore(&dc->lock, flags);
1342 
1343 		atomic_inc(&dcc->queued_discard);
1344 		dc->queued++;
1345 		list_move_tail(&dc->list, wait_list);
1346 
1347 		/* sanity check on discard range */
1348 		__check_sit_bitmap(sbi, lstart, lstart + len);
1349 
1350 		bio->bi_private = dc;
1351 		bio->bi_end_io = f2fs_submit_discard_endio;
1352 		bio->bi_opf |= flag;
1353 		submit_bio(bio);
1354 
1355 		atomic_inc(&dcc->issued_discard);
1356 
1357 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1358 
1359 		lstart += len;
1360 		start += len;
1361 		total_len -= len;
1362 		len = total_len;
1363 	}
1364 
1365 	if (!err && len) {
1366 		dcc->undiscard_blks -= len;
1367 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1368 	}
1369 	return err;
1370 }
1371 
1372 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1373 				struct block_device *bdev, block_t lstart,
1374 				block_t start, block_t len)
1375 {
1376 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1377 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1378 	struct rb_node *parent = NULL;
1379 	struct discard_cmd *dc;
1380 	bool leftmost = true;
1381 
1382 	/* look up rb tree to find parent node */
1383 	while (*p) {
1384 		parent = *p;
1385 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1386 
1387 		if (lstart < dc->di.lstart) {
1388 			p = &(*p)->rb_left;
1389 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1390 			p = &(*p)->rb_right;
1391 			leftmost = false;
1392 		} else {
1393 			/* Let's skip to add, if exists */
1394 			return;
1395 		}
1396 	}
1397 
1398 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1399 
1400 	rb_link_node(&dc->rb_node, parent, p);
1401 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1402 }
1403 
1404 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1405 						struct discard_cmd *dc)
1406 {
1407 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1408 }
1409 
1410 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1411 				struct discard_cmd *dc, block_t blkaddr)
1412 {
1413 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1414 	struct discard_info di = dc->di;
1415 	bool modified = false;
1416 
1417 	if (dc->state == D_DONE || dc->di.len == 1) {
1418 		__remove_discard_cmd(sbi, dc);
1419 		return;
1420 	}
1421 
1422 	dcc->undiscard_blks -= di.len;
1423 
1424 	if (blkaddr > di.lstart) {
1425 		dc->di.len = blkaddr - dc->di.lstart;
1426 		dcc->undiscard_blks += dc->di.len;
1427 		__relocate_discard_cmd(dcc, dc);
1428 		modified = true;
1429 	}
1430 
1431 	if (blkaddr < di.lstart + di.len - 1) {
1432 		if (modified) {
1433 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1434 					di.start + blkaddr + 1 - di.lstart,
1435 					di.lstart + di.len - 1 - blkaddr);
1436 		} else {
1437 			dc->di.lstart++;
1438 			dc->di.len--;
1439 			dc->di.start++;
1440 			dcc->undiscard_blks += dc->di.len;
1441 			__relocate_discard_cmd(dcc, dc);
1442 		}
1443 	}
1444 }
1445 
1446 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1447 				struct block_device *bdev, block_t lstart,
1448 				block_t start, block_t len)
1449 {
1450 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1451 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1452 	struct discard_cmd *dc;
1453 	struct discard_info di = {0};
1454 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1455 	unsigned int max_discard_blocks =
1456 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1457 	block_t end = lstart + len;
1458 
1459 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1460 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1461 	if (dc)
1462 		prev_dc = dc;
1463 
1464 	if (!prev_dc) {
1465 		di.lstart = lstart;
1466 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1467 		di.len = min(di.len, len);
1468 		di.start = start;
1469 	}
1470 
1471 	while (1) {
1472 		struct rb_node *node;
1473 		bool merged = false;
1474 		struct discard_cmd *tdc = NULL;
1475 
1476 		if (prev_dc) {
1477 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1478 			if (di.lstart < lstart)
1479 				di.lstart = lstart;
1480 			if (di.lstart >= end)
1481 				break;
1482 
1483 			if (!next_dc || next_dc->di.lstart > end)
1484 				di.len = end - di.lstart;
1485 			else
1486 				di.len = next_dc->di.lstart - di.lstart;
1487 			di.start = start + di.lstart - lstart;
1488 		}
1489 
1490 		if (!di.len)
1491 			goto next;
1492 
1493 		if (prev_dc && prev_dc->state == D_PREP &&
1494 			prev_dc->bdev == bdev &&
1495 			__is_discard_back_mergeable(&di, &prev_dc->di,
1496 							max_discard_blocks)) {
1497 			prev_dc->di.len += di.len;
1498 			dcc->undiscard_blks += di.len;
1499 			__relocate_discard_cmd(dcc, prev_dc);
1500 			di = prev_dc->di;
1501 			tdc = prev_dc;
1502 			merged = true;
1503 		}
1504 
1505 		if (next_dc && next_dc->state == D_PREP &&
1506 			next_dc->bdev == bdev &&
1507 			__is_discard_front_mergeable(&di, &next_dc->di,
1508 							max_discard_blocks)) {
1509 			next_dc->di.lstart = di.lstart;
1510 			next_dc->di.len += di.len;
1511 			next_dc->di.start = di.start;
1512 			dcc->undiscard_blks += di.len;
1513 			__relocate_discard_cmd(dcc, next_dc);
1514 			if (tdc)
1515 				__remove_discard_cmd(sbi, tdc);
1516 			merged = true;
1517 		}
1518 
1519 		if (!merged)
1520 			__insert_discard_cmd(sbi, bdev,
1521 						di.lstart, di.start, di.len);
1522  next:
1523 		prev_dc = next_dc;
1524 		if (!prev_dc)
1525 			break;
1526 
1527 		node = rb_next(&prev_dc->rb_node);
1528 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1529 	}
1530 }
1531 
1532 #ifdef CONFIG_BLK_DEV_ZONED
1533 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1534 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1535 		block_t blklen)
1536 {
1537 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1538 
1539 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1540 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1541 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1542 }
1543 #endif
1544 
1545 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1546 		struct block_device *bdev, block_t blkstart, block_t blklen)
1547 {
1548 	block_t lblkstart = blkstart;
1549 
1550 	if (!f2fs_bdev_support_discard(bdev))
1551 		return;
1552 
1553 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1554 
1555 	if (f2fs_is_multi_device(sbi)) {
1556 		int devi = f2fs_target_device_index(sbi, blkstart);
1557 
1558 		blkstart -= FDEV(devi).start_blk;
1559 	}
1560 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1561 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1562 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1563 }
1564 
1565 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1566 		struct discard_policy *dpolicy, int *issued)
1567 {
1568 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1569 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1570 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1571 	struct discard_cmd *dc;
1572 	struct blk_plug plug;
1573 	bool io_interrupted = false;
1574 
1575 	mutex_lock(&dcc->cmd_lock);
1576 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1577 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1578 	if (!dc)
1579 		dc = next_dc;
1580 
1581 	blk_start_plug(&plug);
1582 
1583 	while (dc) {
1584 		struct rb_node *node;
1585 		int err = 0;
1586 
1587 		if (dc->state != D_PREP)
1588 			goto next;
1589 
1590 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1591 			io_interrupted = true;
1592 			break;
1593 		}
1594 
1595 		dcc->next_pos = dc->di.lstart + dc->di.len;
1596 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1597 
1598 		if (*issued >= dpolicy->max_requests)
1599 			break;
1600 next:
1601 		node = rb_next(&dc->rb_node);
1602 		if (err)
1603 			__remove_discard_cmd(sbi, dc);
1604 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1605 	}
1606 
1607 	blk_finish_plug(&plug);
1608 
1609 	if (!dc)
1610 		dcc->next_pos = 0;
1611 
1612 	mutex_unlock(&dcc->cmd_lock);
1613 
1614 	if (!(*issued) && io_interrupted)
1615 		*issued = -1;
1616 }
1617 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1618 					struct discard_policy *dpolicy);
1619 
1620 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1621 					struct discard_policy *dpolicy)
1622 {
1623 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1624 	struct list_head *pend_list;
1625 	struct discard_cmd *dc, *tmp;
1626 	struct blk_plug plug;
1627 	int i, issued;
1628 	bool io_interrupted = false;
1629 
1630 	if (dpolicy->timeout)
1631 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1632 
1633 retry:
1634 	issued = 0;
1635 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1636 		if (dpolicy->timeout &&
1637 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1638 			break;
1639 
1640 		if (i + 1 < dpolicy->granularity)
1641 			break;
1642 
1643 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1644 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1645 			return issued;
1646 		}
1647 
1648 		pend_list = &dcc->pend_list[i];
1649 
1650 		mutex_lock(&dcc->cmd_lock);
1651 		if (list_empty(pend_list))
1652 			goto next;
1653 		if (unlikely(dcc->rbtree_check))
1654 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1655 		blk_start_plug(&plug);
1656 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1657 			f2fs_bug_on(sbi, dc->state != D_PREP);
1658 
1659 			if (dpolicy->timeout &&
1660 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1661 				break;
1662 
1663 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1664 						!is_idle(sbi, DISCARD_TIME)) {
1665 				io_interrupted = true;
1666 				break;
1667 			}
1668 
1669 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1670 
1671 			if (issued >= dpolicy->max_requests)
1672 				break;
1673 		}
1674 		blk_finish_plug(&plug);
1675 next:
1676 		mutex_unlock(&dcc->cmd_lock);
1677 
1678 		if (issued >= dpolicy->max_requests || io_interrupted)
1679 			break;
1680 	}
1681 
1682 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1683 		__wait_all_discard_cmd(sbi, dpolicy);
1684 		goto retry;
1685 	}
1686 
1687 	if (!issued && io_interrupted)
1688 		issued = -1;
1689 
1690 	return issued;
1691 }
1692 
1693 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1694 {
1695 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1696 	struct list_head *pend_list;
1697 	struct discard_cmd *dc, *tmp;
1698 	int i;
1699 	bool dropped = false;
1700 
1701 	mutex_lock(&dcc->cmd_lock);
1702 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1703 		pend_list = &dcc->pend_list[i];
1704 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1705 			f2fs_bug_on(sbi, dc->state != D_PREP);
1706 			__remove_discard_cmd(sbi, dc);
1707 			dropped = true;
1708 		}
1709 	}
1710 	mutex_unlock(&dcc->cmd_lock);
1711 
1712 	return dropped;
1713 }
1714 
1715 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1716 {
1717 	__drop_discard_cmd(sbi);
1718 }
1719 
1720 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1721 							struct discard_cmd *dc)
1722 {
1723 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1724 	unsigned int len = 0;
1725 
1726 	wait_for_completion_io(&dc->wait);
1727 	mutex_lock(&dcc->cmd_lock);
1728 	f2fs_bug_on(sbi, dc->state != D_DONE);
1729 	dc->ref--;
1730 	if (!dc->ref) {
1731 		if (!dc->error)
1732 			len = dc->di.len;
1733 		__remove_discard_cmd(sbi, dc);
1734 	}
1735 	mutex_unlock(&dcc->cmd_lock);
1736 
1737 	return len;
1738 }
1739 
1740 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1741 						struct discard_policy *dpolicy,
1742 						block_t start, block_t end)
1743 {
1744 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1745 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1746 					&(dcc->fstrim_list) : &(dcc->wait_list);
1747 	struct discard_cmd *dc = NULL, *iter, *tmp;
1748 	unsigned int trimmed = 0;
1749 
1750 next:
1751 	dc = NULL;
1752 
1753 	mutex_lock(&dcc->cmd_lock);
1754 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1755 		if (iter->di.lstart + iter->di.len <= start ||
1756 					end <= iter->di.lstart)
1757 			continue;
1758 		if (iter->di.len < dpolicy->granularity)
1759 			continue;
1760 		if (iter->state == D_DONE && !iter->ref) {
1761 			wait_for_completion_io(&iter->wait);
1762 			if (!iter->error)
1763 				trimmed += iter->di.len;
1764 			__remove_discard_cmd(sbi, iter);
1765 		} else {
1766 			iter->ref++;
1767 			dc = iter;
1768 			break;
1769 		}
1770 	}
1771 	mutex_unlock(&dcc->cmd_lock);
1772 
1773 	if (dc) {
1774 		trimmed += __wait_one_discard_bio(sbi, dc);
1775 		goto next;
1776 	}
1777 
1778 	return trimmed;
1779 }
1780 
1781 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1782 						struct discard_policy *dpolicy)
1783 {
1784 	struct discard_policy dp;
1785 	unsigned int discard_blks;
1786 
1787 	if (dpolicy)
1788 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1789 
1790 	/* wait all */
1791 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1792 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1793 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1794 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1795 
1796 	return discard_blks;
1797 }
1798 
1799 /* This should be covered by global mutex, &sit_i->sentry_lock */
1800 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1801 {
1802 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1803 	struct discard_cmd *dc;
1804 	bool need_wait = false;
1805 
1806 	mutex_lock(&dcc->cmd_lock);
1807 	dc = __lookup_discard_cmd(sbi, blkaddr);
1808 #ifdef CONFIG_BLK_DEV_ZONED
1809 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1810 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1811 
1812 		if (devi < 0) {
1813 			mutex_unlock(&dcc->cmd_lock);
1814 			return;
1815 		}
1816 
1817 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1818 			/* force submit zone reset */
1819 			if (dc->state == D_PREP)
1820 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1821 							&dcc->wait_list, NULL);
1822 			dc->ref++;
1823 			mutex_unlock(&dcc->cmd_lock);
1824 			/* wait zone reset */
1825 			__wait_one_discard_bio(sbi, dc);
1826 			return;
1827 		}
1828 	}
1829 #endif
1830 	if (dc) {
1831 		if (dc->state == D_PREP) {
1832 			__punch_discard_cmd(sbi, dc, blkaddr);
1833 		} else {
1834 			dc->ref++;
1835 			need_wait = true;
1836 		}
1837 	}
1838 	mutex_unlock(&dcc->cmd_lock);
1839 
1840 	if (need_wait)
1841 		__wait_one_discard_bio(sbi, dc);
1842 }
1843 
1844 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1845 {
1846 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1847 
1848 	if (dcc && dcc->f2fs_issue_discard) {
1849 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1850 
1851 		dcc->f2fs_issue_discard = NULL;
1852 		kthread_stop(discard_thread);
1853 	}
1854 }
1855 
1856 /**
1857  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1858  * @sbi: the f2fs_sb_info data for discard cmd to issue
1859  *
1860  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1861  *
1862  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1863  */
1864 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1865 {
1866 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1867 	struct discard_policy dpolicy;
1868 	bool dropped;
1869 
1870 	if (!atomic_read(&dcc->discard_cmd_cnt))
1871 		return true;
1872 
1873 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1874 					dcc->discard_granularity);
1875 	__issue_discard_cmd(sbi, &dpolicy);
1876 	dropped = __drop_discard_cmd(sbi);
1877 
1878 	/* just to make sure there is no pending discard commands */
1879 	__wait_all_discard_cmd(sbi, NULL);
1880 
1881 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1882 	return !dropped;
1883 }
1884 
1885 static int issue_discard_thread(void *data)
1886 {
1887 	struct f2fs_sb_info *sbi = data;
1888 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1889 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1890 	struct discard_policy dpolicy;
1891 	unsigned int wait_ms = dcc->min_discard_issue_time;
1892 	int issued;
1893 
1894 	set_freezable();
1895 
1896 	do {
1897 		wait_event_freezable_timeout(*q,
1898 				kthread_should_stop() || dcc->discard_wake,
1899 				msecs_to_jiffies(wait_ms));
1900 
1901 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1902 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1903 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1904 						MIN_DISCARD_GRANULARITY);
1905 		else
1906 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1907 						dcc->discard_granularity);
1908 
1909 		if (dcc->discard_wake)
1910 			dcc->discard_wake = false;
1911 
1912 		/* clean up pending candidates before going to sleep */
1913 		if (atomic_read(&dcc->queued_discard))
1914 			__wait_all_discard_cmd(sbi, NULL);
