1 /* 2 * fs/f2fs/recovery.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include "f2fs.h" 14 #include "node.h" 15 #include "segment.h" 16 17 /* 18 * Roll forward recovery scenarios. 19 * 20 * [Term] F: fsync_mark, D: dentry_mark 21 * 22 * 1. inode(x) | CP | inode(x) | dnode(F) 23 * -> Update the latest inode(x). 24 * 25 * 2. inode(x) | CP | inode(F) | dnode(F) 26 * -> No problem. 27 * 28 * 3. inode(x) | CP | dnode(F) | inode(x) 29 * -> Recover to the latest dnode(F), and drop the last inode(x) 30 * 31 * 4. inode(x) | CP | dnode(F) | inode(F) 32 * -> No problem. 33 * 34 * 5. CP | inode(x) | dnode(F) 35 * -> The inode(DF) was missing. Should drop this dnode(F). 36 * 37 * 6. CP | inode(DF) | dnode(F) 38 * -> No problem. 39 * 40 * 7. CP | dnode(F) | inode(DF) 41 * -> If f2fs_iget fails, then goto next to find inode(DF). 42 * 43 * 8. CP | dnode(F) | inode(x) 44 * -> If f2fs_iget fails, then goto next to find inode(DF). 45 * But it will fail due to no inode(DF). 46 */ 47 48 static struct kmem_cache *fsync_entry_slab; 49 50 bool space_for_roll_forward(struct f2fs_sb_info *sbi) 51 { 52 if (sbi->last_valid_block_count + sbi->alloc_valid_block_count 53 > sbi->user_block_count) 54 return false; 55 return true; 56 } 57 58 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 59 nid_t ino) 60 { 61 struct fsync_inode_entry *entry; 62 63 list_for_each_entry(entry, head, list) 64 if (entry->inode->i_ino == ino) 65 return entry; 66 67 return NULL; 68 } 69 70 static int recover_dentry(struct inode *inode, struct page *ipage) 71 { 72 struct f2fs_inode *raw_inode = F2FS_INODE(ipage); 73 nid_t pino = le32_to_cpu(raw_inode->i_pino); 74 struct f2fs_dir_entry *de; 75 struct qstr name; 76 struct page *page; 77 struct inode *dir, *einode; 78 int err = 0; 79 80 dir = f2fs_iget(inode->i_sb, pino); 81 if (IS_ERR(dir)) { 82 err = PTR_ERR(dir); 83 goto out; 84 } 85 86 if (file_enc_name(inode)) { 87 iput(dir); 88 return 0; 89 } 90 91 name.len = le32_to_cpu(raw_inode->i_namelen); 92 name.name = raw_inode->i_name; 93 94 if (unlikely(name.len > F2FS_NAME_LEN)) { 95 WARN_ON(1); 96 err = -ENAMETOOLONG; 97 goto out_err; 98 } 99 retry: 100 de = f2fs_find_entry(dir, &name, &page); 101 if (de && inode->i_ino == le32_to_cpu(de->ino)) 102 goto out_unmap_put; 103 104 if (de) { 105 einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino)); 106 if (IS_ERR(einode)) { 107 WARN_ON(1); 108 err = PTR_ERR(einode); 109 if (err == -ENOENT) 110 err = -EEXIST; 111 goto out_unmap_put; 112 } 113 err = acquire_orphan_inode(F2FS_I_SB(inode)); 114 if (err) { 115 iput(einode); 116 goto out_unmap_put; 117 } 118 f2fs_delete_entry(de, page, dir, einode); 119 iput(einode); 120 goto retry; 121 } 122 err = __f2fs_add_link(dir, &name, inode, inode->i_ino, inode->i_mode); 123 if (err) 124 goto out_err; 125 126 if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) { 127 iput(dir); 128 } else { 129 add_dirty_dir_inode(dir); 130 set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT); 131 } 132 133 goto out; 134 135 out_unmap_put: 136 f2fs_dentry_kunmap(dir, page); 137 f2fs_put_page(page, 0); 138 out_err: 139 iput(dir); 140 out: 141 f2fs_msg(inode->i_sb, KERN_NOTICE, 142 "%s: ino = %x, name = %s, dir = %lx, err = %d", 143 __func__, ino_of_node(ipage), raw_inode->i_name, 144 IS_ERR(dir) ? 0 : dir->i_ino, err); 145 return err; 146 } 147 148 static void recover_inode(struct inode *inode, struct page *page) 149 { 150 struct f2fs_inode *raw = F2FS_INODE(page); 151 char *name; 152 153 inode->i_mode = le16_to_cpu(raw->i_mode); 154 i_size_write(inode, le64_to_cpu(raw->i_size)); 155 inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime); 156 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime); 157 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime); 158 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 159 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec); 160 