1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 170 { 171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 174 175 if (f2fs_lfs_mode(sbi)) 176 return false; 177 if (sbi->gc_mode == GC_URGENT_HIGH) 178 return true; 179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 180 return true; 181 182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 184 } 185 186 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 187 { 188 struct inmem_pages *new; 189 190 f2fs_trace_pid(page); 191 192 f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE); 193 194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 195 196 /* add atomic page indices to the list */ 197 new->page = page; 198 INIT_LIST_HEAD(&new->list); 199 200 /* increase reference count with clean state */ 201 get_page(page); 202 mutex_lock(&F2FS_I(inode)->inmem_lock); 203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 205 mutex_unlock(&F2FS_I(inode)->inmem_lock); 206 207 trace_f2fs_register_inmem_page(page, INMEM); 208 } 209 210 static int __revoke_inmem_pages(struct inode *inode, 211 struct list_head *head, bool drop, bool recover, 212 bool trylock) 213 { 214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 215 struct inmem_pages *cur, *tmp; 216 int err = 0; 217 218 list_for_each_entry_safe(cur, tmp, head, list) { 219 struct page *page = cur->page; 220 221 if (drop) 222 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 223 224 if (trylock) { 225 /* 226 * to avoid deadlock in between page lock and 227 * inmem_lock. 228 */ 229 if (!trylock_page(page)) 230 continue; 231 } else { 232 lock_page(page); 233 } 234 235 f2fs_wait_on_page_writeback(page, DATA, true, true); 236 237 if (recover) { 238 struct dnode_of_data dn; 239 struct node_info ni; 240 241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 242 retry: 243 set_new_dnode(&dn, inode, NULL, NULL, 0); 244 err = f2fs_get_dnode_of_data(&dn, page->index, 245 LOOKUP_NODE); 246 if (err) { 247 if (err == -ENOMEM) { 248 congestion_wait(BLK_RW_ASYNC, 249 DEFAULT_IO_TIMEOUT); 250 cond_resched(); 251 goto retry; 252 } 253 err = -EAGAIN; 254 goto next; 255 } 256 257 err = f2fs_get_node_info(sbi, dn.nid, &ni); 258 if (err) { 259 f2fs_put_dnode(&dn); 260 return err; 261 } 262 263 if (cur->old_addr == NEW_ADDR) { 264 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 265 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 266 } else 267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 268 cur->old_addr, ni.version, true, true); 269 f2fs_put_dnode(&dn); 270 } 271 next: 272 /* we don't need to invalidate this in the sccessful status */ 273 if (drop || recover) { 274 ClearPageUptodate(page); 275 clear_cold_data(page); 276 } 277 f2fs_clear_page_private(page); 278 f2fs_put_page(page, 1); 279 280 list_del(&cur->list); 281 kmem_cache_free(inmem_entry_slab, cur); 282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 283 } 284 return err; 285 } 286 287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 288 { 289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 290 struct inode *inode; 291 struct f2fs_inode_info *fi; 292 unsigned int count = sbi->atomic_files; 293 unsigned int looped = 0; 294 next: 295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 296 if (list_empty(head)) { 297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 298 return; 299 } 300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 301 inode = igrab(&fi->vfs_inode); 302 if (inode) 303 list_move_tail(&fi->inmem_ilist, head); 304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 305 306 if (inode) { 307 if (gc_failure) { 308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) 309 goto skip; 310 } 311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 312 f2fs_drop_inmem_pages(inode); 313 skip: 314 iput(inode); 315 } 316 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 317 cond_resched(); 318 if (gc_failure) { 319 if (++looped >= count) 320 return; 321 } 322 goto next; 323 } 324 325 void f2fs_drop_inmem_pages(struct inode *inode) 326 { 327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 328 struct f2fs_inode_info *fi = F2FS_I(inode); 329 330 while (!list_empty(&fi->inmem_pages)) { 331 mutex_lock(&fi->inmem_lock); 332 __revoke_inmem_pages(inode, &fi->inmem_pages, 333 true, false, true); 334 mutex_unlock(&fi->inmem_lock); 335 } 336 337 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 338 339 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 340 if (!list_empty(&fi->inmem_ilist)) 341 list_del_init(&fi->inmem_ilist); 342 if (f2fs_is_atomic_file(inode)) { 343 clear_inode_flag(inode, FI_ATOMIC_FILE); 344 sbi->atomic_files--; 345 } 346 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 347 } 348 349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 350 { 351 struct f2fs_inode_info *fi = F2FS_I(inode); 352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 353 struct list_head *head = &fi->inmem_pages; 354 struct inmem_pages *cur = NULL; 355 356 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 357 358 mutex_lock(&fi->inmem_lock); 359 list_for_each_entry(cur, head, list) { 360 if (cur->page == page) 361 break; 362 } 363 364 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 365 list_del(&cur->list); 366 mutex_unlock(&fi->inmem_lock); 367 368 dec_page_count(sbi, F2FS_INMEM_PAGES); 369 kmem_cache_free(inmem_entry_slab, cur); 370 371 ClearPageUptodate(page); 372 f2fs_clear_page_private(page); 373 f2fs_put_page(page, 0); 374 375 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 376 } 377 378 static int __f2fs_commit_inmem_pages(struct inode *inode) 379 { 380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 381 struct f2fs_inode_info *fi = F2FS_I(inode); 382 struct inmem_pages *cur, *tmp; 383 struct f2fs_io_info fio = { 384 .sbi = sbi, 385 .ino = inode->i_ino, 386 .type = DATA, 387 .op = REQ_OP_WRITE, 388 .op_flags = REQ_SYNC | REQ_PRIO, 389 .io_type = FS_DATA_IO, 390 }; 391 struct list_head revoke_list; 392 bool submit_bio = false; 393 int err = 0; 394 395 INIT_LIST_HEAD(&revoke_list); 396 397 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 398 struct page *page = cur->page; 399 400 lock_page(page); 401 if (page->mapping == inode->i_mapping) { 402 trace_f2fs_commit_inmem_page(page, INMEM); 403 404 f2fs_wait_on_page_writeback(page, DATA, true, true); 405 406 set_page_dirty(page); 407 if (clear_page_dirty_for_io(page)) { 408 inode_dec_dirty_pages(inode); 409 f2fs_remove_dirty_inode(inode); 410 } 411 retry: 412 fio.page = page; 413 fio.old_blkaddr = NULL_ADDR; 414 fio.encrypted_page = NULL; 415 fio.need_lock = LOCK_DONE; 416 err = f2fs_do_write_data_page(&fio); 417 if (err) { 418 if (err == -ENOMEM) { 419 congestion_wait(BLK_RW_ASYNC, 420 DEFAULT_IO_TIMEOUT); 421 cond_resched(); 422 goto retry; 423 } 424 unlock_page(page); 425 break; 426 } 427 /* record old blkaddr for revoking */ 428 cur->old_addr = fio.old_blkaddr; 429 submit_bio = true; 430 } 431 unlock_page(page); 432 list_move_tail(&cur->list, &revoke_list); 433 } 434 435 if (submit_bio) 436 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 437 438 if (err) { 439 /* 440 * try to revoke all committed pages, but still we could fail 441 * due to no memory or other reason, if that happened, EAGAIN 442 * will be returned, which means in such case, transaction is 443 * already not integrity, caller should use journal to do the 444 * recovery or rewrite & commit last transaction. For other 445 * error number, revoking was done by filesystem itself. 446 */ 447 err = __revoke_inmem_pages(inode, &revoke_list, 448 false, true, false); 449 450 /* drop all uncommitted pages */ 451 __revoke_inmem_pages(inode, &fi->inmem_pages, 452 true, false, false); 453 } else { 454 __revoke_inmem_pages(inode, &revoke_list, 455 false, false, false); 456 } 457 458 return err; 459 } 460 461 int f2fs_commit_inmem_pages(struct inode *inode) 462 { 463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 464 struct f2fs_inode_info *fi = F2FS_I(inode); 465 int err; 466 467 f2fs_balance_fs(sbi, true); 468 469 down_write(&fi->i_gc_rwsem[WRITE]); 470 471 f2fs_lock_op(sbi); 472 set_inode_flag(inode, FI_ATOMIC_COMMIT); 473 474 mutex_lock(&fi->inmem_lock); 475 err = __f2fs_commit_inmem_pages(inode); 476 mutex_unlock(&fi->inmem_lock); 477 478 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 479 480 f2fs_unlock_op(sbi); 481 up_write(&fi->i_gc_rwsem[WRITE]); 482 483 return err; 484 } 485 486 /* 487 * This function balances dirty node and dentry pages. 488 * In addition, it controls garbage collection. 489 */ 490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 491 { 492 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 493 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 494 f2fs_stop_checkpoint(sbi, false); 495 } 496 497 /* balance_fs_bg is able to be pending */ 498 if (need && excess_cached_nats(sbi)) 499 f2fs_balance_fs_bg(sbi, false); 500 501 if (!f2fs_is_checkpoint_ready(sbi)) 502 return; 503 504 /* 505 * We should do GC or end up with checkpoint, if there are so many dirty 506 * dir/node pages without enough free segments. 507 */ 508 if (has_not_enough_free_secs(sbi, 0, 0)) { 509 down_write(&sbi->gc_lock); 510 f2fs_gc(sbi, false, false, NULL_SEGNO); 511 } 512 } 513 514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 515 { 516 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 517 return; 518 519 /* try to shrink extent cache when there is no enough memory */ 520 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 521 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 522 523 /* check the # of cached NAT entries */ 524 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 525 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 526 527 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 528 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 529 else 530 f2fs_build_free_nids(sbi, false, false); 531 532 if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) || 533 excess_prefree_segs(sbi)) 534 goto do_sync; 535 536 /* there is background inflight IO or foreground operation recently */ 537 if (is_inflight_io(sbi, REQ_TIME) || 538 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem))) 539 return; 540 541 /* exceed periodical checkpoint timeout threshold */ 542 if (f2fs_time_over(sbi, CP_TIME)) 543 goto do_sync; 544 545 /* checkpoint is the only way to shrink partial cached entries */ 546 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) || 547 f2fs_available_free_memory(sbi, INO_ENTRIES)) 548 return; 549 550 do_sync: 551 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 552 struct blk_plug plug; 553 554 mutex_lock(&sbi->flush_lock); 555 556 blk_start_plug(&plug); 557 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 558 blk_finish_plug(&plug); 559 560 mutex_unlock(&sbi->flush_lock); 561 } 562 f2fs_sync_fs(sbi->sb, true); 563 stat_inc_bg_cp_count(sbi->stat_info); 564 } 565 566 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 567 struct block_device *bdev) 568 { 569 struct bio *bio; 570 int ret; 571 572 bio = f2fs_bio_alloc(sbi, 0, false); 573 if (!bio) 574 return -ENOMEM; 575 576 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 577 bio_set_dev(bio, bdev); 578 ret = submit_bio_wait(bio); 579 bio_put(bio); 580 581 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 582 test_opt(sbi, FLUSH_MERGE), ret); 583 return ret; 584 } 585 586 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 587 { 588 int ret = 0; 589 int i; 590 591 if (!f2fs_is_multi_device(sbi)) 592 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 593 594 for (i = 0; i < sbi->s_ndevs; i++) { 595 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 596 continue; 597 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 598 if (ret) 599 break; 600 } 601 return ret; 602 } 603 604 static int issue_flush_thread(void *data) 605 { 606 struct f2fs_sb_info *sbi = data; 607 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 608 wait_queue_head_t *q = &fcc->flush_wait_queue; 609 repeat: 610 if (kthread_should_stop()) 611 return 0; 612 613 sb_start_intwrite(sbi->sb); 614 615 if (!llist_empty(&fcc->issue_list)) { 616 struct flush_cmd *cmd, *next; 617 int ret; 618 619 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 620 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 621 622 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 623 624 ret = submit_flush_wait(sbi, cmd->ino); 625 atomic_inc(&fcc->issued_flush); 626 627 llist_for_each_entry_safe(cmd, next, 628 fcc->dispatch_list, llnode) { 629 cmd->ret = ret; 630 complete(&cmd->wait); 631 } 632 fcc->dispatch_list = NULL; 633 } 634 635 sb_end_intwrite(sbi->sb); 636 637 wait_event_interruptible(*q, 638 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 639 goto repeat; 640 } 641 642 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 643 { 644 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 645 struct flush_cmd cmd; 646 int ret; 647 648 if (test_opt(sbi, NOBARRIER)) 649 return 0; 650 651 if (!test_opt(sbi, FLUSH_MERGE)) { 652 atomic_inc(&fcc->queued_flush); 653 ret = submit_flush_wait(sbi, ino); 654 atomic_dec(&fcc->queued_flush); 655 atomic_inc(&fcc->issued_flush); 656 return ret; 657 } 658 659 if (atomic_inc_return(&fcc->queued_flush) == 1 || 660 f2fs_is_multi_device(sbi)) { 661 ret = submit_flush_wait(sbi, ino); 662 atomic_dec(&fcc->queued_flush); 663 664 atomic_inc(&fcc->issued_flush); 665 return ret; 666 } 667 668 cmd.ino = ino; 669 init_completion(&cmd.wait); 670 671 llist_add(&cmd.llnode, &fcc->issue_list); 672 673 /* update issue_list before we wake up issue_flush thread */ 674 smp_mb(); 675 676 if (waitqueue_active(&fcc->flush_wait_queue)) 677 wake_up(&fcc->flush_wait_queue); 678 679 if (fcc->f2fs_issue_flush) { 680 wait_for_completion(&cmd.wait); 681 atomic_dec(&fcc->queued_flush); 682 } else { 683 struct llist_node *list; 684 685 list = llist_del_all(&fcc->issue_list); 686 if (!list) { 687 wait_for_completion(&cmd.wait); 688 atomic_dec(&fcc->queued_flush); 689 } else { 690 struct flush_cmd *tmp, *next; 691 692 ret = submit_flush_wait(sbi, ino); 693 694 llist_for_each_entry_safe(tmp, next, list, llnode) { 695 if (tmp == &cmd) { 696 cmd.ret = ret; 697 atomic_dec(&fcc->queued_flush); 698 continue; 699 } 700 tmp->ret = ret; 701 complete(&tmp->wait); 702 } 703 } 704 } 705 706 return cmd.ret; 707 } 708 709 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 710 { 711 dev_t dev = sbi->sb->s_bdev->bd_dev; 712 struct flush_cmd_control *fcc; 713 int err = 0; 714 715 if (SM_I(sbi)->fcc_info) { 716 fcc = SM_I(sbi)->fcc_info; 717 if (fcc->f2fs_issue_flush) 718 return err; 719 goto init_thread; 720 } 721 722 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 723 if (!fcc) 724 return -ENOMEM; 725 atomic_set(&fcc->issued_flush, 0); 726 atomic_set(&fcc->queued_flush, 0); 727 init_waitqueue_head(&fcc->flush_wait_queue); 728 init_llist_head(&fcc->issue_list); 729 SM_I(sbi)->fcc_info = fcc; 730 if (!test_opt(sbi, FLUSH_MERGE)) 731 return err; 732 733 init_thread: 734 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 735 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 736 if (IS_ERR(fcc->f2fs_issue_flush)) { 737 err = PTR_ERR(fcc->f2fs_issue_flush); 738 kfree(fcc); 739 SM_I(sbi)->fcc_info = NULL; 740 return err; 741 } 742 743 return err; 744 } 745 746 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 747 { 748 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 749 750 if (fcc && fcc->f2fs_issue_flush) { 751 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 752 753 fcc->f2fs_issue_flush = NULL; 754 kthread_stop(flush_thread); 755 } 756 if (free) { 757 kfree(fcc); 758 SM_I(sbi)->fcc_info = NULL; 759 } 760 } 761 762 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 763 { 764 int ret = 0, i; 765 766 if (!f2fs_is_multi_device(sbi)) 767 return 0; 768 769 if (test_opt(sbi, NOBARRIER)) 770 return 0; 771 772 for (i = 1; i < sbi->s_ndevs; i++) { 773 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 774 continue; 775 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 776 if (ret) 777 break; 778 779 spin_lock(&sbi->dev_lock); 780 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 781 spin_unlock(&sbi->dev_lock); 782 } 783 784 return ret; 785 } 786 787 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 788 enum dirty_type dirty_type) 789 { 790 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 791 792 /* need not be added */ 793 if (IS_CURSEG(sbi, segno)) 794 return; 795 796 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 797 dirty_i->nr_dirty[dirty_type]++; 798 799 if (dirty_type == DIRTY) { 800 struct seg_entry *sentry = get_seg_entry(sbi, segno); 801 enum dirty_type t = sentry->type; 802 803 if (unlikely(t >= DIRTY)) { 804 f2fs_bug_on(sbi, 1); 805 return; 806 } 807 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 808 dirty_i->nr_dirty[t]++; 809 810 if (__is_large_section(sbi)) { 811 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 812 block_t valid_blocks = 813 get_valid_blocks(sbi, segno, true); 814 815 f2fs_bug_on(sbi, unlikely(!valid_blocks || 816 valid_blocks == BLKS_PER_SEC(sbi))); 817 818 if (!IS_CURSEC(sbi, secno)) 819 set_bit(secno, dirty_i->dirty_secmap); 820 } 821 } 822 } 823 824 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 825 enum dirty_type dirty_type) 826 { 827 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 828 block_t valid_blocks; 829 830 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 831 dirty_i->nr_dirty[dirty_type]--; 832 833 if (dirty_type == DIRTY) { 834 struct seg_entry *sentry = get_seg_entry(sbi, segno); 835 enum dirty_type t = sentry->type; 836 837 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 838 dirty_i->nr_dirty[t]--; 839 840 valid_blocks = get_valid_blocks(sbi, segno, true); 841 if (valid_blocks == 0) { 842 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 843 dirty_i->victim_secmap); 844 #ifdef CONFIG_F2FS_CHECK_FS 845 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 846 #endif 847 } 848 if (__is_large_section(sbi)) { 849 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 850 851 if (!valid_blocks || 852 valid_blocks == BLKS_PER_SEC(sbi)) { 853 clear_bit(secno, dirty_i->dirty_secmap); 854 return; 855 } 856 857 if (!IS_CURSEC(sbi, secno)) 858 set_bit(secno, dirty_i->dirty_secmap); 859 } 860 } 861 } 862 863 /* 864 * Should not occur error such as -ENOMEM. 