xref: /linux/fs/f2fs/node.h (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * fs/f2fs/node.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* start node id of a node block dedicated to the given node id */
12 #define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13 
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16 
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES 4
19 
20 #define DEF_RA_NID_PAGES	4	/* # of nid pages to be readaheaded */
21 
22 /* maximum readahead size for node during getting data blocks */
23 #define MAX_RA_NODE		128
24 
25 /* control the memory footprint threshold (10MB per 1GB ram) */
26 #define DEF_RAM_THRESHOLD	10
27 
28 /* vector size for gang look-up from nat cache that consists of radix tree */
29 #define NATVEC_SIZE	64
30 #define SETVEC_SIZE	32
31 
32 /* return value for read_node_page */
33 #define LOCKED_PAGE	1
34 
35 /* For flag in struct node_info */
36 enum {
37 	IS_CHECKPOINTED,	/* is it checkpointed before? */
38 	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
39 	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
40 	IS_DIRTY,		/* this nat entry is dirty? */
41 };
42 
43 /*
44  * For node information
45  */
46 struct node_info {
47 	nid_t nid;		/* node id */
48 	nid_t ino;		/* inode number of the node's owner */
49 	block_t	blk_addr;	/* block address of the node */
50 	unsigned char version;	/* version of the node */
51 	unsigned char flag;	/* for node information bits */
52 };
53 
54 struct nat_entry {
55 	struct list_head list;	/* for clean or dirty nat list */
56 	struct node_info ni;	/* in-memory node information */
57 };
58 
59 #define nat_get_nid(nat)		(nat->ni.nid)
60 #define nat_set_nid(nat, n)		(nat->ni.nid = n)
61 #define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
62 #define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
63 #define nat_get_ino(nat)		(nat->ni.ino)
64 #define nat_set_ino(nat, i)		(nat->ni.ino = i)
65 #define nat_get_version(nat)		(nat->ni.version)
66 #define nat_set_version(nat, v)		(nat->ni.version = v)
67 
68 #define inc_node_version(version)	(++version)
69 
70 static inline void copy_node_info(struct node_info *dst,
71 						struct node_info *src)
72 {
73 	dst->nid = src->nid;
74 	dst->ino = src->ino;
75 	dst->blk_addr = src->blk_addr;
76 	dst->version = src->version;
77 	/* should not copy flag here */
78 }
79 
80 static inline void set_nat_flag(struct nat_entry *ne,
81 				unsigned int type, bool set)
82 {
83 	unsigned char mask = 0x01 << type;
84 	if (set)
85 		ne->ni.flag |= mask;
86 	else
87 		ne->ni.flag &= ~mask;
88 }
89 
90 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
91 {
92 	unsigned char mask = 0x01 << type;
93 	return ne->ni.flag & mask;
94 }
95 
96 static inline void nat_reset_flag(struct nat_entry *ne)
97 {
98 	/* these states can be set only after checkpoint was done */
99 	set_nat_flag(ne, IS_CHECKPOINTED, true);
100 	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
101 	set_nat_flag(ne, HAS_LAST_FSYNC, true);
102 }
103 
104 static inline void node_info_from_raw_nat(struct node_info *ni,
105 						struct f2fs_nat_entry *raw_ne)
106 {
107 	ni->ino = le32_to_cpu(raw_ne->ino);
108 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
109 	ni->version = raw_ne->version;
110 }
111 
112 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
113 						struct node_info *ni)
114 {
115 	raw_ne->ino = cpu_to_le32(ni->ino);
116 	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
117 	raw_ne->version = ni->version;
118 }
119 
120 enum mem_type {
121 	FREE_NIDS,	/* indicates the free nid list */
122 	NAT_ENTRIES,	/* indicates the cached nat entry */
123 	DIRTY_DENTS,	/* indicates dirty dentry pages */
124 	INO_ENTRIES,	/* indicates inode entries */
125 	EXTENT_CACHE,	/* indicates extent cache */
126 	BASE_CHECK,	/* check kernel status */
127 };
128 
129 struct nat_entry_set {
130 	struct list_head set_list;	/* link with other nat sets */
131 	struct list_head entry_list;	/* link with dirty nat entries */
132 	nid_t set;			/* set number*/
133 	unsigned int entry_cnt;		/* the # of nat entries in set */
134 };
135 
136 /*
137  * For free nid mangement
138  */
139 enum nid_state {
