xref: /linux/fs/f2fs/node.h (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * fs/f2fs/node.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* start node id of a node block dedicated to the given node id */
12 #define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13 
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16 
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
19 
20 /* maximum readahead size for node during getting data blocks */
21 #define MAX_RA_NODE		128
22 
23 /* control the memory footprint threshold (10MB per 1GB ram) */
24 #define DEF_RAM_THRESHOLD	10
25 
26 /* vector size for gang look-up from nat cache that consists of radix tree */
27 #define NATVEC_SIZE	64
28 #define SETVEC_SIZE	32
29 
30 /* return value for read_node_page */
31 #define LOCKED_PAGE	1
32 
33 /* For flag in struct node_info */
34 enum {
35 	IS_CHECKPOINTED,	/* is it checkpointed before? */
36 	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
37 	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
38 	IS_DIRTY,		/* this nat entry is dirty? */
39 };
40 
41 /*
42  * For node information
43  */
44 struct node_info {
45 	nid_t nid;		/* node id */
46 	nid_t ino;		/* inode number of the node's owner */
47 	block_t	blk_addr;	/* block address of the node */
48 	unsigned char version;	/* version of the node */
49 	unsigned char flag;	/* for node information bits */
50 };
51 
52 struct nat_entry {
53 	struct list_head list;	/* for clean or dirty nat list */
54 	struct node_info ni;	/* in-memory node information */
55 };
56 
57 #define nat_get_nid(nat)		(nat->ni.nid)
58 #define nat_set_nid(nat, n)		(nat->ni.nid = n)
59 #define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
60 #define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
61 #define nat_get_ino(nat)		(nat->ni.ino)
62 #define nat_set_ino(nat, i)		(nat->ni.ino = i)
63 #define nat_get_version(nat)		(nat->ni.version)
64 #define nat_set_version(nat, v)		(nat->ni.version = v)
65 
66 #define inc_node_version(version)	(++version)
67 
68 static inline void copy_node_info(struct node_info *dst,
69 						struct node_info *src)
70 {
71 	dst->nid = src->nid;
72 	dst->ino = src->ino;
73 	dst->blk_addr = src->blk_addr;
74 	dst->version = src->version;
75 	/* should not copy flag here */
76 }
77 
78 static inline void set_nat_flag(struct nat_entry *ne,
79 				unsigned int type, bool set)
80 {
81 	unsigned char mask = 0x01 << type;
82 	if (set)
83 		ne->ni.flag |= mask;
84 	else
85 		ne->ni.flag &= ~mask;
86 }
87 
88 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
89 {
90 	unsigned char mask = 0x01 << type;
91 	return ne->ni.flag & mask;
92 }
93 
94 static inline void nat_reset_flag(struct nat_entry *ne)
95 {
96 	/* these states can be set only after checkpoint was done */
97 	set_nat_flag(ne, IS_CHECKPOINTED, true);
98 	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
99 	set_nat_flag(ne, HAS_LAST_FSYNC, true);
100 }
101 
102 static inline void node_info_from_raw_nat(struct node_info *ni,
103 						struct f2fs_nat_entry *raw_ne)
104 {
105 	ni->ino = le32_to_cpu(raw_ne->ino);
106 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
107 	ni->version = raw_ne->version;
108 }
109 
110 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
111 						struct node_info *ni)
112 {
113 	raw_ne->ino = cpu_to_le32(ni->ino);
114 	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
115 	raw_ne->version = ni->version;
116 }
117 
118 enum mem_type {
119 	FREE_NIDS,	/* indicates the free nid list */
120 	NAT_ENTRIES,	/* indicates the cached nat entry */
121 	DIRTY_DENTS,	/* indicates dirty dentry pages */
122 	INO_ENTRIES,	/* indicates inode entries */
123 	BASE_CHECK,	/* check kernel status */
124 };
125 
126 struct nat_entry_set {
127 	struct list_head set_list;	/* link with other nat sets */
128 	struct list_head entry_list;	/* link with dirty nat entries */
129 	nid_t set;			/* set number*/
130 	unsigned int entry_cnt;		/* the # of nat entries in set */
131 };
132 
133 /*
134  * For free nid mangement
135  */
136 enum nid_state {
137 	NID_NEW,	/* newly added to free nid list */
138 	NID_ALLOC	/* it is allocated */