865 * Adding dirty entry into seglist is not critical operation. 866 * If a given segment is one of current working segments, it won't be added. 867 */ 868 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 869 { 870 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 871 unsigned short valid_blocks, ckpt_valid_blocks; 872 unsigned int usable_blocks; 873 874 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 875 return; 876 877 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 878 mutex_lock(&dirty_i->seglist_lock); 879 880 valid_blocks = get_valid_blocks(sbi, segno, false); 881 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 882 883 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 884 ckpt_valid_blocks == usable_blocks)) { 885 __locate_dirty_segment(sbi, segno, PRE); 886 __remove_dirty_segment(sbi, segno, DIRTY); 887 } else if (valid_blocks < usable_blocks) { 888 __locate_dirty_segment(sbi, segno, DIRTY); 889 } else { 890 /* Recovery routine with SSR needs this */ 891 __remove_dirty_segment(sbi, segno, DIRTY); 892 } 893 894 mutex_unlock(&dirty_i->seglist_lock); 895 } 896 897 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 898 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 899 { 900 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 901 unsigned int segno; 902 903 mutex_lock(&dirty_i->seglist_lock); 904 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 905 if (get_valid_blocks(sbi, segno, false)) 906 continue; 907 if (IS_CURSEG(sbi, segno)) 908 continue; 909 __locate_dirty_segment(sbi, segno, PRE); 910 __remove_dirty_segment(sbi, segno, DIRTY); 911 } 912 mutex_unlock(&dirty_i->seglist_lock); 913 } 914 915 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 916 { 917 int ovp_hole_segs = 918 (overprovision_segments(sbi) - reserved_segments(sbi)); 919 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 920 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 921 block_t holes[2] = {0, 0}; /* DATA and NODE */ 922 block_t unusable; 923 struct seg_entry *se; 924 unsigned int segno; 925 926 mutex_lock(&dirty_i->seglist_lock); 927 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 928 se = get_seg_entry(sbi, segno); 929 if (IS_NODESEG(se->type)) 930 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 931 se->valid_blocks; 932 else 933 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 934 se->valid_blocks; 935 } 936 mutex_unlock(&dirty_i->seglist_lock); 937 938 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 939 if (unusable > ovp_holes) 940 return unusable - ovp_holes; 941 return 0; 942 } 943 944 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 945 { 946 int ovp_hole_segs = 947 (overprovision_segments(sbi) - reserved_segments(sbi)); 948 if (unusable > F2FS_OPTION(sbi).unusable_cap) 949 return -EAGAIN; 950 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 951 dirty_segments(sbi) > ovp_hole_segs) 952 return -EAGAIN; 953 return 0; 954 } 955 956 /* This is only used by SBI_CP_DISABLED */ 957 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 958 { 959 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 960 unsigned int segno = 0; 961 962 mutex_lock(&dirty_i->seglist_lock); 963 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 964 if (get_valid_blocks(sbi, segno, false)) 965 continue; 966 if (get_ckpt_valid_blocks(sbi, segno)) 967 continue; 968 mutex_unlock(&dirty_i->seglist_lock); 969 return segno; 970 } 971 mutex_unlock(&dirty_i->seglist_lock); 972 return NULL_SEGNO; 973 } 974 975 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 976 struct block_device *bdev, block_t lstart, 977 block_t start, block_t len) 978 { 979 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 980 struct list_head *pend_list; 981 struct discard_cmd *dc; 982 983 f2fs_bug_on(sbi, !len); 984 985 pend_list = &dcc->pend_list[plist_idx(len)]; 986 987 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 988 INIT_LIST_HEAD(&dc->list); 989 dc->bdev = bdev; 990 dc->lstart = lstart; 991 dc->start = start; 992 dc->len = len; 993 dc->ref = 0; 994 dc->state = D_PREP; 995 dc->queued = 0; 996 dc->error = 0; 997 init_completion(&dc->wait); 998 list_add_tail(&dc->list, pend_list); 999 spin_lock_init(&dc->lock); 1000 dc->bio_ref = 0; 1001 atomic_inc(&dcc->discard_cmd_cnt); 1002 dcc->undiscard_blks += len; 1003 1004 return dc; 1005 } 1006 1007 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 1008 struct block_device *bdev, block_t lstart, 1009 block_t start, block_t len, 1010 struct rb_node *parent, struct rb_node **p, 1011 bool leftmost) 1012 { 1013 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1014 struct discard_cmd *dc; 1015 1016 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1017 1018 rb_link_node(&dc->rb_node, parent, p); 1019 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1020 1021 return dc; 1022 } 1023 1024 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1025 struct discard_cmd *dc) 1026 { 1027 if (dc->state == D_DONE) 1028 atomic_sub(dc->queued, &dcc->queued_discard); 1029 1030 list_del(&dc->list); 1031 rb_erase_cached(&dc->rb_node, &dcc->root); 1032 dcc->undiscard_blks -= dc->len; 1033 1034 kmem_cache_free(discard_cmd_slab, dc); 1035 1036 atomic_dec(&dcc->discard_cmd_cnt); 1037 } 1038 1039 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1040 struct discard_cmd *dc) 1041 { 1042 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1043 unsigned long flags; 1044 1045 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 1046 1047 spin_lock_irqsave(&dc->lock, flags); 1048 if (dc->bio_ref) { 1049 spin_unlock_irqrestore(&dc->lock, flags); 1050 return; 1051 } 1052 spin_unlock_irqrestore(&dc->lock, flags); 1053 1054 f2fs_bug_on(sbi, dc->ref); 1055 1056 if (dc->error == -EOPNOTSUPP) 1057 dc->error = 0; 1058 1059 if (dc->error) 1060 printk_ratelimited( 1061 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1062 KERN_INFO, sbi->sb->s_id, 1063 dc->lstart, dc->start, dc->len, dc->error); 1064 __detach_discard_cmd(dcc, dc); 1065 } 1066 1067 static void f2fs_submit_discard_endio(struct bio *bio) 1068 { 1069 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1070 unsigned long flags; 1071 1072 spin_lock_irqsave(&dc->lock, flags); 1073 if (!dc->error) 1074 dc->error = blk_status_to_errno(bio->bi_status); 1075 dc->bio_ref--; 1076 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1077 dc->state = D_DONE; 1078 complete_all(&dc->wait); 1079 } 1080 spin_unlock_irqrestore(&dc->lock, flags); 1081 bio_put(bio); 1082 } 1083 1084 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1085 block_t start, block_t end) 1086 { 1087 #ifdef CONFIG_F2FS_CHECK_FS 1088 struct seg_entry *sentry; 1089 unsigned int segno; 1090 block_t blk = start; 1091 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1092 unsigned long *map; 1093 1094 while (blk < end) { 1095 segno = GET_SEGNO(sbi, blk); 1096 sentry = get_seg_entry(sbi, segno); 1097 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1098 1099 if (end < START_BLOCK(sbi, segno + 1)) 1100 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1101 else 1102 size = max_blocks; 1103 map = (unsigned long *)(sentry->cur_valid_map); 1104 offset = __find_rev_next_bit(map, size, offset); 1105 f2fs_bug_on(sbi, offset != size); 1106 blk = START_BLOCK(sbi, segno + 1); 1107 } 1108 #endif 1109 } 1110 1111 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1112 struct discard_policy *dpolicy, 1113 int discard_type, unsigned int granularity) 1114 { 1115 /* common policy */ 1116 dpolicy->type = discard_type; 1117 dpolicy->sync = true; 1118 dpolicy->ordered = false; 1119 dpolicy->granularity = granularity; 1120 1121 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1122 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1123 dpolicy->timeout = false; 1124 1125 if (discard_type == DPOLICY_BG) { 1126 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1127 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1128 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1129 dpolicy->io_aware = true; 1130 dpolicy->sync = false; 1131 dpolicy->ordered = true; 1132 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1133 dpolicy->granularity = 1; 1134 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1135 } 1136 } else if (discard_type == DPOLICY_FORCE) { 1137 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1138 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1139 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1140 dpolicy->io_aware = false; 1141 } else if (discard_type == DPOLICY_FSTRIM) { 1142 dpolicy->io_aware = false; 1143 } else if (discard_type == DPOLICY_UMOUNT) { 1144 dpolicy->io_aware = false; 1145 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1146 dpolicy->granularity = 1; 1147 dpolicy->timeout = true; 1148 } 1149 } 1150 1151 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1152 struct block_device *bdev, block_t lstart, 1153 block_t start, block_t len); 1154 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1155 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1156 struct discard_policy *dpolicy, 1157 struct discard_cmd *dc, 1158 unsigned int *issued) 1159 { 1160 struct block_device *bdev = dc->bdev; 1161 struct request_queue *q = bdev_get_queue(bdev); 1162 unsigned int max_discard_blocks = 1163 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1164 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1165 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1166 &(dcc->fstrim_list) : &(dcc->wait_list); 1167 int flag = dpolicy->sync ? REQ_SYNC : 0; 1168 block_t lstart, start, len, total_len; 1169 int err = 0; 1170 1171 if (dc->state != D_PREP) 1172 return 0; 1173 1174 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1175 return 0; 1176 1177 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1178 1179 lstart = dc->lstart; 1180 start = dc->start; 1181 len = dc->len; 1182 total_len = len; 1183 1184 dc->len = 0; 1185 1186 while (total_len && *issued < dpolicy->max_requests && !err) { 1187 struct bio *bio = NULL; 1188 unsigned long flags; 1189 bool last = true; 1190 1191 if (len > max_discard_blocks) { 1192 len = max_discard_blocks; 1193 last = false; 1194 } 1195 1196 (*issued)++; 1197 if (*issued == dpolicy->max_requests) 1198 last = true; 1199 1200 dc->len += len; 1201 1202 if (time_to_inject(sbi, FAULT_DISCARD)) { 1203 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1204 err = -EIO; 1205 goto submit; 1206 } 1207 err = __blkdev_issue_discard(bdev, 1208 SECTOR_FROM_BLOCK(start), 1209 SECTOR_FROM_BLOCK(len), 1210 GFP_NOFS, 0, &bio); 1211 submit: 1212 if (err) { 1213 spin_lock_irqsave(&dc->lock, flags); 1214 if (dc->state == D_PARTIAL) 1215 dc->state = D_SUBMIT; 1216 spin_unlock_irqrestore(&dc->lock, flags); 1217 1218 break; 1219 } 1220 1221 f2fs_bug_on(sbi, !bio); 1222 1223 /* 1224 * should keep before submission to avoid D_DONE 1225 * right away 1226 */ 1227 spin_lock_irqsave(&dc->lock, flags); 1228 if (last) 1229 dc->state = D_SUBMIT; 1230 else 1231 dc->state = D_PARTIAL; 1232 dc->bio_ref++; 1233 spin_unlock_irqrestore(&dc->lock, flags); 1234 1235 atomic_inc(&dcc->queued_discard); 1236 dc->queued++; 1237 list_move_tail(&dc->list, wait_list); 1238 1239 /* sanity check on discard range */ 1240 __check_sit_bitmap(sbi, lstart, lstart + len); 1241 1242 bio->bi_private = dc; 1243 bio->bi_end_io = f2fs_submit_discard_endio; 1244 bio->bi_opf |= flag; 1245 submit_bio(bio); 1246 1247 atomic_inc(&dcc->issued_discard); 1248 1249 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1250 1251 lstart += len; 1252 start += len; 1253 total_len -= len; 1254 len = total_len; 1255 } 1256 1257 if (!err && len) { 1258 dcc->undiscard_blks -= len; 1259 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1260 } 1261 return err; 1262 } 1263 1264 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1265 struct block_device *bdev, block_t lstart, 1266 block_t start, block_t len, 1267 struct rb_node **insert_p, 1268 struct rb_node *insert_parent) 1269 { 1270 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1271 struct rb_node **p; 1272 struct rb_node *parent = NULL; 1273 bool leftmost = true; 1274 1275 if (insert_p && insert_parent) { 1276 parent = insert_parent; 1277 p = insert_p; 1278 goto do_insert; 1279 } 1280 1281 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1282 lstart, &leftmost); 1283 do_insert: 1284 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1285 p, leftmost); 1286 } 1287 1288 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1289 struct discard_cmd *dc) 1290 { 1291 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1292 } 1293 1294 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1295 struct discard_cmd *dc, block_t blkaddr) 1296 { 1297 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1298 struct discard_info di = dc->di; 1299 bool modified = false; 1300 1301 if (dc->state == D_DONE || dc->len == 1) { 1302 __remove_discard_cmd(sbi, dc); 1303 return; 1304 } 1305 1306 dcc->undiscard_blks -= di.len; 1307 1308 if (blkaddr > di.lstart) { 1309 dc->len = blkaddr - dc->lstart; 1310 dcc->undiscard_blks += dc->len; 1311 __relocate_discard_cmd(dcc, dc); 1312 modified = true; 1313 } 1314 1315 if (blkaddr < di.lstart + di.len - 1) { 1316 if (modified) { 1317 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1318 di.start + blkaddr + 1 - di.lstart, 1319 di.lstart + di.len - 1 - blkaddr, 1320 NULL, NULL); 1321 } else { 1322 dc->lstart++; 1323 dc->len--; 1324 dc->start++; 1325 dcc->undiscard_blks += dc->len; 1326 __relocate_discard_cmd(dcc, dc); 1327 } 1328 } 1329 } 1330 1331 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1332 struct block_device *bdev, block_t lstart, 1333 block_t start, block_t len) 1334 { 1335 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1336 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1337 struct discard_cmd *dc; 1338 struct discard_info di = {0}; 1339 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1340 struct request_queue *q = bdev_get_queue(bdev); 1341 unsigned int max_discard_blocks = 1342 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1343 block_t end = lstart + len; 1344 1345 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1346 NULL, lstart, 1347 (struct rb_entry **)&prev_dc, 1348 (struct rb_entry **)&next_dc, 1349 &insert_p, &insert_parent, true, NULL); 1350 if (dc) 1351 prev_dc = dc; 1352 1353 if (!prev_dc) { 1354 di.lstart = lstart; 1355 di.len = next_dc ? next_dc->lstart - lstart : len; 1356 di.len = min(di.len, len); 1357 di.start = start; 1358 } 1359 1360 while (1) { 1361 struct rb_node *node; 1362 bool merged = false; 1363 struct discard_cmd *tdc = NULL; 1364 1365 if (prev_dc) { 1366 di.lstart = prev_dc->lstart + prev_dc->len; 1367 if (di.lstart < lstart) 1368 di.lstart = lstart; 1369 if (di.lstart >= end) 1370 break; 1371 1372 if (!next_dc || next_dc->lstart > end) 1373 di.len = end - di.lstart; 1374 else 1375 di.len = next_dc->lstart - di.lstart; 1376 di.start = start + di.lstart - lstart; 1377 } 1378 1379 if (!di.len) 1380 goto next; 1381 1382 if (prev_dc && prev_dc->state == D_PREP && 1383 prev_dc->bdev == bdev && 1384 __is_discard_back_mergeable(&di, &prev_dc->di, 1385 max_discard_blocks)) { 1386 prev_dc->di.len += di.len; 1387 dcc->undiscard_blks += di.len; 1388 __relocate_discard_cmd(dcc, prev_dc); 1389 di = prev_dc->di; 1390 tdc = prev_dc; 1391 merged = true; 1392 } 1393 1394 if (next_dc && next_dc->state == D_PREP && 1395 next_dc->bdev == bdev && 1396 __is_discard_front_mergeable(&di, &next_dc->di, 1397 max_discard_blocks)) { 1398 next_dc->di.lstart = di.lstart; 1399 next_dc->di.len += di.len; 1400 next_dc->di.start = di.start; 1401 dcc->undiscard_blks += di.len; 1402 __relocate_discard_cmd(dcc, next_dc); 1403 if (tdc) 1404 __remove_discard_cmd(sbi, tdc); 1405 merged = true; 1406 } 1407 1408 if (!merged) { 1409 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1410 di.len, NULL, NULL); 1411 } 1412 next: 1413 prev_dc = next_dc; 1414 if (!prev_dc) 1415 break; 1416 1417 node = rb_next(&prev_dc->rb_node); 1418 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1419 } 1420 } 1421 1422 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1423 struct block_device *bdev, block_t blkstart, block_t blklen) 1424 { 1425 block_t lblkstart = blkstart; 1426 1427 if (!f2fs_bdev_support_discard(bdev)) 1428 return 0; 1429 1430 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1431 1432 if (f2fs_is_multi_device(sbi)) { 1433 int devi = f2fs_target_device_index(sbi, blkstart); 1434 1435 blkstart -= FDEV(devi).start_blk; 1436 } 1437 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1438 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1439 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1440 return 0; 1441 } 1442 1443 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1444 struct discard_policy *dpolicy) 1445 { 1446 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1447 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1448 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1449 struct discard_cmd *dc; 1450 struct blk_plug plug; 1451 unsigned int pos = dcc->next_pos; 1452 unsigned int issued = 0; 1453 bool io_interrupted = false; 1454 1455 mutex_lock(&dcc->cmd_lock); 1456 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1457 NULL, pos, 1458 (struct rb_entry **)&prev_dc, 1459 (struct rb_entry **)&next_dc, 1460 &insert_p, &insert_parent, true, NULL); 1461 if (!dc) 1462 dc = next_dc; 1463 1464 blk_start_plug(&plug); 1465 1466 while (dc) { 1467 struct rb_node *node; 1468 int err = 0; 1469 1470 if (dc->state != D_PREP) 1471 goto next; 1472 1473 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1474 io_interrupted = true; 1475 break; 1476 } 1477 1478 dcc->next_pos = dc->lstart + dc->len; 1479 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1480 1481 if (issued >= dpolicy->max_requests) 1482 break; 1483 next: 1484 node = rb_next(&dc->rb_node); 1485 if (err) 1486 __remove_discard_cmd(sbi, dc); 1487 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1488 } 1489 1490 blk_finish_plug(&plug); 1491 1492 if (!dc) 1493 dcc->next_pos = 0; 1494 1495 mutex_unlock(&dcc->cmd_lock); 1496 1497 if (!issued && io_interrupted) 1498 issued = -1; 1499 1500 return issued; 1501 } 1502 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1503 struct discard_policy *dpolicy); 1504 1505 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1506 struct