1915 
1916 		if (f2fs_readonly(sbi->sb))
1917 			continue;
1918 		if (kthread_should_stop())
1919 			return 0;
1920 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1921 			!atomic_read(&dcc->discard_cmd_cnt)) {
1922 			wait_ms = dpolicy.max_interval;
1923 			continue;
1924 		}
1925 
1926 		sb_start_intwrite(sbi->sb);
1927 
1928 		issued = __issue_discard_cmd(sbi, &dpolicy);
1929 		if (issued > 0) {
1930 			__wait_all_discard_cmd(sbi, &dpolicy);
1931 			wait_ms = dpolicy.min_interval;
1932 		} else if (issued == -1) {
1933 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1934 			if (!wait_ms)
1935 				wait_ms = dpolicy.mid_interval;
1936 		} else {
1937 			wait_ms = dpolicy.max_interval;
1938 		}
1939 		if (!atomic_read(&dcc->discard_cmd_cnt))
1940 			wait_ms = dpolicy.max_interval;
1941 
1942 		sb_end_intwrite(sbi->sb);
1943 
1944 	} while (!kthread_should_stop());
1945 	return 0;
1946 }
1947 
1948 #ifdef CONFIG_BLK_DEV_ZONED
1949 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1950 		struct block_device *bdev, block_t blkstart, block_t blklen)
1951 {
1952 	sector_t sector, nr_sects;
1953 	block_t lblkstart = blkstart;
1954 	int devi = 0;
1955 	u64 remainder = 0;
1956 
1957 	if (f2fs_is_multi_device(sbi)) {
1958 		devi = f2fs_target_device_index(sbi, blkstart);
1959 		if (blkstart < FDEV(devi).start_blk ||
1960 		    blkstart > FDEV(devi).end_blk) {
1961 			f2fs_err(sbi, "Invalid block %x", blkstart);
1962 			return -EIO;
1963 		}
1964 		blkstart -= FDEV(devi).start_blk;
1965 	}
1966 
1967 	/* For sequential zones, reset the zone write pointer */
1968 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1969 		sector = SECTOR_FROM_BLOCK(blkstart);
1970 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1971 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1972 
1973 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1974 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1975 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1976 				 blkstart, blklen);
1977 			return -EIO;
1978 		}
1979 
1980 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1981 			unsigned int nofs_flags;
1982 			int ret;
1983 
1984 			trace_f2fs_issue_reset_zone(bdev, blkstart);
1985 			nofs_flags = memalloc_nofs_save();
1986 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1987 						sector, nr_sects);
1988 			memalloc_nofs_restore(nofs_flags);
1989 			return ret;
1990 		}
1991 
1992 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1993 		return 0;
1994 	}
1995 
1996 	/* For conventional zones, use regular discard if supported */
1997 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1998 	return 0;
1999 }
2000 #endif
2001 
2002 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2003 		struct block_device *bdev, block_t blkstart, block_t blklen)
2004 {
2005 #ifdef CONFIG_BLK_DEV_ZONED
2006 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2007 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2008 #endif
2009 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2010 	return 0;
2011 }
2012 
2013 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2014 				block_t blkstart, block_t blklen)
2015 {
2016 	sector_t start = blkstart, len = 0;
2017 	struct block_device *bdev;
2018 	struct seg_entry *se;
2019 	unsigned int offset;
2020 	block_t i;
2021 	int err = 0;
2022 
2023 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2024 
2025 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2026 		if (i != start) {
2027 			struct block_device *bdev2 =
2028 				f2fs_target_device(sbi, i, NULL);
2029 
2030 			if (bdev2 != bdev) {
2031 				err = __issue_discard_async(sbi, bdev,
2032 						start, len);
2033 				if (err)
2034 					return err;
2035 				bdev = bdev2;
2036 				start = i;
2037 				len = 0;
2038 			}
2039 		}
2040 
2041 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2042 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2043 
2044 		if (f2fs_block_unit_discard(sbi) &&
2045 				!f2fs_test_and_set_bit(offset, se->discard_map))
2046 			sbi->discard_blks--;
2047 	}
2048 
2049 	if (len)
2050 		err = __issue_discard_async(sbi, bdev, start, len);
2051 	return err;
2052 }
2053 
2054 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2055 							bool check_only)
2056 {
2057 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2058 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2059 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2060 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2061 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2062 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2063 	unsigned int start = 0, end = -1;
2064 	bool force = (cpc->reason & CP_DISCARD);
2065 	struct discard_entry *de = NULL;
2066 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2067 	int i;
2068 
2069 	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2070 	    !f2fs_hw_support_discard(sbi) ||
2071 	    !f2fs_block_unit_discard(sbi))
2072 		return false;
2073 
2074 	if (!force) {
2075 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2076 			SM_I(sbi)->dcc_info->nr_discards >=
2077 				SM_I(sbi)->dcc_info->max_discards)
2078 			return false;
2079 	}
2080 
2081 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2082 	for (i = 0; i < entries; i++)
2083 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2084 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2085 
2086 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2087 				SM_I(sbi)->dcc_info->max_discards) {
2088 		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2089 		if (start >= BLKS_PER_SEG(sbi))
2090 			break;
2091 
2092 		end = __find_rev_next_zero_bit(dmap,
2093 						BLKS_PER_SEG(sbi), start + 1);
2094 		if (force && start && end != BLKS_PER_SEG(sbi) &&
2095 		    (end - start) < cpc->trim_minlen)
2096 			continue;
2097 
2098 		if (check_only)
2099 			return true;
2100 
2101 		if (!de) {
2102 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2103 						GFP_F2FS_ZERO, true, NULL);
2104 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2105 			list_add_tail(&de->list, head);
2106 		}
2107 
2108 		for (i = start; i < end; i++)
2109 			__set_bit_le(i, (void *)de->discard_map);
2110 
2111 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2112 	}
2113 	return false;
2114 }
2115 
2116 static void release_discard_addr(struct discard_entry *entry)
2117 {
2118 	list_del(&entry->list);
2119 	kmem_cache_free(discard_entry_slab, entry);
2120 }
2121 
2122 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2123 {
2124 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2125 	struct discard_entry *entry, *this;
2126 
2127 	/* drop caches */
2128 	list_for_each_entry_safe(entry, this, head, list)
2129 		release_discard_addr(entry);
2130 }
2131 
2132 /*
2133  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2134  */
2135 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2136 {
2137 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2138 	unsigned int segno;
2139 
2140 	mutex_lock(&dirty_i->seglist_lock);
2141 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2142 		__set_test_and_free(sbi, segno, false);
2143 	mutex_unlock(&dirty_i->seglist_lock);
2144 }
2145 
2146 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2147 						struct cp_control *cpc)
2148 {
2149 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2150 	struct list_head *head = &dcc->entry_list;
2151 	struct discard_entry *entry, *this;
2152 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2153 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2154 	unsigned int start = 0, end = -1;
2155 	unsigned int secno, start_segno;
2156 	bool force = (cpc->reason & CP_DISCARD);
2157 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2158 						DISCARD_UNIT_SECTION;
2159 
2160 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2161 		section_alignment = true;
2162 
2163 	mutex_lock(&dirty_i->seglist_lock);
2164 
2165 	while (1) {
2166 		int i;
2167 
2168 		if (section_alignment && end != -1)
2169 			end--;
2170 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2171 		if (start >= MAIN_SEGS(sbi))
2172 			break;
2173 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2174 								start + 1);
2175 
2176 		if (section_alignment) {
2177 			start = rounddown(start, SEGS_PER_SEC(sbi));
2178 			end = roundup(end, SEGS_PER_SEC(sbi));
2179 		}
2180 
2181 		for (i = start; i < end; i++) {
2182 			if (test_and_clear_bit(i, prefree_map))
2183 				dirty_i->nr_dirty[PRE]--;
2184 		}
2185 
2186 		if (!f2fs_realtime_discard_enable(sbi))
2187 			continue;
2188 
2189 		if (force && start >= cpc->trim_start &&
2190 					(end - 1) <= cpc->trim_end)
2191 			continue;
2192 
2193 		/* Should cover 2MB zoned device for zone-based reset */
2194 		if (!f2fs_sb_has_blkzoned(sbi) &&
2195 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2196 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2197 				SEGS_TO_BLKS(sbi, end - start));
2198 			continue;
2199 		}
2200 next:
2201 		secno = GET_SEC_FROM_SEG(sbi, start);
2202 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2203 		if (!IS_CURSEC(sbi, secno) &&
2204 			!get_valid_blocks(sbi, start, true))
2205 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2206 						BLKS_PER_SEC(sbi));
2207 
2208 		start = start_segno + SEGS_PER_SEC(sbi);
2209 		if (start < end)
2210 			goto next;
2211 		else
2212 			end = start - 1;
2213 	}
2214 	mutex_unlock(&dirty_i->seglist_lock);
2215 
2216 	if (!f2fs_block_unit_discard(sbi))
2217 		goto wakeup;
2218 
2219 	/* send small discards */
2220 	list_for_each_entry_safe(entry, this, head, list) {
2221 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2222 		bool is_valid = test_bit_le(0, entry->discard_map);
2223 
2224 find_next:
2225 		if (is_valid) {
2226 			next_pos = find_next_zero_bit_le(entry->discard_map,
2227 						BLKS_PER_SEG(sbi), cur_pos);
2228 			len = next_pos - cur_pos;
2229 
2230 			if (f2fs_sb_has_blkzoned(sbi) ||
2231 			    (force && len < cpc->trim_minlen))
2232 				goto skip;
2233 
2234 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2235 									len);
2236 			total_len += len;
2237 		} else {
2238 			next_pos = find_next_bit_le(entry->discard_map,
2239 						BLKS_PER_SEG(sbi), cur_pos);
2240 		}
2241 skip:
2242 		cur_pos = next_pos;
2243 		is_valid = !is_valid;
2244 
2245 		if (cur_pos < BLKS_PER_SEG(sbi))
2246 			goto find_next;
2247 
2248 		release_discard_addr(entry);
2249 		dcc->nr_discards -= total_len;
2250 	}
2251 
2252 wakeup:
2253 	wake_up_discard_thread(sbi, false);
2254 }
2255 
2256 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2257 {
2258 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2259 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2260 	int err = 0;
2261 
2262 	if (f2fs_sb_has_readonly(sbi)) {
2263 		f2fs_info(sbi,
2264 			"Skip to start discard thread for readonly image");
2265 		return 0;
2266 	}
2267 
2268 	if (!f2fs_realtime_discard_enable(sbi))
2269 		return 0;
2270 
2271 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2272 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2273 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2274 		err = PTR_ERR(dcc->f2fs_issue_discard);
2275 		dcc->f2fs_issue_discard = NULL;
2276 	}
2277 
2278 	return err;
2279 }
2280 
2281 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2282 {
2283 	struct discard_cmd_control *dcc;
2284 	int err = 0, i;
2285 
2286 	if (SM_I(sbi)->dcc_info) {
2287 		dcc = SM_I(sbi)->dcc_info;
2288 		goto init_thread;
2289 	}
2290 
2291 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2292 	if (!dcc)
2293 		return -ENOMEM;
2294 
2295 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2296 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2297 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2298 	dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2299 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2300 		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2301 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2302 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2303 
2304 	INIT_LIST_HEAD(&dcc->entry_list);
2305 	for (i = 0; i < MAX_PLIST_NUM; i++)
2306 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2307 	INIT_LIST_HEAD(&dcc->wait_list);
2308 	INIT_LIST_HEAD(&dcc->fstrim_list);
2309 	mutex_init(&dcc->cmd_lock);
2310 	atomic_set(&dcc->issued_discard, 0);
2311 	atomic_set(&dcc->queued_discard, 0);
2312 	atomic_set(&dcc->discard_cmd_cnt, 0);
2313 	dcc->nr_discards = 0;
2314 	dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2315 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2316 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2317 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2318 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2319 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2320 	dcc->undiscard_blks = 0;
2321 	dcc->next_pos = 0;
2322 	dcc->root = RB_ROOT_CACHED;
2323 	dcc->rbtree_check = false;
2324 
2325 	init_waitqueue_head(&dcc->discard_wait_queue);
2326 	SM_I(sbi)->dcc_info = dcc;
2327 init_thread:
2328 	err = f2fs_start_discard_thread(sbi);
2329 	if (err) {
2330 		kfree(dcc);
2331 		SM_I(sbi)->dcc_info = NULL;
2332 	}
2333 
2334 	return err;
2335 }
2336 
2337 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2338 {
2339 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2340 
2341 	if (!dcc)
2342 		return;
2343 
2344 	f2fs_stop_discard_thread(sbi);
2345 
2346 	/*
2347 	 * Recovery can cache discard commands, so in error path of
2348 	 * fill_super(), it needs to give a chance to handle them.
2349 	 */
2350 	f2fs_issue_discard_timeout(sbi);
2351 
2352 	kfree(dcc);
2353 	SM_I(sbi)->dcc_info = NULL;
2354 }
2355 
2356 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2357 {
2358 	struct sit_info *sit_i = SIT_I(sbi);
2359 
2360 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2361 		sit_i->dirty_sentries++;
2362 		return false;
2363 	}
2364 
2365 	return true;
2366 }
2367 
2368 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2369 					unsigned int segno, int modified)
2370 {
2371 	struct seg_entry *se = get_seg_entry(sbi, segno);
2372 
2373 	se->type = type;
2374 	if (modified)
2375 		__mark_sit_entry_dirty(sbi, segno);
2376 }
2377 
2378 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2379 								block_t blkaddr)
2380 {
2381 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2382 
2383 	if (segno == NULL_SEGNO)
2384 		return 0;
2385 	return get_seg_entry(sbi, segno)->mtime;
2386 }
2387 
2388 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2389 						unsigned long long old_mtime)
2390 {
2391 	struct seg_entry *se;
2392 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2393 	unsigned long long ctime = get_mtime(sbi, false);
2394 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2395 
2396 	if (segno == NULL_SEGNO)
2397 		return;
2398 
2399 	se = get_seg_entry(sbi, segno);
2400 
2401 	if (!se->mtime)
2402 		se->mtime = mtime;
2403 	else
2404 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2405 						se->valid_blocks + 1);
2406 
2407 	if (ctime > SIT_I(sbi)->max_mtime)
2408 		SIT_I(sbi)->max_mtime = ctime;
2409 }
2410 
2411 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2412 {
2413 	struct seg_entry *se;
2414 	unsigned int segno, offset;
2415 	long int new_vblocks;
2416 	bool exist;
2417 #ifdef CONFIG_F2FS_CHECK_FS
2418 	bool mir_exist;
2419 #endif
2420 
2421 	segno = GET_SEGNO(sbi, blkaddr);
2422 	if (segno == NULL_SEGNO)
2423 		return;
2424 
2425 	se = get_seg_entry(sbi, segno);
2426 	new_vblocks = se->valid_blocks + del;
2427 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2428 
2429 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2430 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2431 
2432 	se->valid_blocks = new_vblocks;
2433 
2434 	/* Update valid block bitmap */
2435 	if (del > 0) {
2436 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2437 #ifdef CONFIG_F2FS_CHECK_FS
2438 		mir_exist = f2fs_test_and_set_bit(offset,
2439 						se->cur_valid_map_mir);
2440 		if (unlikely(exist != mir_exist)) {
2441 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2442 				 blkaddr, exist);
2443 			f2fs_bug_on(sbi, 1);
2444 		}
2445 #endif
2446 		if (unlikely(exist)) {
2447 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2448 				 blkaddr);
2449 			f2fs_bug_on(sbi, 1);
2450 			se->valid_blocks--;
2451 			del = 0;
2452 		}
2453 
2454 		if (f2fs_block_unit_discard(sbi) &&
2455 				!f2fs_test_and_set_bit(offset, se->discard_map))
2456 			sbi->discard_blks--;
2457 
2458 		/*
2459 		 * SSR should never reuse block which is checkpointed
2460 		 * or newly invalidated.
