1 /* 2 * fs/f2fs/recovery.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include "f2fs.h" 14 #include "node.h" 15 #include "segment.h" 16 17 /* 18 * Roll forward recovery scenarios. 19 * 20 * [Term] F: fsync_mark, D: dentry_mark 21 * 22 * 1. inode(x) | CP | inode(x) | dnode(F) 23 * -> Update the latest inode(x). 24 * 25 * 2. inode(x) | CP | inode(F) | dnode(F) 26 * -> No problem. 27 * 28 * 3. inode(x) | CP | dnode(F) | inode(x) 29 * -> Recover to the latest dnode(F), and drop the last inode(x) 30 * 31 * 4. inode(x) | CP | dnode(F) | inode(F) 32 * -> No problem. 33 * 34 * 5. CP | inode(x) | dnode(F) 35 * -> The inode(DF) was missing. Should drop this dnode(F). 36 * 37 * 6. CP | inode(DF) | dnode(F) 38 * -> No problem. 39 * 40 * 7. CP | dnode(F) | inode(DF) 41 * -> If f2fs_iget fails, then goto next to find inode(DF). 42 * 43 * 8. CP | dnode(F) | inode(x) 44 * -> If f2fs_iget fails, then goto next to find inode(DF). 45 * But it will fail due to no inode(DF). 46 */ 47 48 static struct kmem_cache *fsync_entry_slab; 49 50 bool space_for_roll_forward(struct f2fs_sb_info *sbi) 51 { 52 if (sbi->last_valid_block_count + sbi->alloc_valid_block_count 53 > sbi->user_block_count) 54 return false; 55 return true; 56 } 57 58 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 59 nid_t ino) 60 { 61 struct fsync_inode_entry *entry; 62 63 list_for_each_entry(entry, head, list) 64 if (entry->inode->i_ino == ino) 65 return entry; 66 67 return NULL; 68 } 69 70 static int recover_dentry(struct inode *inode, struct page *ipage) 71 { 72 struct f2fs_inode *raw_inode = F2FS_INODE(ipage); 73 nid_t pino = le32_to_cpu(raw_inode->i_pino); 74 struct f2fs_dir_entry *de; 75 struct qstr name; 76 struct page *page; 77 struct inode *dir, *einode; 78 int err = 0; 79 80 dir = f2fs_iget(inode->i_sb, pino); 81 if (IS_ERR(dir)) { 82 err = PTR_ERR(dir); 83 goto out; 84 } 85 86 name.len = le32_to_cpu(raw_inode->i_namelen); 87 name.name = raw_inode->i_name; 88 89 if (unlikely(name.len > F2FS_NAME_LEN)) { 90 WARN_ON(1); 91 err = -ENAMETOOLONG; 92 goto out_err; 93 } 94 retry: 95 de = f2fs_find_entry(dir, &name, &page); 96 if (de && inode->i_ino == le32_to_cpu(de->ino)) { 97 clear_inode_flag(F2FS_I(inode), FI_INC_LINK); 98 goto out_unmap_put; 99 } 100 if (de) { 101 einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino)); 102 if (IS_ERR(einode)) { 103 WARN_ON(1); 104 err = PTR_ERR(einode); 105 if (err == -ENOENT) 106 err = -EEXIST; 107 goto out_unmap_put; 108 } 109 err = acquire_orphan_inode(F2FS_I_SB(inode)); 110 if (err) { 111 iput(einode); 112 goto out_unmap_put; 113 } 114 f2fs_delete_entry(de, page, einode); 115 iput(einode); 116 goto retry; 117 } 118 err = __f2fs_add_link(dir, &name, inode); 119 if (err) 120 goto out_err; 121 122 if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) { 123 iput(dir); 124 } else { 125 add_dirty_dir_inode(dir); 126 set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT); 127 } 128 129 goto out; 130 131 out_unmap_put: 132 kunmap(page); 133 f2fs_put_page(page, 0); 134 out_err: 135 iput(dir); 136 out: 137 f2fs_msg(inode->i_sb, KERN_NOTICE, 138 "%s: ino = %x, name = %s, dir = %lx, err = %d", 139 __func__, ino_of_node(ipage), raw_inode->i_name, 140 IS_ERR(dir) ? 