discard_policy *dpolicy) 1507 { 1508 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1509 struct list_head *pend_list; 1510 struct discard_cmd *dc, *tmp; 1511 struct blk_plug plug; 1512 int i, issued; 1513 bool io_interrupted = false; 1514 1515 if (dpolicy->timeout) 1516 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1517 1518 retry: 1519 issued = 0; 1520 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1521 if (dpolicy->timeout && 1522 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1523 break; 1524 1525 if (i + 1 < dpolicy->granularity) 1526 break; 1527 1528 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1529 return __issue_discard_cmd_orderly(sbi, dpolicy); 1530 1531 pend_list = &dcc->pend_list[i]; 1532 1533 mutex_lock(&dcc->cmd_lock); 1534 if (list_empty(pend_list)) 1535 goto next; 1536 if (unlikely(dcc->rbtree_check)) 1537 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1538 &dcc->root, false)); 1539 blk_start_plug(&plug); 1540 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1541 f2fs_bug_on(sbi, dc->state != D_PREP); 1542 1543 if (dpolicy->timeout && 1544 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1545 break; 1546 1547 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1548 !is_idle(sbi, DISCARD_TIME)) { 1549 io_interrupted = true; 1550 break; 1551 } 1552 1553 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1554 1555 if (issued >= dpolicy->max_requests) 1556 break; 1557 } 1558 blk_finish_plug(&plug); 1559 next: 1560 mutex_unlock(&dcc->cmd_lock); 1561 1562 if (issued >= dpolicy->max_requests || io_interrupted) 1563 break; 1564 } 1565 1566 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1567 __wait_all_discard_cmd(sbi, dpolicy); 1568 goto retry; 1569 } 1570 1571 if (!issued && io_interrupted) 1572 issued = -1; 1573 1574 return issued; 1575 } 1576 1577 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1578 { 1579 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1580 struct list_head *pend_list; 1581 struct discard_cmd *dc, *tmp; 1582 int i; 1583 bool dropped = false; 1584 1585 mutex_lock(&dcc->cmd_lock); 1586 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1587 pend_list = &dcc->pend_list[i]; 1588 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1589 f2fs_bug_on(sbi, dc->state != D_PREP); 1590 __remove_discard_cmd(sbi, dc); 1591 dropped = true; 1592 } 1593 } 1594 mutex_unlock(&dcc->cmd_lock); 1595 1596 return dropped; 1597 } 1598 1599 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1600 { 1601 __drop_discard_cmd(sbi); 1602 } 1603 1604 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1605 struct discard_cmd *dc) 1606 { 1607 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1608 unsigned int len = 0; 1609 1610 wait_for_completion_io(&dc->wait); 1611 mutex_lock(&dcc->cmd_lock); 1612 f2fs_bug_on(sbi, dc->state != D_DONE); 1613 dc->ref--; 1614 if (!dc->ref) { 1615 if (!dc->error) 1616 len = dc->len; 1617 __remove_discard_cmd(sbi, dc); 1618 } 1619 mutex_unlock(&dcc->cmd_lock); 1620 1621 return len; 1622 } 1623 1624 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1625 struct discard_policy *dpolicy, 1626 block_t start, block_t end) 1627 { 1628 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1629 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1630 &(dcc->fstrim_list) : &(dcc->wait_list); 1631 struct discard_cmd *dc, *tmp; 1632 bool need_wait; 1633 unsigned int trimmed = 0; 1634 1635 next: 1636 need_wait = false; 1637 1638 mutex_lock(&dcc->cmd_lock); 1639 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1640 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1641 continue; 1642 if (dc->len < dpolicy->granularity) 1643 continue; 1644 if (dc->state == D_DONE && !dc->ref) { 1645 wait_for_completion_io(&dc->wait); 1646 if (!dc->error) 1647 trimmed += dc->len; 1648 __remove_discard_cmd(sbi, dc); 1649 } else { 1650 dc->ref++; 1651 need_wait = true; 1652 break; 1653 } 1654 } 1655 mutex_unlock(&dcc->cmd_lock); 1656 1657 if (need_wait) { 1658 trimmed += __wait_one_discard_bio(sbi, dc); 1659 goto next; 1660 } 1661 1662 return trimmed; 1663 } 1664 1665 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1666 struct discard_policy *dpolicy) 1667 { 1668 struct discard_policy dp; 1669 unsigned int discard_blks; 1670 1671 if (dpolicy) 1672 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1673 1674 /* wait all */ 1675 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1676 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1677 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1678 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1679 1680 return discard_blks; 1681 } 1682 1683 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1684 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1685 { 1686 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1687 struct discard_cmd *dc; 1688 bool need_wait = false; 1689 1690 mutex_lock(&dcc->cmd_lock); 1691 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1692 NULL, blkaddr); 1693 if (dc) { 1694 if (dc->state == D_PREP) { 1695 __punch_discard_cmd(sbi, dc, blkaddr); 1696 } else { 1697 dc->ref++; 1698 need_wait = true; 1699 } 1700 } 1701 mutex_unlock(&dcc->cmd_lock); 1702 1703 if (need_wait) 1704 __wait_one_discard_bio(sbi, dc); 1705 } 1706 1707 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1708 { 1709 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1710 1711 if (dcc && dcc->f2fs_issue_discard) { 1712 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1713 1714 dcc->f2fs_issue_discard = NULL; 1715 kthread_stop(discard_thread); 1716 } 1717 } 1718 1719 /* This comes from f2fs_put_super */ 1720 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1721 { 1722 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1723 struct discard_policy dpolicy; 1724 bool dropped; 1725 1726 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1727 dcc->discard_granularity); 1728 __issue_discard_cmd(sbi, &dpolicy); 1729 dropped = __drop_discard_cmd(sbi); 1730 1731 /* just to make sure there is no pending discard commands */ 1732 __wait_all_discard_cmd(sbi, NULL); 1733 1734 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1735 return dropped; 1736 } 1737 1738 static int issue_discard_thread(void *data) 1739 { 1740 struct f2fs_sb_info *sbi = data; 1741 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1742 wait_queue_head_t *q = &dcc->discard_wait_queue; 1743 struct discard_policy dpolicy; 1744 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1745 int issued; 1746 1747 set_freezable(); 1748 1749 do { 1750 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1751 dcc->discard_granularity); 1752 1753 wait_event_interruptible_timeout(*q, 1754 kthread_should_stop() || freezing(current) || 1755 dcc->discard_wake, 1756 msecs_to_jiffies(wait_ms)); 1757 1758 if (dcc->discard_wake) 1759 dcc->discard_wake = 0; 1760 1761 /* clean up pending candidates before going to sleep */ 1762 if (atomic_read(&dcc->queued_discard)) 1763 __wait_all_discard_cmd(sbi, NULL); 1764 1765 if (try_to_freeze()) 1766 continue; 1767 if (f2fs_readonly(sbi->sb)) 1768 continue; 1769 if (kthread_should_stop()) 1770 return 0; 1771 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1772 wait_ms = dpolicy.max_interval; 1773 continue; 1774 } 1775 1776 if (sbi->gc_mode == GC_URGENT_HIGH) 1777 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1778 1779 sb_start_intwrite(sbi->sb); 1780 1781 issued = __issue_discard_cmd(sbi, &dpolicy); 1782 if (issued > 0) { 1783 __wait_all_discard_cmd(sbi, &dpolicy); 1784 wait_ms = dpolicy.min_interval; 1785 } else if (issued == -1){ 1786 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1787 if (!wait_ms) 1788 wait_ms = dpolicy.mid_interval; 1789 } else { 1790 wait_ms = dpolicy.max_interval; 1791 } 1792 1793 sb_end_intwrite(sbi->sb); 1794 1795 } while (!kthread_should_stop()); 1796 return 0; 1797 } 1798 1799 #ifdef CONFIG_BLK_DEV_ZONED 1800 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1801 struct block_device *bdev, block_t blkstart, block_t blklen) 1802 { 1803 sector_t sector, nr_sects; 1804 block_t lblkstart = blkstart; 1805 int devi = 0; 1806 1807 if (f2fs_is_multi_device(sbi)) { 1808 devi = f2fs_target_device_index(sbi, blkstart); 1809 if (blkstart < FDEV(devi).start_blk || 1810 blkstart > FDEV(devi).end_blk) { 1811 f2fs_err(sbi, "Invalid block %x", blkstart); 1812 return -EIO; 1813 } 1814 blkstart -= FDEV(devi).start_blk; 1815 } 1816 1817 /* For sequential zones, reset the zone write pointer */ 1818 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1819 sector = SECTOR_FROM_BLOCK(blkstart); 1820 nr_sects = SECTOR_FROM_BLOCK(blklen); 1821 1822 if (sector & (bdev_zone_sectors(bdev) - 1) || 1823 nr_sects != bdev_zone_sectors(bdev)) { 1824 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1825 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1826 blkstart, blklen); 1827 return -EIO; 1828 } 1829 trace_f2fs_issue_reset_zone(bdev, blkstart); 1830 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1831 sector, nr_sects, GFP_NOFS); 1832 } 1833 1834 /* For conventional zones, use regular discard if supported */ 1835 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1836 } 1837 #endif 1838 1839 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1840 struct block_device *bdev, block_t blkstart, block_t blklen) 1841 { 1842 #ifdef CONFIG_BLK_DEV_ZONED 1843 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1844 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1845 #endif 1846 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1847 } 1848 1849 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1850 block_t blkstart, block_t blklen) 1851 { 1852 sector_t start = blkstart, len = 0; 1853 struct block_device *bdev; 1854 struct seg_entry *se; 1855 unsigned int offset; 1856 block_t i; 1857 int err = 0; 1858 1859 bdev = f2fs_target_device(sbi, blkstart, NULL); 1860 1861 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1862 if (i != start) { 1863 struct block_device *bdev2 = 1864 f2fs_target_device(sbi, i, NULL); 1865 1866 if (bdev2 != bdev) { 1867 err = __issue_discard_async(sbi, bdev, 1868 start, len); 1869 if (err) 1870 return err; 1871 bdev = bdev2; 1872 start = i; 1873 len = 0; 1874 } 1875 } 1876 1877 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1878 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1879 1880 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1881 sbi->discard_blks--; 1882 } 1883 1884 if (len) 1885 err = __issue_discard_async(sbi, bdev, start, len); 1886 return err; 1887 } 1888 1889 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1890 bool check_only) 1891 { 1892 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1893 int max_blocks = sbi->blocks_per_seg; 1894 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1895 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1896 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1897 unsigned long *discard_map = (unsigned long *)se->discard_map; 1898 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1899 unsigned int start = 0, end = -1; 1900 bool force = (cpc->reason & CP_DISCARD); 1901 struct discard_entry *de = NULL; 1902 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1903 int i; 1904 1905 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1906 return false; 1907 1908 if (!force) { 1909 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1910 SM_I(sbi)->dcc_info->nr_discards >= 1911 SM_I(sbi)->dcc_info->max_discards) 1912 return false; 1913 } 1914 1915 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1916 for (i = 0; i < entries; i++) 1917 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1918 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1919 1920 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1921 SM_I(sbi)->dcc_info->max_discards) { 1922 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1923 if (start >= max_blocks) 1924 break; 1925 1926 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1927 if (force && start && end != max_blocks 1928 && (end - start) < cpc->trim_minlen) 1929 continue; 1930 1931 if (check_only) 1932 return true; 1933 1934 if (!de) { 1935 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1936 GFP_F2FS_ZERO); 1937 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1938 list_add_tail(&de->list, head); 1939 } 1940 1941 for (i = start; i < end; i++) 1942 __set_bit_le(i, (void *)de->discard_map); 1943 1944 SM_I(sbi)->dcc_info->nr_discards += end - start; 1945 } 1946 return false; 1947 } 1948 1949 static void release_discard_addr(struct discard_entry *entry) 1950 { 1951 list_del(&entry->list); 1952 kmem_cache_free(discard_entry_slab, entry); 1953 } 1954 1955 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1956 { 1957 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1958 struct discard_entry *entry, *this; 1959 1960 /* drop caches */ 1961 list_for_each_entry_safe(entry, this, head, list) 1962 release_discard_addr(entry); 1963 } 1964 1965 /* 1966 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1967 */ 1968 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1969 { 1970 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1971 unsigned int segno; 1972 1973 mutex_lock(&dirty_i->seglist_lock); 1974 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1975 __set_test_and_free(sbi, segno, false); 1976 mutex_unlock(&dirty_i->seglist_lock); 1977 } 1978 1979 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1980 struct cp_control *cpc) 1981 { 1982 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1983 struct list_head *head = &dcc->entry_list; 1984 struct discard_entry *entry, *this; 1985 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1986 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1987 unsigned int start = 0, end = -1; 1988 unsigned int secno, start_segno; 1989 bool force = (cpc->reason & CP_DISCARD); 1990 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 1991 1992 mutex_lock(&dirty_i->seglist_lock); 1993 1994 while (1) { 1995 int i; 1996 1997 if (need_align && end != -1) 1998 end--; 1999 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2000 if (start >= MAIN_SEGS(sbi)) 2001 break; 2002 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2003 start + 1); 2004 2005 if (need_align) { 2006 start = rounddown(start, sbi->segs_per_sec); 2007 end = roundup(end, sbi->segs_per_sec); 2008 } 2009 2010 for (i = start; i < end; i++) { 2011 if (test_and_clear_bit(i, prefree_map)) 2012 dirty_i->nr_dirty[PRE]--; 2013 } 2014 2015 if (!f2fs_realtime_discard_enable(sbi)) 2016 continue; 2017 2018 if (force && start >= cpc->trim_start && 2019 (end - 1) <= cpc->trim_end) 2020 continue; 2021 2022 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 2023 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2024 (end - start) << sbi->log_blocks_per_seg); 2025 continue; 2026 } 2027 next: 2028 secno = GET_SEC_FROM_SEG(sbi, start); 2029 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2030 if (!IS_CURSEC(sbi, secno) && 2031 !get_valid_blocks(sbi, start, true)) 2032 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2033 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2034 2035 start = start_segno + sbi->segs_per_sec; 2036 if (start < end) 2037 goto next; 2038 else 2039 end = start - 1; 2040 } 2041 mutex_unlock(&dirty_i->seglist_lock); 2042 2043 /* send small discards */ 2044 list_for_each_entry_safe(entry, this, head, list) { 2045 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2046 bool is_valid = test_bit_le(0, entry->discard_map); 2047 2048 find_next: 2049 if (is_valid) { 2050 next_pos = find_next_zero_bit_le(entry->discard_map, 2051 sbi->blocks_per_seg, cur_pos); 2052 len = next_pos - cur_pos; 2053 2054 if (f2fs_sb_has_blkzoned(sbi) || 2055 (force && len < cpc->trim_minlen)) 2056 goto skip; 2057 2058 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2059 len); 2060 total_len += len; 2061 } else { 2062 next_pos = find_next_bit_le(entry->discard_map, 2063 sbi->blocks_per_seg, cur_pos); 2064 } 2065 skip: 2066 cur_pos = next_pos; 2067 is_valid = !is_valid; 2068 2069 if (cur_pos < sbi->blocks_per_seg) 2070 goto find_next; 2071 2072 release_discard_addr(entry); 2073 dcc->nr_discards -= total_len; 2074 } 2075 2076 wake_up_discard_thread(sbi, false); 2077 } 2078 2079 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2080 { 2081 dev_t dev = sbi->sb->s_bdev->bd_dev; 2082 struct discard_cmd_control *dcc; 2083 int err = 0, i; 2084 2085 if (SM_I(sbi)->dcc_info) { 2086 dcc = SM_I(sbi)->dcc_info; 2087 goto init_thread; 2088 } 2089 2090 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2091 if (!dcc) 2092 return -ENOMEM; 2093 2094 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2095 INIT_LIST_HEAD(&dcc->entry_list); 2096 for (i = 0; i < MAX_PLIST_NUM; i++) 2097 INIT_LIST_HEAD(&dcc->pend_list[i]); 2098 INIT_LIST_HEAD(&dcc->wait_list); 2099 INIT_LIST_HEAD(&dcc->fstrim_list); 2100 mutex_init(&dcc->cmd_lock); 2101 atomic_set(&dcc->issued_discard, 0); 2102 atomic_set(&dcc->queued_discard, 0); 2103 atomic_set(&dcc->discard_cmd_cnt, 0); 2104 dcc->nr_discards = 0; 2105 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2106 dcc->undiscard_blks = 0; 2107 dcc->next_pos = 0; 2108 dcc->root = RB_ROOT_CACHED; 2109 dcc->rbtree_check = false; 2110 2111 init_waitqueue_head(&dcc->discard_wait_queue); 2112 SM_I(sbi)->dcc_info = dcc; 2113 init_thread: 2114 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2115 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2116 if (IS_ERR(dcc->f2fs_issue_discard)) { 2117 err = PTR_ERR(dcc->f2fs_issue_discard); 2118 kfree(dcc); 2119 SM_I(sbi)->dcc_info = NULL; 2120 return err; 2121 } 2122 2123 return err; 2124 } 2125 2126 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2127 { 2128 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2129 2130 if (!dcc) 2131 return; 2132 2133 f2fs_stop_discard_thread(sbi); 2134 2135 /* 2136 * Recovery can cache discard commands, so in error path of 2137 * fill_super(), it needs to give a chance to handle them. 2138 */ 2139 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2140 f2fs_issue_discard_timeout(sbi); 2141 2142 kfree(dcc); 2143 SM_I(sbi)->dcc_info = NULL; 2144 } 2145 2146 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2147 { 2148 struct sit_info *sit_i = SIT_I(sbi); 2149 2150 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2151 sit_i->dirty_sentries++; 2152 return false; 2153 } 2154 2155 return true; 2156 } 2157 2158 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2159 unsigned int segno, int modified) 2160 { 2161 struct seg_entry *se = get_seg_entry(sbi, segno); 2162 se->type = type; 2163 if (modified) 2164 __mark_sit_entry_dirty(sbi, segno); 2165 } 2166 2167 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2168 block_t blkaddr) 2169 { 2170 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2171 2172 if (segno == NULL_SEGNO) 2173 return 0; 2174 return get_seg_entry(sbi, segno)->mtime; 2175 } 2176 2177 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2178 unsigned long long old_mtime) 2179 { 2180 struct seg_entry *se; 2181 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2182 unsigned long long ctime = get_mtime(sbi, false); 2183 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2184 2185 if (segno == NULL_SEGNO) 2186 return; 2187 2188 se = get_seg_entry(sbi, segno); 2189 2190 if (!se->mtime) 2191 se->mtime = mtime; 2192 else 2193 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2194 se->valid_blocks + 1); 2195 2196 if (ctime > SIT_I(sbi)->max_mtime) 2197 SIT_I(sbi)->max_mtime = ctime; 2198 } 2199 2200 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2201 { 2202 struct seg_entry *se; 2203 unsigned int segno, offset; 2204 long int new_vblocks; 2205 bool exist; 2206 #ifdef CONFIG_F2FS_CHECK_FS 2207 bool mir_exist; 2208 #endif 2209 2210 segno = GET_SEGNO(sbi, blkaddr); 2211 2212 se = get_seg_entry(sbi, segno); 2213 new_vblocks = se->valid_blocks + del; 2214 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2215 2216 f2fs_bug_on(sbi, (new_vblocks < 0 || 2217 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2218 2219 se->valid_blocks = new_vblocks; 2220 2221 /* Update valid block bitmap */ 2222 if (del > 0) { 2223 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2224 #ifdef CONFIG_F2FS_CHECK_FS 2225 mir_exist = f2fs_test_and_set_bit(offset, 2226 se->cur_valid_map_mir); 2227 if (unlikely(exist != mir_exist)) { 2228 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2229 blkaddr, exist); 2230 f2fs_bug_on(sbi, 1); 2231 } 2232 #endif 2233 if (unlikely(exist)) { 2234 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2235 blkaddr); 2236 f2fs_bug_on(sbi, 1); 2237 se->valid_blocks--; 2238 del = 0; 2239 } 2240 2241 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2242 sbi->discard_blks--; 2243 2244 /* 2245 * SSR should never reuse block which is checkpointed 2246 * or newly invalidated. 