1 /* 2 * fs/f2fs/recovery.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include "f2fs.h" 14 #include "node.h" 15 #include "segment.h" 16 17 /* 18 * Roll forward recovery scenarios. 19 * 20 * [Term] F: fsync_mark, D: dentry_mark 21 * 22 * 1. inode(x) | CP | inode(x) | dnode(F) 23 * -> Update the latest inode(x). 24 * 25 * 2. inode(x) | CP | inode(F) | dnode(F) 26 * -> No problem. 27 * 28 * 3. inode(x) | CP | dnode(F) | inode(x) 29 * -> Recover to the latest dnode(F), and drop the last inode(x) 30 * 31 * 4. inode(x) | CP | dnode(F) | inode(F) 32 * -> No problem. 33 * 34 * 5. CP | inode(x) | dnode(F) 35 * -> The inode(DF) was missing. Should drop this dnode(F). 36 * 37 * 6. CP | inode(DF) | dnode(F) 38 * -> No problem. 39 * 40 * 7. CP | dnode(F) | inode(DF) 41 * -> If f2fs_iget fails, then goto next to find inode(DF). 42 * 43 * 8. CP | dnode(F) | inode(x) 44 * -> If f2fs_iget fails, then goto next to find inode(DF). 45 * But it will fail due to no inode(DF). 46 */ 47 48 static struct kmem_cache *fsync_entry_slab; 49 50 bool space_for_roll_forward(struct f2fs_sb_info *sbi) 51 { 52 if (sbi->last_valid_block_count + sbi->alloc_valid_block_count 53 > sbi->user_block_count) 54 return false; 55 return true; 56 } 57 58 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head, 59 nid_t ino) 60 { 61 struct fsync_inode_entry *entry; 62 63 list_for_each_entry(entry, head, list) 64 if (entry->inode->i_ino == ino) 65 return entry; 66 67 return NULL; 68 } 69 70 static int recover_dentry(struct inode *inode, struct page *ipage) 71 { 72 struct f2fs_inode *raw_inode = F2FS_INODE(ipage); 73 nid_t pino = le32_to_cpu(raw_inode->i_pino); 74 struct f2fs_dir_entry *de; 75 struct qstr name; 76 struct page *page; 77 struct inode *dir, *einode; 78 int err = 0; 79 80 dir = f2fs_iget(inode->i_sb, pino); 81 if (IS_ERR(dir)) { 82 err = PTR_ERR(dir); 83 goto out; 84 } 85 86 if (file_enc_name(inode)) { 87 iput(dir); 88 return 0; 89 } 90 91 name.len = le32_to_cpu(raw_inode->i_namelen); 92 name.name = raw_inode->i_name; 93 94 if (unlikely(name.len > F2FS_NAME_LEN)) { 95 WARN_ON(1); 96 err = -ENAMETOOLONG; 97 goto out_err; 98 } 99 retry: 100 de = f2fs_find_entry(dir, &name, &page); 101 if (de && inode->i_ino == le32_to_cpu(de->ino)) 102 goto out_unmap_put; 103 104 if (de) { 105 einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino)); 106 if (IS_ERR(einode)) { 107 WARN_ON(1); 108 err = PTR_ERR(einode); 109 if (err == -ENOENT) 110 err = -EEXIST; 111 goto out_unmap_put; 112 } 113 err = acquire_orphan_inode(F2FS_I_SB(inode)); 114 if (err) { 115 iput(einode); 116 goto out_unmap_put; 117 } 118 f2fs_delete_entry(de, page, dir, einode); 119 iput(einode); 120 goto retry; 121 } 122 err = __f2fs_add_link(dir, &name, inode, inode->i_ino, inode->i_mode); 123 if (err) 124 goto out_err; 125 126 if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) { 127 iput(dir); 128 } else { 129 add_dirty_dir_inode(dir); 130 set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT); 131 } 132 133 goto out; 134 135 out_unmap_put: 136 f2fs_dentry_kunmap(dir, page); 137 f2fs_put_page(page, 0); 138 out_err: 139 iput(dir); 140 out: 141 f2fs_msg(inode->i_sb, KERN_NOTICE, 142 "%s: ino = %x, name = %s, dir = %lx, err = %d", 143 __func__, ino_of_node(ipage), raw_inode->i_name, 144 IS_ERR(dir) ? 