1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/node.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 /* start node id of a node block dedicated to the given node id */ 9 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 10 11 /* node block offset on the NAT area dedicated to the given start node id */ 12 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK) 13 14 /* # of pages to perform synchronous readahead before building free nids */ 15 #define FREE_NID_PAGES 8 16 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 17 18 /* size of free nid batch when shrinking */ 19 #define SHRINK_NID_BATCH_SIZE 8 20 21 #define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 22 23 /* maximum readahead size for node during getting data blocks */ 24 #define MAX_RA_NODE 128 25 26 /* control the memory footprint threshold (10MB per 1GB ram) */ 27 #define DEF_RAM_THRESHOLD 1 28 29 /* control dirty nats ratio threshold (default: 10% over max nid count) */ 30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 31 /* control total # of nats */ 32 #define DEF_NAT_CACHE_THRESHOLD 100000 33 34 /* control total # of node writes used for roll-fowrad recovery */ 35 #define DEF_RF_NODE_BLOCKS 0 36 37 /* vector size for gang look-up from nat cache that consists of radix tree */ 38 #define NATVEC_SIZE 64 39 #define SETVEC_SIZE 32 40 41 /* return value for read_node_page */ 42 #define LOCKED_PAGE 1 43 44 /* check pinned file's alignment status of physical blocks */ 45 #define FILE_NOT_ALIGNED 1 46 47 /* For flag in struct node_info */ 48 enum { 49 IS_CHECKPOINTED, /* is it checkpointed before? */ 50 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 51 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 52 IS_DIRTY, /* this nat entry is dirty? */ 53 IS_PREALLOC, /* nat entry is preallocated */ 54 }; 55 56 /* 57 * For node information 58 */ 59 struct node_info { 60 nid_t nid; /* node id */ 61 nid_t ino; /* inode number of the node's owner */ 62 block_t blk_addr; /* block address of the node */ 63 unsigned char version; /* version of the node */ 64 unsigned char flag; /* for node information bits */ 65 }; 66 67 struct nat_entry { 68 struct list_head list; /* for clean or dirty nat list */ 69 struct node_info ni; /* in-memory node information */ 70 }; 71 72 #define nat_get_nid(nat) ((nat)->ni.nid) 73 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n)) 74 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr) 75 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b)) 76 #define nat_get_ino(nat) ((nat)->ni.ino) 77 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i)) 78 #define nat_get_version(nat) ((nat)->ni.version) 79 #define nat_set_version(nat, v) ((nat)->ni.version = (v)) 80 81 #define inc_node_version(version) (++(version)) 82 83 static inline void copy_node_info(struct node_info *dst, 84 struct node_info *src) 85 { 86 dst->nid = src->nid; 87 dst->ino = src->ino; 88 dst->blk_addr = src->blk_addr; 89 dst->version = src->version; 90 /* should not copy flag here */ 91 } 92 93 static inline void set_nat_flag(struct nat_entry *ne, 94 unsigned int type, bool set) 95 { 96 unsigned char mask = 0x01 << type; 97 if (set) 98 ne->ni.flag |= mask; 99 else 100 ne->ni.flag &= ~mask; 101 } 102 103 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 104 { 105 unsigned char mask = 0x01 << type; 106 return ne->ni.flag & mask; 107 } 108 109 static inline void nat_reset_flag(struct nat_entry *ne) 110 { 111 /* these states can be set only after checkpoint was done */ 112 set_nat_flag(ne, IS_CHECKPOINTED, true); 113 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 114 set_nat_flag(ne, HAS_LAST_FSYNC, true); 115 } 116 117 static inline void node_info_from_raw_nat(struct node_info *ni, 118 struct f2fs_nat_entry *raw_ne) 119 { 120 ni->ino = le32_to_cpu(raw_ne->ino); 121 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 122 ni->version = raw_ne->version; 123 } 124 125 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 126 struct node_info *ni) 127 { 128 raw_ne->ino = cpu_to_le32(ni->ino); 129 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 130 raw_ne->version = ni->version; 131 } 132 133 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 134 { 135 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid * 136 NM_I(sbi)->dirty_nats_ratio / 100; 137 } 138 139 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 140 { 141 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD; 142 } 143 144 enum mem_type { 145 FREE_NIDS, /* indicates the free nid list */ 146 NAT_ENTRIES, /* indicates the cached nat entry */ 147 DIRTY_DENTS, /* indicates dirty dentry pages */ 148 INO_ENTRIES, /* indicates inode entries */ 149 EXTENT_CACHE, /* indicates extent cache */ 150 DISCARD_CACHE, /* indicates memory of cached discard cmds */ 151 COMPRESS_PAGE, /* indicates memory of cached compressed pages */ 152 BASE_CHECK, /* check kernel status */ 153 }; 154 155 struct nat_entry_set { 156 struct list_head set_list; /* link with other nat sets */ 157 struct list_head entry_list; /* link with dirty nat entries */ 158 nid_t set; /* set number*/ 159 unsigned int entry_cnt; /* the # of nat entries in set */ 160 }; 161 162 struct free_nid { 163 struct list_head list; /* for free node id list */ 164 nid_t nid; /* node id */ 165 int state; /* in use or not: FREE_NID or PREALLOC_NID */ 166 }; 167 168 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 169 { 170 struct f2fs_nm_info *nm_i = NM_I(sbi); 171 struct free_nid *fnid; 172 173 spin_lock(&nm_i->nid_list_lock); 174 if (nm_i->nid_cnt[FREE_NID] <= 0) { 175 spin_unlock(&nm_i->nid_list_lock); 176 return; 177 } 178 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list); 179 *nid = fnid->nid; 180 spin_unlock(&nm_i->nid_list_lock); 181 } 182 183 /* 184 * inline functions 185 */ 186 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 187 { 188 struct f2fs_nm_info *nm_i = NM_I(sbi); 189 190 #ifdef CONFIG_F2FS_CHECK_FS 191 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, 192 nm_i->bitmap_size)) 193 f2fs_bug_on(sbi, 1); 194 #endif 195 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 196 } 197 198 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 199 { 200 struct f2fs_nm_info *nm_i = NM_I(sbi); 201 pgoff_t block_off; 202 pgoff_t block_addr; 203 204 /* 205 * block_off = segment_off * 512 + off_in_segment 206 * OLD = (segment_off * 512) * 2 + off_in_segment 207 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment 208 */ 209 block_off = NAT_BLOCK_OFFSET(start); 210 211 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 212 (block_off << 1) - 213 (block_off & (sbi->blocks_per_seg - 1))); 214 215 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 216 block_addr += sbi->blocks_per_seg; 217 218 return block_addr; 219 } 220 221 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 222 pgoff_t block_addr) 223 { 224 struct f2fs_nm_info *nm_i = NM_I(sbi); 225 226 block_addr -= nm_i->nat_blkaddr; 227 block_addr ^= 1 << sbi->log_blocks_per_seg; 228 return block_addr + nm_i->nat_blkaddr; 229 } 230 231 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 232 { 233 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 234 235 f2fs_change_bit(block_off, nm_i->nat_bitmap); 236 #ifdef CONFIG_F2FS_CHECK_FS 237 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); 238 #endif 239 } 240 241 static inline nid_t ino_of_node(struct page *node_page) 242 { 243 struct f2fs_node *rn = F2FS_NODE(node_page); 244 return le32_to_cpu(rn->footer.ino); 245 } 246 247 static inline nid_t nid_of_node(struct page *node_page) 248 { 249 struct f2fs_node *rn = F2FS_NODE(node_page); 250 return le32_to_cpu(rn->footer.nid); 251 } 252 253 static inline unsigned int ofs_of_node(struct page *node_page) 254 { 255 struct f2fs_node *rn = F2FS_NODE(node_page); 256 unsigned flag = le32_to_cpu(rn->footer.flag); 257 return flag >> OFFSET_BIT_SHIFT; 258 } 259 260 static inline __u64 cpver_of_node(struct page *node_page) 261 { 262 struct f2fs_node *rn = F2FS_NODE(node_page); 263 return le64_to_cpu(rn->footer.cp_ver); 264 } 265 266 static inline block_t next_blkaddr_of_node(struct page *node_page) 267 { 268 struct f2fs_node *rn = F2FS_NODE(node_page); 269 return le32_to_cpu(rn->footer.next_blkaddr); 270 } 271 272 static inline void fill_node_footer(struct page *page, nid_t nid, 273 nid_t ino, unsigned int ofs, bool reset) 274 { 275 struct f2fs_node *rn = F2FS_NODE(page); 276 unsigned int old_flag = 0; 277 278 if (reset) 279 memset(rn, 0, sizeof(*rn)); 280 else 281 old_flag = le32_to_cpu(rn->footer.flag); 282 283 rn->footer.nid = cpu_to_le32(nid); 284 rn->footer.ino = cpu_to_le32(ino); 285 286 /* should remain old flag