2247 */ 2248 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2249 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2250 se->ckpt_valid_blocks++; 2251 } 2252 } else { 2253 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2254 #ifdef CONFIG_F2FS_CHECK_FS 2255 mir_exist = f2fs_test_and_clear_bit(offset, 2256 se->cur_valid_map_mir); 2257 if (unlikely(exist != mir_exist)) { 2258 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2259 blkaddr, exist); 2260 f2fs_bug_on(sbi, 1); 2261 } 2262 #endif 2263 if (unlikely(!exist)) { 2264 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2265 blkaddr); 2266 f2fs_bug_on(sbi, 1); 2267 se->valid_blocks++; 2268 del = 0; 2269 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2270 /* 2271 * If checkpoints are off, we must not reuse data that 2272 * was used in the previous checkpoint. If it was used 2273 * before, we must track that to know how much space we 2274 * really have. 2275 */ 2276 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2277 spin_lock(&sbi->stat_lock); 2278 sbi->unusable_block_count++; 2279 spin_unlock(&sbi->stat_lock); 2280 } 2281 } 2282 2283 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2284 sbi->discard_blks++; 2285 } 2286 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2287 se->ckpt_valid_blocks += del; 2288 2289 __mark_sit_entry_dirty(sbi, segno); 2290 2291 /* update total number of valid blocks to be written in ckpt area */ 2292 SIT_I(sbi)->written_valid_blocks += del; 2293 2294 if (__is_large_section(sbi)) 2295 get_sec_entry(sbi, segno)->valid_blocks += del; 2296 } 2297 2298 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2299 { 2300 unsigned int segno = GET_SEGNO(sbi, addr); 2301 struct sit_info *sit_i = SIT_I(sbi); 2302 2303 f2fs_bug_on(sbi, addr == NULL_ADDR); 2304 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2305 return; 2306 2307 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2308 2309 /* add it into sit main buffer */ 2310 down_write(&sit_i->sentry_lock); 2311 2312 update_segment_mtime(sbi, addr, 0); 2313 update_sit_entry(sbi, addr, -1); 2314 2315 /* add it into dirty seglist */ 2316 locate_dirty_segment(sbi, segno); 2317 2318 up_write(&sit_i->sentry_lock); 2319 } 2320 2321 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2322 { 2323 struct sit_info *sit_i = SIT_I(sbi); 2324 unsigned int segno, offset; 2325 struct seg_entry *se; 2326 bool is_cp = false; 2327 2328 if (!__is_valid_data_blkaddr(blkaddr)) 2329 return true; 2330 2331 down_read(&sit_i->sentry_lock); 2332 2333 segno = GET_SEGNO(sbi, blkaddr); 2334 se = get_seg_entry(sbi, segno); 2335 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2336 2337 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2338 is_cp = true; 2339 2340 up_read(&sit_i->sentry_lock); 2341 2342 return is_cp; 2343 } 2344 2345 /* 2346 * This function should be resided under the curseg_mutex lock 2347 */ 2348 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2349 struct f2fs_summary *sum) 2350 { 2351 struct curseg_info *curseg = CURSEG_I(sbi, type); 2352 void *addr = curseg->sum_blk; 2353 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2354 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2355 } 2356 2357 /* 2358 * Calculate the number of current summary pages for writing 2359 */ 2360 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2361 { 2362 int valid_sum_count = 0; 2363 int i, sum_in_page; 2364 2365 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2366 if (sbi->ckpt->alloc_type[i] == SSR) 2367 valid_sum_count += sbi->blocks_per_seg; 2368 else { 2369 if (for_ra) 2370 valid_sum_count += le16_to_cpu( 2371 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2372 else 2373 valid_sum_count += curseg_blkoff(sbi, i); 2374 } 2375 } 2376 2377 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2378 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2379 if (valid_sum_count <= sum_in_page) 2380 return 1; 2381 else if ((valid_sum_count - sum_in_page) <= 2382 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2383 return 2; 2384 return 3; 2385 } 2386 2387 /* 2388 * Caller should put this summary page 2389 */ 2390 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2391 { 2392 if (unlikely(f2fs_cp_error(sbi))) 2393 return ERR_PTR(-EIO); 2394 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2395 } 2396 2397 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2398 void *src, block_t blk_addr) 2399 { 2400 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2401 2402 memcpy(page_address(page), src, PAGE_SIZE); 2403 set_page_dirty(page); 2404 f2fs_put_page(page, 1); 2405 } 2406 2407 static void write_sum_page(struct f2fs_sb_info *sbi, 2408 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2409 { 2410 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2411 } 2412 2413 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2414 int type, block_t blk_addr) 2415 { 2416 struct curseg_info *curseg = CURSEG_I(sbi, type); 2417 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2418 struct f2fs_summary_block *src = curseg->sum_blk; 2419 struct f2fs_summary_block *dst; 2420 2421 dst = (struct f2fs_summary_block *)page_address(page); 2422 memset(dst, 0, PAGE_SIZE); 2423 2424 mutex_lock(&curseg->curseg_mutex); 2425 2426 down_read(&curseg->journal_rwsem); 2427 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2428 up_read(&curseg->journal_rwsem); 2429 2430 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2431 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2432 2433 mutex_unlock(&curseg->curseg_mutex); 2434 2435 set_page_dirty(page); 2436 f2fs_put_page(page, 1); 2437 } 2438 2439 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2440 struct curseg_info *curseg, int type) 2441 { 2442 unsigned int segno = curseg->segno + 1; 2443 struct free_segmap_info *free_i = FREE_I(sbi); 2444 2445 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2446 return !test_bit(segno, free_i->free_segmap); 2447 return 0; 2448 } 2449 2450 /* 2451 * Find a new segment from the free segments bitmap to right order 2452 * This function should be returned with success, otherwise BUG 2453 */ 2454 static void get_new_segment(struct f2fs_sb_info *sbi, 2455 unsigned int *newseg, bool new_sec, int dir) 2456 { 2457 struct free_segmap_info *free_i = FREE_I(sbi); 2458 unsigned int segno, secno, zoneno; 2459 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2460 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2461 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2462 unsigned int left_start = hint; 2463 bool init = true; 2464 int go_left = 0; 2465 int i; 2466 2467 spin_lock(&free_i->segmap_lock); 2468 2469 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2470 segno = find_next_zero_bit(free_i->free_segmap, 2471 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2472 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2473 goto got_it; 2474 } 2475 find_other_zone: 2476 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2477 if (secno >= MAIN_SECS(sbi)) { 2478 if (dir == ALLOC_RIGHT) { 2479 secno = find_next_zero_bit(free_i->free_secmap, 2480 MAIN_SECS(sbi), 0); 2481 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2482 } else { 2483 go_left = 1; 2484 left_start = hint - 1; 2485 } 2486 } 2487 if (go_left == 0) 2488 goto skip_left; 2489 2490 while (test_bit(left_start, free_i->free_secmap)) { 2491 if (left_start > 0) { 2492 left_start--; 2493 continue; 2494 } 2495 left_start = find_next_zero_bit(free_i->free_secmap, 2496 MAIN_SECS(sbi), 0); 2497 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2498 break; 2499 } 2500 secno = left_start; 2501 skip_left: 2502 segno = GET_SEG_FROM_SEC(sbi, secno); 2503 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2504 2505 /* give up on finding another zone */ 2506 if (!init) 2507 goto got_it; 2508 if (sbi->secs_per_zone == 1) 2509 goto got_it; 2510 if (zoneno == old_zoneno) 2511 goto got_it; 2512 if (dir == ALLOC_LEFT) { 2513 if (!go_left && zoneno + 1 >= total_zones) 2514 goto got_it; 2515 if (go_left && zoneno == 0) 2516 goto got_it; 2517 } 2518 for (i = 0; i < NR_CURSEG_TYPE; i++) 2519 if (CURSEG_I(sbi, i)->zone == zoneno) 2520 break; 2521 2522 if (i < NR_CURSEG_TYPE) { 2523 /* zone is in user, try another */ 2524 if (go_left) 2525 hint = zoneno * sbi->secs_per_zone - 1; 2526 else if (zoneno + 1 >= total_zones) 2527 hint = 0; 2528 else 2529 hint = (zoneno + 1) * sbi->secs_per_zone; 2530 init = false; 2531 goto find_other_zone; 2532 } 2533 got_it: 2534 /* set it as dirty segment in free segmap */ 2535 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2536 __set_inuse(sbi, segno); 2537 *newseg = segno; 2538 spin_unlock(&free_i->segmap_lock); 2539 } 2540 2541 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2542 { 2543 struct curseg_info *curseg = CURSEG_I(sbi, type); 2544 struct summary_footer *sum_footer; 2545 unsigned short seg_type = curseg->seg_type; 2546 2547 curseg->inited = true; 2548 curseg->segno = curseg->next_segno; 2549 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2550 curseg->next_blkoff = 0; 2551 curseg->next_segno = NULL_SEGNO; 2552 2553 sum_footer = &(curseg->sum_blk->footer); 2554 memset(sum_footer, 0, sizeof(struct summary_footer)); 2555 2556 sanity_check_seg_type(sbi, seg_type); 2557 2558 if (IS_DATASEG(seg_type)) 2559 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2560 if (IS_NODESEG(seg_type)) 2561 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2562 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2563 } 2564 2565 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2566 { 2567 struct curseg_info *curseg = CURSEG_I(sbi, type); 2568 unsigned short seg_type = curseg->seg_type; 2569 2570 sanity_check_seg_type(sbi, seg_type); 2571 2572 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2573 if (__is_large_section(sbi)) 2574 return curseg->segno; 2575 2576 /* inmem log may not locate on any segment after mount */ 2577 if (!curseg->inited) 2578 return 0; 2579 2580 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2581 return 0; 2582 2583 if (test_opt(sbi, NOHEAP) && 2584 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2585 return 0; 2586 2587 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2588 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2589 2590 /* find segments from 0 to reuse freed segments */ 2591 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2592 return 0; 2593 2594 return curseg->segno; 2595 } 2596 2597 /* 2598 * Allocate a current working segment. 2599 * This function always allocates a free segment in LFS manner. 2600 */ 2601 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2602 { 2603 struct curseg_info *curseg = CURSEG_I(sbi, type); 2604 unsigned short seg_type = curseg->seg_type; 2605 unsigned int segno = curseg->segno; 2606 int dir = ALLOC_LEFT; 2607 2608 if (curseg->inited) 2609 write_sum_page(sbi, curseg->sum_blk, 2610 GET_SUM_BLOCK(sbi, segno)); 2611 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2612 dir = ALLOC_RIGHT; 2613 2614 if (test_opt(sbi, NOHEAP)) 2615 dir = ALLOC_RIGHT; 2616 2617 segno = __get_next_segno(sbi, type); 2618 get_new_segment(sbi, &segno, new_sec, dir); 2619 curseg->next_segno = segno; 2620 reset_curseg(sbi, type, 1); 2621 curseg->alloc_type = LFS; 2622 } 2623 2624 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2625 struct curseg_info *seg, block_t start) 2626 { 2627 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2628 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2629 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2630 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2631 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2632 int i, pos; 2633 2634 for (i = 0; i < entries; i++) 2635 target_map[i] = ckpt_map[i] | cur_map[i]; 2636 2637 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2638 2639 seg->next_blkoff = pos; 2640 } 2641 2642 /* 2643 * If a segment is written by LFS manner, next block offset is just obtained 2644 * by increasing the current block offset. However, if a segment is written by 2645 * SSR manner, next block offset obtained by calling __next_free_blkoff 2646 */ 2647 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2648 struct curseg_info *seg) 2649 { 2650 if (seg->alloc_type == SSR) 2651 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2652 else 2653 seg->next_blkoff++; 2654 } 2655 2656 /* 2657 * This function always allocates a used segment(from dirty seglist) by SSR 2658 * manner, so it should recover the existing segment information of valid blocks 2659 */ 2660 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush) 2661 { 2662 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2663 struct curseg_info *curseg = CURSEG_I(sbi, type); 2664 unsigned int new_segno = curseg->next_segno; 2665 struct f2fs_summary_block *sum_node; 2666 struct page *sum_page; 2667 2668 if (flush) 2669 write_sum_page(sbi, curseg->sum_blk, 2670 GET_SUM_BLOCK(sbi, curseg->segno)); 2671 2672 __set_test_and_inuse(sbi, new_segno); 2673 2674 mutex_lock(&dirty_i->seglist_lock); 2675 __remove_dirty_segment(sbi, new_segno, PRE); 2676 __remove_dirty_segment(sbi, new_segno, DIRTY); 2677 mutex_unlock(&dirty_i->seglist_lock); 2678 2679 reset_curseg(sbi, type, 1); 2680 curseg->alloc_type = SSR; 2681 __next_free_blkoff(sbi, curseg, 0); 2682 2683 sum_page = f2fs_get_sum_page(sbi, new_segno); 2684 if (IS_ERR(sum_page)) { 2685 /* GC won't be able to use stale summary pages by cp_error */ 2686 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2687 return; 2688 } 2689 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2690 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2691 f2fs_put_page(sum_page, 1); 2692 } 2693 2694 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2695 int alloc_mode, unsigned long long age); 2696 2697 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2698 int target_type, int alloc_mode, 2699 unsigned long long age) 2700 { 2701 struct curseg_info *curseg = CURSEG_I(sbi, type); 2702 2703 curseg->seg_type = target_type; 2704 2705 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2706 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2707 2708 curseg->seg_type = se->type; 2709 change_curseg(sbi, type, true); 2710 } else { 2711 /* allocate cold segment by default */ 2712 curseg->seg_type = CURSEG_COLD_DATA; 2713 new_curseg(sbi, type, true); 2714 } 2715 stat_inc_seg_type(sbi, curseg); 2716 } 2717 2718 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2719 { 2720 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2721 2722 if (!sbi->am.atgc_enabled) 2723 return; 2724 2725 down_read(&SM_I(sbi)->curseg_lock); 2726 2727 mutex_lock(&curseg->curseg_mutex); 2728 down_write(&SIT_I(sbi)->sentry_lock); 2729 2730 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2731 2732 up_write(&SIT_I(sbi)->sentry_lock); 2733 mutex_unlock(&curseg->curseg_mutex); 2734 2735 up_read(&SM_I(sbi)->curseg_lock); 2736 2737 } 2738 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2739 { 2740 __f2fs_init_atgc_curseg(sbi); 2741 } 2742 2743 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2744 { 2745 struct curseg_info *curseg = CURSEG_I(sbi, type); 2746 2747 mutex_lock(&curseg->curseg_mutex); 2748 if (!curseg->inited) 2749 goto out; 2750 2751 if (get_valid_blocks(sbi, curseg->segno, false)) { 2752 write_sum_page(sbi, curseg->sum_blk, 2753 GET_SUM_BLOCK(sbi, curseg->segno)); 2754 } else { 2755 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2756 __set_test_and_free(sbi, curseg->segno, true); 2757 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2758 } 2759 out: 2760 mutex_unlock(&curseg->curseg_mutex); 2761 } 2762 2763 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2764 { 2765 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2766 2767 if (sbi->am.atgc_enabled) 