0 : dir->i_ino, err); 145 return err; 146 } 147 148 static void recover_inode(struct inode *inode, struct page *page) 149 { 150 struct f2fs_inode *raw = F2FS_INODE(page); 151 char *name; 152 153 inode->i_mode = le16_to_cpu(raw->i_mode); 154 i_size_write(inode, le64_to_cpu(raw->i_size)); 155 inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime); 156 inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime); 157 inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime); 158 inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 159 inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec); 160 inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec); 161 162 if (file_enc_name(inode)) 163 name = "<encrypted>"; 164 else 165 name = F2FS_INODE(page)->i_name; 166 167 f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s", 168 ino_of_node(page), name); 169 } 170 171 static bool is_same_inode(struct inode *inode, struct page *ipage) 172 { 173 struct f2fs_inode *ri = F2FS_INODE(ipage); 174 struct timespec disk; 175 176 if (!IS_INODE(ipage)) 177 return true; 178 179 disk.tv_sec = le64_to_cpu(ri->i_ctime); 180 disk.tv_nsec = le32_to_cpu(ri->i_ctime_nsec); 181 if (timespec_compare(&inode->i_ctime, &disk) > 0) 182 return false; 183 184 disk.tv_sec = le64_to_cpu(ri->i_atime); 185 disk.tv_nsec = le32_to_cpu(ri->i_atime_nsec); 186 if (timespec_compare(&inode->i_atime, &disk) > 0) 187 return false; 188 189 disk.tv_sec = le64_to_cpu(ri->i_mtime); 190 disk.tv_nsec = le32_to_cpu(ri->i_mtime_nsec); 191 if (timespec_compare(&inode->i_mtime, &disk) > 0) 192 return false; 193 194 return true; 195 } 196 197 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head) 198 { 199 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 200 struct curseg_info *curseg; 201 struct page *page = NULL; 202 block_t blkaddr; 203 int err = 0; 204 205 /* get node pages in the current segment */ 206 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 207 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 208 209 ra_meta_pages(sbi, blkaddr, 1, META_POR, true); 210 211 while (1) { 212 struct fsync_inode_entry *entry; 213 214 if (!is_valid_blkaddr(sbi, blkaddr, META_POR)) 215 return 0; 216 217 page = get_tmp_page(sbi, blkaddr); 218 219 if (cp_ver != cpver_of_node(page)) 220 break; 221 222 if (!is_fsync_dnode(page)) 223 goto next; 224 225 entry = get_fsync_inode(head, ino_of_node(page)); 226 if (entry) { 227 if (!is_same_inode(entry->inode, page)) 228 goto next; 229 } else { 230 if (IS_INODE(page) && is_dent_dnode(page)) { 231 err = recover_inode_page(sbi, page); 232 if (err) 233 break; 234 } 235 236 /* add this fsync inode to the list */ 237 entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO); 238 if (!entry) { 239 err = -ENOMEM; 240 break; 241 } 242 /* 243 * CP | dnode(F) | inode(DF) 244 * For this case, we should not give up now. 245 */ 246 entry->inode = f2fs_iget(sbi->sb, ino_of_node(page)); 247 if (IS_ERR(entry->inode)) { 248 err = PTR_ERR(entry->inode); 249 kmem_cache_free(fsync_entry_slab, entry); 250 if (err == -ENOENT) { 251 err = 0; 252 goto next; 253 } 254 break; 255 } 256 list_add_tail(&entry->list, head); 257 } 258 entry->blkaddr = blkaddr; 259 260 if (IS_INODE(page)) { 261 entry->last_inode = blkaddr; 262 if (is_dent_dnode(page)) 263 entry->last_dentry = blkaddr; 264 } 265 next: 266 /* check next segment */ 267 blkaddr = next_blkaddr_of_node(page); 268 f2fs_put_page(page, 1); 269 270 ra_meta_pages_cond(sbi, blkaddr); 271 } 272 f2fs_put_page(page, 1); 273 return err; 274 } 275 276 static void destroy_fsync_dnodes(struct list_head *head) 277 { 278 struct fsync_inode_entry *entry, *tmp; 279 280 list_for_each_entry_safe(entry, tmp, head, list) { 281 iput(entry->inode); 282 list_del(&entry->list); 283 kmem_cache_free(fsync_entry_slab, entry); 284 } 285 } 286 287 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi, 288 block_t blkaddr, struct dnode_of_data *dn) 289 { 290 struct seg_entry *sentry; 291 unsigned int segno = GET_SEGNO(sbi, blkaddr); 292 unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 293 struct f2fs_summary_block *sum_node; 294 struct f2fs_summary sum; 295 struct page *sum_page, *node_page; 296 struct dnode_of_data tdn = *dn; 297 nid_t ino, nid; 298 struct inode *inode; 299 unsigned int offset; 300 block_t bidx; 301 int i; 302 303 sentry = get_seg_entry(sbi, segno); 304 if (!f2fs_test_bit(blkoff, sentry->cur_valid_map)) 305 return 0; 306 307 /* Get the previous summary */ 308 for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) { 309 struct curseg_info *curseg = CURSEG_I(sbi, i); 310 if (curseg->segno == segno) { 311 sum = curseg->sum_blk->entries[blkoff]; 312 goto got_it; 313 } 314 } 315 316 sum_page = get_sum_page(sbi, segno); 317 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 318 sum = sum_node->entries[blkoff]; 319 f2fs_put_page(sum_page, 1); 320 got_it: 321 /* Use the locked dnode page and inode */ 322 nid = le32_to_cpu(sum.nid); 323 if (dn->inode->i_ino == nid) { 324 tdn.nid = nid; 325 if (!dn->inode_page_locked) 326 lock_page(dn->inode_page); 327 tdn.node_page = dn->inode_page; 328 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 329 goto truncate_out; 330 } else if (dn->nid == nid) { 331 tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node); 332 goto truncate_out; 333 } 334 335 /* Get the node page */ 336 node_page = get_node_page(sbi, nid); 337 if (IS_ERR(node_page)) 338 return PTR_ERR(node_page); 339 340 offset = ofs_of_node(node_page); 341 ino = ino_of_node(node_page); 342 f2fs_put_page(node_page, 1); 343 344 if (ino != dn->inode->i_ino) { 345 /* Deallocate previous index in the node page */ 346 inode = f2fs_iget(sbi->sb, ino); 347 if (IS_ERR(inode)) 348 return PTR_ERR(inode); 349 } else { 350 inode = dn->inode; 351 } 352 353 bidx = start_bidx_of_node(offset, inode) + le16_to_cpu(sum.ofs_in_node); 354 355 /* 356 * if inode page is locked, unlock temporarily, but its reference 357 * count keeps alive. 358 */ 359 if (ino == dn->inode->i_ino && dn->inode_page_locked) 360 unlock_page(dn->inode_page); 361 362 set_new_dnode(&tdn, inode, NULL, NULL, 0); 363 if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE)) 364 goto out; 365 366 if (tdn.data_blkaddr == blkaddr) 367 truncate_data_blocks_range(&tdn, 1); 368 369 f2fs_put_dnode(&tdn); 370 out: 371 if (ino != dn->inode->i_ino) 372 iput(inode); 373 else if (dn->inode_page_locked) 374 lock_page(dn->inode_page); 375 return 0; 376 377 truncate_out: 378 if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr) 379 truncate_data_blocks_range(&tdn, 1); 380 if (dn->inode->i_ino == nid && !dn->inode_page_locked) 381 unlock_page(dn->inode_page); 382 return 0; 383 } 384 385 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode, 386 struct page *page, block_t blkaddr) 387 { 388 struct dnode_of_data dn; 389 struct node_info ni; 390 unsigned int start, end; 391 int err = 0, recovered = 0; 392 393 /* step 1: recover xattr */ 394 if (IS_INODE(page)) { 395 recover_inline_xattr(inode, page); 396 } else if (f2fs_has_xattr_block(ofs_of_node(page))) { 397 /* 398 * Deprecated; xattr blocks should be found from cold log. 399 * But, we should remain this for backward compatibility. 400 */ 401 recover_xattr_data(inode, page, blkaddr); 402 goto out; 403 } 404 405 /* step 2: recover inline data */ 406 if (recover_inline_data(inode, page)) 407 goto out; 408 409 /* step 3: recover data indices */ 410 start = start_bidx_of_node(ofs_of_node(page), inode); 411 end = start + ADDRS_PER_PAGE(page, inode); 412 413 set_new_dnode(&dn, inode, NULL, NULL, 0); 414 415 err = get_dnode_of_data(&dn, start, ALLOC_NODE); 416 if (err) 417 goto out; 418 419 f2fs_wait_on_page_writeback(dn.node_page, NODE, true); 420 421 get_node_info(sbi, dn.nid, &ni); 422 f2fs_bug_on(sbi, ni.ino != ino_of_node(page)); 423 f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page)); 424 425 for (; start < end; start++, dn.ofs_in_node++) { 426 block_t src, dest; 427 428 src = datablock_addr(dn.node_page, dn.ofs_in_node); 429 dest = datablock_addr(page, dn.ofs_in_node); 430 431 /* skip recovering if dest is the same as src */ 432 if (src == dest) 433 continue; 434 435 /* dest is invalid, just invalidate src block */ 436 if (dest == NULL_ADDR) { 437 truncate_data_blocks_range(&dn, 1); 438 continue; 439 } 440 441 /* 442 * dest is reserved block, invalidate src block 443 * and then reserve one new block in dnode page. 444 */ 445 if (dest == NEW_ADDR) { 446 truncate_data_blocks_range(&dn, 1); 447 err = reserve_new_block(&dn); 448 f2fs_bug_on(sbi, err); 449 continue; 450 } 451 452 /* dest is valid block, try to recover from src to dest */ 453 if (is_valid_blkaddr(sbi, dest, META_POR)) { 454 455 if (src == NULL_ADDR) { 456 err = reserve_new_block(&dn); 457 /* We should not get -ENOSPC */ 458 f2fs_bug_on(sbi, err); 459 } 460 461 /* Check the previous node page having this index */ 462 err = check_index_in_prev_nodes(sbi, dest, &dn); 463 if (err) 464 goto err; 465 466 /* write dummy data page */ 467 f2fs_replace_block(sbi, &dn, src, dest, 468 ni.version, false, false); 469 recovered++; 470 } 471 } 472 473 if (IS_INODE(dn.node_page)) 474 sync_inode_page(&dn); 475 476 copy_node_footer(dn.node_page, page); 477 fill_node_footer(dn.node_page, dn.nid, ni.ino, 478 ofs_of_node(page), false); 479 set_page_dirty(dn.node_page); 480 err: 481 f2fs_put_dnode(&dn); 482 out: 483 f2fs_msg(sbi->sb, KERN_NOTICE, 484 "recover_data: ino = %lx, recovered = %d blocks, err = %d", 485 inode->i_ino, recovered, err); 486 return err; 487 } 488 489 static int recover_data(struct f2fs_sb_info *sbi, struct list_head *head) 490 { 491 unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi)); 492 struct curseg_info *curseg; 493 struct page *page = NULL; 494 int err = 0; 495 block_t blkaddr; 496 497 /* get node pages in the current segment */ 498 curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 499 