2461 		 */
2462 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2463 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2464 				se->ckpt_valid_blocks++;
2465 		}
2466 	} else {
2467 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2468 #ifdef CONFIG_F2FS_CHECK_FS
2469 		mir_exist = f2fs_test_and_clear_bit(offset,
2470 						se->cur_valid_map_mir);
2471 		if (unlikely(exist != mir_exist)) {
2472 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2473 				 blkaddr, exist);
2474 			f2fs_bug_on(sbi, 1);
2475 		}
2476 #endif
2477 		if (unlikely(!exist)) {
2478 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2479 				 blkaddr);
2480 			f2fs_bug_on(sbi, 1);
2481 			se->valid_blocks++;
2482 			del = 0;
2483 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2484 			/*
2485 			 * If checkpoints are off, we must not reuse data that
2486 			 * was used in the previous checkpoint. If it was used
2487 			 * before, we must track that to know how much space we
2488 			 * really have.
2489 			 */
2490 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2491 				spin_lock(&sbi->stat_lock);
2492 				sbi->unusable_block_count++;
2493 				spin_unlock(&sbi->stat_lock);
2494 			}
2495 		}
2496 
2497 		if (f2fs_block_unit_discard(sbi) &&
2498 			f2fs_test_and_clear_bit(offset, se->discard_map))
2499 			sbi->discard_blks++;
2500 	}
2501 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2502 		se->ckpt_valid_blocks += del;
2503 
2504 	__mark_sit_entry_dirty(sbi, segno);
2505 
2506 	/* update total number of valid blocks to be written in ckpt area */
2507 	SIT_I(sbi)->written_valid_blocks += del;
2508 
2509 	if (__is_large_section(sbi))
2510 		get_sec_entry(sbi, segno)->valid_blocks += del;
2511 }
2512 
2513 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2514 {
2515 	unsigned int segno = GET_SEGNO(sbi, addr);
2516 	struct sit_info *sit_i = SIT_I(sbi);
2517 
2518 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2519 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2520 		return;
2521 
2522 	f2fs_invalidate_internal_cache(sbi, addr);
2523 
2524 	/* add it into sit main buffer */
2525 	down_write(&sit_i->sentry_lock);
2526 
2527 	update_segment_mtime(sbi, addr, 0);
2528 	update_sit_entry(sbi, addr, -1);
2529 
2530 	/* add it into dirty seglist */
2531 	locate_dirty_segment(sbi, segno);
2532 
2533 	up_write(&sit_i->sentry_lock);
2534 }
2535 
2536 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2537 {
2538 	struct sit_info *sit_i = SIT_I(sbi);
2539 	unsigned int segno, offset;
2540 	struct seg_entry *se;
2541 	bool is_cp = false;
2542 
2543 	if (!__is_valid_data_blkaddr(blkaddr))
2544 		return true;
2545 
2546 	down_read(&sit_i->sentry_lock);
2547 
2548 	segno = GET_SEGNO(sbi, blkaddr);
2549 	se = get_seg_entry(sbi, segno);
2550 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2551 
2552 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2553 		is_cp = true;
2554 
2555 	up_read(&sit_i->sentry_lock);
2556 
2557 	return is_cp;
2558 }
2559 
2560 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2561 {
2562 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2563 
2564 	if (sbi->ckpt->alloc_type[type] == SSR)
2565 		return BLKS_PER_SEG(sbi);
2566 	return curseg->next_blkoff;
2567 }
2568 
2569 /*
2570  * Calculate the number of current summary pages for writing
2571  */
2572 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2573 {
2574 	int valid_sum_count = 0;
2575 	int i, sum_in_page;
2576 
2577 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2578 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2579 			valid_sum_count +=
2580 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2581 		else
2582 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2583 	}
2584 
2585 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2586 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2587 	if (valid_sum_count <= sum_in_page)
2588 		return 1;
2589 	else if ((valid_sum_count - sum_in_page) <=
2590 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2591 		return 2;
2592 	return 3;
2593 }
2594 
2595 /*
2596  * Caller should put this summary page
2597  */
2598 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2599 {
2600 	if (unlikely(f2fs_cp_error(sbi)))
2601 		return ERR_PTR(-EIO);
2602 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2603 }
2604 
2605 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2606 					void *src, block_t blk_addr)
2607 {
2608 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2609 
2610 	memcpy(page_address(page), src, PAGE_SIZE);
2611 	set_page_dirty(page);
2612 	f2fs_put_page(page, 1);
2613 }
2614 
2615 static void write_sum_page(struct f2fs_sb_info *sbi,
2616 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2617 {
2618 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2619 }
2620 
2621 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2622 						int type, block_t blk_addr)
2623 {
2624 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2625 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2626 	struct f2fs_summary_block *src = curseg->sum_blk;
2627 	struct f2fs_summary_block *dst;
2628 
2629 	dst = (struct f2fs_summary_block *)page_address(page);
2630 	memset(dst, 0, PAGE_SIZE);
2631 
2632 	mutex_lock(&curseg->curseg_mutex);
2633 
2634 	down_read(&curseg->journal_rwsem);
2635 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2636 	up_read(&curseg->journal_rwsem);
2637 
2638 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2639 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2640 
2641 	mutex_unlock(&curseg->curseg_mutex);
2642 
2643 	set_page_dirty(page);
2644 	f2fs_put_page(page, 1);
2645 }
2646 
2647 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2648 				struct curseg_info *curseg, int type)
2649 {
2650 	unsigned int segno = curseg->segno + 1;
2651 	struct free_segmap_info *free_i = FREE_I(sbi);
2652 
2653 	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2654 		return !test_bit(segno, free_i->free_segmap);
2655 	return 0;
2656 }
2657 
2658 /*
2659  * Find a new segment from the free segments bitmap to right order
2660  * This function should be returned with success, otherwise BUG
2661  */
2662 static int get_new_segment(struct f2fs_sb_info *sbi,
2663 			unsigned int *newseg, bool new_sec, bool pinning)
2664 {
2665 	struct free_segmap_info *free_i = FREE_I(sbi);
2666 	unsigned int segno, secno, zoneno;
2667 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2668 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2669 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2670 	bool init = true;
2671 	int i;
2672 	int ret = 0;
2673 
2674 	spin_lock(&free_i->segmap_lock);
2675 
2676 	if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2677 		ret = -ENOSPC;
2678 		goto out_unlock;
2679 	}
2680 
2681 	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2682 		segno = find_next_zero_bit(free_i->free_segmap,
2683 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2684 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2685 			goto got_it;
2686 	}
2687 
2688 	/*
2689 	 * If we format f2fs on zoned storage, let's try to get pinned sections
2690 	 * from beginning of the storage, which should be a conventional one.
2691 	 */
2692 	if (f2fs_sb_has_blkzoned(sbi)) {
2693 		segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg);
2694 		hint = GET_SEC_FROM_SEG(sbi, segno);
2695 	}
2696 
2697 find_other_zone:
2698 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2699 	if (secno >= MAIN_SECS(sbi)) {
2700 		secno = find_first_zero_bit(free_i->free_secmap,
2701 							MAIN_SECS(sbi));
2702 		if (secno >= MAIN_SECS(sbi)) {
2703 			ret = -ENOSPC;
2704 			goto out_unlock;
2705 		}
2706 	}
2707 	segno = GET_SEG_FROM_SEC(sbi, secno);
2708 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2709 
2710 	/* give up on finding another zone */
2711 	if (!init)
2712 		goto got_it;
2713 	if (sbi->secs_per_zone == 1)
2714 		goto got_it;
2715 	if (zoneno == old_zoneno)
2716 		goto got_it;
2717 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2718 		if (CURSEG_I(sbi, i)->zone == zoneno)
2719 			break;
2720 
2721 	if (i < NR_CURSEG_TYPE) {
2722 		/* zone is in user, try another */
2723 		if (zoneno + 1 >= total_zones)
2724 			hint = 0;
2725 		else
2726 			hint = (zoneno + 1) * sbi->secs_per_zone;
2727 		init = false;
2728 		goto find_other_zone;
2729 	}
2730 got_it:
2731 	/* set it as dirty segment in free segmap */
2732 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2733 
2734 	/* no free section in conventional zone */
2735 	if (new_sec && pinning &&
2736 		!f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2737 		ret = -EAGAIN;
2738 		goto out_unlock;
2739 	}
2740 	__set_inuse(sbi, segno);
2741 	*newseg = segno;
2742 out_unlock:
2743 	spin_unlock(&free_i->segmap_lock);
2744 
2745 	if (ret == -ENOSPC) {
2746 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2747 		f2fs_bug_on(sbi, 1);
2748 	}
2749 	return ret;
2750 }
2751 
2752 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2753 {
2754 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2755 	struct summary_footer *sum_footer;
2756 	unsigned short seg_type = curseg->seg_type;
2757 
2758 	/* only happen when get_new_segment() fails */
2759 	if (curseg->next_segno == NULL_SEGNO)
2760 		return;
2761 
2762 	curseg->inited = true;
2763 	curseg->segno = curseg->next_segno;
2764 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2765 	curseg->next_blkoff = 0;
2766 	curseg->next_segno = NULL_SEGNO;
2767 
2768 	sum_footer = &(curseg->sum_blk->footer);
2769 	memset(sum_footer, 0, sizeof(struct summary_footer));
2770 
2771 	sanity_check_seg_type(sbi, seg_type);
2772 
2773 	if (IS_DATASEG(seg_type))
2774 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2775 	if (IS_NODESEG(seg_type))
2776 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2777 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2778 }
2779 
2780 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2781 {
2782 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2783 	unsigned short seg_type = curseg->seg_type;
2784 
2785 	sanity_check_seg_type(sbi, seg_type);
2786 	if (f2fs_need_rand_seg(sbi))
2787 		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2788 
2789 	if (__is_large_section(sbi))
2790 		return curseg->segno;
2791 
2792 	/* inmem log may not locate on any segment after mount */
2793 	if (!curseg->inited)
2794 		return 0;
2795 
2796 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2797 		return 0;
2798 
2799 	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2800 		return 0;
2801 
2802 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2803 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2804 
2805 	/* find segments from 0 to reuse freed segments */
2806 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2807 		return 0;
2808 
2809 	return curseg->segno;
2810 }
2811 
2812 /*
2813  * Allocate a current working segment.
2814  * This function always allocates a free segment in LFS manner.