2768 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2769 } 2770 2771 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2772 { 2773 struct curseg_info *curseg = CURSEG_I(sbi, type); 2774 2775 mutex_lock(&curseg->curseg_mutex); 2776 if (!curseg->inited) 2777 goto out; 2778 if (get_valid_blocks(sbi, curseg->segno, false)) 2779 goto out; 2780 2781 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2782 __set_test_and_inuse(sbi, curseg->segno); 2783 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2784 out: 2785 mutex_unlock(&curseg->curseg_mutex); 2786 } 2787 2788 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2789 { 2790 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2791 2792 if (sbi->am.atgc_enabled) 2793 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2794 } 2795 2796 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2797 int alloc_mode, unsigned long long age) 2798 { 2799 struct curseg_info *curseg = CURSEG_I(sbi, type); 2800 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2801 unsigned segno = NULL_SEGNO; 2802 unsigned short seg_type = curseg->seg_type; 2803 int i, cnt; 2804 bool reversed = false; 2805 2806 sanity_check_seg_type(sbi, seg_type); 2807 2808 /* f2fs_need_SSR() already forces to do this */ 2809 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2810 curseg->next_segno = segno; 2811 return 1; 2812 } 2813 2814 /* For node segments, let's do SSR more intensively */ 2815 if (IS_NODESEG(seg_type)) { 2816 if (seg_type >= CURSEG_WARM_NODE) { 2817 reversed = true; 2818 i = CURSEG_COLD_NODE; 2819 } else { 2820 i = CURSEG_HOT_NODE; 2821 } 2822 cnt = NR_CURSEG_NODE_TYPE; 2823 } else { 2824 if (seg_type >= CURSEG_WARM_DATA) { 2825 reversed = true; 2826 i = CURSEG_COLD_DATA; 2827 } else { 2828 i = CURSEG_HOT_DATA; 2829 } 2830 cnt = NR_CURSEG_DATA_TYPE; 2831 } 2832 2833 for (; cnt-- > 0; reversed ? i-- : i++) { 2834 if (i == seg_type) 2835 continue; 2836 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2837 curseg->next_segno = segno; 2838 return 1; 2839 } 2840 } 2841 2842 /* find valid_blocks=0 in dirty list */ 2843 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2844 segno = get_free_segment(sbi); 2845 if (segno != NULL_SEGNO) { 2846 curseg->next_segno = segno; 2847 return 1; 2848 } 2849 } 2850 return 0; 2851 } 2852 2853 /* 2854 * flush out current segment and replace it with new segment 2855 * This function should be returned with success, otherwise BUG 2856 */ 2857 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2858 int type, bool force) 2859 { 2860 struct curseg_info *curseg = CURSEG_I(sbi, type); 2861 2862 if (force) 2863 new_curseg(sbi, type, true); 2864 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2865 curseg->seg_type == CURSEG_WARM_NODE) 2866 new_curseg(sbi, type, false); 2867 else if (curseg->alloc_type == LFS && 2868 is_next_segment_free(sbi, curseg, type) && 2869 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2870 new_curseg(sbi, type, false); 2871 else if (f2fs_need_SSR(sbi) && 2872 get_ssr_segment(sbi, type, SSR, 0)) 2873 change_curseg(sbi, type, true); 2874 else 2875 new_curseg(sbi, type, false); 2876 2877 stat_inc_seg_type(sbi, curseg); 2878 } 2879 2880 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2881 unsigned int start, unsigned int end) 2882 { 2883 struct curseg_info *curseg = CURSEG_I(sbi, type); 2884 unsigned int segno; 2885 2886 down_read(&SM_I(sbi)->curseg_lock); 2887 mutex_lock(&curseg->curseg_mutex); 2888 down_write(&SIT_I(sbi)->sentry_lock); 2889 2890 segno = CURSEG_I(sbi, type)->segno; 2891 if (segno < start || segno > end) 2892 goto unlock; 2893 2894 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 2895 change_curseg(sbi, type, true); 2896 else 2897 new_curseg(sbi, type, true); 2898 2899 stat_inc_seg_type(sbi, curseg); 2900 2901 locate_dirty_segment(sbi, segno); 2902 unlock: 2903 up_write(&SIT_I(sbi)->sentry_lock); 2904 2905 if (segno != curseg->segno) 2906 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2907 type, segno, curseg->segno); 2908 2909 mutex_unlock(&curseg->curseg_mutex); 2910 up_read(&SM_I(sbi)->curseg_lock); 2911 } 2912 2913 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type) 2914 { 2915 struct curseg_info *curseg = CURSEG_I(sbi, type); 2916 unsigned int old_segno; 2917 2918 if (!curseg->inited) 2919 goto alloc; 2920 2921 if (!curseg->next_blkoff && 2922 !get_valid_blocks(sbi, curseg->segno, false) && 2923 !get_ckpt_valid_blocks(sbi, curseg->segno)) 2924 return; 2925 2926 alloc: 2927 old_segno = curseg->segno; 2928 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 2929 locate_dirty_segment(sbi, old_segno); 2930 } 2931 2932 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type) 2933 { 2934 down_write(&SIT_I(sbi)->sentry_lock); 2935 __allocate_new_segment(sbi, type); 2936 up_write(&SIT_I(sbi)->sentry_lock); 2937 } 2938 2939 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2940 { 2941 int i; 2942 2943 down_write(&SIT_I(sbi)->sentry_lock); 2944 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 2945 __allocate_new_segment(sbi, i); 2946 up_write(&SIT_I(sbi)->sentry_lock); 2947 } 2948 2949 static const struct segment_allocation default_salloc_ops = { 2950 .allocate_segment = allocate_segment_by_default, 2951 }; 2952 2953 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2954 struct cp_control *cpc) 2955 { 2956 __u64 trim_start = cpc->trim_start; 2957 bool has_candidate = false; 2958 2959 down_write(&SIT_I(sbi)->sentry_lock); 2960 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2961 if (add_discard_addrs(sbi, cpc, true)) { 2962 has_candidate = true; 2963 break; 2964 } 2965 } 2966 up_write(&SIT_I(sbi)->sentry_lock); 2967 2968 cpc->trim_start = trim_start; 2969 return has_candidate; 2970 } 2971 2972 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2973 struct discard_policy *dpolicy, 2974 unsigned int start, unsigned int end) 2975 { 2976 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2977 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2978 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2979 struct discard_cmd *dc; 2980 struct blk_plug plug; 2981 int issued; 2982 unsigned int trimmed = 0; 2983 2984 next: 2985 issued = 0; 2986 2987 mutex_lock(&dcc->cmd_lock); 2988 if (unlikely(dcc->rbtree_check)) 2989 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2990 &dcc->root, false)); 2991 2992 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2993 NULL, start, 2994 (struct rb_entry **)&prev_dc, 2995 (struct rb_entry **)&next_dc, 2996 &insert_p, &insert_parent, true, NULL); 2997 if (!dc) 2998 dc = next_dc; 2999 3000 blk_start_plug(&plug); 3001 3002 while (dc && dc->lstart <= end) { 3003 struct rb_node *node; 3004 int err = 0; 3005 3006 if (dc->len < dpolicy->granularity) 3007 goto skip; 3008 3009 if (dc->state != D_PREP) { 3010 list_move_tail(&dc->list, &dcc->fstrim_list); 3011 goto skip; 3012 } 3013 3014 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3015 3016 if (issued >= dpolicy->max_requests) { 3017 start = dc->lstart + dc->len; 3018 3019 if (err) 3020 __remove_discard_cmd(sbi, dc); 3021 3022 blk_finish_plug(&plug); 3023 mutex_unlock(&dcc->cmd_lock); 3024 trimmed += __wait_all_discard_cmd(sbi, NULL); 3025 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 3026 goto next; 3027 } 3028 skip: 3029 node = rb_next(&dc->rb_node); 3030 if (err) 3031 __remove_discard_cmd(sbi, dc); 3032 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3033 3034 if (fatal_signal_pending(current)) 3035 break; 3036 } 3037 3038 blk_finish_plug(&plug); 3039 mutex_unlock(&dcc->cmd_lock); 3040 3041 return trimmed; 3042 } 3043 3044 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3045 { 3046 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3047 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3048 unsigned int start_segno, end_segno; 3049 block_t start_block, end_block; 3050 struct cp_control cpc; 3051 struct discard_policy dpolicy; 3052 unsigned long long trimmed = 0; 3053 int err = 0; 3054 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3055 3056 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3057 return -EINVAL; 3058 3059 if (end < MAIN_BLKADDR(sbi)) 3060 goto out; 3061 3062 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3063 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3064 return -EFSCORRUPTED; 3065 } 3066 3067 /* start/end segment number in main_area */ 3068 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3069 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3070 GET_SEGNO(sbi, end); 3071 if (need_align) { 3072 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3073 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3074 } 3075 3076 cpc.reason = CP_DISCARD; 3077 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3078 cpc.trim_start = start_segno; 3079 cpc.trim_end = end_segno; 3080 3081 if (sbi->discard_blks == 0) 3082 goto out; 3083 3084 down_write(&sbi->gc_lock); 3085 err = f2fs_write_checkpoint(sbi, &cpc); 3086 up_write(&sbi->gc_lock); 3087 if (err) 3088 goto out; 3089 3090 /* 3091 * We filed discard candidates, but actually we don't need to wait for 3092 * all of them, since they'll be issued in idle time along with runtime 3093 * discard option. User configuration looks like using runtime discard 3094 * or periodic fstrim instead of it. 3095 */ 3096 if (f2fs_realtime_discard_enable(sbi)) 3097 goto out; 3098 3099 start_block = START_BLOCK(sbi, start_segno); 3100 end_block = START_BLOCK(sbi, end_segno + 1); 3101 3102 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3103 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3104 start_block, end_block); 3105 3106 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3107 start_block, end_block); 3108 out: 3109 if (!err) 3110 range->len = F2FS_BLK_TO_BYTES(trimmed); 3111 return err; 3112 } 3113 3114 static bool __has_curseg_space(struct f2fs_sb_info *sbi, 3115 struct curseg_info *curseg) 3116 { 3117 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi, 3118 curseg->segno); 3119 } 3120 3121 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3122 { 3123 switch (hint) { 3124 case WRITE_LIFE_SHORT: 3125 return CURSEG_HOT_DATA; 3126 case WRITE_LIFE_EXTREME: 3127 return CURSEG_COLD_DATA; 3128 default: 3129 return CURSEG_WARM_DATA; 3130 } 3131 } 3132 3133 /* This returns write hints for each segment type. This hints will be 3134 * passed down to block layer. There are mapping tables which depend on 3135 * the mount option 'whint_mode'. 3136 * 3137 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 3138 * 3139 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 3140 * 3141 * User F2FS Block 3142 * ---- ---- ----- 3143 * META WRITE_LIFE_NOT_SET 3144 * HOT_NODE " 3145 * WARM_NODE " 3146 * COLD_NODE " 3147 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3148 * extension list " " 3149 * 3150 * -- buffered io 3151 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3152 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3153 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3154 * WRITE_LIFE_NONE " " 3155 * WRITE_LIFE_MEDIUM " " 3156 * WRITE_LIFE_LONG " " 3157 * 3158 * -- direct io 3159 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3160 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3161 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3162 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3163 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3164 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3165 * 3166 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 3167 * 3168 * User F2FS Block 3169 * ---- ---- ----- 3170 * META WRITE_LIFE_MEDIUM; 3171 * HOT_NODE WRITE_LIFE_NOT_SET 3172 * WARM_NODE " 3173 * COLD_NODE WRITE_LIFE_NONE 3174 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3175 * extension list " " 3176 * 3177 * -- buffered io 3178 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3179 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3180 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 3181 * WRITE_LIFE_NONE " " 3182 * WRITE_LIFE_MEDIUM " " 3183 * WRITE_LIFE_LONG " " 3184 * 3185 * -- direct io 3186 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3187 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3188 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3189 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3190 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3191 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3192 */ 3193 3194 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3195 enum page_type type, enum temp_type temp) 3196 { 3197 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 3198 if (type == DATA) { 3199 if (temp == WARM) 3200 return WRITE_LIFE_NOT_SET; 3201 else if (temp == HOT) 3202 return WRITE_LIFE_SHORT; 3203 else if (temp == COLD) 3204 return WRITE_LIFE_EXTREME; 3205 } else { 3206 return WRITE_LIFE_NOT_SET; 3207 } 3208 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 3209 if (type == DATA) { 3210 if (temp == WARM) 3211 return WRITE_LIFE_LONG; 3212 else if (temp == HOT) 3213 return WRITE_LIFE_SHORT; 3214 else if (temp == COLD) 3215 return WRITE_LIFE_EXTREME; 3216 } else if (type == NODE) { 3217 if (temp == WARM || temp == HOT) 3218 return WRITE_LIFE_NOT_SET; 3219 else if (temp == COLD) 3220 return WRITE_LIFE_NONE; 3221 } else if (type == META) { 3222 return WRITE_LIFE_MEDIUM; 3223 } 3224 } 3225 return WRITE_LIFE_NOT_SET; 3226 } 3227 3228 static int __get_segment_type_2(struct f2fs_io_info *fio) 3229 { 3230 if (fio->type == DATA) 3231 return CURSEG_HOT_DATA; 3232 else 3233 return CURSEG_HOT_NODE; 3234 } 3235 3236 static int __get_segment_type_4(struct f2fs_io_info *fio) 3237 { 3238 if (fio->type == DATA) { 3239 struct inode *inode = fio->page->mapping->host; 3240 3241 if (S_ISDIR(inode->i_mode)) 3242 return CURSEG_HOT_DATA; 3243 else 3244 return CURSEG_COLD_DATA; 3245 } else { 3246 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3247 return CURSEG_WARM_NODE; 3248 else 3249 return CURSEG_COLD_NODE; 3250 } 3251 } 3252 3253 static int __get_segment_type_6(struct f2fs_io_info *fio) 3254 { 3255 if (fio->type == DATA) { 3256 struct inode *inode = fio->page->mapping->host; 3257 3258 if (is_cold_data(fio->page)) { 3259 if (fio->sbi->am.atgc_enabled) 3260 return CURSEG_ALL_DATA_ATGC; 3261 else 3262 return CURSEG_COLD_DATA; 3263 } 3264 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3265 return CURSEG_COLD_DATA; 3266 if (file_is_hot(inode) || 3267 is_inode_flag_set(inode, FI_HOT_DATA) || 3268 f2fs_is_atomic_file(inode) || 3269 f2fs_is_volatile_file(inode)) 3270 return CURSEG_HOT_DATA; 3271 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3272 } else { 3273 if (IS_DNODE(fio->page)) 3274 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3275 CURSEG_HOT_NODE; 3276 return CURSEG_COLD_NODE; 3277 } 3278 } 3279 3280 static int __get_segment_type(struct f2fs_io_info *fio) 3281 { 3282 int type = 0; 3283 3284 switch (F2FS_OPTION(fio->sbi).active_logs) { 3285 case 2: 3286 type = __get_segment_type_2(fio); 3287 break; 3288 case 4: 3289 type = __get_segment_type_4(fio); 3290 break; 3291 case 6: 3292 type = __get_segment_type_6(fio); 3293 break; 3294 default: 3295 f2fs_bug_on(fio->sbi, true); 3296 } 3297 3298 if (IS_HOT(type)) 3299 fio->temp = HOT; 3300 else if (IS_WARM(type)) 3301 fio->temp = WARM; 3302 else 3303 fio->temp = COLD; 3304 return type; 3305 } 3306 3307 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3308 block_t old_blkaddr, block_t *new_blkaddr, 3309 struct f2fs_summary *sum, int type, 3310 struct f2fs_io_info *fio) 3311 { 3312 struct sit_info *sit_i = SIT_I(sbi); 3313 struct curseg_info *curseg = CURSEG_I(sbi, type); 3314 unsigned long long old_mtime; 3315 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3316 struct seg_entry *se = NULL; 3317 3318 down_read(&SM_I(sbi)->curseg_lock); 3319 3320 mutex_lock(&curseg->curseg_mutex); 3321 down_write(&sit_i->sentry_lock); 3322 3323 if (from_gc) { 3324 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3325 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3326 sanity_check_seg_type(sbi, se->type); 3327 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3328 } 3329 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3330 3331 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3332 3333 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3334 3335 /* 3336 * __add_sum_entry should be resided under the curseg_mutex 3337 * because, this function updates a summary entry in the 3338 * current summary block. 3339 */ 3340 __add_sum_entry(sbi, type, sum); 3341 3342 __refresh_next_blkoff(sbi, curseg); 3343 3344 stat_inc_block_count(sbi, curseg); 3345 3346 if (from_gc) { 3347 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3348 } else { 3349 update_segment_mtime(sbi, old_blkaddr, 0); 3350 old_mtime = 0; 3351 } 3352 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3353 3354 /* 3355 * SIT information should be updated before segment allocation, 3356 * since SSR needs latest valid block information. 3357 */ 3358 update_sit_entry(sbi, *new_blkaddr, 1); 3359 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3360 update_sit_entry(sbi, old_blkaddr, -1); 3361 3362 if (!__has_curseg_space(sbi, curseg)) { 3363 if (from_gc) 3364 get_atssr_segment(sbi, type, se->type, 3365 AT_SSR, se->mtime); 3366 else 3367 sit_i->s_ops->allocate_segment(sbi, type, false); 3368 } 3369 /* 3370 * segment dirty status should be updated after segment allocation, 3371 * so we just need to update status only one time after previous 3372 * segment being closed. 