1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform synchronous readahead before building free nids */ 18 #define FREE_NID_PAGES 4 19 20 #define DEF_RA_NID_PAGES 4 /* # of nid pages to be readaheaded */ 21 22 /* maximum readahead size for node during getting data blocks */ 23 #define MAX_RA_NODE 128 24 25 /* control the memory footprint threshold (10MB per 1GB ram) */ 26 #define DEF_RAM_THRESHOLD 10 27 28 /* vector size for gang look-up from nat cache that consists of radix tree */ 29 #define NATVEC_SIZE 64 30 #define SETVEC_SIZE 32 31 32 /* return value for read_node_page */ 33 #define LOCKED_PAGE 1 34 35 /* For flag in struct node_info */ 36 enum { 37 IS_CHECKPOINTED, /* is it checkpointed before? */ 38 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 39 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 40 IS_DIRTY, /* this nat entry is dirty? */ 41 }; 42 43 /* 44 * For node information 45 */ 46 struct node_info { 47 nid_t nid; /* node id */ 48 nid_t ino; /* inode number of the node's owner */ 49 block_t blk_addr; /* block address of the node */ 50 unsigned char version; /* version of the node */ 51 unsigned char flag; /* for node information bits */ 52 }; 53 54 struct nat_entry { 55 struct list_head list; /* for clean or dirty nat list */ 56 struct node_info ni; /* in-memory node information */ 57 }; 58 59 #define nat_get_nid(nat) (nat->ni.nid) 60 #define nat_set_nid(nat, n) (nat->ni.nid = n) 61 #define nat_get_blkaddr(nat) (nat->ni.blk_addr) 62 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 63 #define nat_get_ino(nat) (nat->ni.ino) 64 #define nat_set_ino(nat, i) (nat->ni.ino = i) 65 #define nat_get_version(nat) (nat->ni.version) 66 #define nat_set_version(nat, v) (nat->ni.version = v) 67 68 #define inc_node_version(version) (++version) 69 70 static inline void copy_node_info(struct node_info *dst, 71 struct node_info *src) 72 { 73 dst->nid = src->nid; 74 dst->ino = src->ino; 75 dst->blk_addr = src->blk_addr; 76 dst->version = src->version; 77 /* should not copy flag here */ 78 } 79 80 static inline void set_nat_flag(struct nat_entry *ne, 81 unsigned int type, bool set) 82 { 83 unsigned char mask = 0x01 << type; 84 if (set) 85 ne->ni.flag |= mask; 86 else 87 ne->ni.flag &= ~mask; 88 } 89 90 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 91 { 92 unsigned char mask = 0x01 << type; 93 return ne->ni.flag & mask; 94 } 95 96 static inline void nat_reset_flag(struct nat_entry *ne) 97 { 98 /* these states can be set only after checkpoint was done */ 99 set_nat_flag(ne, IS_CHECKPOINTED, true); 100 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 101 set_nat_flag(ne, HAS_LAST_FSYNC, true); 102 } 103 104 static inline void node_info_from_raw_nat(struct node_info *ni, 105 struct f2fs_nat_entry *raw_ne) 106 { 107 ni->ino = le32_to_cpu(raw_ne->ino); 108 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 109 ni->version = raw_ne->version; 110 } 111 112 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 113 struct node_info *ni) 114 { 115 raw_ne->ino = cpu_to_le32(ni->ino); 116 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 117 raw_ne->version = ni->version; 118 } 119 120 enum mem_type { 121 FREE_NIDS, /* indicates the free nid list */ 122 NAT_ENTRIES, /* indicates the cached nat entry */ 123 DIRTY_DENTS, /* indicates dirty dentry pages */ 124 INO_ENTRIES, /* indicates inode entries */ 125 EXTENT_CACHE, /* indicates extent cache */ 126 BASE_CHECK, /* check kernel status */ 127 }; 128 129 struct nat_entry_set { 130 struct list_head set_list; /* link with other nat sets */ 131 struct list_head entry_list; /* link with dirty nat entries */ 132 nid_t set; /* set number*/ 133 unsigned