2815  */
2816 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2817 {
2818 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2819 	unsigned int segno = curseg->segno;
2820 	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2821 	int ret;
2822 
2823 	if (curseg->inited)
2824 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2825 
2826 	segno = __get_next_segno(sbi, type);
2827 	ret = get_new_segment(sbi, &segno, new_sec, pinning);
2828 	if (ret) {
2829 		if (ret == -ENOSPC)
2830 			curseg->segno = NULL_SEGNO;
2831 		return ret;
2832 	}
2833 
2834 	curseg->next_segno = segno;
2835 	reset_curseg(sbi, type, 1);
2836 	curseg->alloc_type = LFS;
2837 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2838 		curseg->fragment_remained_chunk =
2839 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2840 	return 0;
2841 }
2842 
2843 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2844 					int segno, block_t start)
2845 {
2846 	struct seg_entry *se = get_seg_entry(sbi, segno);
2847 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2848 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2849 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2850 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2851 	int i;
2852 
2853 	for (i = 0; i < entries; i++)
2854 		target_map[i] = ckpt_map[i] | cur_map[i];
2855 
2856 	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2857 }
2858 
2859 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2860 		struct curseg_info *seg)
2861 {
2862 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2863 }
2864 
2865 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2866 {
2867 	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2868 }
2869 
2870 /*
2871  * This function always allocates a used segment(from dirty seglist) by SSR
2872  * manner, so it should recover the existing segment information of valid blocks
2873  */
2874 static int change_curseg(struct f2fs_sb_info *sbi, int type)
2875 {
2876 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2877 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2878 	unsigned int new_segno = curseg->next_segno;
2879 	struct f2fs_summary_block *sum_node;
2880 	struct page *sum_page;
2881 
2882 	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2883 
2884 	__set_test_and_inuse(sbi, new_segno);
2885 
2886 	mutex_lock(&dirty_i->seglist_lock);
2887 	__remove_dirty_segment(sbi, new_segno, PRE);
2888 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2889 	mutex_unlock(&dirty_i->seglist_lock);
2890 
2891 	reset_curseg(sbi, type, 1);
2892 	curseg->alloc_type = SSR;
2893 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2894 
2895 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2896 	if (IS_ERR(sum_page)) {
2897 		/* GC won't be able to use stale summary pages by cp_error */
2898 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2899 		return PTR_ERR(sum_page);
2900 	}
2901 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2902 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2903 	f2fs_put_page(sum_page, 1);
2904 	return 0;
2905 }
2906 
2907 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2908 				int alloc_mode, unsigned long long age);
2909 
2910 static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2911 					int target_type, int alloc_mode,
2912 					unsigned long long age)
2913 {
2914 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2915 	int ret = 0;
2916 
2917 	curseg->seg_type = target_type;
2918 
2919 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2920 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2921 
2922 		curseg->seg_type = se->type;
2923 		ret = change_curseg(sbi, type);
2924 	} else {
2925 		/* allocate cold segment by default */
2926 		curseg->seg_type = CURSEG_COLD_DATA;
2927 		ret = new_curseg(sbi, type, true);
2928 	}
2929 	stat_inc_seg_type(sbi, curseg);
2930 	return ret;
2931 }
2932 
2933 static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2934 {
2935 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2936 	int ret = 0;
2937 
2938 	if (!sbi->am.atgc_enabled)
2939 		return 0;
2940 
2941 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2942 
2943 	mutex_lock(&curseg->curseg_mutex);
2944 	down_write(&SIT_I(sbi)->sentry_lock);
2945 
2946 	ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
2947 					CURSEG_COLD_DATA, SSR, 0);
2948 
2949 	up_write(&SIT_I(sbi)->sentry_lock);
2950 	mutex_unlock(&curseg->curseg_mutex);
2951 
2952 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2953 	return ret;
2954 }
2955 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2956 {
2957 	return __f2fs_init_atgc_curseg(sbi);
2958 }
2959 
2960 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2961 {
2962 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2963 
2964 	mutex_lock(&curseg->curseg_mutex);
2965 	if (!curseg->inited)
2966 		goto out;
2967 
2968 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2969 		write_sum_page(sbi, curseg->sum_blk,
2970 				GET_SUM_BLOCK(sbi, curseg->segno));
2971 	} else {
2972 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2973 		__set_test_and_free(sbi, curseg->segno, true);
2974 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2975 	}
2976 out:
2977 	mutex_unlock(&curseg->curseg_mutex);
2978 }
2979 
2980 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2981 {
2982 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2983 
2984 	if (sbi->am.atgc_enabled)
2985 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2986 }
2987 
2988 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2989 {
2990 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2991 
2992 	mutex_lock(&curseg->curseg_mutex);
2993 	if (!curseg->inited)
2994 		goto out;
2995 	if (get_valid_blocks(sbi, curseg->segno, false))
2996 		goto out;
2997 
2998 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2999 	__set_test_and_inuse(sbi, curseg->segno);
3000 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3001 out:
3002 	mutex_unlock(&curseg->curseg_mutex);
3003 }
3004 
3005 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3006 {
3007 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3008 
3009 	if (sbi->am.atgc_enabled)
3010 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3011 }
3012 
3013 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3014 				int alloc_mode, unsigned long long age)
3015 {
3016 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3017 	unsigned segno = NULL_SEGNO;
3018 	unsigned short seg_type = curseg->seg_type;
3019 	int i, cnt;
3020 	bool reversed = false;
3021 
3022 	sanity_check_seg_type(sbi, seg_type);
3023 
3024 	/* f2fs_need_SSR() already forces to do this */
3025 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
3026 		curseg->next_segno = segno;
3027 		return 1;
3028 	}
3029 
3030 	/* For node segments, let's do SSR more intensively */
3031 	if (IS_NODESEG(seg_type)) {
3032 		if (seg_type >= CURSEG_WARM_NODE) {
3033 			reversed = true;
3034 			i = CURSEG_COLD_NODE;
3035 		} else {
3036 			i = CURSEG_HOT_NODE;
3037 		}
3038 		cnt = NR_CURSEG_NODE_TYPE;
3039 	} else {
3040 		if (seg_type >= CURSEG_WARM_DATA) {
3041 			reversed = true;
3042 			i = CURSEG_COLD_DATA;
3043 		} else {
3044 			i = CURSEG_HOT_DATA;
3045 		}
3046 		cnt = NR_CURSEG_DATA_TYPE;
3047 	}
3048 
3049 	for (; cnt-- > 0; reversed ? i-- : i++) {
3050 		if (i == seg_type)
3051 			continue;
3052 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3053 			curseg->next_segno = segno;
3054 			return 1;
3055 		}
3056 	}
3057 
3058 	/* find valid_blocks=0 in dirty list */
3059 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3060 		segno = get_free_segment(sbi);
3061 		if (segno != NULL_SEGNO) {
3062 			curseg->next_segno = segno;
3063 			return 1;
3064 		}
3065 	}
3066 	return 0;
3067 }
3068 
3069 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3070 {
3071 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3072 
3073 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3074 	    curseg->seg_type == CURSEG_WARM_NODE)
3075 		return true;
3076 	if (curseg->alloc_type == LFS &&
3077 	    is_next_segment_free(sbi, curseg, type) &&
3078 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3079 		return true;
3080 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3081 		return true;
3082 	return false;
3083 }
3084 
3085 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3086 					unsigned int start, unsigned int end)
3087 {
3088 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3089 	unsigned int segno;
3090 	int ret = 0;
3091 
3092 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3093 	mutex_lock(&curseg->curseg_mutex);
3094 	down_write(&SIT_I(sbi)->sentry_lock);
3095 
3096 	segno = CURSEG_I(sbi, type)->segno;
3097 	if (segno < start || segno > end)
3098 		goto unlock;
3099 
3100 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3101 		ret = change_curseg(sbi, type);
3102 	else
3103 		ret = new_curseg(sbi, type, true);
3104 
3105 	stat_inc_seg_type(sbi, curseg);
3106 
3107 	locate_dirty_segment(sbi, segno);
3108 unlock:
3109 	up_write(&SIT_I(sbi)->sentry_lock);
3110 
3111 	if (segno != curseg->segno)
3112 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3113 			    type, segno, curseg->segno);
3114 
3115 	mutex_unlock(&curseg->curseg_mutex);
3116 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3117 	return ret;
3118 }
3119 
3120 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3121 						bool new_sec, bool force)
3122 {
3123 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3124 	unsigned int old_segno;
3125 	int err = 0;
3126 
3127 	if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3128 		goto allocate;
3129 
3130 	if (!force && curseg->inited &&
3131 	    !curseg->next_blkoff &&
3132 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3133 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3134 		return 0;
3135 
3136 allocate:
3137 	old_segno = curseg->segno;
3138 	err = new_curseg(sbi, type, true);
3139 	if (err)
3140 		return err;
3141 	stat_inc_seg_type(sbi, curseg);
3142 	locate_dirty_segment(sbi, old_segno);
3143 	return 0;
3144 }
3145 
3146 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3147 {
3148 	int ret;
3149 
3150 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3151 	down_write(&SIT_I(sbi)->sentry_lock);
3152 	ret = __allocate_new_segment(sbi, type, true, force);
3153 	up_write(&SIT_I(sbi)->sentry_lock);
3154 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3155 
3156 	return ret;
3157 }
3158 
3159 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3160 {
3161 	int err;
3162 	bool gc_required = true;
3163 
3164 retry:
3165 	f2fs_lock_op(sbi);
3166 	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3167 	f2fs_unlock_op(sbi);
3168 
3169 	if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3170 		f2fs_down_write(&sbi->gc_lock);
3171 		err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1);
3172 		f2fs_up_write(&sbi->gc_lock);
3173 
3174 		gc_required = false;
3175 		if (!err)
3176 			goto retry;
3177 	}
3178 
3179 	return err;
3180 }
3181 
3182 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3183 {
3184 	int i;
3185 	int err = 0;
3186 
3187 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3188 	down_write(&SIT_I(sbi)->sentry_lock);
3189 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3190 		err += __allocate_new_segment(sbi, i, false, false);
3191 	up_write(&SIT_I(sbi)->sentry_lock);
3192 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3193 
3194 	return err;
3195 }
3196 
3197 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3198 						struct cp_control *cpc)
3199 {
3200 	__u64 trim_start = cpc->trim_start;
3201 	bool has_candidate = false;
3202 
3203 	down_write(&SIT_I(sbi)->sentry_lock);
3204 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3205 		if (add_discard_addrs(sbi, cpc, true)) {
3206 			has_candidate = true;
3207 			break;
3208 		}
3209 	}
3210 	up_write(&SIT_I(sbi)->sentry_lock);
3211 
3212 	cpc->trim_start = trim_start;
3213 	return has_candidate;
3214 }
3215 
3216 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3217 					struct discard_policy *dpolicy,
3218 					unsigned int start, unsigned int end)
3219 {
3220 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3221 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3222 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3223 	struct discard_cmd *dc;
3224 	struct blk_plug plug;
3225 	int issued;
3226 	unsigned int trimmed = 0;
3227 
3228 next:
3229 	issued = 0;
3230 
3231 	mutex_lock(&dcc->cmd_lock);
3232 	if (unlikely(dcc->rbtree_check))
3233 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3234 
3235 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3236 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3237 	if (!dc)
3238 		dc = next_dc;
3239 
3240 	blk_start_plug(&plug);
3241 
3242 	while (dc && dc->di.lstart <= end) {
3243 		struct rb_node *node;
3244 		int err = 0;
3245 
3246 		if (dc->di.len < dpolicy->granularity)
3247 			goto skip;
3248 
3249 		if (dc->state != D_PREP) {
3250 			list_move_tail(&dc->list, &dcc->fstrim_list);
3251 			goto skip;
3252 		}
3253 
3254 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3255 
3256 		if (issued >= dpolicy->max_requests) {
3257 			start = dc->di.lstart + dc->di.len;
3258 
3259 			if (err)
3260 				__remove_discard_cmd(sbi, dc);
3261 
3262 			blk_finish_plug(&plug);
3263 			mutex_unlock(&dcc->cmd_lock);
3264 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3265 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3266 			goto next;
3267 		}
3268 skip:
3269 		node = rb_next(&dc->rb_node);
3270 		if (err)
3271 			__remove_discard_cmd(sbi, dc);
3272 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3273 
3274 		if (fatal_signal_pending(current))
3275 			break;
3276 	}
3277 
3278 	blk_finish_plug(&plug);
3279 	mutex_unlock(&dcc->cmd_lock);
3280 
3281 	return trimmed;
3282 }
3283 
3284 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3285 {
3286 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3287 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3288 	unsigned int start_segno, end_segno;
3289 	block_t start_block, end_block;
3290 	struct cp_control cpc;
3291 	struct discard_policy dpolicy;
3292 	unsigned long long trimmed = 0;
3293 	int err = 0;
3294 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3295 
3296 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3297 		return -EINVAL;
3298 
3299 	if (end < MAIN_BLKADDR(sbi))
3300 		goto out;
3301 
3302 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3303 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3304 		return -EFSCORRUPTED;
3305 	}
3306 
3307 	/* start/end segment number in main_area */
3308 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3309 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3310 						GET_SEGNO(sbi, end);
3311 	if (need_align) {
3312 		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3313 		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3314 	}
3315 
3316 	cpc.reason = CP_DISCARD;
3317 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3318 	cpc.trim_start = start_segno;
3319 	cpc.trim_end = end_segno;
3320 
3321 	if (sbi->discard_blks == 0)
3322 		goto out;
3323 
3324 	f2fs_down_write(&sbi->gc_lock);
3325 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3326 	err = f2fs_write_checkpoint(sbi, &cpc);
3327 	f2fs_up_write(&sbi->gc_lock);
3328 	if (err)
3329 		goto out;
3330 
3331 	/*
3332 	 * We filed discard candidates, but actually we don't need to wait for
3333 	 * all of them, since they'll be issued in idle time along with runtime
3334 	 * discard option. User configuration looks like using runtime discard
3335 	 * or periodic fstrim instead of it.
3336 	 */
3337 	if (f2fs_realtime_discard_enable(sbi))
3338 		goto out;
3339 
3340 	start_block = START_BLOCK(sbi, start_segno);
3341 	end_block = START_BLOCK(sbi, end_segno + 1);
3342 
3343 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3344 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3345 					start_block, end_block);
3346 
3347 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3348 					start_block, end_block);
3349 out:
3350 	if (!err)
3351 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3352 	return err;
3353 }
3354 
3355 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3356 {
3357 	switch (hint) {
3358 	case WRITE_LIFE_SHORT:
3359 		return CURSEG_HOT_DATA;
3360 	case WRITE_LIFE_EXTREME:
3361 		return CURSEG_COLD_DATA;
3362 	default:
3363 		return CURSEG_WARM_DATA;
3364 	}
3365 }
3366 
3367 static int __get_segment_type_2(struct f2fs_io_info *fio)
3368 {
3369 	if (fio->type == DATA)
3370 		return CURSEG_HOT_DATA;
3371 	else
3372 		return CURSEG_HOT_NODE;
3373 }
3374 
3375 static int __get_segment_type_4(struct f2fs_io_info *fio)
3376 {
3377 	if (fio->type == DATA) {
3378 		struct inode *inode = fio->page->mapping->host;
3379 
3380 		if (S_ISDIR(inode->i_mode))
3381 			return CURSEG_HOT_DATA;
3382 		else
3383 			return CURSEG_COLD_DATA;
3384 	} else {
3385 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3386 			return CURSEG_WARM_NODE;
3387 		else
3388 			return CURSEG_COLD_NODE;
3389 	}
3390 }
3391 
3392 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3393 {
3394 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3395 	struct extent_info ei = {};
3396 
3397 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3398 		if (!ei.age)
3399 			return NO_CHECK_TYPE;
3400 		if (ei.age <= sbi->hot_data_age_threshold)
3401 			return CURSEG_HOT_DATA;
3402 		if (ei.age <= sbi->warm_data_age_threshold)
3403 			return CURSEG_WARM_DATA;
3404 		return CURSEG_COLD_DATA;
3405 	}
3406 	return NO_CHECK_TYPE;
3407 }
3408 
3409 static int __get_segment_type_6(struct f2fs_io_info *fio)
3410 {
3411 	if (fio->type == DATA) {
3412 		struct inode *inode = fio->page->mapping->host;
3413 		int type;
3414 
3415 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3416 			return CURSEG_COLD_DATA_PINNED;
3417 
3418 		if (page_private_gcing(fio->page)) {
3419 			if (fio->sbi->am.atgc_enabled &&
3420 				(fio->io_type == FS_DATA_IO) &&
3421 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3422 				return CURSEG_ALL_DATA_ATGC;
3423 			else
3424 				return CURSEG_COLD_DATA;
3425 		}
3426 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3427 			return CURSEG_COLD_DATA;
3428 
3429 		type = __get_age_segment_type(inode, fio->page->index);
3430 		if (type != NO_CHECK_TYPE)
3431 			return type;
3432 
3433 		if (file_is_hot(inode) ||
3434 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3435 				f2fs_is_cow_file(inode))
3436 			return CURSEG_HOT_DATA;
3437 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3438 	} else {
3439 		if (IS_DNODE(fio->page))
3440 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3441 						CURSEG_HOT_NODE;
3442 		return CURSEG_COLD_NODE;
3443 	}
3444 }
3445 
3446 static int __get_segment_type(struct f2fs_io_info *fio)
3447 {
3448 	int type = 0;
3449 
3450 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3451 	case 2:
3452 		type = __get_segment_type_2(fio);
3453 		break;
3454 	case 4:
3455 		type = __get_segment_type_4(fio);
3456 		break;
3457 	case 6:
3458 		type = __get_segment_type_6(fio);
3459 		break;
3460 	default:
3461 		f2fs_bug_on(fio->sbi, true);
3462 	}
3463 
3464 	if (IS_HOT(type))
3465 		fio->temp = HOT;
3466 	else if (IS_WARM(type))
3467 		fio->temp = WARM;
3468 	else
3469 		fio->temp = COLD;
3470 	return type;
3471 }
3472 
3473 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3474 		struct curseg_info *seg)
3475 {
3476 	/* To allocate block chunks in different sizes, use random number */
3477 	if (--seg->fragment_remained_chunk > 0)
3478 		return;
3479 
3480 	seg->fragment_remained_chunk =
3481 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3482 	seg->next_blkoff +=
3483 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3484 }
3485 
3486 static void reset_curseg_fields(struct curseg_info *curseg)
3487 {
3488 	curseg->inited = false;
3489 	curseg->segno = NULL_SEGNO;
3490 	curseg->next_segno = 0;
3491 }
3492 
3493 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3494 		block_t old_blkaddr, block_t *new_blkaddr,
3495 		struct f2fs_summary *sum, int type,
3496 		struct f2fs_io_info *fio)
3497 {
3498 	struct sit_info *sit_i = SIT_I(sbi);
3499 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3500 	unsigned long long old_mtime;
3501 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3502 	struct seg_entry *se = NULL;
3503 	bool segment_full = false;
3504 	int ret = 0;
3505 
3506 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3507 
3508 	mutex_lock(&curseg->curseg_mutex);
3509 	down_write(&sit_i->sentry_lock);
3510 
3511 	if (curseg->segno == NULL_SEGNO) {
3512 		ret = -ENOSPC;
3513 		goto out_err;
3514 	}
3515 
3516 	if (from_gc) {
3517 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3518 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3519 		sanity_check_seg_type(sbi, se->type);
3520 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3521 	}
3522 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3523 
3524 	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3525 
3526 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3527 
3528 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3529 	if (curseg->alloc_type == SSR) {
3530 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3531 	} else {
3532 		curseg->next_blkoff++;
3533 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3534 			f2fs_randomize_chunk(sbi, curseg);
3535 	}
3536 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3537 		segment_full = true;
3538 	stat_inc_block_count(sbi, curseg);
3539 
3540 	if (from_gc) {
3541 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3542 	} else {
3543 		update_segment_mtime(sbi, old_blkaddr, 0);
3544 		old_mtime = 0;
3545 	}
3546 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3547 
3548 	/*
3549 	 * SIT information should be updated before segment allocation,
3550 	 * since SSR needs latest valid block information.