140 	NID_NEW,	/* newly added to free nid list */
141 	NID_ALLOC	/* it is allocated */
142 };
143 
144 struct free_nid {
145 	struct list_head list;	/* for free node id list */
146 	nid_t nid;		/* node id */
147 	int state;		/* in use or not: NID_NEW or NID_ALLOC */
148 };
149 
150 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
151 {
152 	struct f2fs_nm_info *nm_i = NM_I(sbi);
153 	struct free_nid *fnid;
154 
155 	spin_lock(&nm_i->free_nid_list_lock);
156 	if (nm_i->fcnt <= 0) {
157 		spin_unlock(&nm_i->free_nid_list_lock);
158 		return;
159 	}
160 	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
161 	*nid = fnid->nid;
162 	spin_unlock(&nm_i->free_nid_list_lock);
163 }
164 
165 /*
166  * inline functions
167  */
168 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
169 {
170 	struct f2fs_nm_info *nm_i = NM_I(sbi);
171 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
172 }
173 
174 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
175 {
176 	struct f2fs_nm_info *nm_i = NM_I(sbi);
177 	pgoff_t block_off;
178 	pgoff_t block_addr;
179 	int seg_off;
180 
181 	block_off = NAT_BLOCK_OFFSET(start);
182 	seg_off = block_off >> sbi->log_blocks_per_seg;
183 
184 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
185 		(seg_off << sbi->log_blocks_per_seg << 1) +
186 		(block_off & (sbi->blocks_per_seg - 1)));
187 
188 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
189 		block_addr += sbi->blocks_per_seg;
190 
191 	return block_addr;
192 }
193 
194 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
195 						pgoff_t block_addr)
196 {
197 	struct f2fs_nm_info *nm_i = NM_I(sbi);
198 
199 	block_addr -= nm_i->nat_blkaddr;
200 	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
201 		block_addr -= sbi->blocks_per_seg;
202 	else
203 		block_addr += sbi->blocks_per_seg;
204 
205 	return block_addr + nm_i->nat_blkaddr;
206 }
207 
208 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
209 {
210 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
211 
212 	f2fs_change_bit(block_off, nm_i->nat_bitmap);
213 }
214 
215 static inline void fill_node_footer(struct page *page, nid_t nid,
216 				nid_t ino, unsigned int ofs, bool reset)
217 {
218 	struct f2fs_node *rn = F2FS_NODE(page);
219 	unsigned int old_flag = 0;
220 
221 	if (reset)
222 		memset(rn, 0, sizeof(*rn));
223 	else
224 		old_flag = le32_to_cpu(rn->footer.flag);
225 
226 	rn->footer.nid = cpu_to_le32(nid);
227 	rn->footer.ino = cpu_to_le32(ino);
228 
229 	/* should remain old flag bits such as COLD_BIT_SHIFT */
230 	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
231 					(old_flag & OFFSET_BIT_MASK));
232 }
233 
234 static inline void copy_node_footer(struct page *dst, struct page *src)
235 {
236 	struct f2fs_node *src_rn = F2FS_NODE(src);
237 	struct f2fs_node *dst_rn = F2FS_NODE(dst);
238 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
239 }
240 
241 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
242 {
243 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
244 	struct f2fs_node *rn = F2FS_NODE(page);
245 
246 	rn->footer.cp_ver = ckpt->checkpoint_ver;
247 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
248 }
249 
250 static inline nid_t ino_of_node(struct page *node_page)
251 {
252 	struct f2fs_node *rn = F2FS_NODE(node_page);
253 	return le32_to_cpu(rn->footer.ino);
254 }
255 
256 static inline nid_t nid_of_node(struct page *node_page)
257 {
258 	struct f2fs_node *rn = F2FS_NODE(node_page);
259 	return le32_to_cpu(rn->footer.nid);
260 }
261 
262 static inline unsigned int ofs_of_node(struct page *node_page)
263 {
264 	struct f2fs_node *rn = F2FS_NODE(node_page);
265 	unsigned flag = le32_to_cpu(rn->footer.flag);
266 	return flag >> OFFSET_BIT_SHIFT;
267 }
268 
269 static inline unsigned long long cpver_of_node(struct page *node_page)
270 {
271 	struct f2fs_node *rn = F2FS_NODE(node_page);
272 	return le64_to_cpu(rn->footer.cp_ver);
273 }
274 
275 static inline block_t next_blkaddr_of_node(struct page *node_page)
276 {
277 	struct f2fs_node *rn = F2FS_NODE(node_page);
278 	return le32_to_cpu(rn->footer.next_blkaddr);
279 }
280 
281 /*
282  * f2fs assigns the following node offsets described as (num).