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 161 162 if (file_enc_name(inode)) 163 name = "<encrypted>"; 164 else 165 name = F2FS_INODE(page)->i_name; 166 167 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s", 168 ino_of_node(page), name); 169 } 170 171 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) 172 { 173 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 174 struct curseg_info *curseg; 175 struct page *page = NULL; 176 block_t blkaddr; 177 int err = 0; 178 179 /* get node pages in the current segment */ 180 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 181 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 182 183 ra_meta_pages(sbi, blkaddr, 1, META_POR, true); 184 185 while (1) { 186 struct fsync_inode_entry *entry; 187 188 if (!is_valid_blkaddr(sbi, blkaddr, META_POR)) 189 return 0; 190 191 page = get_tmp_page(sbi, blkaddr); 192 193 if (cp_ver != cpver_of_node(page)) 194 break; 195 196 if (!is_fsync_dnode(page)) 197 goto next; 198 199 entry = get_fsync_inode(head, ino_of_node(page)); 200 if (!entry) { 201 if (IS_INODE(page) && is_dent_dnode(page)) { 202 err = recover_inode_page(sbi, page); 203 if (err) 204 break; 205 } 206 207 /* add this fsync inode to the list */ 208 entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO); 209 if (!entry) { 210 err = -ENOMEM; 211 break; 212 } 213 /* 214 * CP | dnode(F) | inode(DF) 215 * For this case, we should not give up now. 216 */ 217 entry->inode = f2fs_iget(sbi->sb, ino_of_node(page)); 218 if (IS_ERR(entry->inode)) { 219 err = PTR_ERR(entry->inode); 220 kmem_cache_free(fsync_entry_slab, entry); 221 if (err == -ENOENT) { 222 err = 0; 223 goto next; 224 } 225 break; 226 } 227 list_add_tail(&entry->list, head); 228 } 229 entry->blkaddr = blkaddr; 230 231 if (IS_INODE(page)) { 232 entry->last_inode = blkaddr; 233 if (is_dent_dnode(page)) 234 entry->last_dentry = blkaddr; 235 } 236 next: 237 /* check next segment */ 238 blkaddr = next_blkaddr_of_node(page); 239 f2fs_put_page(page, 1); 240 241 ra_meta_pages_cond(sbi, blkaddr); 242 } 243 f2fs_put_page(page, 1); 244 return err; 245 } 246 247 static void destroy_fsync_dnodes(struct list_head *head) 248 { 249 struct fsync_inode_entry *entry, *tmp; 250 251 list_for_each_entry_safe(entry, tmp, head, list) { 252 iput(entry->inode); 253 list_del(&entry->list); 254 kmem_cache_free(fsync_entry_slab, entry); 255 } 256 } 257 258 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 259 block_t blkaddr, struct dnode_of_data *dn) 260 { 261 struct seg_entry *sentry; 262 unsigned int segno = GET_SEGNO(sbi, blkaddr); 263 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 264 struct f2fs_summary_block *sum_node; 265 struct f2fs_summary sum; 266 struct page *sum_page, *node_page; 267 struct dnode_of_data tdn = *dn; 268 nid_t ino, nid; 269 struct inode *inode; 270 unsigned int offset; 271 block_t bidx; 272 int i; 273 274 sentry = get_seg_entry(sbi, segno); 275 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 276 return 0; 277 278 /* Get the previous summary */ 279 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) { 280 struct curseg_info *curseg = CURSEG_I(sbi, i); 281 if (curseg->segno == segno) { 282 sum = curseg->sum_blk->entries[blkoff]; 283 goto got_it; 284 } 285 } 286 287 sum_page = get_sum_page(sbi, segno); 288 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 289 sum = sum_node->entries[blkoff]; 290 f2fs_put_page(sum_page, 1); 291 got_it: 292 /* Use the locked dnode page and inode */ 293 nid = le32_to_cpu(sum.nid); 294 if (dn->inode->i_ino == nid) { 295 tdn.nid = nid; 296 if (!dn->inode_page_locked) 297 lock_page(dn->inode_page); 298 tdn.node_page = dn->inode_page; 299 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 300 goto truncate_out; 301 } else if (dn->nid == nid) { 302 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 303 goto truncate_out; 304 } 305 306 /* Get the node page */ 307 node_page = get_node_page(sbi, nid); 