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 500 501 while (1) { 502 struct fsync_inode_entry *entry; 503 504 if (!is_valid_blkaddr(sbi, blkaddr, META_POR)) 505 break; 506 507 ra_meta_pages_cond(sbi, blkaddr); 508 509 page = get_tmp_page(sbi, blkaddr); 510 511 if (cp_ver != cpver_of_node(page)) { 512 f2fs_put_page(page, 1); 513 break; 514 } 515 516 entry = get_fsync_inode(head, ino_of_node(page)); 517 if (!entry) 518 goto next; 519 /* 520 * inode(x) | CP | inode(x) | dnode(F) 521 * In this case, we can lose the latest inode(x). 522 * So, call recover_inode for the inode update. 523 */ 524 if (entry->last_inode == blkaddr) 525 recover_inode(entry->inode, page); 526 if (entry->last_dentry == blkaddr) { 527 err = recover_dentry(entry->inode, page); 528 if (err) { 529 f2fs_put_page(page, 1); 530 break; 531 } 532 } 533 err = do_recover_data(sbi, entry->inode, page, blkaddr); 534 if (err) { 535 f2fs_put_page(page, 1); 536 break; 537 } 538 539 if (entry->blkaddr == blkaddr) { 540 iput(entry->inode); 541 list_del(&entry->list); 542 kmem_cache_free(fsync_entry_slab, entry); 543 } 544 next: 545 /* check next segment */ 546 blkaddr = next_blkaddr_of_node(page); 547 f2fs_put_page(page, 1); 548 } 549 if (!err) 550 allocate_new_segments(sbi); 551 return err; 552 } 553 554 int recover_fsync_data(struct f2fs_sb_info *sbi) 555 { 556 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE); 557 struct list_head inode_list; 558 block_t blkaddr; 559 int err; 560 bool need_writecp = false; 561 562 fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry", 563 sizeof(struct fsync_inode_entry)); 564 if (!fsync_entry_slab) 565 return -ENOMEM; 566 567 INIT_LIST_HEAD(&inode_list); 568 569 /* prevent checkpoint */ 570 mutex_lock(&sbi->cp_mutex); 571 572 blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 573 574 /* step #1: find fsynced inode numbers */ 575 err = find_fsync_dnodes(sbi, &inode_list); 576 if (err) 577 goto out; 578 579 if (list_empty(&inode_list)) 580 goto out; 581 582 need_writecp = true; 583 584 /* step #2: recover data */ 585 err = recover_data(sbi, &inode_list); 586 if (!err) 587 f2fs_bug_on(sbi, !list_empty(&inode_list)); 588 out: 589 destroy_fsync_dnodes(&inode_list); 590 kmem_cache_destroy(fsync_entry_slab); 591 592 /* truncate meta pages to be used by the recovery */ 593 truncate_inode_pages_range(META_MAPPING(sbi), 594 (loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1); 595 596 if (err) { 597 truncate_inode_pages_final(NODE_MAPPING(sbi)); 598 truncate_inode_pages_final(META_MAPPING(sbi)); 599 } 600 601 clear_sbi_flag(sbi, SBI_POR_DOING); 602 if (err) { 603 bool invalidate = false; 604 605 if (discard_next_dnode(sbi, blkaddr)) 606 invalidate = true; 607 608 /* Flush all the NAT/SIT pages */ 609 while (get_pages(sbi, F2FS_DIRTY_META)) 610 sync_meta_pages(sbi, META, LONG_MAX); 611 612 /* invalidate temporary meta page */ 613 if (invalidate) 614 invalidate_mapping_pages(META_MAPPING(sbi), 615 blkaddr, blkaddr); 616 617 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 618 mutex_unlock(&sbi->cp_mutex); 619 } else if (need_writecp) { 620 struct cp_control cpc = { 621 .reason = CP_RECOVERY, 622 }; 623 mutex_unlock(&sbi->cp_mutex); 624 err = write_checkpoint(sbi, &cpc); 625 } else { 626 mutex_unlock(&sbi->cp_mutex); 627 } 628 return err; 629 } 630