1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/node.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 /* start node id of a node block dedicated to the given node id */ 9 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 10 11 /* node block offset on the NAT area dedicated to the given start node id */ 12 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK) 13 14 /* # of pages to perform synchronous readahead before building free nids */ 15 #define FREE_NID_PAGES 8 16 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 17 18 /* size of free nid batch when shrinking */ 19 #define SHRINK_NID_BATCH_SIZE 8 20 21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 22 23 /* maximum readahead size for node during getting data blocks */ 24 #define MAX_RA_NODE 128 25 26 /* control the memory footprint threshold (10MB per 1GB ram) */ 27 #define DEF_RAM_THRESHOLD 1 28 29 /* control dirty nats ratio threshold (default: 10% over max nid count) */ 30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 31 /* control total # of nats */ 32 #define DEF_NAT_CACHE_THRESHOLD 100000 33 34 /* control total # of node writes used for roll-fowrad recovery */ 35 #define DEF_RF_NODE_BLOCKS 0 36 37 /* vector size for gang look-up from nat cache that consists of radix tree */ 38 #define NAT_VEC_SIZE 32 39 40 /* return value for read_node_page */ 41 #define LOCKED_PAGE 1 42 43 /* check pinned file's alignment status of physical blocks */ 44 #define FILE_NOT_ALIGNED 1 45 46 /* For flag in struct node_info */ 47 enum { 48 IS_CHECKPOINTED, /* is it checkpointed before? */ 49 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 50 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 51 IS_DIRTY, /* this nat entry is dirty? */ 52 IS_PREALLOC, /* nat entry is preallocated */ 53 }; 54 55 /* For node type in __get_node_folio() */ 56 enum node_type { 57 NODE_TYPE_REGULAR, 58 NODE_TYPE_INODE, 59 NODE_TYPE_XATTR, 60 }; 61 62 /* 63 * For node information 64 */ 65 struct node_info { 66 nid_t nid; /* node id */ 67 nid_t ino; /* inode number of the node's owner */ 68 block_t blk_addr; /* block address of the node */ 69 unsigned char version; /* version of the node */ 70 unsigned char flag; /* for node information bits */ 71 }; 72 73 struct nat_entry { 74 struct list_head list; /* for clean or dirty nat list */ 75 struct node_info ni; /* in-memory node information */ 76 }; 77 78 #define nat_get_nid(nat) ((nat)->ni.nid) 79 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n)) 80 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr) 81 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b)) 82 #define nat_get_ino(nat) ((nat)->ni.ino) 83 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i)) 84 #define nat_get_version(nat) ((nat)->ni.version) 85 #define nat_set_version(nat, v) ((nat)->ni.version = (v)) 86 87 #define inc_node_version(version) (++(version)) 88 89 static inline void copy_node_info(struct node_info *dst, 90 struct node_info *src) 91 { 92 dst->nid = src->nid; 93 dst->ino = src->ino; 94 dst->blk_addr = src->blk_addr; 95 dst->version = src->version; 96 /* should not copy flag here */ 97 } 98 99 static inline void set_nat_flag(struct nat_entry *ne, 100 unsigned int type, bool set) 101 { 102 if (set) 103 ne->ni.flag |= BIT(type); 104 else 105 ne->ni.flag &= ~BIT(type); 106 } 107 108 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 109 { 110 return ne->ni.flag & BIT(type); 111 } 112 113 static inline void nat_reset_flag(struct nat_entry *ne) 114 { 115 /* these states can be set only after checkpoint was done */ 116 set_nat_flag(ne, IS_CHECKPOINTED, true); 117 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 118 set_nat_flag(ne, HAS_LAST_FSYNC, true); 119 } 120 121 static inline void node_info_from_raw_nat(struct node_info *ni, 122 struct f2fs_nat_entry *raw_ne) 123 { 124 ni->ino = le32_to_cpu(raw_ne->ino); 125 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 126 ni->version = raw_ne->version; 127 } 128 129 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 130 struct node_info *ni) 131 { 132 raw_ne->ino = cpu_to_le32(ni->ino); 133 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 134 raw_ne->version = ni->version; 135 } 136 137 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 138 { 139 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid * 140 NM_I(sbi)->dirty_nats_ratio / 100; 141 } 142 143 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 144 { 145 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD; 146 } 147 148 enum mem_type { 149 FREE_NIDS, /* indicates the free nid list */ 150 NAT_ENTRIES, /* indicates the cached nat entry */ 151 DIRTY_DENTS, /* indicates dirty dentry pages */ 152 INO_ENTRIES, /* indicates inode entries */ 153 READ_EXTENT_CACHE, /* indicates read extent cache */ 154 AGE_EXTENT_CACHE, /* indicates age extent cache */ 155 DISCARD_CACHE, /* indicates memory of cached discard cmds */ 156 COMPRESS_PAGE, /* indicates memory of cached compressed pages */ 157 BASE_CHECK, /* check kernel status */ 158 }; 159 160 struct nat_entry_set { 161 struct list_head set_list; /* link with other nat sets */ 162 struct list_head entry_list; /* link with dirty nat entries */ 163 nid_t set; /* set number*/ 164 unsigned int entry_cnt; /* the # of nat entries in set */ 165 }; 166 167 struct free_nid { 168 struct list_head list; /* for free node id list */ 169 nid_t nid; /* node id */ 170 int state; /* in use or not: FREE_NID or PREALLOC_NID */ 171 }; 172 173 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 174 { 175 struct f2fs_nm_info *nm_i = NM_I(sbi); 176 struct free_nid *fnid; 177 178 spin_lock(&nm_i->nid_list_lock); 179 if (nm_i->nid_cnt[FREE_NID] <= 0) { 180 spin_unlock(&nm_i->nid_list_lock); 181 return; 182 } 183 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list); 184 *nid = fnid->nid; 185 spin_unlock(&nm_i->nid_list_lock); 186 } 187 188 /* 189 * inline functions 190 */ 191 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 192 { 193 struct f2fs_nm_info *nm_i = NM_I(sbi); 194 195 #ifdef CONFIG_F2FS_CHECK_FS 196 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, 197 nm_i->bitmap_size)) 198 f2fs_bug_on(sbi, 1); 199 #endif 200 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 201 } 202 203 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 204 { 205 struct f2fs_nm_info *nm_i = NM_I(sbi); 206 pgoff_t block_off; 207 pgoff_t block_addr; 208 209 /* 210 * block_off = segment_off * 512 + off_in_segment 211 * OLD = (segment_off * 512) * 2 + off_in_segment 212 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment 213 */ 214 block_off = NAT_BLOCK_OFFSET(start); 215 216 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 217 (block_off << 1) - 218 (block_off & (BLKS_PER_SEG(sbi) - 1))); 219 220 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 221 block_addr += BLKS_PER_SEG(sbi); 222 223 return block_addr; 224 } 225 226 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 227 pgoff_t block_addr) 228 { 229 struct f2fs_nm_info *nm_i = NM_I(sbi); 230 231 block_addr -= nm_i->nat_blkaddr; 232 block_addr ^= BIT(sbi->log_blocks_per_seg); 233 return block_addr + nm_i->nat_blkaddr; 234 } 235 236 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 237 { 238 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 239 240 f2fs_change_bit(block_off, nm_i->nat_bitmap); 241 #ifdef CONFIG_F2FS_CHECK_FS 242 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); 243 #endif 244 } 245 246 static inline nid_t ino_of_node(struct page *node_page) 247 { 248 struct f2fs_node *rn = F2FS_NODE(node_page); 249 return le32_to_cpu(rn->footer.ino); 250 } 251 252 static inline nid_t nid_of_node(struct page *node_page) 253 { 254 struct f2fs_node *rn = F2FS_NODE(node_page); 255 return le32_to_cpu(rn->footer.nid); 256 } 257 258 static inline unsigned int ofs_of_node(const struct page *node_page) 259 { 260 struct f2fs_node *rn = F2FS_NODE(node_page); 261 unsigned flag = le32_to_cpu(rn->footer.flag); 262 return flag >> OFFSET_BIT_SHIFT; 263 } 264 265 static inline __u64 cpver_of_node(struct page *node_page) 266 { 267 struct f2fs_node *rn = F2FS_NODE(node_page); 268 return le64_to_cpu(rn->footer.cp_ver); 269 } 270 271 static inline block_t next_blkaddr_of_node(struct page *node_page) 272 { 273 struct f2fs_node *rn = F2FS_NODE(node_page); 274 return le32_to_cpu(rn->footer.next_blkaddr); 275 } 276 277 static inline void fill_node_footer(struct page *page, nid_t nid, 278 nid_t ino, unsigned int ofs, bool reset) 279 { 280 struct f2fs_node *rn = F2FS_NODE(page); 281 unsigned int old_flag = 0; 282 283 if (reset) 284 memset(rn, 0, sizeof(*rn)); 285 else 286 old_flag = le32_to_cpu(rn->footer.flag); 287 288 rn->footer.nid = cpu_to_le32(nid); 289 rn->footer.ino = cpu_to_le32(ino); 290 291 /* should remain old flag bits such as COLD_BIT_SHIFT */ 292 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 293 (old_flag & OFFSET_BIT_MASK)); 294 } 295 296 static inline void copy_node_footer(struct page *dst, struct page *src) 297 { 298 struct f2fs_node *src_rn = F2FS_NODE(src); 299 struct f2fs_node *dst_rn = F2FS_NODE(dst); 300 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 301 } 302 303 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 304 { 305 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 306 struct f2fs_node *rn = F2FS_NODE(page); 307 __u64 cp_ver = cur_cp_version(ckpt); 308 309 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 310 cp_ver |= (cur_cp_crc(ckpt) << 32); 311 312 rn->footer.cp_ver = cpu_to_le64(cp_ver); 313 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 314 } 315 316 static inline bool is_recoverable_dnode(struct page *page) 317 { 318 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 319 __u64 cp_ver = cur_cp_version(ckpt); 320 321 /* Don't care crc part, if fsck.f2fs sets it. */ 322 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG)) 323 return (cp_ver << 32) == (cpver_of_node(page) << 32); 324 325 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 326 cp_ver |= (cur_cp_crc(ckpt) << 32); 327 328 return cp_ver == cpver_of_node(page); 329 } 330 331 /* 332 * f2fs assigns the following node offsets described as (num). 333 * N = NIDS_PER_BLOCK 334 * 335 * Inode block (0) 336 * |- direct node (1) 337 * |- direct node (2) 338 * |- indirect node (3) 339 * | `- direct node (4 => 4 + N - 1) 340 * |- indirect node (4 + N) 341 * | `- direct node (5 + N => 5 + 2N - 1) 342 * `- double indirect node (5 + 2N) 343 * `- indirect node (6 + 2N) 344 * `- direct node 345 * ...... 346 * `- indirect node ((6 + 2N) + x(N + 1)) 347 * `- direct node 348 * ...... 349 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 350 * `- direct node 351 */ 352 static inline bool IS_DNODE(const struct page *node_page) 353 { 354 unsigned int ofs = ofs_of_node(node_page); 355 356 if (f2fs_has_xattr_block(ofs)) 357 return true; 358 359 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 360 ofs == 5 + 2 * NIDS_PER_BLOCK) 361 return false; 362 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 363 ofs -= 6 + 2 * NIDS_PER_BLOCK; 364 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 365 return false; 366 } 367 return true; 368 } 369 370 static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 371 { 372 struct f2fs_node *rn = F2FS_NODE(p); 373 374 f2fs_wait_on_page_writeback(p, NODE, true, true); 375 376 if (i) 377 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 378 else 379 rn->in.nid[off] = cpu_to_le32(nid); 380 return set_page_dirty(p); 381 } 382 383 static inline nid_t get_nid(struct page *p, int off, bool i) 384 { 385 struct f2fs_node *rn = F2FS_NODE(p); 386 387 if (i) 388 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 389 return le32_to_cpu(rn->in.nid[off]); 390 } 391 392 /* 393 * Coldness identification: 394 * - Mark cold files in f2fs_inode_info 395 * - Mark cold node blocks in their node footer 396 * - Mark cold data pages in page cache 397 */ 398 399 static inline int is_node(const struct page *page, int type) 400 { 401 struct f2fs_node *rn = F2FS_NODE(page); 402 return le32_to_cpu(rn->footer.flag) & BIT(type); 403 } 404 405 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 406 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 407 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 408 409 static inline void set_cold_node(struct page *page, bool is_dir) 410 { 411 struct f2fs_node *rn = F2FS_NODE(page); 412 unsigned int flag = le32_to_cpu(rn->footer.flag); 413 414 if (is_dir) 415 flag &= ~BIT(COLD_BIT_SHIFT); 416 else 417 flag |= BIT(COLD_BIT_SHIFT); 418 rn->footer.flag = cpu_to_le32(flag); 419 } 420 421 static inline void set_mark(struct page *page, int mark, int type) 422 { 423 struct f2fs_node *rn = F2FS_NODE(page); 424 unsigned int flag = le32_to_cpu(rn->footer.flag); 425 if (mark) 426 flag |= BIT(type); 427 else 428 flag &= ~BIT(type); 429 rn->footer.flag = cpu_to_le32(flag); 430 431 #ifdef CONFIG_F2FS_CHECK_FS 432 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 433 #endif 434 } 435 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 436 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 437