308 if (IS_ERR(node_page)) 309 return PTR_ERR(node_page); 310 311 offset = ofs_of_node(node_page); 312 ino = ino_of_node(node_page); 313 f2fs_put_page(node_page, 1); 314 315 if (ino != dn->inode->i_ino) { 316 /* Deallocate previous index in the node page */ 317 inode = f2fs_iget(sbi->sb, ino); 318 if (IS_ERR(inode)) 319 return PTR_ERR(inode); 320 } else { 321 inode = dn->inode; 322 } 323 324 bidx = start_bidx_of_node(offset, F2FS_I(inode)) + 325 le16_to_cpu(sum.ofs_in_node); 326 327 /* 328 * if inode page is locked, unlock temporarily, but its reference 329 * count keeps alive. 330 */ 331 if (ino == dn->inode->i_ino && dn->inode_page_locked) 332 unlock_page(dn->inode_page); 333 334 set_new_dnode(&tdn, inode, NULL, NULL, 0); 335 if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) 336 goto out; 337 338 if (tdn.data_blkaddr == blkaddr) 339 truncate_data_blocks_range(&tdn, 1); 340 341 f2fs_put_dnode(&tdn); 342 out: 343 if (ino != dn->inode->i_ino) 344 iput(inode); 345 else if (dn->inode_page_locked) 346 lock_page(dn->inode_page); 347 return 0; 348 349 truncate_out: 350 if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr) 351 truncate_data_blocks_range(&tdn, 1); 352 if (dn->inode->i_ino == nid && !dn->inode_page_locked) 353 unlock_page(dn->inode_page); 354 return 0; 355 } 356 357 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 358 struct page *page, block_t blkaddr) 359 { 360 struct f2fs_inode_info *fi = F2FS_I(inode); 361 unsigned int start, end; 362 struct dnode_of_data dn; 363 struct node_info ni; 364 int err = 0, recovered = 0; 365 366 /* step 1: recover xattr */ 367 if (IS_INODE(page)) { 368 recover_inline_xattr(inode, page); 369 } else if (f2fs_has_xattr_block(ofs_of_node(page))) { 370 /* 371 * Deprecated; xattr blocks should be found from cold log. 372 * But, we should remain this for backward compatibility. 373 */ 374 recover_xattr_data(inode, page, blkaddr); 375 goto out; 376 } 377 378 /* step 2: recover inline data */ 379 if (recover_inline_data(inode, page)) 380 goto out; 381 382 /* step 3: recover data indices */ 383 start = start_bidx_of_node(ofs_of_node(page), fi); 384 end = start + ADDRS_PER_PAGE(page, fi); 385 386 set_new_dnode(&dn, inode, NULL, NULL, 0); 387 388 err = get_dnode_of_data(&dn, start, ALLOC_NODE); 389 if (err) 390 goto out; 391 392 f2fs_wait_on_page_writeback(dn.node_page, NODE); 393 394 get_node_info(sbi, dn.nid, &ni); 395 f2fs_bug_on(sbi, ni.ino != ino_of_node(page)); 396 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page)); 397 398 for (; start < end; start++, dn.ofs_in_node++) { 399 block_t src, dest; 400 401 src = datablock_addr(dn.node_page, dn.ofs_in_node); 402 dest = datablock_addr(page, dn.ofs_in_node); 403 404 /* skip recovering if dest is the same as src */ 405 if (src == dest) 406 continue; 407 408 /* dest is invalid, just invalidate src block */ 409 if (dest == NULL_ADDR) { 410 truncate_data_blocks_range(&dn, 1); 411 continue; 412 } 413 414 /* 415 * dest is reserved block, invalidate src block 416 * and then reserve one new block in dnode page. 417 */ 418 if (dest == NEW_ADDR) { 419 truncate_data_blocks_range(&dn, 1); 420 err = reserve_new_block(&dn); 421 f2fs_bug_on(sbi, err); 422 continue; 423 } 424 425 /* dest is valid block, try to recover from src to dest */ 426 if (is_valid_blkaddr(sbi, dest, META_POR)) { 427 428 if (src == NULL_ADDR) { 429 err = reserve_new_block(&dn); 430 /* We should not get -ENOSPC */ 431 f2fs_bug_on(sbi, err); 432 } 433 434 /* Check the previous node page having this index */ 435 err = check_index_in_prev_nodes(sbi, dest, &dn); 436 if (err) 437 goto err; 438 439 /* write dummy data page */ 440 f2fs_replace_block(sbi, &dn, src, dest, 441 ni.version, false); 442 recovered++; 443 } 444 } 445 446 if (IS_INODE(dn.node_page)) 447 sync_inode_page(&dn); 448 449 copy_node_footer(dn.node_page, page); 450 fill_node_footer(dn.node_page, dn.nid, ni.ino, 451 