xref: /linux/fs/f2fs/recovery.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * fs/f2fs/recovery.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include "f2fs.h"
14 #include "node.h"
15 #include "segment.h"
16 
17 /*
18  * Roll forward recovery scenarios.
19  *
20  * [Term] F: fsync_mark, D: dentry_mark
21  *
22  * 1. inode(x) | CP | inode(x) | dnode(F)
23  * -> Update the latest inode(x).
24  *
25  * 2. inode(x) | CP | inode(F) | dnode(F)
26  * -> No problem.
27  *
28  * 3. inode(x) | CP | dnode(F) | inode(x)
29  * -> Recover to the latest dnode(F), and drop the last inode(x)
30  *
31  * 4. inode(x) | CP | dnode(F) | inode(F)
32  * -> No problem.
33  *
34  * 5. CP | inode(x) | dnode(F)
35  * -> The inode(DF) was missing. Should drop this dnode(F).
36  *
37  * 6. CP | inode(DF) | dnode(F)
38  * -> No problem.
39  *
40  * 7. CP | dnode(F) | inode(DF)
41  * -> If f2fs_iget fails, then goto next to find inode(DF).
42  *
43  * 8. CP | dnode(F) | inode(x)
44  * -> If f2fs_iget fails, then goto next to find inode(DF).
45  *    But it will fail due to no inode(DF).
46  */
47 
48 static struct kmem_cache *fsync_entry_slab;
49 
50 bool space_for_roll_forward(struct f2fs_sb_info *sbi)
51 {
52 	if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
53 			> sbi->user_block_count)
54 		return false;
55 	return true;
56 }
57 
58 static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
59 								nid_t ino)
60 {
61 	struct fsync_inode_entry *entry;
62 
63 	list_for_each_entry(entry, head, list)
64 		if (entry->inode->i_ino == ino)
65 			return entry;
66 
67 	return NULL;
68 }
69 
70 static int recover_dentry(struct inode *inode, struct page *ipage)
71 {
72 	struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
73 	nid_t pino = le32_to_cpu(raw_inode->i_pino);
74 	struct f2fs_dir_entry *de;
75 	struct qstr name;
76 	struct page *page;
77 	struct inode *dir, *einode;
78 	int err = 0;
79 
80 	dir = f2fs_iget(inode->i_sb, pino);
81 	if (IS_ERR(dir)) {
82 		err = PTR_ERR(dir);
83 		goto out;
84 	}
85 
86 	if (file_enc_name(inode)) {
87 		iput(dir);
88 		return 0;
89 	}
90 
91 	name.len = le32_to_cpu(raw_inode->i_namelen);
92 	name.name = raw_inode->i_name;
93 
94 	if (unlikely(name.len > F2FS_NAME_LEN)) {
95 		WARN_ON(1);
96 		err = -ENAMETOOLONG;
97 		goto out_err;
98 	}
99 retry:
100 	de = f2fs_find_entry(dir, &name, &page);
101 	if (de && inode->i_ino == le32_to_cpu(de->ino))
102 		goto out_unmap_put;
103 
104 	if (de) {
105 		einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
106 		if (IS_ERR(einode)) {
107 			WARN_ON(1);
108 			err = PTR_ERR(einode);
109 			if (err == -ENOENT)
110 				err = -EEXIST;
111 			goto out_unmap_put;
112 		}
113 		err = acquire_orphan_inode(F2FS_I_SB(inode));
114 		if (err) {
115 			iput(einode);
116 			goto out_unmap_put;
117 		}
118 		f2fs_delete_entry(de, page, dir, einode);
119 		iput(einode);
120 		goto retry;
121 	}
122 	err = __f2fs_add_link(dir, &name, inode, inode->i_ino, inode->i_mode);
123 	if (err)
124 		goto out_err;
125 
126 	if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
127 		iput(dir);
128 	} else {
129 		add_dirty_dir_inode(dir);
130 		set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
131 	}
132 
133 	goto out;
134 
135 out_unmap_put:
136 	f2fs_dentry_kunmap(dir, page);