bits such as COLD_BIT_SHIFT */ 287 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 288 (old_flag & OFFSET_BIT_MASK)); 289 } 290 291 static inline void copy_node_footer(struct page *dst, struct page *src) 292 { 293 struct f2fs_node *src_rn = F2FS_NODE(src); 294 struct f2fs_node *dst_rn = F2FS_NODE(dst); 295 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 296 } 297 298 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 299 { 300 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 301 struct f2fs_node *rn = F2FS_NODE(page); 302 __u64 cp_ver = cur_cp_version(ckpt); 303 304 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 305 cp_ver |= (cur_cp_crc(ckpt) << 32); 306 307 rn->footer.cp_ver = cpu_to_le64(cp_ver); 308 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 309 } 310 311 static inline bool is_recoverable_dnode(struct page *page) 312 { 313 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 314 __u64 cp_ver = cur_cp_version(ckpt); 315 316 /* Don't care crc part, if fsck.f2fs sets it. */ 317 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG)) 318 return (cp_ver << 32) == (cpver_of_node(page) << 32); 319 320 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 321 cp_ver |= (cur_cp_crc(ckpt) << 32); 322 323 return cp_ver == cpver_of_node(page); 324 } 325 326 /* 327 * f2fs assigns the following node offsets described as (num). 328 * N = NIDS_PER_BLOCK 329 * 330 * Inode block (0) 331 * |- direct node (1) 332 * |- direct node (2) 333 * |- indirect node (3) 334 * | `- direct node (4 => 4 + N - 1) 335 * |- indirect node (4 + N) 336 * | `- direct node (5 + N => 5 + 2N - 1) 337 * `- double indirect node (5 + 2N) 338 * `- indirect node (6 + 2N) 339 * `- direct node 340 * ...... 341 * `- indirect node ((6 + 2N) + x(N + 1)) 342 * `- direct node 343 * ...... 344 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 345 * `- direct node 346 */ 347 static inline bool IS_DNODE(struct page *node_page) 348 { 349 unsigned int ofs = ofs_of_node(node_page); 350 351 if (f2fs_has_xattr_block(ofs)) 352 return true; 353 354 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 355 ofs == 5 + 2 * NIDS_PER_BLOCK) 356 return false; 357 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 358 ofs -= 6 + 2 * NIDS_PER_BLOCK; 359 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 360 return false; 361 } 362 return true; 363 } 364 365 static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 366 { 367 struct f2fs_node *rn = F2FS_NODE(p); 368 369 f2fs_wait_on_page_writeback(p, NODE, true, true); 370 371 if (i) 372 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 373 else 374 rn->in.nid[off] = cpu_to_le32(nid); 375 return set_page_dirty(p); 376 } 377 378 static inline nid_t get_nid(struct page *p, int off, bool i) 379 { 380 struct f2fs_node *rn = F2FS_NODE(p); 381 382 if (i) 383 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 384 return le32_to_cpu(rn->in.nid[off]); 385 } 386 387 /* 388 * Coldness identification: 389 * - Mark cold files in f2fs_inode_info 390 * - Mark cold node blocks in their node footer 391 * - Mark cold data pages in page cache 392 */ 393 394 static inline int is_node(struct page *page, int type) 395 { 396 struct f2fs_node *rn = F2FS_NODE(page); 397 return le32_to_cpu(rn->footer.flag) & (1 << type); 398 } 399 400 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 401 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 402 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 403 404 static inline void set_cold_node(struct page *page, bool is_dir) 405 { 406 struct f2fs_node *rn = F2FS_NODE(page); 407 unsigned int flag = le32_to_cpu(rn->footer.flag); 408 409 if (is_dir) 410 flag &= ~(0x1 << COLD_BIT_SHIFT); 411 else 412 flag |= (0x1 << COLD_BIT_SHIFT); 413 rn->footer.flag = cpu_to_le32(flag); 414 } 415 416 static inline void set_mark(struct page *page, int mark, int type) 417 { 418 struct f2fs_node *rn = F2FS_NODE(page); 419 unsigned int flag = le32_to_cpu(rn->footer.flag); 420 if (mark) 421 flag |= (0x1 << type); 422 else 423 flag &= ~(0x1 << type); 424 rn->footer.flag = cpu_to_le32(flag); 425 426 #ifdef CONFIG_F2FS_CHECK_FS 427 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 428 #endif 429 } 430 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 431 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT) 432