139 };
140 
141 struct free_nid {
142 	struct list_head list;	/* for free node id list */
143 	nid_t nid;		/* node id */
144 	int state;		/* in use or not: NID_NEW or NID_ALLOC */
145 };
146 
147 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
148 {
149 	struct f2fs_nm_info *nm_i = NM_I(sbi);
150 	struct free_nid *fnid;
151 
152 	spin_lock(&nm_i->free_nid_list_lock);
153 	if (nm_i->fcnt <= 0) {
154 		spin_unlock(&nm_i->free_nid_list_lock);
155 		return;
156 	}
157 	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
158 	*nid = fnid->nid;
159 	spin_unlock(&nm_i->free_nid_list_lock);
160 }
161 
162 /*
163  * inline functions
164  */
165 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
166 {
167 	struct f2fs_nm_info *nm_i = NM_I(sbi);
168 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
169 }
170 
171 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
172 {
173 	struct f2fs_nm_info *nm_i = NM_I(sbi);
174 	pgoff_t block_off;
175 	pgoff_t block_addr;
176 	int seg_off;
177 
178 	block_off = NAT_BLOCK_OFFSET(start);
179 	seg_off = block_off >> sbi->log_blocks_per_seg;
180 
181 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
182 		(seg_off << sbi->log_blocks_per_seg << 1) +
183 		(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
184 
185 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
186 		block_addr += sbi->blocks_per_seg;
187 
188 	return block_addr;
189 }
190 
191 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
192 						pgoff_t block_addr)
193 {
194 	struct f2fs_nm_info *nm_i = NM_I(sbi);
195 
196 	block_addr -= nm_i->nat_blkaddr;
197 	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
198 		block_addr -= sbi->blocks_per_seg;
199 	else
200 		block_addr += sbi->blocks_per_seg;
201 
202 	return block_addr + nm_i->nat_blkaddr;
203 }
204 
205 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
206 {
207 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
208 
209 	f2fs_change_bit(block_off, nm_i->nat_bitmap);
210 }
211 
212 static inline void fill_node_footer(struct page *page, nid_t nid,
213 				nid_t ino, unsigned int ofs, bool reset)
214 {
215 	struct f2fs_node *rn = F2FS_NODE(page);
216 	unsigned int old_flag = 0;
217 
218 	if (reset)
219 		memset(rn, 0, sizeof(*rn));
220 	else
221 		old_flag = le32_to_cpu(rn->footer.flag);
222 
223 	rn->footer.nid = cpu_to_le32(nid);
224 	rn->footer.ino = cpu_to_le32(ino);
225 
226 	/* should remain old flag bits such as COLD_BIT_SHIFT */
227 	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
228 					(old_flag & OFFSET_BIT_MASK));
229 }
230 
231 static inline void copy_node_footer(struct page *dst, struct page *src)
232 {
233 	struct f2fs_node *src_rn = F2FS_NODE(src);
234 	struct f2fs_node *dst_rn = F2FS_NODE(dst);
235 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
236 }
237 
238 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
239 {
240 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
241 	struct f2fs_node *rn = F2FS_NODE(page);
242 
243 	rn->footer.cp_ver = ckpt->checkpoint_ver;
244 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
245 }
246 
247 static inline nid_t ino_of_node(struct page *node_page)
248 {
249 	struct f2fs_node *rn = F2FS_NODE(node_page);
250 	return le32_to_cpu(rn->footer.ino);
251 }
252 
253 static inline nid_t nid_of_node(struct page *node_page)
254 {
255 	struct f2fs_node *rn = F2FS_NODE(node_page);
256 	return le32_to_cpu(rn->footer.nid);
257 }
258 
259 static inline unsigned int ofs_of_node(struct page *node_page)
260 {
261 	struct f2fs_node *rn = F2FS_NODE(node_page);
262 	unsigned flag = le32_to_cpu(rn->footer.flag);
263 	return flag >> OFFSET_BIT_SHIFT;
264 }
265 
266 static inline unsigned long long cpver_of_node(struct page *node_page)
267 {
268 	struct f2fs_node *rn = F2FS_NODE(node_page);
269 	return le64_to_cpu(rn->footer.cp_ver);
270 }
271 
272 static inline block_t next_blkaddr_of_node(struct page *node_page)
273 {
274 	struct f2fs_node *rn = F2FS_NODE(node_page);
275 	return le32_to_cpu(rn->footer.next_blkaddr);
276 }
277 
278 /*
279  * f2fs assigns the following node offsets described as (num).