137 	f2fs_put_page(page, 0);
138 out_err:
139 	iput(dir);
140 out:
141 	f2fs_msg(inode->i_sb, KERN_NOTICE,
142 			"%s: ino = %x, name = %s, dir = %lx, err = %d",
143 			__func__, ino_of_node(ipage), raw_inode->i_name,
144 			IS_ERR(dir) ? 0 : dir->i_ino, err);
145 	return err;
146 }
147 
148 static void recover_inode(struct inode *inode, struct page *page)
149 {
150 	struct f2fs_inode *raw = F2FS_INODE(page);
151 	char *name;
152 
153 	inode->i_mode = le16_to_cpu(raw->i_mode);
154 	i_size_write(inode, le64_to_cpu(raw->i_size));
155 	inode->i_atime.tv_sec = le64_to_cpu(raw->i_mtime);
156 	inode->i_ctime.tv_sec = le64_to_cpu(raw->i_ctime);
157 	inode->i_mtime.tv_sec = le64_to_cpu(raw->i_mtime);
158 	inode->i_atime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
159 	inode->i_ctime.tv_nsec = le32_to_cpu(raw->i_ctime_nsec);
160 	inode->i_mtime.tv_nsec = le32_to_cpu(raw->i_mtime_nsec);
161 
162 	if (file_enc_name(inode))
163 		name = "<encrypted>";
164 	else
165 		name = F2FS_INODE(page)->i_name;
166 
167 	f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
168 			ino_of_node(page), name);
169 }
170 
171 static bool is_same_inode(struct inode *inode, struct page *ipage)
172 {
173 	struct f2fs_inode *ri = F2FS_INODE(ipage);
174 	struct timespec disk;
175 
176 	if (!IS_INODE(ipage))
177 		return true;
178 
179 	disk.tv_sec = le64_to_cpu(ri->i_ctime);
180 	disk.tv_nsec = le32_to_cpu(ri->i_ctime_nsec);
181 	if (timespec_compare(&inode->i_ctime, &disk) > 0)
182 		return false;
183 
184 	disk.tv_sec = le64_to_cpu(ri->i_atime);
185 	disk.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
186 	if (timespec_compare(&inode->i_atime, &disk) > 0)
187 		return false;
188 
189 	disk.tv_sec = le64_to_cpu(ri->i_mtime);
190 	disk.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
191 	if (timespec_compare(&inode->i_mtime, &disk) > 0)
192 		return false;
193 
194 	return true;
195 }
196 
197 static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
198 {
199 	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
200 	struct curseg_info *curseg;
201 	struct page *page = NULL;
202 	block_t blkaddr;
203 	int err = 0;
204 
205 	/* get node pages in the current segment */
206 	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
207 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
208 
209 	ra_meta_pages(sbi, blkaddr, 1, META_POR, true);
210 
211 	while (1) {
212 		struct fsync_inode_entry *entry;
213 
214 		if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
215 			return 0;
216 
217 		page = get_tmp_page(sbi, blkaddr);
218 
219 		if (cp_ver != cpver_of_node(page))
220 			break;
221 
222 		if (!is_fsync_dnode(page))
223 			goto next;
224 
225 		entry = get_fsync_inode(head, ino_of_node(page));
226 		if (entry) {
227 			if (!is_same_inode(entry->inode, page))
228 				goto next;
229 		} else {
230 			if (IS_INODE(page) && is_dent_dnode(page)) {
231 				err = recover_inode_page(sbi, page);
232 				if (err)
233 					break;
234 			}
235 
236 			/* add this fsync inode to the list */
237 			entry = kmem_cache_alloc(fsync_entry_slab, GFP_F2FS_ZERO);
238 			if (!entry) {
239 				err = -ENOMEM;
240 				break;
241 			}
242 			/*
243 			 * CP | dnode(F) | inode(DF)
244 			 * For this case, we should not give up now.