3551 	 */
3552 	update_sit_entry(sbi, *new_blkaddr, 1);
3553 	update_sit_entry(sbi, old_blkaddr, -1);
3554 
3555 	/*
3556 	 * If the current segment is full, flush it out and replace it with a
3557 	 * new segment.
3558 	 */
3559 	if (segment_full) {
3560 		if (type == CURSEG_COLD_DATA_PINNED &&
3561 		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3562 			reset_curseg_fields(curseg);
3563 			goto skip_new_segment;
3564 		}
3565 
3566 		if (from_gc) {
3567 			ret = get_atssr_segment(sbi, type, se->type,
3568 						AT_SSR, se->mtime);
3569 		} else {
3570 			if (need_new_seg(sbi, type))
3571 				ret = new_curseg(sbi, type, false);
3572 			else
3573 				ret = change_curseg(sbi, type);
3574 			stat_inc_seg_type(sbi, curseg);
3575 		}
3576 
3577 		if (ret)
3578 			goto out_err;
3579 	}
3580 
3581 skip_new_segment:
3582 	/*
3583 	 * segment dirty status should be updated after segment allocation,
3584 	 * so we just need to update status only one time after previous
3585 	 * segment being closed.
3586 	 */
3587 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3588 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3589 
3590 	if (IS_DATASEG(curseg->seg_type))
3591 		atomic64_inc(&sbi->allocated_data_blocks);
3592 
3593 	up_write(&sit_i->sentry_lock);
3594 
3595 	if (page && IS_NODESEG(curseg->seg_type)) {
3596 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3597 
3598 		f2fs_inode_chksum_set(sbi, page);
3599 	}
3600 
3601 	if (fio) {
3602 		struct f2fs_bio_info *io;
3603 
3604 		INIT_LIST_HEAD(&fio->list);
3605 		fio->in_list = 1;
3606 		io = sbi->write_io[fio->type] + fio->temp;
3607 		spin_lock(&io->io_lock);
3608 		list_add_tail(&fio->list, &io->io_list);
3609 		spin_unlock(&io->io_lock);
3610 	}
3611 
3612 	mutex_unlock(&curseg->curseg_mutex);
3613 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3614 	return 0;
3615 out_err:
3616 	*new_blkaddr = NULL_ADDR;
3617 	up_write(&sit_i->sentry_lock);
3618 	mutex_unlock(&curseg->curseg_mutex);
3619 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3620 	return ret;
3621 
3622 }
3623 
3624 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3625 					block_t blkaddr, unsigned int blkcnt)
3626 {
3627 	if (!f2fs_is_multi_device(sbi))
3628 		return;
3629 
3630 	while (1) {
3631 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3632 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3633 
3634 		/* update device state for fsync */
3635 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3636 
3637 		/* update device state for checkpoint */
3638 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3639 			spin_lock(&sbi->dev_lock);
3640 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3641 			spin_unlock(&sbi->dev_lock);
3642 		}
3643 
3644 		if (blkcnt <= blks)
3645 			break;
3646 		blkcnt -= blks;
3647 		blkaddr += blks;
3648 	}
3649 }
3650 
3651 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3652 {
3653 	int type = __get_segment_type(fio);
3654 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3655 
3656 	if (keep_order)
3657 		f2fs_down_read(&fio->sbi->io_order_lock);
3658 
3659 	if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3660 			&fio->new_blkaddr, sum, type, fio)) {
3661 		if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host))
3662 			fscrypt_finalize_bounce_page(&fio->encrypted_page);
3663 		if (PageWriteback(fio->page))
3664 			end_page_writeback(fio->page);
3665 		if (f2fs_in_warm_node_list(fio->sbi, fio->page))
3666 			f2fs_del_fsync_node_entry(fio->sbi, fio->page);
3667 		goto out;
3668 	}
3669 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3670 		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3671 
3672 	/* writeout dirty page into bdev */
3673 	f2fs_submit_page_write(fio);
3674 
3675 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3676 out:
3677 	if (keep_order)
3678 		f2fs_up_read(&fio->sbi->io_order_lock);
3679 }
3680 
3681 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3682 					enum iostat_type io_type)
3683 {
3684 	struct f2fs_io_info fio = {
3685 		.sbi = sbi,
3686 		.type = META,
3687 		.temp = HOT,
3688 		.op = REQ_OP_WRITE,
3689 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3690 		.old_blkaddr = page->index,
3691 		.new_blkaddr = page->index,
3692 		.page = page,
3693 		.encrypted_page = NULL,
3694 		.in_list = 0,
3695 	};
3696 
3697 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3698 		fio.op_flags &= ~REQ_META;
3699 
3700 	set_page_writeback(page);
3701 	f2fs_submit_page_write(&fio);
3702 
3703 	stat_inc_meta_count(sbi, page->index);
3704 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3705 }
3706 
3707 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3708 {
3709 	struct f2fs_summary sum;
3710 
3711 	set_summary(&sum, nid, 0, 0);
3712 	do_write_page(&sum, fio);
3713 
3714 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3715 }
3716 
3717 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3718 					struct f2fs_io_info *fio)
3719 {
3720 	struct f2fs_sb_info *sbi = fio->sbi;
3721 	struct f2fs_summary sum;
3722 
3723 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3724 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3725 		f2fs_update_age_extent_cache(dn);
3726 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3727 	do_write_page(&sum, fio);
3728 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3729 
3730 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3731 }
3732 
3733 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3734 {
3735 	int err;
3736 	struct f2fs_sb_info *sbi = fio->sbi;
3737 	unsigned int segno;
3738 
3739 	fio->new_blkaddr = fio->old_blkaddr;
3740 	/* i/o temperature is needed for passing down write hints */
3741 	__get_segment_type(fio);
3742 
3743 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3744 
3745 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3746 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3747 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3748 			  __func__, segno);
3749 		err = -EFSCORRUPTED;
3750 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3751 		goto drop_bio;
3752 	}
3753 
3754 	if (f2fs_cp_error(sbi)) {
3755 		err = -EIO;
3756 		goto drop_bio;
3757 	}
3758 
3759 	if (fio->post_read)
3760 		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3761 
3762 	stat_inc_inplace_blocks(fio->sbi);
3763 
3764 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3765 		err = f2fs_merge_page_bio(fio);
3766 	else
3767 		err = f2fs_submit_page_bio(fio);
3768 	if (!err) {
3769 		f2fs_update_device_state(fio->sbi, fio->ino,
3770 						fio->new_blkaddr, 1);
3771 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3772 						fio->io_type, F2FS_BLKSIZE);
3773 	}
3774 
3775 	return err;
3776 drop_bio:
3777 	if (fio->bio && *(fio->bio)) {
3778 		struct bio *bio = *(fio->bio);
3779 
3780 		bio->bi_status = BLK_STS_IOERR;
3781 		bio_endio(bio);
3782 		*(fio->bio) = NULL;
3783 	}
3784 	return err;
3785 }
3786 
3787 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3788 						unsigned int segno)
3789 {
3790 	int i;
3791 
3792 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3793 		if (CURSEG_I(sbi, i)->segno == segno)
3794 			break;
3795 	}
3796 	return i;
3797 }
3798 
3799 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3800 				block_t old_blkaddr, block_t new_blkaddr,
3801 				bool recover_curseg, bool recover_newaddr,
3802 				bool from_gc)
3803 {
3804 	struct sit_info *sit_i = SIT_I(sbi);
3805 	struct curseg_info *curseg;
3806 	unsigned int segno, old_cursegno;
3807 	struct seg_entry *se;
3808 	int type;
3809 	unsigned short old_blkoff;
3810 	unsigned char old_alloc_type;
3811 
3812 	segno = GET_SEGNO(sbi, new_blkaddr);
3813 	se = get_seg_entry(sbi, segno);
3814 	type = se->type;
3815 
3816 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3817 
3818 	if (!recover_curseg) {
3819 		/* for recovery flow */
3820 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3821 			if (old_blkaddr == NULL_ADDR)
3822 				type = CURSEG_COLD_DATA;
3823 			else
3824 				type = CURSEG_WARM_DATA;
3825 		}
3826 	} else {
3827 		if (IS_CURSEG(sbi, segno)) {
3828 			/* se->type is volatile as SSR allocation */
3829 			type = __f2fs_get_curseg(sbi, segno);
3830 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3831 		} else {
3832 			type = CURSEG_WARM_DATA;
3833 		}
3834 	}
3835 
3836 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3837 	curseg = CURSEG_I(sbi, type);
3838 
3839 	mutex_lock(&curseg->curseg_mutex);
3840 	down_write(&sit_i->sentry_lock);
3841 
3842 	old_cursegno = curseg->segno;
3843 	old_blkoff = curseg->next_blkoff;
3844 	old_alloc_type = curseg->alloc_type;
3845 
3846 	/* change the current segment */
3847 	if (segno != curseg->segno) {
3848 		curseg->next_segno = segno;
3849 		if (change_curseg(sbi, type))
3850 			goto out_unlock;
3851 	}
3852 
3853 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3854 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3855 
3856 	if (!recover_curseg || recover_newaddr) {
3857 		if (!from_gc)
3858 			update_segment_mtime(sbi, new_blkaddr, 0);
3859 		update_sit_entry(sbi, new_blkaddr, 1);
3860 	}
3861 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3862 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3863 		if (!from_gc)
3864 			update_segment_mtime(sbi, old_blkaddr, 0);
3865 		update_sit_entry(sbi, old_blkaddr, -1);
3866 	}
3867 
3868 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3869 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3870 
3871 	locate_dirty_segment(sbi, old_cursegno);
3872 
3873 	if (recover_curseg) {
3874 		if (old_cursegno != curseg->segno) {
3875 			curseg->next_segno = old_cursegno;
3876 			if (change_curseg(sbi, type))
3877 				goto out_unlock;
3878 		}
3879 		curseg->next_blkoff = old_blkoff;
3880 		curseg->alloc_type = old_alloc_type;
3881 	}
3882 
3883 out_unlock:
3884 	up_write(&sit_i->sentry_lock);
3885 	mutex_unlock(&curseg->curseg_mutex);
3886 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3887 }
3888 
3889 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3890 				block_t old_addr, block_t new_addr,
3891 				unsigned char version, bool recover_curseg,
3892 				bool recover_newaddr)
3893 {
3894 	struct f2fs_summary sum;
3895 
3896 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3897 
3898 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3899 					recover_curseg, recover_newaddr, false);
3900 
3901 	f2fs_update_data_blkaddr(dn, new_addr);
3902 }
3903 
3904 void f2fs_wait_on_page_writeback(struct page *page,
3905 				enum page_type type, bool ordered, bool locked)
3906 {
3907 	if (PageWriteback(page)) {
3908 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3909 
3910 		/* submit cached LFS IO */
3911 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3912 		/* submit cached IPU IO */
3913 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3914 		if (ordered) {
3915 			wait_on_page_writeback(page);
3916 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3917 		} else {
3918 			wait_for_stable_page(page);
3919 		}
3920 	}
3921 }
3922 
3923 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3924 {
3925 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3926 	struct page *cpage;
3927 
3928 	if (!f2fs_post_read_required(inode))
3929 		return;
3930 
3931 	if (!__is_valid_data_blkaddr(blkaddr))
3932 		return;
3933 
3934 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3935 	if (cpage) {
3936 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3937 		f2fs_put_page(cpage, 1);
3938 	}
3939 }
3940 
3941 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3942 								block_t len)
3943 {
3944 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3945 	block_t i;
3946 
3947 	if (!f2fs_post_read_required(inode))
3948 		return;
3949 
3950 	for (i = 0; i < len; i++)
3951 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3952 
3953 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
3954 }
3955 
3956 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3957 {
3958 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3959 	struct curseg_info *seg_i;
3960 	unsigned char *kaddr;
3961 	struct page *page;
3962 	block_t start;
3963 	int i, j, offset;
3964 
3965 	start = start_sum_block(sbi);
3966 
3967 	page = f2fs_get_meta_page(sbi, start++);
3968 	if (IS_ERR(page))
3969 		return PTR_ERR(page);
3970 	kaddr = (unsigned char *)page_address(page);
3971 
3972 	/* Step 1: restore nat cache */
3973 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3974 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3975 
3976 	/* Step 2: restore sit cache */
3977 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3978 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3979 	offset = 2 * SUM_JOURNAL_SIZE;
3980 
3981 	/* Step 3: restore summary entries */
3982 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3983 		unsigned short blk_off;
3984 		unsigned int segno;
3985 
3986 		seg_i = CURSEG_I(sbi, i);
3987 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3988 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3989 		seg_i->next_segno = segno;
3990 		reset_curseg(sbi, i, 0);
3991 		seg_i->alloc_type = ckpt->alloc_type[i];
3992 		seg_i->next_blkoff = blk_off;
3993 
3994 		if (seg_i->alloc_type == SSR)
3995 			blk_off = BLKS_PER_SEG(sbi);
3996 
3997 		for (j = 0; j < blk_off; j++) {
3998 			struct f2fs_summary *s;
3999 
4000 			s = (struct f2fs_summary *)(kaddr + offset);
4001 			seg_i->sum_blk->entries[j] = *s;
4002 			offset += SUMMARY_SIZE;
4003 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4004 						SUM_FOOTER_SIZE)
4005 				continue;
4006 
4007 			f2fs_put_page(page, 1);
4008 			page = NULL;
4009 
4010 			page = f2fs_get_meta_page(sbi, start++);
4011 			if (IS_ERR(page))
4012 				return PTR_ERR(page);
4013 			kaddr = (unsigned char *)page_address(page);
4014 			offset = 0;
4015 		}
4016 	}
4017 	f2fs_put_page(page, 1);
4018 	return 0;
4019 }
4020 
4021 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4022 {
4023 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4024 	struct f2fs_summary_block *sum;
4025 	struct curseg_info *curseg;
4026 	struct page *new;
4027 	unsigned short blk_off;
4028 	unsigned int segno = 0;
4029 	block_t blk_addr = 0;
4030 	int err = 0;
4031 
4032 	/* get segment number and block addr */
4033 	if (IS_DATASEG(type)) {
4034 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4035 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4036 							CURSEG_HOT_DATA]);
4037 		if (__exist_node_summaries(sbi))
4038 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4039 		else
4040 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4041 	} else {
4042 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
4043 							CURSEG_HOT_NODE]);
4044 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4045 							CURSEG_HOT_NODE]);