3373 */ 3374 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3375 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3376 3377 up_write(&sit_i->sentry_lock); 3378 3379 if (page && IS_NODESEG(type)) { 3380 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3381 3382 f2fs_inode_chksum_set(sbi, page); 3383 } 3384 3385 if (F2FS_IO_ALIGNED(sbi)) 3386 fio->retry = false; 3387 3388 if (fio) { 3389 struct f2fs_bio_info *io; 3390 3391 INIT_LIST_HEAD(&fio->list); 3392 fio->in_list = true; 3393 io = sbi->write_io[fio->type] + fio->temp; 3394 spin_lock(&io->io_lock); 3395 list_add_tail(&fio->list, &io->io_list); 3396 spin_unlock(&io->io_lock); 3397 } 3398 3399 mutex_unlock(&curseg->curseg_mutex); 3400 3401 up_read(&SM_I(sbi)->curseg_lock); 3402 } 3403 3404 static void update_device_state(struct f2fs_io_info *fio) 3405 { 3406 struct f2fs_sb_info *sbi = fio->sbi; 3407 unsigned int devidx; 3408 3409 if (!f2fs_is_multi_device(sbi)) 3410 return; 3411 3412 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3413 3414 /* update device state for fsync */ 3415 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3416 3417 /* update device state for checkpoint */ 3418 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3419 spin_lock(&sbi->dev_lock); 3420 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3421 spin_unlock(&sbi->dev_lock); 3422 } 3423 } 3424 3425 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3426 { 3427 int type = __get_segment_type(fio); 3428 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3429 3430 if (keep_order) 3431 down_read(&fio->sbi->io_order_lock); 3432 reallocate: 3433 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3434 &fio->new_blkaddr, sum, type, fio); 3435 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3436 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3437 fio->old_blkaddr, fio->old_blkaddr); 3438 3439 /* writeout dirty page into bdev */ 3440 f2fs_submit_page_write(fio); 3441 if (fio->retry) { 3442 fio->old_blkaddr = fio->new_blkaddr; 3443 goto reallocate; 3444 } 3445 3446 update_device_state(fio); 3447 3448 if (keep_order) 3449 up_read(&fio->sbi->io_order_lock); 3450 } 3451 3452 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3453 enum iostat_type io_type) 3454 { 3455 struct f2fs_io_info fio = { 3456 .sbi = sbi, 3457 .type = META, 3458 .temp = HOT, 3459 .op = REQ_OP_WRITE, 3460 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3461 .old_blkaddr = page->index, 3462 .new_blkaddr = page->index, 3463 .page = page, 3464 .encrypted_page = NULL, 3465 .in_list = false, 3466 }; 3467 3468 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3469 fio.op_flags &= ~REQ_META; 3470 3471 set_page_writeback(page); 3472 ClearPageError(page); 3473 f2fs_submit_page_write(&fio); 3474 3475 stat_inc_meta_count(sbi, page->index); 3476 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3477 } 3478 3479 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3480 { 3481 struct f2fs_summary sum; 3482 3483 set_summary(&sum, nid, 0, 0); 3484 do_write_page(&sum, fio); 3485 3486 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3487 } 3488 3489 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3490 struct f2fs_io_info *fio) 3491 { 3492 struct f2fs_sb_info *sbi = fio->sbi; 3493 struct f2fs_summary sum; 3494 3495 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3496 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3497 do_write_page(&sum, fio); 3498 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3499 3500 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3501 } 3502 3503 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3504 { 3505 int err; 3506 struct f2fs_sb_info *sbi = fio->sbi; 3507 unsigned int segno; 3508 3509 fio->new_blkaddr = fio->old_blkaddr; 3510 /* i/o temperature is needed for passing down write hints */ 3511 __get_segment_type(fio); 3512 3513 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3514 3515 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3516 set_sbi_flag(sbi, SBI_NEED_FSCK); 3517 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3518 __func__, segno); 3519 return -EFSCORRUPTED; 3520 } 3521 3522 stat_inc_inplace_blocks(fio->sbi); 3523 3524 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3525 err = f2fs_merge_page_bio(fio); 3526 else 3527 err = f2fs_submit_page_bio(fio); 3528 if (!err) { 3529 update_device_state(fio); 3530 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3531 } 3532 3533 return err; 3534 } 3535 3536 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3537 unsigned int segno) 3538 { 3539 int i; 3540 3541 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3542 if (CURSEG_I(sbi, i)->segno == segno) 3543 break; 3544 } 3545 return i; 3546 } 3547 3548 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3549 block_t old_blkaddr, block_t new_blkaddr, 3550 bool recover_curseg, bool recover_newaddr, 3551 bool from_gc) 3552 { 3553 struct sit_info *sit_i = SIT_I(sbi); 3554 struct curseg_info *curseg; 3555 unsigned int segno, old_cursegno; 3556 struct seg_entry *se; 3557 int type; 3558 unsigned short old_blkoff; 3559 3560 segno = GET_SEGNO(sbi, new_blkaddr); 3561 se = get_seg_entry(sbi, segno); 3562 type = se->type; 3563 3564 down_write(&SM_I(sbi)->curseg_lock); 3565 3566 if (!recover_curseg) { 3567 /* for recovery flow */ 3568 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3569 if (old_blkaddr == NULL_ADDR) 3570 type = CURSEG_COLD_DATA; 3571 else 3572 type = CURSEG_WARM_DATA; 3573 } 3574 } else { 3575 if (IS_CURSEG(sbi, segno)) { 3576 /* se->type is volatile as SSR allocation */ 3577 type = __f2fs_get_curseg(sbi, segno); 3578 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3579 } else { 3580 type = CURSEG_WARM_DATA; 3581 } 3582 } 3583 3584 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3585 curseg = CURSEG_I(sbi, type); 3586 3587 mutex_lock(&curseg->curseg_mutex); 3588 down_write(&sit_i->sentry_lock); 3589 3590 old_cursegno = curseg->segno; 3591 old_blkoff = curseg->next_blkoff; 3592 3593 /* change the current segment */ 3594 if (segno != curseg->segno) { 3595 curseg->next_segno = segno; 3596 change_curseg(sbi, type, true); 3597 } 3598 3599 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3600 __add_sum_entry(sbi, type, sum); 3601 3602 if (!recover_curseg || recover_newaddr) { 3603 if (!from_gc) 3604 update_segment_mtime(sbi, new_blkaddr, 0); 3605 update_sit_entry(sbi, new_blkaddr, 1); 3606 } 3607 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3608 invalidate_mapping_pages(META_MAPPING(sbi), 3609 old_blkaddr, old_blkaddr); 3610 if (!from_gc) 3611 update_segment_mtime(sbi, old_blkaddr, 0); 3612 update_sit_entry(sbi, old_blkaddr, -1); 3613 } 3614 3615 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3616 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3617 3618 locate_dirty_segment(sbi, old_cursegno); 3619 3620 if (recover_curseg) { 3621 if (old_cursegno != curseg->segno) { 3622 curseg->next_segno = old_cursegno; 3623 change_curseg(sbi, type, true); 3624 } 3625 curseg->next_blkoff = old_blkoff; 3626 } 3627 3628 up_write(&sit_i->sentry_lock); 3629 mutex_unlock(&curseg->curseg_mutex); 3630 up_write(&SM_I(sbi)->curseg_lock); 3631 } 3632 3633 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3634 block_t old_addr, block_t new_addr, 3635 unsigned char version, bool recover_curseg, 3636 bool recover_newaddr) 3637 { 3638 struct f2fs_summary sum; 3639 3640 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3641 3642 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3643 recover_curseg, recover_newaddr, false); 3644 3645 f2fs_update_data_blkaddr(dn, new_addr); 3646 } 3647 3648 void f2fs_wait_on_page_writeback(struct page *page, 3649 enum page_type type, bool ordered, bool locked) 3650 { 3651 if (PageWriteback(page)) { 3652 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3653 3654 /* submit cached LFS IO */ 3655 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3656 /* sbumit cached IPU IO */ 3657 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3658 if (ordered) { 3659 wait_on_page_writeback(page); 3660 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3661 } else { 3662 wait_for_stable_page(page); 3663 } 3664 } 3665 } 3666 3667 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3668 { 3669 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3670 struct page *cpage; 3671 3672 if (!f2fs_post_read_required(inode)) 3673 return; 3674 3675 if (!__is_valid_data_blkaddr(blkaddr)) 3676 return; 3677 3678 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3679 if (cpage) { 3680 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3681 f2fs_put_page(cpage, 1); 3682 } 3683 } 3684 3685 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3686 block_t len) 3687 { 3688 block_t i; 3689 3690 for (i = 0; i < len; i++) 3691 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3692 } 3693 3694 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3695 { 3696 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3697 struct curseg_info *seg_i; 3698 unsigned char *kaddr; 3699 struct page *page; 3700 block_t start; 3701 int i, j, offset; 3702 3703 start = start_sum_block(sbi); 3704 3705 page = f2fs_get_meta_page(sbi, start++); 3706 if (IS_ERR(page)) 3707 return PTR_ERR(page); 3708 kaddr = (unsigned char *)page_address(page); 3709 3710 /* Step 1: restore nat cache */ 3711 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3712 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3713 3714 /* Step 2: restore sit cache */ 3715 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3716 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3717 offset = 2 * SUM_JOURNAL_SIZE; 3718 3719 /* Step 3: restore summary entries */ 3720 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3721 unsigned short blk_off; 3722 unsigned int segno; 3723 3724 seg_i = CURSEG_I(sbi, i); 3725 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3726 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3727 seg_i->next_segno = segno; 3728 reset_curseg(sbi, i, 0); 3729 seg_i->alloc_type = ckpt->alloc_type[i]; 3730 seg_i->next_blkoff = blk_off; 3731 3732 if (seg_i->alloc_type == SSR) 3733 blk_off = sbi->blocks_per_seg; 3734 3735 for (j = 0; j < blk_off; j++) { 3736 struct f2fs_summary *s; 3737 s = (struct f2fs_summary *)(kaddr + offset); 3738 seg_i->sum_blk->entries[j] = *s; 3739 offset += SUMMARY_SIZE; 3740 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3741 SUM_FOOTER_SIZE) 3742 continue; 3743 3744 f2fs_put_page(page, 1); 3745 page = NULL; 3746 3747 page = f2fs_get_meta_page(sbi, start++); 3748 if (IS_ERR(page)) 3749 return PTR_ERR(page); 3750 kaddr = (unsigned char *)page_address(page); 3751 offset = 0; 3752 } 3753 } 3754 f2fs_put_page(page, 1); 3755 return 0; 3756 } 3757 3758 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3759 { 3760 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3761 struct f2fs_summary_block *sum; 3762 struct curseg_info *curseg; 3763 struct page *new; 3764 unsigned short blk_off; 3765 unsigned int segno = 0; 3766 block_t blk_addr = 0; 3767 int err = 0; 3768 3769 /* get segment number and block addr */ 3770 if (IS_DATASEG(type)) { 3771 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3772 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3773 CURSEG_HOT_DATA]); 3774 if (__exist_node_summaries(sbi)) 3775 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3776 else 3777 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3778 } else { 3779 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3780 CURSEG_HOT_NODE]); 3781 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3782 CURSEG_HOT_NODE]); 3783 if (__exist_node_summaries(sbi)) 3784 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3785 type - CURSEG_HOT_NODE); 3786 else 3787 blk_addr = GET_SUM_BLOCK(sbi, segno); 3788 } 3789 3790 new = f2fs_get_meta_page(sbi, blk_addr); 3791 if (IS_ERR(new)) 3792 return PTR_ERR(new); 3793 sum = (struct f2fs_summary_block *)page_address(new); 3794 3795 if (IS_NODESEG(type)) { 3796 if (__exist_node_summaries(sbi)) { 3797 struct f2fs_summary *ns = &sum->entries[0]; 3798 int i; 3799 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3800 ns->version = 0; 3801 ns->ofs_in_node = 0; 3802 } 3803 } else { 3804 err = f2fs_restore_node_summary(sbi, segno, sum); 3805 if (err) 3806 goto out; 3807 } 3808 } 3809 3810 /* set uncompleted segment to curseg */ 3811 curseg = CURSEG_I(sbi, type); 3812 mutex_lock(&curseg->curseg_mutex); 3813 3814 /* update journal info */ 3815 down_write(&curseg->journal_rwsem); 3816 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3817 up_write(&curseg->journal_rwsem); 3818 3819 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3820 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3821 curseg->next_segno = segno; 3822 reset_curseg(sbi, type, 0); 3823 curseg->alloc_type = ckpt->alloc_type[type]; 3824 curseg->next_blkoff = blk_off; 3825 mutex_unlock(&curseg->curseg_mutex); 3826 out: 3827 f2fs_put_page(new, 1); 3828 return err; 3829 } 3830 3831 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3832 { 3833 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3834 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3835 int type = CURSEG_HOT_DATA; 3836 int err; 3837 3838 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3839 int npages = f2fs_npages_for_summary_flush(sbi, true); 3840 3841 if (npages >= 2) 3842 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3843 META_CP, true); 3844 3845 /* restore for compacted data summary */ 3846 err = read_compacted_summaries(sbi); 3847 if (err) 3848 return err; 3849 type = CURSEG_HOT_NODE; 3850 } 3851 3852 if (__exist_node_summaries(sbi)) 3853 f2fs_ra_meta_pages(sbi, 3854 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 3855 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 3856 3857 for (; type <= CURSEG_COLD_NODE; type++) { 3858 err = read_normal_summaries(sbi, type); 3859 if (err) 3860 return err; 3861 } 3862 3863 /* sanity check for summary blocks */ 3864 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3865 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3866 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n", 3867 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3868 return -EINVAL; 3869 } 3870 3871 return 0; 3872 } 3873 3874 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3875 { 3876 struct page *page; 3877 unsigned char *kaddr; 3878 struct f2fs_summary *summary; 3879 struct curseg_info *seg_i; 3880 int written_size = 0; 3881 int i, j; 3882 3883 page = f2fs_grab_meta_page(sbi, blkaddr++); 3884 kaddr = (unsigned char *)page_address(page); 3885 memset(kaddr, 0, PAGE_SIZE); 3886 3887 /* Step 1: write nat cache */ 3888 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3889 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3890 written_size += SUM_JOURNAL_SIZE; 3891 3892 /* Step 2: write sit cache */ 3893 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3894 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3895 written_size += SUM_JOURNAL_SIZE; 3896 3897 /* Step 3: write summary entries */ 3898 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3899 unsigned short blkoff; 3900 seg_i = CURSEG_I(sbi, i); 3901 if (sbi->ckpt->alloc_type[i] == SSR) 3902 blkoff = sbi->blocks_per_seg; 3903 else 3904 blkoff = curseg_blkoff(sbi, i); 3905 3906 for (j = 0; j < blkoff; j++) { 3907 if (!page) { 3908 page = f2fs_grab_meta_page(sbi, blkaddr++); 3909 kaddr = (unsigned char *)page_address(page); 3910 memset(kaddr, 0, PAGE_SIZE); 3911 written_size = 0; 3912 } 3913 summary = (struct f2fs_summary *)(kaddr + written_size); 3914 *summary = seg_i->sum_blk->entries[j]; 3915 written_size += SUMMARY_SIZE; 3916 3917 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3918 SUM_FOOTER_SIZE) 3919 continue; 3920 3921 set_page_dirty(page); 3922 f2fs_put_page(page, 1); 3923 page = NULL; 3924 } 3925 } 3926 if (page) { 3927 set_page_dirty(page); 3928 f2fs_put_page(page, 1); 3929 } 3930 } 3931 3932 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3933 block_t blkaddr, int type) 3934 { 3935 int i, end; 3936 if (IS_DATASEG(type)) 3937 end = type + NR_CURSEG_DATA_TYPE; 3938 else 3939 end = type + NR_CURSEG_NODE_TYPE; 3940 3941 for (i = type; i < end; i++) 3942 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3943 } 3944 3945 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3946 { 3947 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3948 write_compacted_summaries(sbi, start_blk); 3949 else 3950 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3951 } 3952 3953 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3954 { 3955 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3956 } 3957 3958 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3959 unsigned int val, int alloc) 3960 { 3961 int i; 3962 3963 if (type == NAT_JOURNAL) { 3964 for (i = 0; i < nats_in_cursum(journal); i++) { 3965 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3966 return i; 3967 } 3968 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3969 return update_nats_in_cursum(journal, 1); 3970 } else if (type == SIT_JOURNAL) { 3971 for (i = 0; i < sits_in_cursum(journal); i++) 3972 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3973 return i; 3974 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3975 return update_sits_in_cursum(journal, 1); 3976 } 3977 return -1; 3978 } 3979 3980 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3981 unsigned int segno) 3982 { 3983 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 3984 } 3985 3986 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3987 unsigned int start) 3988 { 3989 struct sit_info *sit_i = SIT_I(sbi); 3990 struct page *page; 3991 pgoff_t src_off, dst_off; 3992 3993 src_off = current_sit_addr(sbi, start); 3994 dst_off = next_sit_addr(sbi, src_off); 3995 3996 page = f2fs_grab_meta_page(sbi, dst_off); 3997 seg_info_to_sit_page(sbi, page, start); 3998 3999 set_page_dirty(page); 4000 set_to_next_sit(sit_i, start); 4001 4002 return page; 4003 } 4004 4005 static struct sit_entry_set *grab_sit_entry_set(void) 4006 { 4007 struct sit_entry_set *ses = 4008 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 4009 4010 ses->entry_cnt = 0; 4011 INIT_LIST_HEAD(&ses->set_list); 4012 return ses; 4013 } 4014 4015 static void release_sit_entry_set(struct sit_entry_set *ses) 4016 { 4017 list_del(&ses->set_list); 4018 kmem_cache_free(sit_entry_set_slab, ses); 4019 } 4020 4021 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4022 struct list_head *head) 4023 { 4024 struct sit_entry_set *next = ses; 4025 4026 if (list_is_last(&ses->set_list, head)) 4027 return; 4028 4029 list_for_each_entry_continue(next, head, set_list) 4030 if (ses->entry_cnt <= next->entry_cnt) 4031 break; 4032 4033 list_move_tail(&ses->set_list, &next->set_list); 4034 } 4035 4036 static void add_sit_entry(unsigned int segno, struct list_head *head) 4037 { 4038 struct sit_entry_set *ses; 4039 unsigned int start_segno = START_SEGNO(segno); 4040 4041 list_for_each_entry(ses, head, set_list) { 4042 if (ses->start_segno == start_segno) { 4043 ses->entry_cnt++; 4044 adjust_sit_entry_set(ses, head); 4045 return; 4046 } 4047 } 4048 4049 ses = grab_sit_entry_set(); 4050 4051 ses->start_segno = start_segno; 4052 ses->entry_cnt++; 4053 list_add(&ses->set_list, head); 4054 } 4055 4056 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4057 { 4058 struct f2fs_sm_info *sm_info = SM_I(sbi); 4059 struct list_head *set_list = &sm_info->sit_entry_set; 4060 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4061 unsigned int segno; 4062 4063 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4064 add_sit_entry(segno, set_list); 4065 } 4066 4067 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4068 { 4069 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4070 struct f2fs_journal *journal = curseg->journal; 4071 int i; 4072 4073 down_write(&curseg->journal_rwsem); 4074 for (i = 0; i < sits_in_cursum(journal); i++) { 4075 unsigned int segno; 4076 bool dirtied; 4077 4078 segno = le32_to_cpu(segno_in_journal(journal, i)); 4079 dirtied = __mark_sit_entry_dirty(sbi, segno); 4080 4081 if (!dirtied) 4082 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4083 } 4084 update_sits_in_cursum(journal, -i); 4085 up_write(&curseg->journal_rwsem); 4086 } 4087 4088 /* 4089 * CP calls this function, which flushes SIT entries including sit_journal, 4090 * and moves prefree segs to free segs. 4091 */ 4092 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4093 { 4094 struct sit_info *sit_i = SIT_I(sbi); 4095 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4096 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4097 struct f2fs_journal *journal = curseg->journal; 4098 struct sit_entry_set *ses, *tmp; 4099 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4100 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4101 struct seg_entry *se; 4102 4103 down_write(&sit_i->sentry_lock); 4104 4105 if (!sit_i->dirty_sentries) 4106 goto out; 4107 4108 /* 4109 * add and account sit entries of dirty bitmap in sit entry 4110 * set temporarily 4111 */ 4112 add_sits_in_set(sbi); 4113 4114 /* 4115 * if there are no enough space in journal to store dirty sit 4116 * entries, remove all entries from journal and add and account 4117 * them in sit entry set. 4118 */ 4119 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4120 !to_journal) 4121 remove_sits_in_journal(sbi); 4122 4123 /* 4124 * there are two steps to flush sit entries: 4125 * #1, flush sit entries to journal in current cold data summary block. 