int entry_cnt; /* the # of nat entries in set */ 134 }; 135 136 /* 137 * For free nid mangement 138 */ 139 enum nid_state { 140 NID_NEW, /* newly added to free nid list */ 141 NID_ALLOC /* it is allocated */ 142 }; 143 144 struct free_nid { 145 struct list_head list; /* for free node id list */ 146 nid_t nid; /* node id */ 147 int state; /* in use or not: NID_NEW or NID_ALLOC */ 148 }; 149 150 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 151 { 152 struct f2fs_nm_info *nm_i = NM_I(sbi); 153 struct free_nid *fnid; 154 155 spin_lock(&nm_i->free_nid_list_lock); 156 if (nm_i->fcnt <= 0) { 157 spin_unlock(&nm_i->free_nid_list_lock); 158 return; 159 } 160 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 161 *nid = fnid->nid; 162 spin_unlock(&nm_i->free_nid_list_lock); 163 } 164 165 /* 166 * inline functions 167 */ 168 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 169 { 170 struct f2fs_nm_info *nm_i = NM_I(sbi); 171 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 172 } 173 174 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 175 { 176 struct f2fs_nm_info *nm_i = NM_I(sbi); 177 pgoff_t block_off; 178 pgoff_t block_addr; 179 int seg_off; 180 181 block_off = NAT_BLOCK_OFFSET(start); 182 seg_off = block_off >> sbi->log_blocks_per_seg; 183 184 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 185 (seg_off << sbi->log_blocks_per_seg << 1) + 186 (block_off & (sbi->blocks_per_seg - 1))); 187 188 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 189 block_addr += sbi->blocks_per_seg; 190 191 return block_addr; 192 } 193 194 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 195 pgoff_t block_addr) 196 { 197 struct f2fs_nm_info *nm_i = NM_I(sbi); 198 199 block_addr -= nm_i->nat_blkaddr; 200 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 201 block_addr -= sbi->blocks_per_seg; 202 else 203 block_addr += sbi->blocks_per_seg; 204 205 return block_addr + nm_i->nat_blkaddr; 206 } 207 208 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 209 { 210 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 211 212 f2fs_change_bit(block_off, nm_i->nat_bitmap); 213 } 214 215 static inline void fill_node_footer(struct page *page, nid_t nid, 216 nid_t ino, unsigned int ofs, bool reset) 217 { 218 struct f2fs_node *rn = F2FS_NODE(page); 219 unsigned int old_flag = 0; 220 221 if (reset) 222 memset(rn, 0, sizeof(*rn)); 223 else 224 old_flag = le32_to_cpu(rn->footer.flag); 225 226 rn->footer.nid = cpu_to_le32(nid); 227 rn->footer.ino = cpu_to_le32(ino); 228 229 /* should remain old flag bits such as COLD_BIT_SHIFT */ 230 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 231 (old_flag & OFFSET_BIT_MASK)); 232 } 233 234 static inline void copy_node_footer(struct page *dst, struct page *src) 235 { 236 struct f2fs_node *src_rn = F2FS_NODE(src); 237 struct f2fs_node *dst_rn = F2FS_NODE(dst); 238 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 239 } 240 241 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 242 { 243 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 244 struct f2fs_node *rn = F2FS_NODE(page); 245 246 rn->footer.cp_ver = ckpt->checkpoint_ver; 247 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 248 } 249 250 static inline nid_t ino_of_node(struct page *node_page) 251 { 252 struct f2fs_node *rn = F2FS_NODE(node_page); 253 return le32_to_cpu(rn->footer.ino); 254 } 255 256 static inline nid_t nid_of_node(struct page *node_page) 257 { 258 struct f2fs_node *rn = F2FS_NODE(node_page); 259 return le32_to_cpu(rn->footer.nid); 260 } 261 262 static inline unsigned int ofs_of_node(struct page *node_page) 263 { 264 struct f2fs_node *rn = F2FS_NODE(node_page); 265 unsigned flag = le32_to_cpu(rn->footer.flag); 266 return flag >> OFFSET_BIT_SHIFT; 267 } 268 269 static inline unsigned long long cpver_of_node(struct page *node_page) 270 { 271 struct f2fs_node *rn = F2FS_NODE(node_page); 272 return le64_to_cpu(rn->footer.cp_ver); 273 } 274 275 static inline block_t next_blkaddr_of_node(struct page *node_page) 276 { 277 struct f2fs_node *rn = F2FS_NODE(node_page); 278 return le32_to_cpu(rn->footer.next_blkaddr); 279 } 280 281 /* 282 * f2fs assigns the following node offsets described as (num). 