1 /* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 /* start node id of a node block dedicated to the given node id */ 12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14 /* node block offset on the NAT area dedicated to the given start node id */ 15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17 /* # of pages to perform readahead before building free nids */ 18 #define FREE_NID_PAGES 4 19 20 /* maximum readahead size for node during getting data blocks */ 21 #define MAX_RA_NODE 128 22 23 /* control the memory footprint threshold (10MB per 1GB ram) */ 24 #define DEF_RAM_THRESHOLD 10 25 26 /* vector size for gang look-up from nat cache that consists of radix tree */ 27 #define NATVEC_SIZE 64 28 29 /* return value for read_node_page */ 30 #define LOCKED_PAGE 1 31 32 /* 33 * For node information 34 */ 35 struct node_info { 36 nid_t nid; /* node id */ 37 nid_t ino; /* inode number of the node's owner */ 38 block_t blk_addr; /* block address of the node */ 39 unsigned char version; /* version of the node */ 40 }; 41 42 enum { 43 IS_CHECKPOINTED, /* is it checkpointed before? */ 44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 46 IS_DIRTY, /* this nat entry is dirty? */ 47 }; 48 49 struct nat_entry { 50 struct list_head list; /* for clean or dirty nat list */ 51 unsigned char flag; /* for node information bits */ 52 struct node_info ni; /* in-memory node information */ 53 }; 54 55 #define nat_get_nid(nat) (nat->ni.nid) 56 #define nat_set_nid(nat, n) (nat->ni.nid = n) 57 #define nat_get_blkaddr(nat) (nat->ni.blk_addr) 58 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 59 #define nat_get_ino(nat) (nat->ni.ino) 60 #define nat_set_ino(nat, i) (nat->ni.ino = i) 61 #define nat_get_version(nat) (nat->ni.version) 62 #define nat_set_version(nat, v) (nat->ni.version = v) 63 64 #define inc_node_version(version) (++version) 65 66 static inline void set_nat_flag(struct nat_entry *ne, 67 unsigned int type, bool set) 68 { 69 unsigned char mask = 0x01 << type; 70 if (set) 71 ne->flag |= mask; 72 else 73 ne->flag &= ~mask; 74 } 75 76 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 77 { 78 unsigned char mask = 0x01 << type; 79 return ne->flag & mask; 80 } 81 82 static inline void nat_reset_flag(struct nat_entry *ne) 83 { 84 /* these states can be set only after checkpoint was done */ 85 set_nat_flag(ne, IS_CHECKPOINTED, true); 86 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 87 set_nat_flag(ne, HAS_LAST_FSYNC, true); 88 } 89 90 static inline void node_info_from_raw_nat(struct node_info *ni, 91 struct f2fs_nat_entry *raw_ne) 92 { 93 ni->ino = le32_to_cpu(raw_ne->ino); 94 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 95 ni->version = raw_ne->version; 96 } 97 98 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 99 struct node_info *ni) 100 { 101 raw_ne->ino = cpu_to_le32(ni->ino); 102 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 103 raw_ne->version = ni->version; 104 } 105 106 enum mem_type { 107 FREE_NIDS, /* indicates the free nid list */ 108 NAT_ENTRIES, /* indicates the cached nat entry */ 109 DIRTY_DENTS, /* indicates dirty dentry pages */ 110 INO_ENTRIES, /* indicates inode entries */ 111 }; 112 113 struct nat_entry_set { 114 struct list_head set_list; /* link with other nat sets */ 115 struct list_head entry_list; /* link with dirty nat entries */ 116 nid_t set; /* set number*/ 117 unsigned int entry_cnt; /* the # of nat entries in set */ 118 }; 119 120 /* 121 * For free nid mangement 122 */ 123 enum nid_state { 124 NID_NEW, /* newly added to free nid list */ 125 NID_ALLOC /* it is allocated */ 126 }; 127 128 struct free_nid { 129 struct list_head list; /* for free node id list */ 130 nid_t nid; /* node id */ 131 int state; /* in use or not: NID_NEW