4126 * #2, flush sit entries to sit page. 4127 */ 4128 list_for_each_entry_safe(ses, tmp, head, set_list) { 4129 struct page *page = NULL; 4130 struct f2fs_sit_block *raw_sit = NULL; 4131 unsigned int start_segno = ses->start_segno; 4132 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4133 (unsigned long)MAIN_SEGS(sbi)); 4134 unsigned int segno = start_segno; 4135 4136 if (to_journal && 4137 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4138 to_journal = false; 4139 4140 if (to_journal) { 4141 down_write(&curseg->journal_rwsem); 4142 } else { 4143 page = get_next_sit_page(sbi, start_segno); 4144 raw_sit = page_address(page); 4145 } 4146 4147 /* flush dirty sit entries in region of current sit set */ 4148 for_each_set_bit_from(segno, bitmap, end) { 4149 int offset, sit_offset; 4150 4151 se = get_seg_entry(sbi, segno); 4152 #ifdef CONFIG_F2FS_CHECK_FS 4153 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4154 SIT_VBLOCK_MAP_SIZE)) 4155 f2fs_bug_on(sbi, 1); 4156 #endif 4157 4158 /* add discard candidates */ 4159 if (!(cpc->reason & CP_DISCARD)) { 4160 cpc->trim_start = segno; 4161 add_discard_addrs(sbi, cpc, false); 4162 } 4163 4164 if (to_journal) { 4165 offset = f2fs_lookup_journal_in_cursum(journal, 4166 SIT_JOURNAL, segno, 1); 4167 f2fs_bug_on(sbi, offset < 0); 4168 segno_in_journal(journal, offset) = 4169 cpu_to_le32(segno); 4170 seg_info_to_raw_sit(se, 4171 &sit_in_journal(journal, offset)); 4172 check_block_count(sbi, segno, 4173 &sit_in_journal(journal, offset)); 4174 } else { 4175 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4176 seg_info_to_raw_sit(se, 4177 &raw_sit->entries[sit_offset]); 4178 check_block_count(sbi, segno, 4179 &raw_sit->entries[sit_offset]); 4180 } 4181 4182 __clear_bit(segno, bitmap); 4183 sit_i->dirty_sentries--; 4184 ses->entry_cnt--; 4185 } 4186 4187 if (to_journal) 4188 up_write(&curseg->journal_rwsem); 4189 else 4190 f2fs_put_page(page, 1); 4191 4192 f2fs_bug_on(sbi, ses->entry_cnt); 4193 release_sit_entry_set(ses); 4194 } 4195 4196 f2fs_bug_on(sbi, !list_empty(head)); 4197 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4198 out: 4199 if (cpc->reason & CP_DISCARD) { 4200 __u64 trim_start = cpc->trim_start; 4201 4202 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4203 add_discard_addrs(sbi, cpc, false); 4204 4205 cpc->trim_start = trim_start; 4206 } 4207 up_write(&sit_i->sentry_lock); 4208 4209 set_prefree_as_free_segments(sbi); 4210 } 4211 4212 static int build_sit_info(struct f2fs_sb_info *sbi) 4213 { 4214 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4215 struct sit_info *sit_i; 4216 unsigned int sit_segs, start; 4217 char *src_bitmap, *bitmap; 4218 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4219 4220 /* allocate memory for SIT information */ 4221 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4222 if (!sit_i) 4223 return -ENOMEM; 4224 4225 SM_I(sbi)->sit_info = sit_i; 4226 4227 sit_i->sentries = 4228 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4229 MAIN_SEGS(sbi)), 4230 GFP_KERNEL); 4231 if (!sit_i->sentries) 4232 return -ENOMEM; 4233 4234 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4235 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4236 GFP_KERNEL); 4237 if (!sit_i->dirty_sentries_bitmap) 4238 return -ENOMEM; 4239 4240 #ifdef CONFIG_F2FS_CHECK_FS 4241 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; 4242 #else 4243 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; 4244 #endif 4245 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4246 if (!sit_i->bitmap) 4247 return -ENOMEM; 4248 4249 bitmap = sit_i->bitmap; 4250 4251 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4252 sit_i->sentries[start].cur_valid_map = bitmap; 4253 bitmap += SIT_VBLOCK_MAP_SIZE; 4254 4255 sit_i->sentries[start].ckpt_valid_map = bitmap; 4256 bitmap += SIT_VBLOCK_MAP_SIZE; 4257 4258 #ifdef CONFIG_F2FS_CHECK_FS 4259 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4260 bitmap += SIT_VBLOCK_MAP_SIZE; 4261 #endif 4262 4263 sit_i->sentries[start].discard_map = bitmap; 4264 bitmap += SIT_VBLOCK_MAP_SIZE; 4265 } 4266 4267 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4268 if (!sit_i->tmp_map) 4269 return -ENOMEM; 4270 4271 if (__is_large_section(sbi)) { 4272 sit_i->sec_entries = 4273 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4274 MAIN_SECS(sbi)), 4275 GFP_KERNEL); 4276 if (!sit_i->sec_entries) 4277 return -ENOMEM; 4278 } 4279 4280 /* get information related with SIT */ 4281 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4282 4283 /* setup SIT bitmap from ckeckpoint pack */ 4284 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4285 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4286 4287 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4288 if (!sit_i->sit_bitmap) 4289 return -ENOMEM; 4290 4291 #ifdef CONFIG_F2FS_CHECK_FS 4292 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4293 sit_bitmap_size, GFP_KERNEL); 4294 if (!sit_i->sit_bitmap_mir) 4295 return -ENOMEM; 4296 4297 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4298 main_bitmap_size, GFP_KERNEL); 4299 if (!sit_i->invalid_segmap) 4300 return -ENOMEM; 4301 #endif 4302 4303 /* init SIT information */ 4304 sit_i->s_ops = &default_salloc_ops; 4305 4306 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4307 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4308 sit_i->written_valid_blocks = 0; 4309 sit_i->bitmap_size = sit_bitmap_size; 4310 sit_i->dirty_sentries = 0; 4311 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4312 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4313 sit_i->mounted_time = ktime_get_boottime_seconds(); 4314 init_rwsem(&sit_i->sentry_lock); 4315 return 0; 4316 } 4317 4318 static int build_free_segmap(struct f2fs_sb_info *sbi) 4319 { 4320 struct free_segmap_info *free_i; 4321 unsigned int bitmap_size, sec_bitmap_size; 4322 4323 /* allocate memory for free segmap information */ 4324 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4325 if (!free_i) 4326 return -ENOMEM; 4327 4328 SM_I(sbi)->free_info = free_i; 4329 4330 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4331 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4332 if (!free_i->free_segmap) 4333 return -ENOMEM; 4334 4335 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4336 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4337 if (!free_i->free_secmap) 4338 return -ENOMEM; 4339 4340 /* set all segments as dirty temporarily */ 4341 memset(free_i->free_segmap, 0xff, bitmap_size); 4342 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4343 4344 /* init free segmap information */ 4345 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4346 free_i->free_segments = 0; 4347 free_i->free_sections = 0; 4348 spin_lock_init(&free_i->segmap_lock); 4349 return 0; 4350 } 4351 4352 static int build_curseg(struct f2fs_sb_info *sbi) 4353 { 4354 struct curseg_info *array; 4355 int i; 4356 4357 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4358 sizeof(*array)), GFP_KERNEL); 4359 if (!array) 4360 return -ENOMEM; 4361 4362 SM_I(sbi)->curseg_array = array; 4363 4364 for (i = 0; i < NO_CHECK_TYPE; i++) { 4365 mutex_init(&array[i].curseg_mutex); 4366 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4367 if (!array[i].sum_blk) 4368 return -ENOMEM; 4369 init_rwsem(&array[i].journal_rwsem); 4370 array[i].journal = f2fs_kzalloc(sbi, 4371 sizeof(struct f2fs_journal), GFP_KERNEL); 4372 if (!array[i].journal) 4373 return -ENOMEM; 4374 if (i < NR_PERSISTENT_LOG) 4375 array[i].seg_type = CURSEG_HOT_DATA + i; 4376 else if (i == CURSEG_COLD_DATA_PINNED) 4377 array[i].seg_type = CURSEG_COLD_DATA; 4378 else if (i == CURSEG_ALL_DATA_ATGC) 4379 array[i].seg_type = CURSEG_COLD_DATA; 4380 array[i].segno = NULL_SEGNO; 4381 array[i].next_blkoff = 0; 4382 array[i].inited = false; 4383 } 4384 return restore_curseg_summaries(sbi); 4385 } 4386 4387 static int build_sit_entries(struct f2fs_sb_info *sbi) 4388 { 4389 struct sit_info *sit_i = SIT_I(sbi); 4390 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4391 struct f2fs_journal *journal = curseg->journal; 4392 struct seg_entry *se; 4393 struct f2fs_sit_entry sit; 4394 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4395 unsigned int i, start, end; 4396 unsigned int readed, start_blk = 0; 4397 int err = 0; 4398 block_t total_node_blocks = 0; 4399 4400 do { 4401 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4402 META_SIT, true); 4403 4404 start = start_blk * sit_i->sents_per_block; 4405 end = (start_blk + readed) * sit_i->sents_per_block; 4406 4407 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4408 struct f2fs_sit_block *sit_blk; 4409 struct page *page; 4410 4411 se = &sit_i->sentries[start]; 4412 page = get_current_sit_page(sbi, start); 4413 if (IS_ERR(page)) 4414 return PTR_ERR(page); 4415 sit_blk = (struct f2fs_sit_block *)page_address(page); 4416 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4417 f2fs_put_page(page, 1); 4418 4419 err = check_block_count(sbi, start, &sit); 4420 if (err) 4421 return err; 4422 seg_info_from_raw_sit(se, &sit); 4423 if (IS_NODESEG(se->type)) 4424 total_node_blocks += se->valid_blocks; 4425 4426 /* build discard map only one time */ 4427 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4428 memset(se->discard_map, 0xff, 4429 SIT_VBLOCK_MAP_SIZE); 4430 } else { 4431 memcpy(se->discard_map, 4432 se->cur_valid_map, 4433 SIT_VBLOCK_MAP_SIZE); 4434 sbi->discard_blks += 4435 sbi->blocks_per_seg - 4436 se->valid_blocks; 4437 } 4438 4439 if (__is_large_section(sbi)) 4440 get_sec_entry(sbi, start)->valid_blocks += 4441 se->valid_blocks; 4442 } 4443 start_blk += readed; 4444 } while (start_blk < sit_blk_cnt); 4445 4446 down_read(&curseg->journal_rwsem); 4447 for (i = 0; i < sits_in_cursum(journal); i++) { 4448 unsigned int old_valid_blocks; 4449 4450 start = le32_to_cpu(segno_in_journal(journal, i)); 4451 if (start >= MAIN_SEGS(sbi)) { 4452 f2fs_err(sbi, "Wrong journal entry on segno %u", 4453 start); 4454 err = -EFSCORRUPTED; 4455 break; 4456 } 4457 4458 se = &sit_i->sentries[start]; 4459 sit = sit_in_journal(journal, i); 4460 4461 old_valid_blocks = se->valid_blocks; 4462 if (IS_NODESEG(se->type)) 4463 total_node_blocks -= old_valid_blocks; 4464 4465 err = check_block_count(sbi, start, &sit); 4466 if (err) 4467 break; 4468 seg_info_from_raw_sit(se, &sit); 4469 if (IS_NODESEG(se->type)) 4470 total_node_blocks += se->valid_blocks; 4471 4472 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4473 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4474 } else { 4475 memcpy(se->discard_map, se->cur_valid_map, 4476 SIT_VBLOCK_MAP_SIZE); 4477 sbi->discard_blks += old_valid_blocks; 4478 sbi->discard_blks -= se->valid_blocks; 4479 } 4480 4481 if (__is_large_section(sbi)) { 4482 get_sec_entry(sbi, start)->valid_blocks += 4483 se->valid_blocks; 4484 get_sec_entry(sbi, start)->valid_blocks -= 4485 old_valid_blocks; 4486 } 4487 } 4488 up_read(&curseg->journal_rwsem); 4489 4490 if (!err && total_node_blocks != valid_node_count(sbi)) { 4491 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4492 total_node_blocks, valid_node_count(sbi)); 4493 err = -EFSCORRUPTED; 4494 } 4495 4496 return err; 4497 } 4498 4499 static void init_free_segmap(struct f2fs_sb_info *sbi) 4500 { 4501 unsigned int start; 4502 int type; 4503 struct seg_entry *sentry; 4504 4505 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4506 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4507 continue; 4508 sentry = get_seg_entry(sbi, start); 4509 if (!sentry->valid_blocks) 4510 __set_free(sbi, start); 4511 else 4512 SIT_I(sbi)->written_valid_blocks += 4513 sentry->valid_blocks; 4514 } 4515 4516 /* set use the current segments */ 4517 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4518 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4519 __set_test_and_inuse(sbi, curseg_t->segno); 4520 } 4521 } 4522 4523 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4524 { 4525 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4526 struct free_segmap_info *free_i = FREE_I(sbi); 4527 unsigned int segno = 0, offset = 0, secno; 4528 block_t valid_blocks, usable_blks_in_seg; 4529 block_t blks_per_sec = BLKS_PER_SEC(sbi); 4530 4531 while (1) { 4532 /* find dirty segment based on free segmap */ 4533 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4534 if (segno >= MAIN_SEGS(sbi)) 4535 break; 4536 offset = segno + 1; 4537 valid_blocks = get_valid_blocks(sbi, segno, false); 4538 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4539 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4540 continue; 4541 if (valid_blocks > usable_blks_in_seg) { 4542 f2fs_bug_on(sbi, 1); 4543 continue; 4544 } 4545 mutex_lock(&dirty_i->seglist_lock); 4546 __locate_dirty_segment(sbi, segno, DIRTY); 4547 mutex_unlock(&dirty_i->seglist_lock); 4548 } 4549 4550 if (!__is_large_section(sbi)) 4551 return; 4552 4553 mutex_lock(&dirty_i->seglist_lock); 4554 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4555 valid_blocks = get_valid_blocks(sbi, segno, true); 4556 secno = GET_SEC_FROM_SEG(sbi, segno); 4557 4558 if (!valid_blocks || valid_blocks == blks_per_sec) 4559 continue; 4560 if (IS_CURSEC(sbi, secno)) 4561 continue; 4562 set_bit(secno, dirty_i->dirty_secmap); 4563 } 4564 mutex_unlock(&dirty_i->seglist_lock); 4565 } 4566 4567 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4568 { 4569 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4570 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4571 4572 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4573 if (!dirty_i->victim_secmap) 4574 return -ENOMEM; 4575 return 0; 4576 } 4577 4578 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4579 { 4580 struct dirty_seglist_info *dirty_i; 4581 unsigned int bitmap_size, i; 4582 4583 /* allocate memory for dirty segments list information */ 4584 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4585 GFP_KERNEL); 4586 if (!dirty_i) 4587 return -ENOMEM; 4588 4589 SM_I(sbi)->dirty_info = dirty_i; 4590 mutex_init(&dirty_i->seglist_lock); 4591 4592 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4593 4594 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4595 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4596 GFP_KERNEL); 4597 if (!dirty_i->dirty_segmap[i]) 4598 return -ENOMEM; 4599 } 4600 4601 if (__is_large_section(sbi)) { 4602 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4603 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4604 bitmap_size, GFP_KERNEL); 4605 if (!dirty_i->dirty_secmap) 4606 return -ENOMEM; 4607 } 4608 4609 init_dirty_segmap(sbi); 4610 return init_victim_secmap(sbi); 4611 } 4612 4613 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4614 { 4615 int i; 4616 4617 /* 4618 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4619 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4620 */ 4621 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4622 struct curseg_info *curseg = CURSEG_I(sbi, i); 4623 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4624 unsigned int blkofs = curseg->next_blkoff; 4625 4626 sanity_check_seg_type(sbi, curseg->seg_type); 4627 4628 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4629 goto out; 4630 4631 if (curseg->alloc_type == SSR) 4632 continue; 4633 4634 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4635 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4636 continue; 4637 out: 4638 f2fs_err(sbi, 4639 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4640 i, curseg->segno, curseg->alloc_type, 4641 curseg->next_blkoff, blkofs); 4642 return -EFSCORRUPTED; 4643 } 4644 } 4645 return 0; 4646 } 4647 4648 #ifdef CONFIG_BLK_DEV_ZONED 4649 4650 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4651 struct f2fs_dev_info *fdev, 4652 struct blk_zone *zone) 4653 { 4654 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4655 block_t zone_block, wp_block, last_valid_block; 4656 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4657 int i, s, b, ret; 4658 struct seg_entry *se; 4659 4660 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4661 return 0; 4662 4663 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4664 wp_segno = GET_SEGNO(sbi, wp_block); 4665 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4666 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4667 zone_segno = GET_SEGNO(sbi, zone_block); 4668 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4669 4670 if (zone_segno >= MAIN_SEGS(sbi)) 4671 return 0; 4672 4673 /* 4674 * Skip check of zones cursegs point to, since 4675 * fix_curseg_write_pointer() checks them. 4676 */ 4677 for (i = 0; i < NO_CHECK_TYPE; i++) 4678 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4679 CURSEG_I(sbi, i)->segno)) 4680 return 0; 4681 4682 /* 4683 * Get last valid block of the zone. 4684 */ 4685 last_valid_block = zone_block - 1; 4686 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4687 segno = zone_segno + s; 4688 se = get_seg_entry(sbi, segno); 4689 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4690 if (f2fs_test_bit(b, se->cur_valid_map)) { 4691 last_valid_block = START_BLOCK(sbi, segno) + b; 4692 break; 4693 } 4694 if (last_valid_block >= zone_block) 4695 break; 4696 } 4697 4698 /* 4699 * If last valid block is beyond the write pointer, report the 4700 * inconsistency. This inconsistency does not cause write error 4701 * because the zone will not be selected for write operation until 4702 * it get discarded. Just report it. 4703 */ 4704 if (last_valid_block >= wp_block) { 4705 f2fs_notice(sbi, "Valid block beyond write pointer: " 4706 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4707 GET_SEGNO(sbi, last_valid_block), 4708 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4709 wp_segno, wp_blkoff); 4710 return 0; 4711 } 4712 4713 /* 4714 * If there is no valid block in the zone and if write pointer is 4715 * not at zone start, reset the write pointer. 