1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform readahead before building free nids */ 18 #define FREE_NID_PAGES 4 19 20 /* maximum readahead size for node during getting data blocks */ 21 #define MAX_RA_NODE 128 22 23 /* control the memory footprint threshold (10MB per 1GB ram) */ 24 #define DEF_RAM_THRESHOLD 10 25 26 /* vector size for gang look-up from nat cache that consists of radix tree */ 27 #define NATVEC_SIZE 64 28 #define SETVEC_SIZE 32 29 30 /* return value for read_node_page */ 31 #define LOCKED_PAGE 1 32 33 /* For flag in struct node_info */ 34 enum { 35 IS_CHECKPOINTED, /* is it checkpointed before? */ 36 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 37 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 38 IS_DIRTY, /* this nat entry is dirty? */ 39 }; 40 41 /* 42 * For node information 43 */ 44 struct node_info { 45 nid_t nid; /* node id */ 46 nid_t ino; /* inode number of the node's owner */ 47 block_t blk_addr; /* block address of the node */ 48 unsigned char version; /* version of the node */ 49 unsigned char flag; /* for node information bits */ 50 }; 51 52 struct nat_entry { 53 struct list_head list; /* for clean or dirty nat list */ 54 struct node_info ni; /* in-memory node information */ 55 }; 56 57 #define nat_get_nid(nat) (nat->ni.nid) 58 #define nat_set_nid(nat, n) (nat->ni.nid = n) 59 #define nat_get_blkaddr(nat) (nat->ni.blk_addr) 60 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 61 #define nat_get_ino(nat) (nat->ni.ino) 62 #define nat_set_ino(nat, i) (nat->ni.ino = i) 63 #define nat_get_version(nat) (nat->ni.version) 64 #define nat_set_version(nat, v) (nat->ni.version = v) 65 66 #define inc_node_version(version) (++version) 67 68 static inline void copy_node_info(struct node_info *dst, 69 struct node_info *src) 70 { 71 dst->nid = src->nid; 72 dst->ino = src->ino; 73 dst->blk_addr = src->blk_addr; 74 dst->version = src->version; 75 /* should not copy flag here */ 76 } 77 78 static inline void set_nat_flag(struct nat_entry *ne, 79 unsigned int type, bool set) 80 { 81 unsigned char mask = 0x01 << type; 82 if (set) 83 ne->ni.flag |= mask; 84 else 85 ne->ni.flag &= ~mask; 86 } 87 88 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 89 { 90 unsigned char mask = 0x01 << type; 91 return ne->ni.flag & mask; 92 } 93 94 static inline void nat_reset_flag(struct nat_entry *ne) 95 { 96 /* these states can be set only after checkpoint was done */ 97 set_nat_flag(ne, IS_CHECKPOINTED, true); 98 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 99 set_nat_flag(ne, HAS_LAST_FSYNC, true); 100 } 101 102 static inline void node_info_from_raw_nat(struct node_info *ni, 103 struct f2fs_nat_entry *raw_ne) 104 { 105 ni->ino = le32_to_cpu(raw_ne->ino); 106 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 107 ni->version = raw_ne->version; 108 } 109 110 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 111 struct node_info *ni) 112 { 113 raw_ne->ino = cpu_to_le32(ni->ino); 114 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 115 raw_ne->version = ni->version; 116 } 117 118 enum mem_type { 119 FREE_NIDS, /* indicates the free nid list */ 120 NAT_ENTRIES, /* indicates the cached nat entry */ 121 DIRTY_DENTS, /* indicates dirty dentry pages */ 122 INO_ENTRIES, /* indicates inode entries */ 123 EXTENT_CACHE, /* indicates extent cache */ 124 BASE_CHECK, /* check kernel status */ 125 }; 126 127 struct nat_entry_set { 128 struct list_head set_list; /* link with other nat sets */ 129 struct list_head entry_list; /* link with dirty nat entries */ 130 nid_t set; /* set number*/ 131 unsigned int entry_cnt; /* the # of nat entries in set */ 132 }; 133 