or NID_ALLOC */ 132 }; 133 134 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 135 { 136 struct f2fs_nm_info *nm_i = NM_I(sbi); 137 struct free_nid *fnid; 138 139 spin_lock(&nm_i->free_nid_list_lock); 140 if (nm_i->fcnt <= 0) { 141 spin_unlock(&nm_i->free_nid_list_lock); 142 return; 143 } 144 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 145 *nid = fnid->nid; 146 spin_unlock(&nm_i->free_nid_list_lock); 147 } 148 149 /* 150 * inline functions 151 */ 152 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 153 { 154 struct f2fs_nm_info *nm_i = NM_I(sbi); 155 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 156 } 157 158 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 159 { 160 struct f2fs_nm_info *nm_i = NM_I(sbi); 161 pgoff_t block_off; 162 pgoff_t block_addr; 163 int seg_off; 164 165 block_off = NAT_BLOCK_OFFSET(start); 166 seg_off = block_off >> sbi->log_blocks_per_seg; 167 168 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 169 (seg_off << sbi->log_blocks_per_seg << 1) + 170 (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); 171 172 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 173 block_addr += sbi->blocks_per_seg; 174 175 return block_addr; 176 } 177 178 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 179 pgoff_t block_addr) 180 { 181 struct f2fs_nm_info *nm_i = NM_I(sbi); 182 183 block_addr -= nm_i->nat_blkaddr; 184 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 185 block_addr -= sbi->blocks_per_seg; 186 else 187 block_addr += sbi->blocks_per_seg; 188 189 return block_addr + nm_i->nat_blkaddr; 190 } 191 192 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 193 { 194 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 195 196 f2fs_change_bit(block_off, nm_i->nat_bitmap); 197 } 198 199 static inline void fill_node_footer(struct page *page, nid_t nid, 200 nid_t ino, unsigned int ofs, bool reset) 201 { 202 struct f2fs_node *rn = F2FS_NODE(page); 203 if (reset) 204 memset(rn, 0, sizeof(*rn)); 205 rn->footer.nid = cpu_to_le32(nid); 206 rn->footer.ino = cpu_to_le32(ino); 207 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); 208 } 209 210 static inline void copy_node_footer(struct page *dst, struct page *src) 211 { 212 struct f2fs_node *src_rn = F2FS_NODE(src); 213 struct f2fs_node *dst_rn = F2FS_NODE(dst); 214 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 215 } 216 217 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 218 { 219 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 220 struct f2fs_node *rn = F2FS_NODE(page); 221 222 rn->footer.cp_ver = ckpt->checkpoint_ver; 223 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 224 } 225 226 static inline nid_t ino_of_node(struct page *node_page) 227 { 228 struct f2fs_node *rn = F2FS_NODE(node_page); 229 return le32_to_cpu(rn->footer.ino); 230 } 231 232 static inline nid_t nid_of_node(struct page *node_page) 233 { 234 struct f2fs_node *rn = F2FS_NODE(node_page); 235 return le32_to_cpu(rn->footer.nid); 236 } 237 238 static inline unsigned int ofs_of_node(struct page *node_page) 239 { 240 struct f2fs_node *rn = F2FS_NODE(node_page); 241 unsigned flag = le32_to_cpu(rn->footer.flag); 242 return flag >> OFFSET_BIT_SHIFT; 243 } 244 245 static inline unsigned long long cpver_of_node(struct page *node_page) 246 { 247 struct f2fs_node *rn = F2FS_NODE(node_page); 248 return le64_to_cpu(rn->footer.cp_ver); 249 } 250 251 static inline block_t next_blkaddr_of_node(struct page *node_page) 252 { 253 struct f2fs_node *rn = F2FS_NODE(node_page); 254 return le32_to_cpu(rn->footer.next_blkaddr); 255 } 256 257 /* 258 * f2fs assigns the following node offsets described as (num). 