245 			 */
246 			entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
247 			if (IS_ERR(entry->inode)) {
248 				err = PTR_ERR(entry->inode);
249 				kmem_cache_free(fsync_entry_slab, entry);
250 				if (err == -ENOENT) {
251 					err = 0;
252 					goto next;
253 				}
254 				break;
255 			}
256 			list_add_tail(&entry->list, head);
257 		}
258 		entry->blkaddr = blkaddr;
259 
260 		if (IS_INODE(page)) {
261 			entry->last_inode = blkaddr;
262 			if (is_dent_dnode(page))
263 				entry->last_dentry = blkaddr;
264 		}
265 next:
266 		/* check next segment */
267 		blkaddr = next_blkaddr_of_node(page);
268 		f2fs_put_page(page, 1);
269 
270 		ra_meta_pages_cond(sbi, blkaddr);
271 	}
272 	f2fs_put_page(page, 1);
273 	return err;
274 }
275 
276 static void destroy_fsync_dnodes(struct list_head *head)
277 {
278 	struct fsync_inode_entry *entry, *tmp;
279 
280 	list_for_each_entry_safe(entry, tmp, head, list) {
281 		iput(entry->inode);
282 		list_del(&entry->list);
283 		kmem_cache_free(fsync_entry_slab, entry);
284 	}
285 }
286 
287 static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
288 			block_t blkaddr, struct dnode_of_data *dn)
289 {
290 	struct seg_entry *sentry;
291 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
292 	unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
293 	struct f2fs_summary_block *sum_node;
294 	struct f2fs_summary sum;
295 	struct page *sum_page, *node_page;
296 	struct dnode_of_data tdn = *dn;
297 	nid_t ino, nid;
298 	struct inode *inode;
299 	unsigned int offset;
300 	block_t bidx;
301 	int i;
302 
303 	sentry = get_seg_entry(sbi, segno);
304 	if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
305 		return 0;
306 
307 	/* Get the previous summary */
308 	for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
309 		struct curseg_info *curseg = CURSEG_I(sbi, i);
310 		if (curseg->segno == segno) {
311 			sum = curseg->sum_blk->entries[blkoff];
312 			goto got_it;
313 		}
314 	}
315 
316 	sum_page = get_sum_page(sbi, segno);
317 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
318 	sum = sum_node->entries[blkoff];
319 	f2fs_put_page(sum_page, 1);
320 got_it:
321 	/* Use the locked dnode page and inode */
322 	nid = le32_to_cpu(sum.nid);
323 	if (dn->inode->i_ino == nid) {
324 		tdn.nid = nid;
325 		if (!dn->inode_page_locked)
326 			lock_page(dn->inode_page);
327 		tdn.node_page = dn->inode_page;
328 		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
329 		goto truncate_out;
330 	} else if (dn->nid == nid) {
331 		tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
332 		goto truncate_out;
333 	}
334 
335 	/* Get the node page */
336 	node_page = get_node_page(sbi, nid);
337 	if (IS_ERR(node_page))
338 		return PTR_ERR(node_page);
339 
340 	offset = ofs_of_node(node_page);
341 	ino = ino_of_node(node_page);
342 	f2fs_put_page(node_page, 1);
343 
344 	if (ino != dn->inode->i_ino) {
345 		/* Deallocate previous index in the node page */
346 		inode = f2fs_iget(sbi->sb, ino);
347 		if (IS_ERR(inode))
348 			return PTR_ERR(inode);
349 	} else {
350 		inode = dn->inode;
351 	}
352 
353 	bidx = start_bidx_of_node(offset, inode) + le16_to_cpu(sum.ofs_in_node);
354 
355 	/*
356 	 * if inode page is locked, unlock temporarily, but its reference
357 	 * count keeps alive.
358 	 */
359 	if (ino == dn->inode->i_ino && dn->inode_page_locked)
360 		unlock_page(dn->inode_page);
361 
362 	set_new_dnode(&tdn, inode, NULL, NULL, 0);
363 	if (get_dnode_of_data(&tdn, bidx, LOOKUP_NODE))
364 		goto out;
365 
366 	if (tdn.data_blkaddr == blkaddr)
367 		truncate_data_blocks_range(&tdn, 1);
368 
369 	f2fs_put_dnode(&tdn);
370 out:
371 	if (ino != dn->inode->i_ino)
372 		iput(inode);
373 	else if (dn->inode_page_locked)
374 		lock_page(dn->inode_page);
375 	return 0;
376 
377 truncate_out:
378 	if (datablock_addr(tdn.node_page, tdn.ofs_in_node) == blkaddr)
379 		truncate_data_blocks_range(&tdn, 1);
380 	if (dn->inode->i_ino == nid && !dn->inode_page_locked)
381 		unlock_page(dn->inode_page);
382 	return 0;
383 }
384 
385 static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
386 					struct page *page, block_t blkaddr)
387 {
388 	struct dnode_of_data dn;
389 	struct node_info ni;
390 	unsigned int start, end;
391 	int err = 0, recovered = 0;
392 
393 	/* step 1: recover xattr */
394 	if (IS_INODE(page)) {
395 		recover_inline_xattr(inode, page);
396 	} else if (f2fs_has_xattr_block(ofs_of_node(page))) {
397 		/*
398 		 * Deprecated; xattr blocks should be found from cold log.