4046 		if (__exist_node_summaries(sbi))
4047 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4048 							type - CURSEG_HOT_NODE);
4049 		else
4050 			blk_addr = GET_SUM_BLOCK(sbi, segno);
4051 	}
4052 
4053 	new = f2fs_get_meta_page(sbi, blk_addr);
4054 	if (IS_ERR(new))
4055 		return PTR_ERR(new);
4056 	sum = (struct f2fs_summary_block *)page_address(new);
4057 
4058 	if (IS_NODESEG(type)) {
4059 		if (__exist_node_summaries(sbi)) {
4060 			struct f2fs_summary *ns = &sum->entries[0];
4061 			int i;
4062 
4063 			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4064 				ns->version = 0;
4065 				ns->ofs_in_node = 0;
4066 			}
4067 		} else {
4068 			err = f2fs_restore_node_summary(sbi, segno, sum);
4069 			if (err)
4070 				goto out;
4071 		}
4072 	}
4073 
4074 	/* set uncompleted segment to curseg */
4075 	curseg = CURSEG_I(sbi, type);
4076 	mutex_lock(&curseg->curseg_mutex);
4077 
4078 	/* update journal info */
4079 	down_write(&curseg->journal_rwsem);
4080 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4081 	up_write(&curseg->journal_rwsem);
4082 
4083 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4084 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4085 	curseg->next_segno = segno;
4086 	reset_curseg(sbi, type, 0);
4087 	curseg->alloc_type = ckpt->alloc_type[type];
4088 	curseg->next_blkoff = blk_off;
4089 	mutex_unlock(&curseg->curseg_mutex);
4090 out:
4091 	f2fs_put_page(new, 1);
4092 	return err;
4093 }
4094 
4095 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4096 {
4097 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4098 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4099 	int type = CURSEG_HOT_DATA;
4100 	int err;
4101 
4102 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4103 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4104 
4105 		if (npages >= 2)
4106 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4107 							META_CP, true);
4108 
4109 		/* restore for compacted data summary */
4110 		err = read_compacted_summaries(sbi);
4111 		if (err)
4112 			return err;
4113 		type = CURSEG_HOT_NODE;
4114 	}
4115 
4116 	if (__exist_node_summaries(sbi))
4117 		f2fs_ra_meta_pages(sbi,
4118 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4119 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4120 
4121 	for (; type <= CURSEG_COLD_NODE; type++) {
4122 		err = read_normal_summaries(sbi, type);
4123 		if (err)
4124 			return err;
4125 	}
4126 
4127 	/* sanity check for summary blocks */
4128 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4129 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4130 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4131 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4132 		return -EINVAL;
4133 	}
4134 
4135 	return 0;
4136 }
4137 
4138 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4139 {
4140 	struct page *page;
4141 	unsigned char *kaddr;
4142 	struct f2fs_summary *summary;
4143 	struct curseg_info *seg_i;
4144 	int written_size = 0;
4145 	int i, j;
4146 
4147 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4148 	kaddr = (unsigned char *)page_address(page);
4149 	memset(kaddr, 0, PAGE_SIZE);
4150 
4151 	/* Step 1: write nat cache */
4152 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4153 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4154 	written_size += SUM_JOURNAL_SIZE;
4155 
4156 	/* Step 2: write sit cache */
4157 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4158 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4159 	written_size += SUM_JOURNAL_SIZE;
4160 
4161 	/* Step 3: write summary entries */
4162 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4163 		seg_i = CURSEG_I(sbi, i);
4164 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4165 			if (!page) {
4166 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4167 				kaddr = (unsigned char *)page_address(page);
4168 				memset(kaddr, 0, PAGE_SIZE);
4169 				written_size = 0;
4170 			}
4171 			summary = (struct f2fs_summary *)(kaddr + written_size);
4172 			*summary = seg_i->sum_blk->entries[j];
4173 			written_size += SUMMARY_SIZE;
4174 
4175 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4176 							SUM_FOOTER_SIZE)
4177 				continue;
4178 
4179 			set_page_dirty(page);
4180 			f2fs_put_page(page, 1);
4181 			page = NULL;
4182 		}
4183 	}
4184 	if (page) {
4185 		set_page_dirty(page);
4186 		f2fs_put_page(page, 1);
4187 	}
4188 }
4189 
4190 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4191 					block_t blkaddr, int type)
4192 {
4193 	int i, end;
4194 
4195 	if (IS_DATASEG(type))
4196 		end = type + NR_CURSEG_DATA_TYPE;
4197 	else
4198 		end = type + NR_CURSEG_NODE_TYPE;
4199 
4200 	for (i = type; i < end; i++)
4201 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4202 }
4203 
4204 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4205 {
4206 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4207 		write_compacted_summaries(sbi, start_blk);
4208 	else
4209 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4210 }
4211 
4212 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4213 {
4214 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4215 }
4216 
4217 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4218 					unsigned int val, int alloc)
4219 {
4220 	int i;
4221 
4222 	if (type == NAT_JOURNAL) {
4223 		for (i = 0; i < nats_in_cursum(journal); i++) {
4224 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4225 				return i;
4226 		}
4227 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4228 			return update_nats_in_cursum(journal, 1);
4229 	} else if (type == SIT_JOURNAL) {
4230 		for (i = 0; i < sits_in_cursum(journal); i++)
4231 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4232 				return i;
4233 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4234 			return update_sits_in_cursum(journal, 1);
4235 	}
4236 	return -1;
4237 }
4238 
4239 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4240 					unsigned int segno)
4241 {
4242 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4243 }
4244 
4245 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4246 					unsigned int start)
4247 {
4248 	struct sit_info *sit_i = SIT_I(sbi);
4249 	struct page *page;
4250 	pgoff_t src_off, dst_off;
4251 
4252 	src_off = current_sit_addr(sbi, start);
4253 	dst_off = next_sit_addr(sbi, src_off);
4254 
4255 	page = f2fs_grab_meta_page(sbi, dst_off);
4256 	seg_info_to_sit_page(sbi, page, start);
4257 
4258 	set_page_dirty(page);
4259 	set_to_next_sit(sit_i, start);
4260 
4261 	return page;
4262 }
4263 
4264 static struct sit_entry_set *grab_sit_entry_set(void)
4265 {
4266 	struct sit_entry_set *ses =
4267 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4268 						GFP_NOFS, true, NULL);
4269 
4270 	ses->entry_cnt = 0;
4271 	INIT_LIST_HEAD(&ses->set_list);
4272 	return ses;
4273 }
4274 
4275 static void release_sit_entry_set(struct sit_entry_set *ses)
4276 {
4277 	list_del(&ses->set_list);
4278 	kmem_cache_free(sit_entry_set_slab, ses);
4279 }
4280 
4281 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4282 						struct list_head *head)
4283 {
4284 	struct sit_entry_set *next = ses;
4285 
4286 	if (list_is_last(&ses->set_list, head))
4287 		return;
4288 
4289 	list_for_each_entry_continue(next, head, set_list)
4290 		if (ses->entry_cnt <= next->entry_cnt) {
4291 			list_move_tail(&ses->set_list, &next->set_list);
4292 			return;
4293 		}
4294 
4295 	list_move_tail(&ses->set_list, head);
4296 }
4297 
4298 static void add_sit_entry(unsigned int segno, struct list_head *head)
4299 {
4300 	struct sit_entry_set *ses;
4301 	unsigned int start_segno = START_SEGNO(segno);
4302 
4303 	list_for_each_entry(ses, head, set_list) {
4304 		if (ses->start_segno == start_segno) {
4305 			ses->entry_cnt++;
4306 			adjust_sit_entry_set(ses, head);
4307 			return;
4308 		}
4309 	}
4310 
4311 	ses = grab_sit_entry_set();
4312 
4313 	ses->start_segno = start_segno;
4314 	ses->entry_cnt++;
4315 	list_add(&ses->set_list, head);
4316 }
4317 
4318 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4319 {
4320 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4321 	struct list_head *set_list = &sm_info->sit_entry_set;
4322 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4323 	unsigned int segno;
4324 
4325 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4326 		add_sit_entry(segno, set_list);
4327 }
4328 
4329 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4330 {
4331 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4332 	struct f2fs_journal *journal = curseg->journal;
4333 	int i;
4334 
4335 	down_write(&curseg->journal_rwsem);
4336 	for (i = 0; i < sits_in_cursum(journal); i++) {
4337 		unsigned int segno;
4338 		bool dirtied;
4339 
4340 		segno = le32_to_cpu(segno_in_journal(journal, i));
4341 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4342 
4343 		if (!dirtied)
4344 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4345 	}
4346 	update_sits_in_cursum(journal, -i);
4347 	up_write(&curseg->journal_rwsem);
4348 }
4349 
4350 /*
4351  * CP calls this function, which flushes SIT entries including sit_journal,
4352  * and moves prefree segs to free segs.
4353  */
4354 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4355 {
4356 	struct sit_info *sit_i = SIT_I(sbi);
4357 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4358 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4359 	struct f2fs_journal *journal = curseg->journal;
4360 	struct sit_entry_set *ses, *tmp;
4361 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4362 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4363 	struct seg_entry *se;
4364 
4365 	down_write(&sit_i->sentry_lock);
4366 
4367 	if (!sit_i->dirty_sentries)
4368 		goto out;
4369 
4370 	/*
4371 	 * add and account sit entries of dirty bitmap in sit entry
4372 	 * set temporarily
4373 	 */
4374 	add_sits_in_set(sbi);
4375 
4376 	/*
4377 	 * if there are no enough space in journal to store dirty sit
4378 	 * entries, remove all entries from journal and add and account
4379 	 * them in sit entry set.
4380 	 */
4381 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4382 								!to_journal)
4383 		remove_sits_in_journal(sbi);
4384 
4385 	/*
4386 	 * there are two steps to flush sit entries:
4387 	 * #1, flush sit entries to journal in current cold data summary block.
4388 	 * #2, flush sit entries to sit page.
4389 	 */
4390 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4391 		struct page *page = NULL;
4392 		struct f2fs_sit_block *raw_sit = NULL;
4393 		unsigned int start_segno = ses->start_segno;
4394 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4395 						(unsigned long)MAIN_SEGS(sbi));
4396 		unsigned int segno = start_segno;
4397 
4398 		if (to_journal &&
4399 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4400 			to_journal = false;
4401 
4402 		if (to_journal) {
4403 			down_write(&curseg->journal_rwsem);
4404 		} else {
4405 			page = get_next_sit_page(sbi, start_segno);
4406 			raw_sit = page_address(page);
4407 		}
4408 
4409 		/* flush dirty sit entries in region of current sit set */
4410 		for_each_set_bit_from(segno, bitmap, end) {
4411 			int offset, sit_offset;
4412 
4413 			se = get_seg_entry(sbi, segno);
4414 #ifdef CONFIG_F2FS_CHECK_FS
4415 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4416 						SIT_VBLOCK_MAP_SIZE))
4417 				f2fs_bug_on(sbi, 1);
4418 #endif
4419 
4420 			/* add discard candidates */
4421 			if (!(cpc->reason & CP_DISCARD)) {
4422 				cpc->trim_start = segno;
4423 				add_discard_addrs(sbi, cpc, false);
4424 			}
4425 
4426 			if (to_journal) {
4427 				offset = f2fs_lookup_journal_in_cursum(journal,
4428 							SIT_JOURNAL, segno, 1);
4429 				f2fs_bug_on(sbi, offset < 0);
4430 				segno_in_journal(journal, offset) =
4431 							cpu_to_le32(segno);
4432 				seg_info_to_raw_sit(se,
4433 					&sit_in_journal(journal, offset));
4434 				check_block_count(sbi, segno,
4435 					&sit_in_journal(journal, offset));
4436 			} else {
4437 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4438 				seg_info_to_raw_sit(se,
4439 						&raw_sit->entries[sit_offset]);
4440 				check_block_count(sbi, segno,
4441 						&raw_sit->entries[sit_offset]);
4442 			}
4443 
4444 			__clear_bit(segno, bitmap);
4445 			sit_i->dirty_sentries--;
4446 			ses->entry_cnt--;
4447 		}
4448 
4449 		if (to_journal)
4450 			up_write(&curseg->journal_rwsem);
4451 		else
4452 			f2fs_put_page(page, 1);
4453 
4454 		f2fs_bug_on(sbi, ses->entry_cnt);
4455 		release_sit_entry_set(ses);
4456 	}
4457 
4458 	f2fs_bug_on(sbi, !list_empty(head));
4459 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4460 out:
4461 	if (cpc->reason & CP_DISCARD) {
4462 		__u64 trim_start = cpc->trim_start;
4463 
4464 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4465 			add_discard_addrs(sbi, cpc, false);
4466 
4467 		cpc->trim_start = trim_start;
4468 	}
4469 	up_write(&sit_i->sentry_lock);
4470 
4471 	set_prefree_as_free_segments(sbi);
4472 }
4473 
4474 static int build_sit_info(struct f2fs_sb_info *sbi)
4475 {
4476 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4477 	struct sit_info *sit_i;
4478 	unsigned int sit_segs, start;
4479 	char *src_bitmap, *bitmap;
4480 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4481 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4482 
4483 	/* allocate memory for SIT information */
4484 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4485 	if (!sit_i)
4486 		return -ENOMEM;
4487 
4488 	SM_I(sbi)->sit_info = sit_i;
4489 
4490 	sit_i->sentries =
4491 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4492 					      MAIN_SEGS(sbi)),
4493 			      GFP_KERNEL);
4494 	if (!sit_i->sentries)
4495 		return -ENOMEM;
4496 
4497 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4498 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4499 								GFP_KERNEL);
4500 	if (!sit_i->dirty_sentries_bitmap)
4501 		return -ENOMEM;
4502 
4503 #ifdef CONFIG_F2FS_CHECK_FS
4504 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4505 #else
4506 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4507 #endif
4508 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4509 	if (!sit_i->bitmap)
4510 		return -ENOMEM;
4511 
4512 	bitmap = sit_i->bitmap;
4513 
4514 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4515 		sit_i->sentries[start].cur_valid_map = bitmap;
4516 		bitmap += SIT_VBLOCK_MAP_SIZE;
4517 
4518 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4519 		bitmap += SIT_VBLOCK_MAP_SIZE;
4520 
4521 #ifdef CONFIG_F2FS_CHECK_FS
4522 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4523 		bitmap += SIT_VBLOCK_MAP_SIZE;
4524 #endif
4525 
4526 		if (discard_map) {
4527 			sit_i->sentries[start].discard_map = bitmap;
4528 			bitmap += SIT_VBLOCK_MAP_SIZE;
4529 		}
4530 	}
4531 
4532 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4533 	if (!sit_i->tmp_map)