259 * N = NIDS_PER_BLOCK 260 * 261 * Inode block (0) 262 * |- direct node (1) 263 * |- direct node (2) 264 * |- indirect node (3) 265 * | `- direct node (4 => 4 + N - 1) 266 * |- indirect node (4 + N) 267 * | `- direct node (5 + N => 5 + 2N - 1) 268 * `- double indirect node (5 + 2N) 269 * `- indirect node (6 + 2N) 270 * `- direct node 271 * ...... 272 * `- indirect node ((6 + 2N) + x(N + 1)) 273 * `- direct node 274 * ...... 275 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 276 * `- direct node 277 */ 278 static inline bool IS_DNODE(struct page *node_page) 279 { 280 unsigned int ofs = ofs_of_node(node_page); 281 282 if (f2fs_has_xattr_block(ofs)) 283 return false; 284 285 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 286 ofs == 5 + 2 * NIDS_PER_BLOCK) 287 return false; 288 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 289 ofs -= 6 + 2 * NIDS_PER_BLOCK; 290 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 291 return false; 292 } 293 return true; 294 } 295 296 static inline void set_nid(struct page *p, int off, nid_t nid, bool i) 297 { 298 struct f2fs_node *rn = F2FS_NODE(p); 299 300 f2fs_wait_on_page_writeback(p, NODE); 301 302 if (i) 303 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 304 else 305 rn->in.nid[off] = cpu_to_le32(nid); 306 set_page_dirty(p); 307 } 308 309 static inline nid_t get_nid(struct page *p, int off, bool i) 310 { 311 struct f2fs_node *rn = F2FS_NODE(p); 312 313 if (i) 314 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 315 return le32_to_cpu(rn->in.nid[off]); 316 } 317 318 /* 319 * Coldness identification: 320 * - Mark cold files in f2fs_inode_info 321 * - Mark cold node blocks in their node footer 322 * - Mark cold data pages in page cache 323 */ 324 static inline int is_file(struct inode *inode, int type) 325 { 326 return F2FS_I(inode)->i_advise & type; 327 } 328 329 static inline void set_file(struct inode *inode, int type) 330 { 331 F2FS_I(inode)->i_advise |= type; 332 } 333 334 static inline void clear_file(struct inode *inode, int type) 335 { 336 F2FS_I(inode)->i_advise &= ~type; 337 } 338 339 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 340 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 341 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 342 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 343 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 344 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 345 346 static inline int is_cold_data(struct page *page) 347 { 348 return PageChecked(page); 349 } 350 351 static inline void set_cold_data(struct page *page) 352 { 353 SetPageChecked(page); 354 } 355 356 static inline void clear_cold_data(struct page *page) 357 { 358 ClearPageChecked(page); 359 } 360 361 static inline int is_node(struct page *page, int type) 362 { 363 struct f2fs_node *rn = F2FS_NODE(page); 364 return le32_to_cpu(rn->footer.flag) & (1 << type); 365 } 366 367 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 368 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 369 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 370 371 static inline void set_cold_node(struct inode *inode, struct page *page) 372 { 373 struct f2fs_node *rn = F2FS_NODE(page); 374 unsigned int flag = le32_to_cpu(rn->footer.flag); 375 376 if (S_ISDIR(inode->i_mode)) 377 flag &= ~(0x1 << COLD_BIT_SHIFT); 378 else 379 flag |= (0x1 << COLD_BIT_SHIFT); 380 rn->footer.flag = cpu_to_le32(flag); 381 } 382 383 static inline void set_mark(struct page *page, int mark, int type) 384 { 385 struct f2fs_node *rn = F2FS_NODE(page); 386 unsigned int flag = le32_to_cpu(rn->footer.flag); 387 if (mark) 388 flag |= (0x1 << type); 389 else 390 flag &= ~(0x1 << type); 391 rn->footer.flag = cpu_to_le32(flag); 392 } 393 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 394 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 395