134 /* 135 * For free nid mangement 136 */ 137 enum nid_state { 138 NID_NEW, /* newly added to free nid list */ 139 NID_ALLOC /* it is allocated */ 140 }; 141 142 struct free_nid { 143 struct list_head list; /* for free node id list */ 144 nid_t nid; /* node id */ 145 int state; /* in use or not: NID_NEW or NID_ALLOC */ 146 }; 147 148 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 149 { 150 struct f2fs_nm_info *nm_i = NM_I(sbi); 151 struct free_nid *fnid; 152 153 spin_lock(&nm_i->free_nid_list_lock); 154 if (nm_i->fcnt <= 0) { 155 spin_unlock(&nm_i->free_nid_list_lock); 156 return; 157 } 158 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 159 *nid = fnid->nid; 160 spin_unlock(&nm_i->free_nid_list_lock); 161 } 162 163 /* 164 * inline functions 165 */ 166 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 167 { 168 struct f2fs_nm_info *nm_i = NM_I(sbi); 169 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 170 } 171 172 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 173 { 174 struct f2fs_nm_info *nm_i = NM_I(sbi); 175 pgoff_t block_off; 176 pgoff_t block_addr; 177 int seg_off; 178 179 block_off = NAT_BLOCK_OFFSET(start); 180 seg_off = block_off >> sbi->log_blocks_per_seg; 181 182 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 183 (seg_off << sbi->log_blocks_per_seg << 1) + 184 (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); 185 186 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 187 block_addr += sbi->blocks_per_seg; 188 189 return block_addr; 190 } 191 192 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 193 pgoff_t block_addr) 194 { 195 struct f2fs_nm_info *nm_i = NM_I(sbi); 196 197 block_addr -= nm_i->nat_blkaddr; 198 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 199 block_addr -= sbi->blocks_per_seg; 200 else 201 block_addr += sbi->blocks_per_seg; 202 203 return block_addr + nm_i->nat_blkaddr; 204 } 205 206 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 207 { 208 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 209 210 f2fs_change_bit(block_off, nm_i->nat_bitmap); 211 } 212 213 static inline void fill_node_footer(struct page *page, nid_t nid, 214 nid_t ino, unsigned int ofs, bool reset) 215 { 216 struct f2fs_node *rn = F2FS_NODE(page); 217 unsigned int old_flag = 0; 218 219 if (reset) 220 memset(rn, 0, sizeof(*rn)); 221 else 222 old_flag = le32_to_cpu(rn->footer.flag); 223 224 rn->footer.nid = cpu_to_le32(nid); 225 rn->footer.ino = cpu_to_le32(ino); 226 227 /* should remain old flag bits such as COLD_BIT_SHIFT */ 228 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 229 (old_flag & OFFSET_BIT_MASK)); 230 } 231 232 static inline void copy_node_footer(struct page *dst, struct page *src) 233 { 234 struct f2fs_node *src_rn = F2FS_NODE(src); 235 struct f2fs_node *dst_rn = F2FS_NODE(dst); 236 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 237 } 238 239 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 240 { 241 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 242 struct f2fs_node *rn = F2FS_NODE(page); 243 244 rn->footer.cp_ver = ckpt->checkpoint_ver; 245 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 246 } 247 248 static inline nid_t ino_of_node(struct page *node_page) 249 { 250 struct f2fs_node *rn = F2FS_NODE(node_page); 251 return le32_to_cpu(rn->footer.ino); 252 } 253 254 static inline nid_t nid_of_node(struct page *node_page) 255 { 256 struct f2fs_node *rn = F2FS_NODE(node_page); 257 return le32_to_cpu(rn->footer.nid); 258 } 259 260 static inline unsigned int ofs_of_node(struct page *node_page) 261 { 262 struct f2fs_node *rn = F2FS_NODE(node_page); 263 unsigned flag = le32_to_cpu(rn->footer.flag); 264 return flag >> OFFSET_BIT_SHIFT; 265 } 266 267 static inline unsigned long long cpver_of_node(struct page *node_page) 268 { 269 struct f2fs_node *rn = F2FS_NODE(node_page); 270 return le64_to_cpu(rn->footer.cp_ver); 271 } 272 273 static inline block_t next_blkaddr_of_node(struct page *node_page) 274 { 275 struct f2fs_node *rn = F2FS_NODE(node_page); 276 return le32_to_cpu(rn->footer.next_blkaddr); 277 } 278 279 /* 280 * f2fs assigns the following node offsets described as (num). 