0 : dir->i_ino, err); 141 return err; 142 } 143 144 static void recover_inode(struct inode *inode, struct page *page) 145 { 146 struct f2fs_inode *raw = F2FS_INODE(page); 147 148 inode->i_mode = le16_to_cpu(raw->i_mode); 149 i_size_write(inode, le64_to_cpu(raw->i_size)); 150 inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime); 151 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime); 152 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime); 153 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 154 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec); 155 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 156 157 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s", 158 ino_of_node(page), F2FS_INODE(page)->i_name); 159 } 160 161 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) 162 { 163 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 164 struct curseg_info *curseg; 165 struct page *page = NULL; 166 block_t blkaddr; 167 int err = 0; 168 169 /* get node pages in the current segment */ 170 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 171 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 172 173 while (1) { 174 struct fsync_inode_entry *entry; 175 176 if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi)) 177 return 0; 178 179 page = get_meta_page_ra(sbi, blkaddr); 180 181 if (cp_ver != cpver_of_node(page)) 182 break; 183 184 if (!is_fsync_dnode(page)) 185 goto next; 186 187 entry = get_fsync_inode(head, ino_of_node(page)); 188 if (entry) { 189 if (IS_INODE(page) && is_dent_dnode(page)) 190 set_inode_flag(F2FS_I(entry->inode), 191 FI_INC_LINK); 192 } else { 193 if (IS_INODE(page) && is_dent_dnode(page)) { 194 err = recover_inode_page(sbi, page); 195 if (err) 196 break; 197 } 198 199 /* add this fsync inode to the list */ 200 entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO); 201 if (!entry) { 202 err = -ENOMEM; 203 break; 204 } 205 /* 206 * CP | dnode(F) | inode(DF) 207 * For this case, we should not give up now. 208 */ 209 entry->inode = f2fs_iget(sbi->sb, ino_of_node(page)); 210 if (IS_ERR(entry->inode)) { 211 err = PTR_ERR(entry->inode); 212 kmem_cache_free(fsync_entry_slab, entry); 213 if (err == -ENOENT) 214 goto next; 215 break; 216 } 217 list_add_tail(&entry->list, head); 218 } 219 entry->blkaddr = blkaddr; 220 221 if (IS_INODE(page)) { 222 entry->last_inode = blkaddr; 223 if (is_dent_dnode(page)) 224 entry->last_dentry = blkaddr; 225 } 226 next: 227 /* check next segment */ 228 blkaddr = next_blkaddr_of_node(page); 229 f2fs_put_page(page, 1); 230 } 231 f2fs_put_page(page, 1); 232 return err; 233 } 234 235 static void destroy_fsync_dnodes(struct list_head *head) 236 { 237 struct fsync_inode_entry *entry, *tmp; 238 239 list_for_each_entry_safe(entry, tmp, head, list) { 240 iput(entry->inode); 241 list_del(&entry->list); 242 kmem_cache_free(fsync_entry_slab, entry); 243 } 244 } 245 246 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 247 block_t blkaddr, struct dnode_of_data *dn) 248 { 249 struct seg_entry *sentry; 250 unsigned int segno = GET_SEGNO(sbi, blkaddr); 251 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 252 struct f2fs_summary_block *sum_node; 253 struct f2fs_summary sum; 254 struct page *sum_page, *node_page; 255 nid_t ino, nid; 256 struct inode *inode; 257 unsigned int offset; 258 block_t bidx; 259 int i; 260 261 sentry = get_seg_entry(sbi, segno); 262 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 263 return 0; 264 265 /* Get the previous summary */ 266 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) { 267 struct curseg_info *curseg = CURSEG_I(sbi, i); 268 if (curseg->segno == segno) { 269 sum = curseg->sum_blk->entries[blkoff]; 270 goto got_it; 271 } 272 } 273 274 sum_page = get_sum_page(sbi, segno); 275 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 276 sum = sum_node->entries[blkoff]; 277 f2fs_put_page(sum_page, 1); 278 got_it: 279 /* Use the locked dnode page and inode */ 280 nid = le32_to_cpu(sum.nid); 281 if (dn->inode->i_ino == nid) { 