4534 		return -ENOMEM;
4535 
4536 	if (__is_large_section(sbi)) {
4537 		sit_i->sec_entries =
4538 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4539 						      MAIN_SECS(sbi)),
4540 				      GFP_KERNEL);
4541 		if (!sit_i->sec_entries)
4542 			return -ENOMEM;
4543 	}
4544 
4545 	/* get information related with SIT */
4546 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4547 
4548 	/* setup SIT bitmap from ckeckpoint pack */
4549 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4550 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4551 
4552 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4553 	if (!sit_i->sit_bitmap)
4554 		return -ENOMEM;
4555 
4556 #ifdef CONFIG_F2FS_CHECK_FS
4557 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4558 					sit_bitmap_size, GFP_KERNEL);
4559 	if (!sit_i->sit_bitmap_mir)
4560 		return -ENOMEM;
4561 
4562 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4563 					main_bitmap_size, GFP_KERNEL);
4564 	if (!sit_i->invalid_segmap)
4565 		return -ENOMEM;
4566 #endif
4567 
4568 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4569 	sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4570 	sit_i->written_valid_blocks = 0;
4571 	sit_i->bitmap_size = sit_bitmap_size;
4572 	sit_i->dirty_sentries = 0;
4573 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4574 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4575 	sit_i->mounted_time = ktime_get_boottime_seconds();
4576 	init_rwsem(&sit_i->sentry_lock);
4577 	return 0;
4578 }
4579 
4580 static int build_free_segmap(struct f2fs_sb_info *sbi)
4581 {
4582 	struct free_segmap_info *free_i;
4583 	unsigned int bitmap_size, sec_bitmap_size;
4584 
4585 	/* allocate memory for free segmap information */
4586 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4587 	if (!free_i)
4588 		return -ENOMEM;
4589 
4590 	SM_I(sbi)->free_info = free_i;
4591 
4592 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4593 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4594 	if (!free_i->free_segmap)
4595 		return -ENOMEM;
4596 
4597 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4598 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4599 	if (!free_i->free_secmap)
4600 		return -ENOMEM;
4601 
4602 	/* set all segments as dirty temporarily */
4603 	memset(free_i->free_segmap, 0xff, bitmap_size);
4604 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4605 
4606 	/* init free segmap information */
4607 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4608 	free_i->free_segments = 0;
4609 	free_i->free_sections = 0;
4610 	spin_lock_init(&free_i->segmap_lock);
4611 	return 0;
4612 }
4613 
4614 static int build_curseg(struct f2fs_sb_info *sbi)
4615 {
4616 	struct curseg_info *array;
4617 	int i;
4618 
4619 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4620 					sizeof(*array)), GFP_KERNEL);
4621 	if (!array)
4622 		return -ENOMEM;
4623 
4624 	SM_I(sbi)->curseg_array = array;
4625 
4626 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4627 		mutex_init(&array[i].curseg_mutex);
4628 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4629 		if (!array[i].sum_blk)
4630 			return -ENOMEM;
4631 		init_rwsem(&array[i].journal_rwsem);
4632 		array[i].journal = f2fs_kzalloc(sbi,
4633 				sizeof(struct f2fs_journal), GFP_KERNEL);
4634 		if (!array[i].journal)
4635 			return -ENOMEM;
4636 		if (i < NR_PERSISTENT_LOG)
4637 			array[i].seg_type = CURSEG_HOT_DATA + i;
4638 		else if (i == CURSEG_COLD_DATA_PINNED)
4639 			array[i].seg_type = CURSEG_COLD_DATA;
4640 		else if (i == CURSEG_ALL_DATA_ATGC)
4641 			array[i].seg_type = CURSEG_COLD_DATA;
4642 		reset_curseg_fields(&array[i]);
4643 	}
4644 	return restore_curseg_summaries(sbi);
4645 }
4646 
4647 static int build_sit_entries(struct f2fs_sb_info *sbi)
4648 {
4649 	struct sit_info *sit_i = SIT_I(sbi);
4650 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4651 	struct f2fs_journal *journal = curseg->journal;
4652 	struct seg_entry *se;
4653 	struct f2fs_sit_entry sit;
4654 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4655 	unsigned int i, start, end;
4656 	unsigned int readed, start_blk = 0;
4657 	int err = 0;
4658 	block_t sit_valid_blocks[2] = {0, 0};
4659 
4660 	do {
4661 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4662 							META_SIT, true);
4663 
4664 		start = start_blk * sit_i->sents_per_block;
4665 		end = (start_blk + readed) * sit_i->sents_per_block;
4666 
4667 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4668 			struct f2fs_sit_block *sit_blk;
4669 			struct page *page;
4670 
4671 			se = &sit_i->sentries[start];
4672 			page = get_current_sit_page(sbi, start);
4673 			if (IS_ERR(page))
4674 				return PTR_ERR(page);
4675 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4676 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4677 			f2fs_put_page(page, 1);
4678 
4679 			err = check_block_count(sbi, start, &sit);
4680 			if (err)
4681 				return err;
4682 			seg_info_from_raw_sit(se, &sit);
4683 
4684 			if (se->type >= NR_PERSISTENT_LOG) {
4685 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4686 							se->type, start);
4687 				f2fs_handle_error(sbi,
4688 						ERROR_INCONSISTENT_SUM_TYPE);
4689 				return -EFSCORRUPTED;
4690 			}
4691 
4692 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4693 
4694 			if (!f2fs_block_unit_discard(sbi))
4695 				goto init_discard_map_done;
4696 
4697 			/* build discard map only one time */
4698 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4699 				memset(se->discard_map, 0xff,
4700 						SIT_VBLOCK_MAP_SIZE);
4701 				goto init_discard_map_done;
4702 			}
4703 			memcpy(se->discard_map, se->cur_valid_map,
4704 						SIT_VBLOCK_MAP_SIZE);
4705 			sbi->discard_blks += BLKS_PER_SEG(sbi) -
4706 						se->valid_blocks;
4707 init_discard_map_done:
4708 			if (__is_large_section(sbi))
4709 				get_sec_entry(sbi, start)->valid_blocks +=
4710 							se->valid_blocks;
4711 		}
4712 		start_blk += readed;
4713 	} while (start_blk < sit_blk_cnt);
4714 
4715 	down_read(&curseg->journal_rwsem);
4716 	for (i = 0; i < sits_in_cursum(journal); i++) {
4717 		unsigned int old_valid_blocks;
4718 
4719 		start = le32_to_cpu(segno_in_journal(journal, i));
4720 		if (start >= MAIN_SEGS(sbi)) {
4721 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4722 				 start);
4723 			err = -EFSCORRUPTED;
4724 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4725 			break;
4726 		}
4727 
4728 		se = &sit_i->sentries[start];
4729 		sit = sit_in_journal(journal, i);
4730 
4731 		old_valid_blocks = se->valid_blocks;
4732 
4733 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4734 
4735 		err = check_block_count(sbi, start, &sit);
4736 		if (err)
4737 			break;
4738 		seg_info_from_raw_sit(se, &sit);
4739 
4740 		if (se->type >= NR_PERSISTENT_LOG) {
4741 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4742 							se->type, start);
4743 			err = -EFSCORRUPTED;
4744 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4745 			break;
4746 		}
4747 
4748 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4749 
4750 		if (f2fs_block_unit_discard(sbi)) {
4751 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4752 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4753 			} else {
4754 				memcpy(se->discard_map, se->cur_valid_map,
4755 							SIT_VBLOCK_MAP_SIZE);
4756 				sbi->discard_blks += old_valid_blocks;
4757 				sbi->discard_blks -= se->valid_blocks;
4758 			}
4759 		}
4760 
4761 		if (__is_large_section(sbi)) {
4762 			get_sec_entry(sbi, start)->valid_blocks +=
4763 							se->valid_blocks;
4764 			get_sec_entry(sbi, start)->valid_blocks -=
4765 							old_valid_blocks;
4766 		}
4767 	}
4768 	up_read(&curseg->journal_rwsem);
4769 
4770 	if (err)
4771 		return err;
4772 
4773 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4774 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4775 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4776 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4777 		return -EFSCORRUPTED;
4778 	}
4779 
4780 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4781 				valid_user_blocks(sbi)) {
4782 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4783 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4784 			 valid_user_blocks(sbi));
4785 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4786 		return -EFSCORRUPTED;
4787 	}
4788 
4789 	return 0;
4790 }
4791 
4792 static void init_free_segmap(struct f2fs_sb_info *sbi)
4793 {
4794 	unsigned int start;
4795 	int type;
4796 	struct seg_entry *sentry;
4797 
4798 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4799 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4800 			continue;
4801 		sentry = get_seg_entry(sbi, start);
4802 		if (!sentry->valid_blocks)
4803 			__set_free(sbi, start);
4804 		else
4805 			SIT_I(sbi)->written_valid_blocks +=
4806 						sentry->valid_blocks;
4807 	}
4808 
4809 	/* set use the current segments */
4810 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4811 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4812 
4813 		__set_test_and_inuse(sbi, curseg_t->segno);
4814 	}
4815 }
4816 
4817 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4818 {
4819 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4820 	struct free_segmap_info *free_i = FREE_I(sbi);
4821 	unsigned int segno = 0, offset = 0, secno;
4822 	block_t valid_blocks, usable_blks_in_seg;
4823 
4824 	while (1) {
4825 		/* find dirty segment based on free segmap */
4826 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4827 		if (segno >= MAIN_SEGS(sbi))
4828 			break;
4829 		offset = segno + 1;
4830 		valid_blocks = get_valid_blocks(sbi, segno, false);
4831 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4832 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4833 			continue;
4834 		if (valid_blocks > usable_blks_in_seg) {
4835 			f2fs_bug_on(sbi, 1);
4836 			continue;
4837 		}
4838 		mutex_lock(&dirty_i->seglist_lock);
4839 		__locate_dirty_segment(sbi, segno, DIRTY);
4840 		mutex_unlock(&dirty_i->seglist_lock);
4841 	}
4842 
4843 	if (!__is_large_section(sbi))
4844 		return;
4845 
4846 	mutex_lock(&dirty_i->seglist_lock);
4847 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
4848 		valid_blocks = get_valid_blocks(sbi, segno, true);
4849 		secno = GET_SEC_FROM_SEG(sbi, segno);
4850 
4851 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4852 			continue;
4853 		if (IS_CURSEC(sbi, secno))
4854 			continue;
4855 		set_bit(secno, dirty_i->dirty_secmap);
4856 	}
4857 	mutex_unlock(&dirty_i->seglist_lock);
4858 }
4859 
4860 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4861 {
4862 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4863 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4864 
4865 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4866 	if (!dirty_i->victim_secmap)
4867 		return -ENOMEM;
4868 
4869 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4870 	if (!dirty_i->pinned_secmap)
4871 		return -ENOMEM;
4872 
4873 	dirty_i->pinned_secmap_cnt = 0;
4874 	dirty_i->enable_pin_section = true;
4875 	return 0;
4876 }
4877 
4878 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4879 {
4880 	struct dirty_seglist_info *dirty_i;
4881 	unsigned int bitmap_size, i;
4882 
4883 	/* allocate memory for dirty segments list information */
4884 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4885 								GFP_KERNEL);
4886 	if (!dirty_i)
4887 		return -ENOMEM;
4888 
4889 	SM_I(sbi)->dirty_info = dirty_i;
4890 	mutex_init(&dirty_i->seglist_lock);
4891 
4892 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4893 
4894 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4895 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4896 								GFP_KERNEL);
4897 		if (!dirty_i->dirty_segmap[i])
4898 			return -ENOMEM;
4899 	}
4900 
4901 	if (__is_large_section(sbi)) {
4902 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4903 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4904 						bitmap_size, GFP_KERNEL);
4905 		if (!dirty_i->dirty_secmap)
4906 			return -ENOMEM;
4907 	}
4908 
4909 	init_dirty_segmap(sbi);
4910 	return init_victim_secmap(sbi);
4911 }
4912 
4913 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4914 {
4915 	int i;
4916 
4917 	/*
4918 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4919 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4920 	 */
4921 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4922 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4923 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4924 		unsigned int blkofs = curseg->next_blkoff;
4925 
4926 		if (f2fs_sb_has_readonly(sbi) &&
4927 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4928 			continue;
4929 
4930 		sanity_check_seg_type(sbi, curseg->seg_type);
4931 
4932 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4933 			f2fs_err(sbi,
4934 				 "Current segment has invalid alloc_type:%d",
4935 				 curseg->alloc_type);
4936 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4937 			return -EFSCORRUPTED;
4938 		}
4939 
4940 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4941 			goto out;
4942 
4943 		if (curseg->alloc_type == SSR)
4944 			continue;
4945 
4946 		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
4947 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4948 				continue;
4949 out:
4950 			f2fs_err(sbi,
4951 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4952 				 i, curseg->segno, curseg->alloc_type,
4953 				 curseg->next_blkoff, blkofs);
4954 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4955 			return -EFSCORRUPTED;
4956 		}
4957 	}
4958 	return 0;
4959 }
4960 
4961 #ifdef CONFIG_BLK_DEV_ZONED
4962 static const char *f2fs_zone_status[BLK_ZONE_COND_OFFLINE + 1] = {
4963 	[BLK_ZONE_COND_NOT_WP]		= "NOT_WP",
4964 	[BLK_ZONE_COND_EMPTY]		= "EMPTY",
4965 	[BLK_ZONE_COND_IMP_OPEN]	= "IMPLICIT_OPEN",
4966 	[BLK_ZONE_COND_EXP_OPEN]	= "EXPLICIT_OPEN",
4967 	[BLK_ZONE_COND_CLOSED]		= "CLOSED",
4968 	[BLK_ZONE_COND_READONLY]	= "READONLY",
4969 	[BLK_ZONE_COND_FULL]		= "FULL",
4970 	[BLK_ZONE_COND_OFFLINE]		= "OFFLINE",
4971 };
4972 
4973 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4974 				    struct f2fs_dev_info *fdev,
4975 				    struct blk_zone *zone)
4976 {
4977 	unsigned int zone_segno;
4978 	block_t zone_block, valid_block_cnt;
4979 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4980 	int ret;
4981 	unsigned int nofs_flags;
4982 
4983 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4984 		return 0;
4985 
4986 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4987 	zone_segno = GET_SEGNO(sbi, zone_block);
4988 
4989 	/*
4990 	 * Skip check of zones cursegs point to, since
4991 	 * fix_curseg_write_pointer() checks them.
4992 	 */
4993 	if (zone_segno >= MAIN_SEGS(sbi))
4994 		return 0;
4995 
4996 	/*
4997 	 * Get # of valid block of the zone.