281 * N = NIDS_PER_BLOCK 282 * 283 * Inode block (0) 284 * |- direct node (1) 285 * |- direct node (2) 286 * |- indirect node (3) 287 * | `- direct node (4 => 4 + N - 1) 288 * |- indirect node (4 + N) 289 * | `- direct node (5 + N => 5 + 2N - 1) 290 * `- double indirect node (5 + 2N) 291 * `- indirect node (6 + 2N) 292 * `- direct node 293 * ...... 294 * `- indirect node ((6 + 2N) + x(N + 1)) 295 * `- direct node 296 * ...... 297 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 298 * `- direct node 299 */ 300 static inline bool IS_DNODE(struct page *node_page) 301 { 302 unsigned int ofs = ofs_of_node(node_page); 303 304 if (f2fs_has_xattr_block(ofs)) 305 return false; 306 307 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 308 ofs == 5 + 2 * NIDS_PER_BLOCK) 309 return false; 310 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 311 ofs -= 6 + 2 * NIDS_PER_BLOCK; 312 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 313 return false; 314 } 315 return true; 316 } 317 318 static inline void set_nid(struct page *p, int off, nid_t nid, bool i) 319 { 320 struct f2fs_node *rn = F2FS_NODE(p); 321 322 f2fs_wait_on_page_writeback(p, NODE); 323 324 if (i) 325 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 326 else 327 rn->in.nid[off] = cpu_to_le32(nid); 328 set_page_dirty(p); 329 } 330 331 static inline nid_t get_nid(struct page *p, int off, bool i) 332 { 333 struct f2fs_node *rn = F2FS_NODE(p); 334 335 if (i) 336 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 337 return le32_to_cpu(rn->in.nid[off]); 338 } 339 340 /* 341 * Coldness identification: 342 * - Mark cold files in f2fs_inode_info 343 * - Mark cold node blocks in their node footer 344 * - Mark cold data pages in page cache 345 */ 346 static inline int is_cold_data(struct page *page) 347 { 348 return PageChecked(page); 349 } 350 351 static inline void set_cold_data(struct page *page) 352 { 353 SetPageChecked(page); 354 } 355 356 static inline void clear_cold_data(struct page *page) 357 { 358 ClearPageChecked(page); 359 } 360 361 static inline int is_node(struct page *page, int type) 362 { 363 struct f2fs_node *rn = F2FS_NODE(page); 364 return le32_to_cpu(rn->footer.flag) & (1 << type); 365 } 366 367 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 368 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 369 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 370 371 static inline void set_cold_node(struct inode *inode, struct page *page) 372 { 373 struct f2fs_node *rn = F2FS_NODE(page); 374 unsigned int flag = le32_to_cpu(rn->footer.flag); 375 376 if (S_ISDIR(inode->i_mode)) 377 flag &= ~(0x1 << COLD_BIT_SHIFT); 378 else 379 flag |= (0x1 << COLD_BIT_SHIFT); 380 rn->footer.flag = cpu_to_le32(flag); 381 } 382 383 static inline void set_mark(struct page *page, int mark, int type) 384 { 385 struct f2fs_node *rn = F2FS_NODE(page); 386 unsigned int flag = le32_to_cpu(rn->footer.flag); 387 if (mark) 388 flag |= (0x1 << type); 389 else 390 flag &= ~(0x1 << type); 391 rn->footer.flag = cpu_to_le32(flag); 392 } 393 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 394 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 395