282 struct dnode_of_data tdn = *dn; 283 tdn.nid = nid; 284 tdn.node_page = dn->inode_page; 285 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 286 truncate_data_blocks_range(&tdn, 1); 287 return 0; 288 } else if (dn->nid == nid) { 289 struct dnode_of_data tdn = *dn; 290 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 291 truncate_data_blocks_range(&tdn, 1); 292 return 0; 293 } 294 295 /* Get the node page */ 296 node_page = get_node_page(sbi, nid); 297 if (IS_ERR(node_page)) 298 return PTR_ERR(node_page); 299 300 offset = ofs_of_node(node_page); 301 ino = ino_of_node(node_page); 302 f2fs_put_page(node_page, 1); 303 304 if (ino != dn->inode->i_ino) { 305 /* Deallocate previous index in the node page */ 306 inode = f2fs_iget(sbi->sb, ino); 307 if (IS_ERR(inode)) 308 return PTR_ERR(inode); 309 } else { 310 inode = dn->inode; 311 } 312 313 bidx = start_bidx_of_node(offset, F2FS_I(inode)) + 314 le16_to_cpu(sum.ofs_in_node); 315 316 if (ino != dn->inode->i_ino) { 317 truncate_hole(inode, bidx, bidx + 1); 318 iput(inode); 319 } else { 320 struct dnode_of_data tdn; 321 set_new_dnode(&tdn, inode, dn->inode_page, NULL, 0); 322 if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) 323 return 0; 324 if (tdn.data_blkaddr != NULL_ADDR) 325 truncate_data_blocks_range(&tdn, 1); 326 f2fs_put_page(tdn.node_page, 1); 327 } 328 return 0; 329 } 330 331 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 332 struct page *page, block_t blkaddr) 333 { 334 struct f2fs_inode_info *fi = F2FS_I(inode); 335 unsigned int start, end; 336 struct dnode_of_data dn; 337 struct f2fs_summary sum; 338 struct node_info ni; 339 int err = 0, recovered = 0; 340 341 /* step 1: recover xattr */ 342 if (IS_INODE(page)) { 343 recover_inline_xattr(inode, page); 344 } else if (f2fs_has_xattr_block(ofs_of_node(page))) { 345 recover_xattr_data(inode, page, blkaddr); 346 goto out; 347 } 348 349 /* step 2: recover inline data */ 350 if (recover_inline_data(inode, page)) 351 goto out; 352 353 /* step 3: recover data indices */ 354 start = start_bidx_of_node(ofs_of_node(page), fi); 355 end = start + ADDRS_PER_PAGE(page, fi); 356 357 f2fs_lock_op(sbi); 358 359 set_new_dnode(&dn, inode, NULL, NULL, 0); 360 361 err = get_dnode_of_data(&dn, start, ALLOC_NODE); 362 if (err) { 363 f2fs_unlock_op(sbi); 364 goto out; 365 } 366 367 f2fs_wait_on_page_writeback(dn.node_page, NODE); 368 369 get_node_info(sbi, dn.nid, &ni); 370 f2fs_bug_on(sbi, ni.ino != ino_of_node(page)); 371 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page)); 372 373 for (; start < end; start++) { 374 block_t src, dest; 375 376 src = datablock_addr(dn.node_page, dn.ofs_in_node); 377 dest = datablock_addr(page, dn.ofs_in_node); 378 379 if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) { 380 if (src == NULL_ADDR) { 381 err = reserve_new_block(&dn); 382 /* We should not get -ENOSPC */ 383 f2fs_bug_on(sbi, err); 384 } 385 386 /* Check the previous node page having this index */ 387 err = check_index_in_prev_nodes(sbi, dest, &dn); 388 if (err) 389 goto err; 390 391 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 392 393 /* write dummy data page */ 394 recover_data_page(sbi, NULL, &sum, src, dest); 395 update_extent_cache(dest, &dn); 396 recovered++; 397 } 398 dn.ofs_in_node++; 399 } 400 401 /* write node page in place */ 402 set_summary(&sum, dn.nid, 0, 0); 403 if (IS_INODE(dn.node_page)) 404 sync_inode_page(&dn); 405 406 copy_node_footer(dn.node_page, page); 407 fill_node_footer(dn.node_page, dn.nid, ni.ino, 408 ofs_of_node(page), false); 409 set_page_dirty(dn.node_page); 410 err: 411 f2fs_put_dnode(&dn); 412 f2fs_unlock_op(sbi); 