283 * N = NIDS_PER_BLOCK 284 * 285 * Inode block (0) 286 * |- direct node (1) 287 * |- direct node (2) 288 * |- indirect node (3) 289 * | `- direct node (4 => 4 + N - 1) 290 * |- indirect node (4 + N) 291 * | `- direct node (5 + N => 5 + 2N - 1) 292 * `- double indirect node (5 + 2N) 293 * `- indirect node (6 + 2N) 294 * `- direct node 295 * ...... 296 * `- indirect node ((6 + 2N) + x(N + 1)) 297 * `- direct node 298 * ...... 299 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 300 * `- direct node 301 */ 302 static inline bool IS_DNODE(struct page *node_page) 303 { 304 unsigned int ofs = ofs_of_node(node_page); 305 306 if (f2fs_has_xattr_block(ofs)) 307 return false; 308 309 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 310 ofs == 5 + 2 * NIDS_PER_BLOCK) 311 return false; 312 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 313 ofs -= 6 + 2 * NIDS_PER_BLOCK; 314 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 315 return false; 316 } 317 return true; 318 } 319 320 static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 321 { 322 struct f2fs_node *rn = F2FS_NODE(p); 323 324 f2fs_wait_on_page_writeback(p, NODE); 325 326 if (i) 327 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 328 else 329 rn->in.nid[off] = cpu_to_le32(nid); 330 return set_page_dirty(p); 331 } 332 333 static inline nid_t get_nid(struct page *p, int off, bool i) 334 { 335 struct f2fs_node *rn = F2FS_NODE(p); 336 337 if (i) 338 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 339 return le32_to_cpu(rn->in.nid[off]); 340 } 341 342 /* 343 * Coldness identification: 344 * - Mark cold files in f2fs_inode_info 345 * - Mark cold node blocks in their node footer 346 * - Mark cold data pages in page cache 347 */ 348 static inline int is_cold_data(struct page *page) 349 { 350 return PageChecked(page); 351 } 352 353 static inline void set_cold_data(struct page *page) 354 { 355 SetPageChecked(page); 356 } 357 358 static inline void clear_cold_data(struct page *page) 359 { 360 ClearPageChecked(page); 361 } 362 363 static inline int is_node(struct page *page, int type) 364 { 365 struct f2fs_node *rn = F2FS_NODE(page); 366 return le32_to_cpu(rn->footer.flag) & (1 << type); 367 } 368 369 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 370 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 371 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 372 373 static inline void set_cold_node(struct inode *inode, struct page *page) 374 { 375 struct f2fs_node *rn = F2FS_NODE(page); 376 unsigned int flag = le32_to_cpu(rn->footer.flag); 377 378 if (S_ISDIR(inode->i_mode)) 379 flag &= ~(0x1 << COLD_BIT_SHIFT); 380 else 381 flag |= (0x1 << COLD_BIT_SHIFT); 382 rn->footer.flag = cpu_to_le32(flag); 383 } 384 385 static inline void set_mark(struct page *page, int mark, int type) 386 { 387 struct f2fs_node *rn = F2FS_NODE(page); 388 unsigned int flag = le32_to_cpu(rn->footer.flag); 389 if (mark) 390 flag |= (0x1 << type); 391 else 392 flag &= ~(0x1 << type); 393 rn->footer.flag = cpu_to_le32(flag); 394 } 395 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 396 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 397