4716 */ 4717 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4718 f2fs_notice(sbi, 4719 "Zone without valid block has non-zero write " 4720 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4721 wp_segno, wp_blkoff); 4722 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4723 zone->len >> log_sectors_per_block); 4724 if (ret) { 4725 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4726 fdev->path, ret); 4727 return ret; 4728 } 4729 } 4730 4731 return 0; 4732 } 4733 4734 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4735 block_t zone_blkaddr) 4736 { 4737 int i; 4738 4739 for (i = 0; i < sbi->s_ndevs; i++) { 4740 if (!bdev_is_zoned(FDEV(i).bdev)) 4741 continue; 4742 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4743 zone_blkaddr <= FDEV(i).end_blk)) 4744 return &FDEV(i); 4745 } 4746 4747 return NULL; 4748 } 4749 4750 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4751 void *data) { 4752 memcpy(data, zone, sizeof(struct blk_zone)); 4753 return 0; 4754 } 4755 4756 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4757 { 4758 struct curseg_info *cs = CURSEG_I(sbi, type); 4759 struct f2fs_dev_info *zbd; 4760 struct blk_zone zone; 4761 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4762 block_t cs_zone_block, wp_block; 4763 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4764 sector_t zone_sector; 4765 int err; 4766 4767 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4768 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4769 4770 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4771 if (!zbd) 4772 return 0; 4773 4774 /* report zone for the sector the curseg points to */ 4775 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4776 << log_sectors_per_block; 4777 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4778 report_one_zone_cb, &zone); 4779 if (err != 1) { 4780 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4781 zbd->path, err); 4782 return err; 4783 } 4784 4785 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4786 return 0; 4787 4788 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4789 wp_segno = GET_SEGNO(sbi, wp_block); 4790 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4791 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4792 4793 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4794 wp_sector_off == 0) 4795 return 0; 4796 4797 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4798 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4799 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4800 4801 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4802 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4803 allocate_segment_by_default(sbi, type, true); 4804 4805 /* check consistency of the zone curseg pointed to */ 4806 if (check_zone_write_pointer(sbi, zbd, &zone)) 4807 return -EIO; 4808 4809 /* check newly assigned zone */ 4810 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4811 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4812 4813 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4814 if (!zbd) 4815 return 0; 4816 4817 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4818 << log_sectors_per_block; 4819 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4820 report_one_zone_cb, &zone); 4821 if (err != 1) { 4822 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4823 zbd->path, err); 4824 return err; 4825 } 4826 4827 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4828 return 0; 4829 4830 if (zone.wp != zone.start) { 4831 f2fs_notice(sbi, 4832 "New zone for curseg[%d] is not yet discarded. " 4833 "Reset the zone: curseg[0x%x,0x%x]", 4834 type, cs->segno, cs->next_blkoff); 4835 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 4836 zone_sector >> log_sectors_per_block, 4837 zone.len >> log_sectors_per_block); 4838 if (err) { 4839 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4840 zbd->path, err); 4841 return err; 4842 } 4843 } 4844 4845 return 0; 4846 } 4847 4848 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4849 { 4850 int i, ret; 4851 4852 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4853 ret = fix_curseg_write_pointer(sbi, i); 4854 if (ret) 4855 return ret; 4856 } 4857 4858 return 0; 4859 } 4860 4861 struct check_zone_write_pointer_args { 4862 struct f2fs_sb_info *sbi; 4863 struct f2fs_dev_info *fdev; 4864 }; 4865 4866 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4867 void *data) { 4868 struct check_zone_write_pointer_args *args; 4869 args = (struct check_zone_write_pointer_args *)data; 4870 4871 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4872 } 4873 4874 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4875 { 4876 int i, ret; 4877 struct check_zone_write_pointer_args args; 4878 4879 for (i = 0; i < sbi->s_ndevs; i++) { 4880 if (!bdev_is_zoned(FDEV(i).bdev)) 4881 continue; 4882 4883 args.sbi = sbi; 4884 args.fdev = &FDEV(i); 4885 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 4886 check_zone_write_pointer_cb, &args); 4887 if (ret < 0) 4888 return ret; 4889 } 4890 4891 return 0; 4892 } 4893 4894 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx, 4895 unsigned int dev_idx) 4896 { 4897 if (!bdev_is_zoned(FDEV(dev_idx).bdev)) 4898 return true; 4899 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq); 4900 } 4901 4902 /* Return the zone index in the given device */ 4903 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno, 4904 int dev_idx) 4905 { 4906 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4907 4908 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >> 4909 sbi->log_blocks_per_blkz; 4910 } 4911 4912 /* 4913 * Return the usable segments in a section based on the zone's 4914 * corresponding zone capacity. Zone is equal to a section. 4915 */ 4916 static inline unsigned int f2fs_usable_zone_segs_in_sec( 4917 struct f2fs_sb_info *sbi, unsigned int segno) 4918 { 4919 unsigned int dev_idx, zone_idx, unusable_segs_in_sec; 4920 4921 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno)); 4922 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx); 4923 4924 /* Conventional zone's capacity is always equal to zone size */ 4925 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4926 return sbi->segs_per_sec; 4927 4928 /* 4929 * If the zone_capacity_blocks array is NULL, then zone capacity 4930 * is equal to the zone size for all zones 4931 */ 4932 if (!FDEV(dev_idx).zone_capacity_blocks) 4933 return sbi->segs_per_sec; 4934 4935 /* Get the segment count beyond zone capacity block */ 4936 unusable_segs_in_sec = (sbi->blocks_per_blkz - 4937 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >> 4938 sbi->log_blocks_per_seg; 4939 return sbi->segs_per_sec - unusable_segs_in_sec; 4940 } 4941 4942 /* 4943 * Return the number of usable blocks in a segment. The number of blocks 4944 * returned is always equal to the number of blocks in a segment for 4945 * segments fully contained within a sequential zone capacity or a 4946 * conventional zone. For segments partially contained in a sequential 4947 * zone capacity, the number of usable blocks up to the zone capacity 4948 * is returned. 0 is returned in all other cases. 4949 */ 4950 static inline unsigned int f2fs_usable_zone_blks_in_seg( 4951 struct f2fs_sb_info *sbi, unsigned int segno) 4952 { 4953 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 4954 unsigned int zone_idx, dev_idx, secno; 4955 4956 secno = GET_SEC_FROM_SEG(sbi, segno); 4957 seg_start = START_BLOCK(sbi, segno); 4958 dev_idx = f2fs_target_device_index(sbi, seg_start); 4959 zone_idx = get_zone_idx(sbi, secno, dev_idx); 4960 4961 /* 4962 * Conventional zone's capacity is always equal to zone size, 4963 * so, blocks per segment is unchanged. 4964 */ 4965 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4966 return sbi->blocks_per_seg; 4967 4968 if (!FDEV(dev_idx).zone_capacity_blocks) 4969 return sbi->blocks_per_seg; 4970 4971 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4972 sec_cap_blkaddr = sec_start_blkaddr + 4973 FDEV(dev_idx).zone_capacity_blocks[zone_idx]; 4974 4975 /* 4976 * If segment starts before zone capacity and spans beyond 4977 * zone capacity, then usable blocks are from seg start to 4978 * zone capacity. If the segment starts after the zone capacity, 4979 * then there are no usable blocks. 4980 */ 4981 if (seg_start >= sec_cap_blkaddr) 4982 return 0; 4983 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 4984 return sec_cap_blkaddr - seg_start; 4985 4986 return sbi->blocks_per_seg; 4987 } 4988 #else 4989 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4990 { 4991 return 0; 4992 } 4993 4994 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4995 { 4996 return 0; 4997 } 4998 4999 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5000 unsigned int segno) 5001 { 5002 return 0; 5003 } 5004 5005 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi, 5006 unsigned int segno) 5007 { 5008 return 0; 5009 } 5010 #endif 5011 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5012 unsigned int segno) 5013 { 5014 if (f2fs_sb_has_blkzoned(sbi)) 5015 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5016 5017 return sbi->blocks_per_seg; 5018 } 5019 5020 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5021 unsigned int segno) 5022 { 5023 if (f2fs_sb_has_blkzoned(sbi)) 5024 return f2fs_usable_zone_segs_in_sec(sbi, segno); 5025 5026 return sbi->segs_per_sec; 5027 } 5028 5029 /* 5030 * Update min, max modified time for cost-benefit GC algorithm 5031 */ 5032 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5033 { 5034 struct sit_info *sit_i = SIT_I(sbi); 5035 unsigned int segno; 5036 5037 down_write(&sit_i->sentry_lock); 5038 5039 sit_i->min_mtime = ULLONG_MAX; 5040 5041 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5042 unsigned int i; 5043 unsigned long long mtime = 0; 5044 5045 for (i = 0; i < sbi->segs_per_sec; i++) 5046 mtime += get_seg_entry(sbi, segno + i)->mtime; 5047 5048 mtime = div_u64(mtime, sbi->segs_per_sec); 5049 5050 if (sit_i->min_mtime > mtime) 5051 sit_i->min_mtime = mtime; 5052 } 5053 sit_i->max_mtime = get_mtime(sbi, false); 5054 sit_i->dirty_max_mtime = 0; 5055 up_write(&sit_i->sentry_lock); 5056 } 5057 5058 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5059 { 5060 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5061 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5062 struct f2fs_sm_info *sm_info; 5063 int err; 5064 5065 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5066 if (!sm_info) 5067 return -ENOMEM; 5068 5069 /* init sm info */ 5070 sbi->sm_info = sm_info; 5071 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5072 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5073 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5074 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5075 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5076 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5077 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5078 sm_info->rec_prefree_segments = sm_info->main_segments * 5079 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5080 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5081 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5082 5083 if (!f2fs_lfs_mode(sbi)) 5084 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 5085 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5086 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5087 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 5088 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5089 sm_info->min_ssr_sections = reserved_sections(sbi); 5090 5091 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5092 5093 init_rwsem(&sm_info->curseg_lock); 5094 5095 if (!f2fs_readonly(sbi->sb)) { 5096 err = f2fs_create_flush_cmd_control(sbi); 5097 if (err) 5098 return err; 5099 } 5100 5101 err = create_discard_cmd_control(sbi); 5102 if (err) 5103 return err; 5104 5105 err = build_sit_info(sbi); 5106 if (err) 5107 return err; 5108 err = build_free_segmap(sbi); 5109 if (err) 5110 return err; 5111 err = build_curseg(sbi); 5112 if (err) 5113 return err; 5114 5115 /* reinit free segmap based on SIT */ 5116 err = build_sit_entries(sbi); 5117 if (err) 5118 return err; 5119 5120 init_free_segmap(sbi); 5121 err = build_dirty_segmap(sbi); 5122 if (err) 5123 return err; 5124 5125 err = sanity_check_curseg(sbi); 5126 if (err) 5127 return err; 5128 5129 init_min_max_mtime(sbi); 5130 return 0; 5131 } 5132 5133 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5134 enum dirty_type dirty_type) 5135 { 5136 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5137 5138 mutex_lock(&dirty_i->seglist_lock); 5139 kvfree(dirty_i->dirty_segmap[dirty_type]); 5140 dirty_i->nr_dirty[dirty_type] = 0; 5141 mutex_unlock(&dirty_i->seglist_lock); 5142 } 5143 5144 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5145 { 5146 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5147 kvfree(dirty_i->victim_secmap); 5148 } 5149 5150 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5151 { 5152 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5153 int i; 5154 5155 if (!dirty_i) 5156 return; 5157 5158 /* discard pre-free/dirty segments list */ 5159 for (i = 0; i < NR_DIRTY_TYPE; i++) 5160 discard_dirty_segmap(sbi, i); 5161 5162 if (__is_large_section(sbi)) { 5163 mutex_lock(&dirty_i->seglist_lock); 5164 kvfree(dirty_i->dirty_secmap); 5165 mutex_unlock(&dirty_i->seglist_lock); 5166 } 5167 5168 destroy_victim_secmap(sbi); 5169 SM_I(sbi)->dirty_info = NULL; 5170 kfree(dirty_i); 5171 } 5172 5173 static void destroy_curseg(struct f2fs_sb_info *sbi) 5174 { 5175 struct curseg_info *array = SM_I(sbi)->curseg_array; 5176 int i; 5177 5178 if (!array) 5179 return; 5180 SM_I(sbi)->curseg_array = NULL; 5181 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5182 kfree(array[i].sum_blk); 5183 kfree(array[i].journal); 5184 } 5185 kfree(array); 5186 } 5187 5188 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5189 { 5190 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5191 if (!free_i) 5192 return; 5193 SM_I(sbi)->free_info = NULL; 5194 kvfree(free_i->free_segmap); 5195 kvfree(free_i->free_secmap); 5196 kfree(free_i); 5197 } 5198 5199 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5200 { 5201 struct sit_info *sit_i = SIT_I(sbi); 5202 5203 if (!sit_i) 5204 return; 5205 5206 if (sit_i->sentries) 5207 kvfree(sit_i->bitmap); 5208 kfree(sit_i->tmp_map); 5209 5210 kvfree(sit_i->sentries); 5211 kvfree(sit_i->sec_entries); 5212 kvfree(sit_i->dirty_sentries_bitmap); 5213 5214 SM_I(sbi)->sit_info = NULL; 5215 kvfree(sit_i->sit_bitmap); 5216 #ifdef CONFIG_F2FS_CHECK_FS 5217 kvfree(sit_i->sit_bitmap_mir); 5218 kvfree(sit_i->invalid_segmap); 5219 #endif 5220 kfree(sit_i); 5221 } 5222 5223 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5224 { 5225 struct f2fs_sm_info *sm_info = SM_I(sbi); 5226 5227 if (!sm_info) 5228 return; 5229 f2fs_destroy_flush_cmd_control(sbi, true); 5230 destroy_discard_cmd_control(sbi); 5231 destroy_dirty_segmap(sbi); 5232 destroy_curseg(sbi); 5233 destroy_free_segmap(sbi); 5234 destroy_sit_info(sbi); 5235 sbi->sm_info = NULL; 5236 kfree(sm_info); 5237 } 5238 5239 int __init f2fs_create_segment_manager_caches(void) 5240 { 5241 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5242 sizeof(struct discard_entry)); 5243 if (!discard_entry_slab) 5244 goto fail; 5245 5246 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5247 sizeof(struct discard_cmd)); 5248 if (!discard_cmd_slab) 5249 goto destroy_discard_entry; 5250 5251 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5252 sizeof(struct sit_entry_set)); 5253 if (!sit_entry_set_slab) 5254 goto destroy_discard_cmd; 5255 5256 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry", 5257 sizeof(struct inmem_pages)); 5258 if (!inmem_entry_slab) 5259 goto destroy_sit_entry_set; 5260 return 0; 5261 5262 destroy_sit_entry_set: 5263 kmem_cache_destroy(sit_entry_set_slab); 5264 destroy_discard_cmd: 5265 kmem_cache_destroy(discard_cmd_slab); 5266 destroy_discard_entry: 5267 kmem_cache_destroy(discard_entry_slab); 5268 fail: 5269 return -ENOMEM; 5270 } 5271 5272 void f2fs_destroy_segment_manager_caches(void) 5273 { 5274 kmem_cache_destroy(sit_entry_set_slab); 5275 kmem_cache_destroy(discard_cmd_slab); 5276 kmem_cache_destroy(discard_entry_slab); 5277 kmem_cache_destroy(inmem_entry_slab); 5278 } 5279