4998 	 */
4999 	valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5000 	if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5001 		f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5002 				zone_segno, valid_block_cnt,
5003 				f2fs_zone_status[zone->cond]);
5004 		return 0;
5005 	}
5006 
5007 	if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5008 	    (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5009 		return 0;
5010 
5011 	if (!valid_block_cnt) {
5012 		f2fs_notice(sbi, "Zone without valid block has non-zero write "
5013 			    "pointer. Reset the write pointer: cond[%s]",
5014 			    f2fs_zone_status[zone->cond]);
5015 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5016 					zone->len >> log_sectors_per_block);
5017 		if (ret)
5018 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5019 				 fdev->path, ret);
5020 		return ret;
5021 	}
5022 
5023 	/*
5024 	 * If there are valid blocks and the write pointer doesn't match
5025 	 * with them, we need to report the inconsistency and fill
5026 	 * the zone till the end to close the zone. This inconsistency
5027 	 * does not cause write error because the zone will not be
5028 	 * selected for write operation until it get discarded.
5029 	 */
5030 	f2fs_notice(sbi, "Valid blocks are not aligned with write "
5031 		    "pointer: valid block[0x%x,0x%x] cond[%s]",
5032 		    zone_segno, valid_block_cnt, f2fs_zone_status[zone->cond]);
5033 
5034 	nofs_flags = memalloc_nofs_save();
5035 	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5036 				zone->start, zone->len);
5037 	memalloc_nofs_restore(nofs_flags);
5038 	if (ret == -EOPNOTSUPP) {
5039 		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5040 					zone->len - (zone->wp - zone->start),
5041 					GFP_NOFS, 0);
5042 		if (ret)
5043 			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5044 					fdev->path, ret);
5045 	} else if (ret) {
5046 		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5047 				fdev->path, ret);
5048 	}
5049 
5050 	return ret;
5051 }
5052 
5053 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5054 						  block_t zone_blkaddr)
5055 {
5056 	int i;
5057 
5058 	for (i = 0; i < sbi->s_ndevs; i++) {
5059 		if (!bdev_is_zoned(FDEV(i).bdev))
5060 			continue;
5061 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5062 				zone_blkaddr <= FDEV(i).end_blk))
5063 			return &FDEV(i);
5064 	}
5065 
5066 	return NULL;
5067 }
5068 
5069 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5070 			      void *data)
5071 {
5072 	memcpy(data, zone, sizeof(struct blk_zone));
5073 	return 0;
5074 }
5075 
5076 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5077 {
5078 	struct curseg_info *cs = CURSEG_I(sbi, type);
5079 	struct f2fs_dev_info *zbd;
5080 	struct blk_zone zone;
5081 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5082 	block_t cs_zone_block, wp_block;
5083 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5084 	sector_t zone_sector;
5085 	int err;
5086 
5087 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5088 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5089 
5090 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5091 	if (!zbd)
5092 		return 0;
5093 
5094 	/* report zone for the sector the curseg points to */
5095 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5096 		<< log_sectors_per_block;
5097 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5098 				  report_one_zone_cb, &zone);
5099 	if (err != 1) {
5100 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5101 			 zbd->path, err);
5102 		return err;
5103 	}
5104 
5105 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5106 		return 0;
5107 
5108 	/*
5109 	 * When safely unmounted in the previous mount, we could use current
5110 	 * segments. Otherwise, allocate new sections.
5111 	 */
5112 	if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5113 		wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5114 		wp_segno = GET_SEGNO(sbi, wp_block);
5115 		wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5116 		wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5117 
5118 		if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5119 				wp_sector_off == 0)
5120 			return 0;
5121 
5122 		f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5123 			    "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5124 			    cs->next_blkoff, wp_segno, wp_blkoff);
5125 	}
5126 
5127 	/* Allocate a new section if it's not new. */
5128 	if (cs->next_blkoff) {
5129 		unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5130 
5131 		f2fs_allocate_new_section(sbi, type, true);
5132 		f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5133 				"[0x%x,0x%x] -> [0x%x,0x%x]",
5134 				type, old_segno, old_blkoff,
5135 				cs->segno, cs->next_blkoff);
5136 	}
5137 
5138 	/* check consistency of the zone curseg pointed to */
5139 	if (check_zone_write_pointer(sbi, zbd, &zone))
5140 		return -EIO;
5141 
5142 	/* check newly assigned zone */
5143 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5144 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5145 
5146 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5147 	if (!zbd)
5148 		return 0;
5149 
5150 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5151 		<< log_sectors_per_block;
5152 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5153 				  report_one_zone_cb, &zone);
5154 	if (err != 1) {
5155 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5156 			 zbd->path, err);
5157 		return err;
5158 	}
5159 
5160 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5161 		return 0;
5162 
5163 	if (zone.wp != zone.start) {
5164 		f2fs_notice(sbi,
5165 			    "New zone for curseg[%d] is not yet discarded. "
5166 			    "Reset the zone: curseg[0x%x,0x%x]",
5167 			    type, cs->segno, cs->next_blkoff);
5168 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5169 					zone.len >> log_sectors_per_block);
5170 		if (err) {
5171 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5172 				 zbd->path, err);
5173 			return err;
5174 		}
5175 	}
5176 
5177 	return 0;
5178 }
5179 
5180 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5181 {
5182 	int i, ret;
5183 
5184 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5185 		ret = fix_curseg_write_pointer(sbi, i);
5186 		if (ret)
5187 			return ret;
5188 	}
5189 
5190 	return 0;
5191 }
5192 
5193 struct check_zone_write_pointer_args {
5194 	struct f2fs_sb_info *sbi;
5195 	struct f2fs_dev_info *fdev;
5196 };
5197 
5198 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5199 				      void *data)
5200 {
5201 	struct check_zone_write_pointer_args *args;
5202 
5203 	args = (struct check_zone_write_pointer_args *)data;
5204 
5205 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5206 }
5207 
5208 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5209 {
5210 	int i, ret;
5211 	struct check_zone_write_pointer_args args;
5212 
5213 	for (i = 0; i < sbi->s_ndevs; i++) {
5214 		if (!bdev_is_zoned(FDEV(i).bdev))
5215 			continue;
5216 
5217 		args.sbi = sbi;
5218 		args.fdev = &FDEV(i);
5219 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5220 					  check_zone_write_pointer_cb, &args);
5221 		if (ret < 0)
5222 			return ret;
5223 	}
5224 
5225 	return 0;
5226 }
5227 
5228 /*
5229  * Return the number of usable blocks in a segment. The number of blocks
5230  * returned is always equal to the number of blocks in a segment for
5231  * segments fully contained within a sequential zone capacity or a
5232  * conventional zone. For segments partially contained in a sequential
5233  * zone capacity, the number of usable blocks up to the zone capacity
5234  * is returned. 0 is returned in all other cases.
5235  */
5236 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5237 			struct f2fs_sb_info *sbi, unsigned int segno)
5238 {
5239 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5240 	unsigned int secno;
5241 
5242 	if (!sbi->unusable_blocks_per_sec)
5243 		return BLKS_PER_SEG(sbi);
5244 
5245 	secno = GET_SEC_FROM_SEG(sbi, segno);
5246 	seg_start = START_BLOCK(sbi, segno);
5247 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5248 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5249 
5250 	/*
5251 	 * If segment starts before zone capacity and spans beyond
5252 	 * zone capacity, then usable blocks are from seg start to
5253 	 * zone capacity. If the segment starts after the zone capacity,
5254 	 * then there are no usable blocks.
5255 	 */
5256 	if (seg_start >= sec_cap_blkaddr)
5257 		return 0;
5258 	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5259 		return sec_cap_blkaddr - seg_start;
5260 
5261 	return BLKS_PER_SEG(sbi);
5262 }
5263 #else
5264 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5265 {
5266 	return 0;
5267 }
5268 
5269 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5270 {
5271 	return 0;
5272 }
5273 
5274 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5275 							unsigned int segno)
5276 {
5277 	return 0;
5278 }
5279 
5280 #endif
5281 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5282 					unsigned int segno)
5283 {
5284 	if (f2fs_sb_has_blkzoned(sbi))
5285 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5286 
5287 	return BLKS_PER_SEG(sbi);
5288 }
5289 
5290 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5291 					unsigned int segno)
5292 {
5293 	if (f2fs_sb_has_blkzoned(sbi))
5294 		return CAP_SEGS_PER_SEC(sbi);
5295 
5296 	return SEGS_PER_SEC(sbi);
5297 }
5298 
5299 /*
5300  * Update min, max modified time for cost-benefit GC algorithm
5301  */
5302 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5303 {
5304 	struct sit_info *sit_i = SIT_I(sbi);
5305 	unsigned int segno;
5306 
5307 	down_write(&sit_i->sentry_lock);
5308 
5309 	sit_i->min_mtime = ULLONG_MAX;
5310 
5311 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5312 		unsigned int i;
5313 		unsigned long long mtime = 0;
5314 
5315 		for (i = 0; i < SEGS_PER_SEC(sbi); i++)
5316 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5317 
5318 		mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
5319 
5320 		if (sit_i->min_mtime > mtime)
5321 			sit_i->min_mtime = mtime;
5322 	}
5323 	sit_i->max_mtime = get_mtime(sbi, false);
5324 	sit_i->dirty_max_mtime = 0;
5325 	up_write(&sit_i->sentry_lock);
5326 }
5327 
5328 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5329 {
5330 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5331 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5332 	struct f2fs_sm_info *sm_info;
5333 	int err;
5334 
5335 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5336 	if (!sm_info)
5337 		return -ENOMEM;
5338 
5339 	/* init sm info */
5340 	sbi->sm_info = sm_info;
5341 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5342 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5343 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5344 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5345 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5346 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5347 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5348 	sm_info->rec_prefree_segments = sm_info->main_segments *
5349 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5350 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5351 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5352 
5353 	if (!f2fs_lfs_mode(sbi))
5354 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5355 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5356 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5357 	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5358 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5359 	sm_info->min_ssr_sections = reserved_sections(sbi);
5360 
5361 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5362 
5363 	init_f2fs_rwsem(&sm_info->curseg_lock);
5364 
5365 	err = f2fs_create_flush_cmd_control(sbi);
5366 	if (err)
5367 		return err;
5368 
5369 	err = create_discard_cmd_control(sbi);
5370 	if (err)
5371 		return err;
5372 
5373 	err = build_sit_info(sbi);
5374 	if (err)
5375 		return err;
5376 	err = build_free_segmap(sbi);
5377 	if (err)
5378 		return err;
5379 	err = build_curseg(sbi);
5380 	if (err)
5381 		return err;
5382 
5383 	/* reinit free segmap based on SIT */
5384 	err = build_sit_entries(sbi);
5385 	if (err)
5386 		return err;
5387 
5388 	init_free_segmap(sbi);
5389 	err = build_dirty_segmap(sbi);
5390 	if (err)
5391 		return err;
5392 
5393 	err = sanity_check_curseg(sbi);
5394 	if (err)
5395 		return err;
5396 
5397 	init_min_max_mtime(sbi);
5398 	return 0;
5399 }
5400 
5401 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5402 		enum dirty_type dirty_type)
5403 {
5404 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5405 
5406 	mutex_lock(&dirty_i->seglist_lock);
5407 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5408 	dirty_i->nr_dirty[dirty_type] = 0;
5409 	mutex_unlock(&dirty_i->seglist_lock);
5410 }
5411 
5412 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5413 {
5414 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5415 
5416 	kvfree(dirty_i->pinned_secmap);
5417 	kvfree(dirty_i->victim_secmap);
5418 }
5419 
5420 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5421 {
5422 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5423 	int i;
5424 
5425 	if (!dirty_i)
5426 		return;
5427 
5428 	/* discard pre-free/dirty segments list */
5429 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5430 		discard_dirty_segmap(sbi, i);
5431 
5432 	if (__is_large_section(sbi)) {
5433 		mutex_lock(&dirty_i->seglist_lock);
5434 		kvfree(dirty_i->dirty_secmap);
5435 		mutex_unlock(&dirty_i->seglist_lock);
5436 	}
5437 
5438 	destroy_victim_secmap(sbi);
5439 	SM_I(sbi)->dirty_info = NULL;
5440 	kfree(dirty_i);
5441 }
5442 
5443 static void destroy_curseg(struct f2fs_sb_info *sbi)
5444 {
5445 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5446 	int i;
5447 
5448 	if (!array)
5449 		return;
5450 	SM_I(sbi)->curseg_array = NULL;
5451 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5452 		kfree(array[i].sum_blk);
5453 		kfree(array[i].journal);
5454 	}
5455 	kfree(array);
5456 }
5457 
5458 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5459 {
5460 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5461 
5462 	if (!free_i)
5463 		return;
5464 	SM_I(sbi)->free_info = NULL;
5465 	kvfree(free_i->free_segmap);
5466 	kvfree(free_i->free_secmap);
5467 	kfree(free_i);
5468 }
5469 
5470 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5471 {
5472 	struct sit_info *sit_i = SIT_I(sbi);
5473 
5474 	if (!sit_i)
5475 		return;
5476 
5477 	if (sit_i->sentries)
5478 		kvfree(sit_i->bitmap);
5479 	kfree(sit_i->tmp_map);
5480 
5481 	kvfree(sit_i->sentries);
5482 	kvfree(sit_i->sec_entries);
5483 	kvfree(sit_i->dirty_sentries_bitmap);
5484 
5485 	SM_I(sbi)->sit_info = NULL;
5486 	kvfree(sit_i->sit_bitmap);
5487 #ifdef CONFIG_F2FS_CHECK_FS
5488 	kvfree(sit_i->sit_bitmap_mir);
5489 	kvfree(sit_i->invalid_segmap);
5490 #endif
5491 	kfree(sit_i);
5492 }
5493 
5494 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5495 {
5496 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5497 
5498 	if (!sm_info)
5499 		return;
5500 	f2fs_destroy_flush_cmd_control(sbi, true);
5501 	destroy_discard_cmd_control(sbi);
5502 	destroy_dirty_segmap(sbi);
5503 	destroy_curseg(sbi);
5504 	destroy_free_segmap(sbi);
5505 	destroy_sit_info(sbi);
5506 	sbi->sm_info = NULL;
5507 	kfree(sm_info);
5508 }
5509 
5510 int __init f2fs_create_segment_manager_caches(void)
5511 {
5512 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5513 			sizeof(struct discard_entry));
5514 	if (!discard_entry_slab)
5515 		goto fail;
5516 
5517 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5518 			sizeof(struct discard_cmd));
5519 	if (!discard_cmd_slab)
5520 		goto destroy_discard_entry;
5521 
5522 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5523 			sizeof(struct sit_entry_set));
5524 	if (!sit_entry_set_slab)
5525 		goto destroy_discard_cmd;
5526 
5527 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5528 			sizeof(struct revoke_entry));
5529 	if (!revoke_entry_slab)
5530 		goto destroy_sit_entry_set;
5531 	return 0;
5532 
5533 destroy_sit_entry_set:
5534 	kmem_cache_destroy(sit_entry_set_slab);
5535 destroy_discard_cmd:
5536 	kmem_cache_destroy(discard_cmd_slab);
5537 destroy_discard_entry:
5538 	kmem_cache_destroy(discard_entry_slab);
5539 fail:
5540 	return -ENOMEM;
5541 }
5542 
5543 void f2fs_destroy_segment_manager_caches(void)
5544 {
5545 	kmem_cache_destroy(sit_entry_set_slab);
5546 	kmem_cache_destroy(discard_cmd_slab);
5547 	kmem_cache_destroy(discard_entry_slab);
5548 	kmem_cache_destroy(revoke_entry_slab);
5549 }
5550