283  * N = NIDS_PER_BLOCK
284  *
285  *  Inode block (0)
286  *    |- direct node (1)
287  *    |- direct node (2)
288  *    |- indirect node (3)
289  *    |            `- direct node (4 => 4 + N - 1)
290  *    |- indirect node (4 + N)
291  *    |            `- direct node (5 + N => 5 + 2N - 1)
292  *    `- double indirect node (5 + 2N)
293  *                 `- indirect node (6 + 2N)
294  *                       `- direct node
295  *                 ......
296  *                 `- indirect node ((6 + 2N) + x(N + 1))
297  *                       `- direct node
298  *                 ......
299  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
300  *                       `- direct node
301  */
302 static inline bool IS_DNODE(struct page *node_page)
303 {
304 	unsigned int ofs = ofs_of_node(node_page);
305 
306 	if (f2fs_has_xattr_block(ofs))
307 		return false;
308 
309 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
310 			ofs == 5 + 2 * NIDS_PER_BLOCK)
311 		return false;
312 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
313 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
314 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
315 			return false;
316 	}
317 	return true;
318 }
319 
320 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
321 {
322 	struct f2fs_node *rn = F2FS_NODE(p);
323 
324 	f2fs_wait_on_page_writeback(p, NODE);
325 
326 	if (i)
327 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
328 	else
329 		rn->in.nid[off] = cpu_to_le32(nid);
330 	return set_page_dirty(p);
331 }
332 
333 static inline nid_t get_nid(struct page *p, int off, bool i)
334 {
335 	struct f2fs_node *rn = F2FS_NODE(p);
336 
337 	if (i)
338 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
339 	return le32_to_cpu(rn->in.nid[off]);
340 }
341 
342 /*
343  * Coldness identification:
344  *  - Mark cold files in f2fs_inode_info
345  *  - Mark cold node blocks in their node footer
346  *  - Mark cold data pages in page cache
347  */
348 static inline int is_cold_data(struct page *page)
349 {
350 	return PageChecked(page);
351 }
352 
353 static inline void set_cold_data(struct page *page)
354 {
355 	SetPageChecked(page);
356 }
357 
358 static inline void clear_cold_data(struct page *page)
359 {
360 	ClearPageChecked(page);
361 }
362 
363 static inline int is_node(struct page *page, int type)
364 {
365 	struct f2fs_node *rn = F2FS_NODE(page);
366 	return le32_to_cpu(rn->footer.flag) & (1 << type);
367 }
368 
369 #define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
370 #define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
371 #define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
372 
373 static inline void set_cold_node(struct inode *inode, struct page *page)
374 {
375 	struct f2fs_node *rn = F2FS_NODE(page);
376 	unsigned int flag = le32_to_cpu(rn->footer.flag);
377 
378 	if (S_ISDIR(inode->i_mode))
379 		flag &= ~(0x1 << COLD_BIT_SHIFT);
380 	else
381 		flag |= (0x1 << COLD_BIT_SHIFT);
382 	rn->footer.flag = cpu_to_le32(flag);
383 }
384 
385 static inline void set_mark(struct page *page, int mark, int type)
386 {
387 	struct f2fs_node *rn = F2FS_NODE(page);
388 	unsigned int flag = le32_to_cpu(rn->footer.flag);
389 	if (mark)
390 		flag |= (0x1 << type);
391 	else
392 		flag &= ~(0x1 << type);
393 	rn->footer.flag = cpu_to_le32(flag);
394 }
395 #define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
396 #define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
397