399 		 * But, we should remain this for backward compatibility.
400 		 */
401 		recover_xattr_data(inode, page, blkaddr);
402 		goto out;
403 	}
404 
405 	/* step 2: recover inline data */
406 	if (recover_inline_data(inode, page))
407 		goto out;
408 
409 	/* step 3: recover data indices */
410 	start = start_bidx_of_node(ofs_of_node(page), inode);
411 	end = start + ADDRS_PER_PAGE(page, inode);
412 
413 	set_new_dnode(&dn, inode, NULL, NULL, 0);
414 
415 	err = get_dnode_of_data(&dn, start, ALLOC_NODE);
416 	if (err)
417 		goto out;
418 
419 	f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
420 
421 	get_node_info(sbi, dn.nid, &ni);
422 	f2fs_bug_on(sbi, ni.ino != ino_of_node(page));
423 	f2fs_bug_on(sbi, ofs_of_node(dn.node_page) != ofs_of_node(page));
424 
425 	for (; start < end; start++, dn.ofs_in_node++) {
426 		block_t src, dest;
427 
428 		src = datablock_addr(dn.node_page, dn.ofs_in_node);
429 		dest = datablock_addr(page, dn.ofs_in_node);
430 
431 		/* skip recovering if dest is the same as src */
432 		if (src == dest)
433 			continue;
434 
435 		/* dest is invalid, just invalidate src block */
436 		if (dest == NULL_ADDR) {
437 			truncate_data_blocks_range(&dn, 1);
438 			continue;
439 		}
440 
441 		/*
442 		 * dest is reserved block, invalidate src block
443 		 * and then reserve one new block in dnode page.
444 		 */
445 		if (dest == NEW_ADDR) {
446 			truncate_data_blocks_range(&dn, 1);
447 			err = reserve_new_block(&dn);
448 			f2fs_bug_on(sbi, err);
449 			continue;
450 		}
451 
452 		/* dest is valid block, try to recover from src to dest */
453 		if (is_valid_blkaddr(sbi, dest, META_POR)) {
454 
455 			if (src == NULL_ADDR) {
456 				err = reserve_new_block(&dn);
457 				/* We should not get -ENOSPC */
458 				f2fs_bug_on(sbi, err);
459 			}
460 
461 			/* Check the previous node page having this index */
462 			err = check_index_in_prev_nodes(sbi, dest, &dn);
463 			if (err)
464 				goto err;
465 
466 			/* write dummy data page */
467 			f2fs_replace_block(sbi, &dn, src, dest,
468 						ni.version, false, false);
469 			recovered++;
470 		}
471 	}
472 
473 	if (IS_INODE(dn.node_page))
474 		sync_inode_page(&dn);
475 
476 	copy_node_footer(dn.node_page, page);
477 	fill_node_footer(dn.node_page, dn.nid, ni.ino,
478 					ofs_of_node(page), false);
479 	set_page_dirty(dn.node_page);
480 err:
481 	f2fs_put_dnode(&dn);
482 out:
483 	f2fs_msg(sbi->sb, KERN_NOTICE,
484 		"recover_data: ino = %lx, recovered = %d blocks, err = %d",
485 		inode->i_ino, recovered, err);
486 	return err;
487 }
488 
489 static int recover_data(struct f2fs_sb_info *sbi, struct list_head *head)
490 {
491 	unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
492 	struct curseg_info *curseg;
493 	struct page *page = NULL;
494 	int err = 0;
495 	block_t blkaddr;
496 
497 	/* get node pages in the current segment */
498 	curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
499 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
500 
501 	while (1) {
502 		struct fsync_inode_entry *entry;
503 
504 		if (!is_valid_blkaddr(sbi, blkaddr, META_POR))
505 			break;
506 
507 		ra_meta_pages_cond(sbi, blkaddr);
508 
509 		page = get_tmp_page(sbi, blkaddr);
510 
511 		if (cp_ver != cpver_of_node(page)) {
512 			f2fs_put_page(page, 1);
513 			break;
514 		}
515 
516 		entry = get_fsync_inode(head, ino_of_node(page));
517 		if (!entry)
518 			goto next;
519 		/*
520 		 * inode(x) | CP | inode(x) | dnode(F)
521 		 * In this case, we can lose the latest inode(x).