280  * N = NIDS_PER_BLOCK
281  *
282  *  Inode block (0)
283  *    |- direct node (1)
284  *    |- direct node (2)
285  *    |- indirect node (3)
286  *    |            `- direct node (4 => 4 + N - 1)
287  *    |- indirect node (4 + N)
288  *    |            `- direct node (5 + N => 5 + 2N - 1)
289  *    `- double indirect node (5 + 2N)
290  *                 `- indirect node (6 + 2N)
291  *                       `- direct node
292  *                 ......
293  *                 `- indirect node ((6 + 2N) + x(N + 1))
294  *                       `- direct node
295  *                 ......
296  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
297  *                       `- direct node
298  */
299 static inline bool IS_DNODE(struct page *node_page)
300 {
301 	unsigned int ofs = ofs_of_node(node_page);
302 
303 	if (f2fs_has_xattr_block(ofs))
304 		return false;
305 
306 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
307 			ofs == 5 + 2 * NIDS_PER_BLOCK)
308 		return false;
309 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
310 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
311 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
312 			return false;
313 	}
314 	return true;
315 }
316 
317 static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
318 {
319 	struct f2fs_node *rn = F2FS_NODE(p);
320 
321 	f2fs_wait_on_page_writeback(p, NODE);
322 
323 	if (i)
324 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
325 	else
326 		rn->in.nid[off] = cpu_to_le32(nid);
327 	set_page_dirty(p);
328 }
329 
330 static inline nid_t get_nid(struct page *p, int off, bool i)
331 {
332 	struct f2fs_node *rn = F2FS_NODE(p);
333 
334 	if (i)
335 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
336 	return le32_to_cpu(rn->in.nid[off]);
337 }
338 
339 /*
340  * Coldness identification:
341  *  - Mark cold files in f2fs_inode_info
342  *  - Mark cold node blocks in their node footer
343  *  - Mark cold data pages in page cache
344  */
345 static inline int is_file(struct inode *inode, int type)
346 {
347 	return F2FS_I(inode)->i_advise & type;
348 }
349 
350 static inline void set_file(struct inode *inode, int type)
351 {
352 	F2FS_I(inode)->i_advise |= type;
353 }
354 
355 static inline void clear_file(struct inode *inode, int type)
356 {
357 	F2FS_I(inode)->i_advise &= ~type;
358 }
359 
360 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
361 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
362 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
363 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
364 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
365 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
366 
367 static inline int is_cold_data(struct page *page)
368 {
369 	return PageChecked(page);
370 }
371 
372 static inline void set_cold_data(struct page *page)
373 {
374 	SetPageChecked(page);
375 }
376 
377 static inline void clear_cold_data(struct page *page)
378 {
379 	ClearPageChecked(page);
380 }
381 
382 static inline int is_node(struct page *page, int type)
383 {
384 	struct f2fs_node *rn = F2FS_NODE(page);
385 	return le32_to_cpu(rn->footer.flag) & (1 << type);
386 }
387 
388 #define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
389 #define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
390 #define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
391 
392 static inline void set_cold_node(struct inode *inode, struct page *page)
393 {
394 	struct f2fs_node *rn = F2FS_NODE(page);
395 	unsigned int flag = le32_to_cpu(rn->footer.flag);
396 
397 	if (S_ISDIR(inode->i_mode))
398 		flag &= ~(0x1 << COLD_BIT_SHIFT);
399 	else
400 		flag |= (0x1 << COLD_BIT_SHIFT);
401 	rn->footer.flag = cpu_to_le32(flag);
402 }
403 
404 static inline void set_mark(struct page *page, int mark, int type)
405 {
406 	struct f2fs_node *rn = F2FS_NODE(page);
407 	unsigned int flag = le32_to_cpu(rn->footer.flag);
408 	if (mark)
409 		flag |= (0x1 << type);
410 	else
411 		flag &= ~(0x1 << type);
412 	rn->footer.flag = cpu_to_le32(flag);
413 }
414 #define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
415 #define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
416