413 out: 414 f2fs_msg(sbi->sb, KERN_NOTICE, 415 "recover_data: ino = %lx, recovered = %d blocks, err = %d", 416 inode->i_ino, recovered, err); 417 return err; 418 } 419 420 static int recover_data(struct f2fs_sb_info *sbi, 421 struct list_head *head, int type) 422 { 423 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 424 struct curseg_info *curseg; 425 struct page *page = NULL; 426 int err = 0; 427 block_t blkaddr; 428 429 /* get node pages in the current segment */ 430 curseg = CURSEG_I(sbi, type); 431 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 432 433 while (1) { 434 struct fsync_inode_entry *entry; 435 436 if (blkaddr < MAIN_BLKADDR(sbi) || blkaddr >= MAX_BLKADDR(sbi)) 437 break; 438 439 page = get_meta_page_ra(sbi, blkaddr); 440 441 if (cp_ver != cpver_of_node(page)) { 442 f2fs_put_page(page, 1); 443 break; 444 } 445 446 entry = get_fsync_inode(head, ino_of_node(page)); 447 if (!entry) 448 goto next; 449 /* 450 * inode(x) | CP | inode(x) | dnode(F) 451 * In this case, we can lose the latest inode(x). 452 * So, call recover_inode for the inode update. 453 */ 454 if (entry->last_inode == blkaddr) 455 recover_inode(entry->inode, page); 456 if (entry->last_dentry == blkaddr) { 457 err = recover_dentry(entry->inode, page); 458 if (err) { 459 f2fs_put_page(page, 1); 460 break; 461 } 462 } 463 err = do_recover_data(sbi, entry->inode, page, blkaddr); 464 if (err) { 465 f2fs_put_page(page, 1); 466 break; 467 } 468 469 if (entry->blkaddr == blkaddr) { 470 iput(entry->inode); 471 list_del(&entry->list); 472 kmem_cache_free(fsync_entry_slab, entry); 473 } 474 next: 475 /* check next segment */ 476 blkaddr = next_blkaddr_of_node(page); 477 f2fs_put_page(page, 1); 478 } 479 if (!err) 480 allocate_new_segments(sbi); 481 return err; 482 } 483 484 int recover_fsync_data(struct f2fs_sb_info *sbi) 485 { 486 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 487 struct list_head inode_list; 488 block_t blkaddr; 489 int err; 490 bool need_writecp = false; 491 492 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 493 sizeof(struct fsync_inode_entry)); 494 if (!fsync_entry_slab) 495 return -ENOMEM; 496 497 INIT_LIST_HEAD(&inode_list); 498 499 /* step #1: find fsynced inode numbers */ 500 sbi->por_doing = true; 501 502 /* prevent checkpoint */ 503 mutex_lock(&sbi->cp_mutex); 504 505 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 506 507 err = find_fsync_dnodes(sbi, &inode_list); 508 if (err) 509 goto out; 510 511 if (list_empty(&inode_list)) 512 goto out; 513 514 need_writecp = true; 515 516 /* step #2: recover data */ 517 err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE); 518 if (!err) 519 f2fs_bug_on(sbi, !list_empty(&inode_list)); 520 out: 521 destroy_fsync_dnodes(&inode_list); 522 kmem_cache_destroy(fsync_entry_slab); 523 524 /* truncate meta pages to be used by the recovery */ 525 truncate_inode_pages_range(META_MAPPING(sbi), 526 MAIN_BLKADDR(sbi) << PAGE_CACHE_SHIFT, -1); 527 528 if (err) { 529 truncate_inode_pages_final(NODE_MAPPING(sbi)); 530 truncate_inode_pages_final(META_MAPPING(sbi)); 531 } 532 533 sbi->por_doing = false; 534 if (err) { 535 discard_next_dnode(sbi, blkaddr); 536 537 /* Flush all the NAT/SIT pages */ 538 while (get_pages(sbi, F2FS_DIRTY_META)) 539 sync_meta_pages(sbi, META, LONG_MAX); 540 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 541 mutex_unlock(&sbi->cp_mutex); 542 } else if (need_writecp) { 543 struct cp_control cpc = { 544 .reason = CP_SYNC, 545 }; 546 mutex_unlock(&sbi->cp_mutex); 547 write_checkpoint(sbi, &cpc); 548 } else { 549 mutex_unlock(&sbi->cp_mutex); 550 } 551 return err; 552 } 553