522 		 * So, call recover_inode for the inode update.
523 		 */
524 		if (entry->last_inode == blkaddr)
525 			recover_inode(entry->inode, page);
526 		if (entry->last_dentry == blkaddr) {
527 			err = recover_dentry(entry->inode, page);
528 			if (err) {
529 				f2fs_put_page(page, 1);
530 				break;
531 			}
532 		}
533 		err = do_recover_data(sbi, entry->inode, page, blkaddr);
534 		if (err) {
535 			f2fs_put_page(page, 1);
536 			break;
537 		}
538 
539 		if (entry->blkaddr == blkaddr) {
540 			iput(entry->inode);
541 			list_del(&entry->list);
542 			kmem_cache_free(fsync_entry_slab, entry);
543 		}
544 next:
545 		/* check next segment */
546 		blkaddr = next_blkaddr_of_node(page);
547 		f2fs_put_page(page, 1);
548 	}
549 	if (!err)
550 		allocate_new_segments(sbi);
551 	return err;
552 }
553 
554 int recover_fsync_data(struct f2fs_sb_info *sbi)
555 {
556 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
557 	struct list_head inode_list;
558 	block_t blkaddr;
559 	int err;
560 	bool need_writecp = false;
561 
562 	fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
563 			sizeof(struct fsync_inode_entry));
564 	if (!fsync_entry_slab)
565 		return -ENOMEM;
566 
567 	INIT_LIST_HEAD(&inode_list);
568 
569 	/* prevent checkpoint */
570 	mutex_lock(&sbi->cp_mutex);
571 
572 	blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
573 
574 	/* step #1: find fsynced inode numbers */
575 	err = find_fsync_dnodes(sbi, &inode_list);
576 	if (err)
577 		goto out;
578 
579 	if (list_empty(&inode_list))
580 		goto out;
581 
582 	need_writecp = true;
583 
584 	/* step #2: recover data */
585 	err = recover_data(sbi, &inode_list);
586 	if (!err)
587 		f2fs_bug_on(sbi, !list_empty(&inode_list));
588 out:
589 	destroy_fsync_dnodes(&inode_list);
590 	kmem_cache_destroy(fsync_entry_slab);
591 
592 	/* truncate meta pages to be used by the recovery */
593 	truncate_inode_pages_range(META_MAPPING(sbi),
594 			(loff_t)MAIN_BLKADDR(sbi) << PAGE_SHIFT, -1);
595 
596 	if (err) {
597 		truncate_inode_pages_final(NODE_MAPPING(sbi));
598 		truncate_inode_pages_final(META_MAPPING(sbi));
599 	}
600 
601 	clear_sbi_flag(sbi, SBI_POR_DOING);
602 	if (err) {
603 		bool invalidate = false;
604 
605 		if (discard_next_dnode(sbi, blkaddr))
606 			invalidate = true;
607 
608 		/* Flush all the NAT/SIT pages */
609 		while (get_pages(sbi, F2FS_DIRTY_META))
610 			sync_meta_pages(sbi, META, LONG_MAX);
611 
612 		/* invalidate temporary meta page */
613 		if (invalidate)
614 			invalidate_mapping_pages(META_MAPPING(sbi),
615 							blkaddr, blkaddr);
616 
617 		set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
618 		mutex_unlock(&sbi->cp_mutex);
619 	} else if (need_writecp) {
620 		struct cp_control cpc = {
621 			.reason = CP_RECOVERY,
622 		};
623 		mutex_unlock(&sbi->cp_mutex);
624 		err = write_checkpoint(sbi, &cpc);
625 	} else {
626 		mutex_unlock(&sbi->cp_mutex);
627 	}
628 	return err;
629 }
630