ofs_of_node(page), false); 452 set_page_dirty(dn.node_page); 453 err: 454 f2fs_put_dnode(&dn); 455 out: 456 f2fs_msg(sbi->sb, KERN_NOTICE, 457 "recover_data: ino = %lx, recovered = %d blocks, err = %d", 458 inode->i_ino, recovered, err); 459 return err; 460 } 461 462 static int recover_data(struct f2fs_sb_info *sbi, 463 struct list_head *head, int type) 464 { 465 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 466 struct curseg_info *curseg; 467 struct page *page = NULL; 468 int err = 0; 469 block_t blkaddr; 470 471 /* get node pages in the current segment */ 472 curseg = CURSEG_I(sbi, type); 473 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 474 475 while (1) { 476 struct fsync_inode_entry *entry; 477 478 if (!is_valid_blkaddr(sbi, blkaddr, META_POR)) 479 break; 480 481 ra_meta_pages_cond(sbi, blkaddr); 482 483 page = get_tmp_page(sbi, blkaddr); 484 485 if (cp_ver != cpver_of_node(page)) { 486 f2fs_put_page(page, 1); 487 break; 488 } 489 490 entry = get_fsync_inode(head, ino_of_node(page)); 491 if (!entry) 492 goto next; 493 /* 494 * inode(x) | CP | inode(x) | dnode(F) 495 * In this case, we can lose the latest inode(x). 496 * So, call recover_inode for the inode update. 497 */ 498 if (entry->last_inode == blkaddr) 499 recover_inode(entry->inode, page); 500 if (entry->last_dentry == blkaddr) { 501 err = recover_dentry(entry->inode, page); 502 if (err) { 503 f2fs_put_page(page, 1); 504 break; 505 } 506 } 507 err = do_recover_data(sbi, entry->inode, page, blkaddr); 508 if (err) { 509 f2fs_put_page(page, 1); 510 break; 511 } 512 513 if (entry->blkaddr == blkaddr) { 514 iput(entry->inode); 515 list_del(&entry->list); 516 kmem_cache_free(fsync_entry_slab, entry); 517 } 518 next: 519 /* check next segment */ 520 blkaddr = next_blkaddr_of_node(page); 521 f2fs_put_page(page, 1); 522 } 523 if (!err) 524 allocate_new_segments(sbi); 525 return err; 526 } 527 528 int recover_fsync_data(struct f2fs_sb_info *sbi) 529 { 530 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 531 struct list_head inode_list; 532 block_t blkaddr; 533 int err; 534 bool need_writecp = false; 535 536 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 537 sizeof(struct fsync_inode_entry)); 538 if (!fsync_entry_slab) 539 return -ENOMEM; 540 541 INIT_LIST_HEAD(&inode_list); 542 543 /* prevent checkpoint */ 544 mutex_lock(&sbi->cp_mutex); 545 546 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 547 548 /* step #1: find fsynced inode numbers */ 549 err = find_fsync_dnodes(sbi, &inode_list); 550 if (err) 551 goto out; 552 553 if (list_empty(&inode_list)) 554 goto out; 555 556 need_writecp = true; 557 558 /* step #2: recover data */ 559 err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE); 560 if (!err) 561 f2fs_bug_on(sbi, !list_empty(&inode_list)); 562 out: 563 destroy_fsync_dnodes(&inode_list); 564 kmem_cache_destroy(fsync_entry_slab); 565 566 /* truncate meta pages to be used by the recovery */ 567 truncate_inode_pages_range(META_MAPPING(sbi), 568 (loff_t)MAIN_BLKADDR(sbi) << PAGE_CACHE_SHIFT, -1); 569 570 if (err) { 571 truncate_inode_pages_final(NODE_MAPPING(sbi)); 572 truncate_inode_pages_final(META_MAPPING(sbi)); 573 } 574 575 clear_sbi_flag(sbi, SBI_POR_DOING); 576 if (err) { 577 bool invalidate = false; 578 579 if (discard_next_dnode(sbi, blkaddr)) 580 invalidate = true; 581 582 /* Flush all the NAT/SIT pages */ 583 while (get_pages(sbi, F2FS_DIRTY_META)) 584 sync_meta_pages(sbi, META, LONG_MAX); 585 586 /* invalidate temporary meta page */ 587 if (invalidate) 588 invalidate_mapping_pages(META_MAPPING(sbi), 589 blkaddr, blkaddr); 590 591 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 592 mutex_unlock(&sbi->cp_mutex); 593 } else if (need_writecp) { 594 struct cp_control cpc = { 595 .reason = CP_RECOVERY, 596 }; 597 mutex_unlock(&sbi->cp_mutex); 598 write_checkpoint(sbi, &cpc); 599 } else { 600 mutex_unlock(&sbi->cp_mutex); 601 } 602 return err; 603 } 604