xref: /linux/fs/f2fs/node.h (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * fs/f2fs/node.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* start node id of a node block dedicated to the given node id */
12 #define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13 
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16 
17 /* # of pages to perform synchronous readahead before building free nids */
18 #define FREE_NID_PAGES 4
19 
20 #define DEF_RA_NID_PAGES	4	/* # of nid pages to be readaheaded */
21 
22 /* maximum readahead size for node during getting data blocks */
23 #define MAX_RA_NODE		128
24 
25 /* control the memory footprint threshold (10MB per 1GB ram) */
26 #define DEF_RAM_THRESHOLD	10
27 
28 /* control dirty nats ratio threshold (default: 10% over max nid count) */
29 #define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
30 
31 /* vector size for gang look-up from nat cache that consists of radix tree */
32 #define NATVEC_SIZE	64
33 #define SETVEC_SIZE	32
34 
35 /* return value for read_node_page */
36 #define LOCKED_PAGE	1
37 
38 /* For flag in struct node_info */
39 enum {
40 	IS_CHECKPOINTED,	/* is it checkpointed before? */
41 	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
42 	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
43 	IS_DIRTY,		/* this nat entry is dirty? */
44 };
45 
46 /*
47  * For node information
48  */
49 struct node_info {
50 	nid_t nid;		/* node id */
51 	nid_t ino;		/* inode number of the node's owner */
52 	block_t	blk_addr;	/* block address of the node */
53 	unsigned char version;	/* version of the node */
54 	unsigned char flag;	/* for node information bits */
55 };
56 
57 struct nat_entry {
58 	struct list_head list;	/* for clean or dirty nat list */
59 	struct node_info ni;	/* in-memory node information */
60 };
61 
62 #define nat_get_nid(nat)		(nat->ni.nid)
63 #define nat_set_nid(nat, n)		(nat->ni.nid = n)
64 #define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
65 #define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
66 #define nat_get_ino(nat)		(nat->ni.ino)
67 #define nat_set_ino(nat, i)		(nat->ni.ino = i)
68 #define nat_get_version(nat)		(nat->ni.version)
69 #define nat_set_version(nat, v)		(nat->ni.version = v)
70 
71 #define inc_node_version(version)	(++version)
72 
73 static inline void copy_node_info(struct node_info *dst,
74 						struct node_info *src)
75 {
76 	dst->nid = src->nid;
77 	dst->ino = src->ino;
78 	dst->blk_addr = src->blk_addr;
79 	dst->version = src->version;
80 	/* should not copy flag here */
81 }
82 
83 static inline void set_nat_flag(struct nat_entry *ne,
84 				unsigned int type, bool set)
85 {
86 	unsigned char mask = 0x01 << type;
87 	if (set)
88 		ne->ni.flag |= mask;
89 	else
90 		ne->ni.flag &= ~mask;
91 }
92 
93 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
94 {
95 	unsigned char mask = 0x01 << type;
96 	return ne->ni.flag & mask;
97 }
98 
99 static inline void nat_reset_flag(struct nat_entry *ne)
100 {
101 	/* these states can be set only after checkpoint was done */
102 	set_nat_flag(ne, IS_CHECKPOINTED, true);
103 	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
104 	set_nat_flag(ne, HAS_LAST_FSYNC, true);
105 }
106 
107 static inline void node_info_from_raw_nat(struct node_info *ni,
108 						struct f2fs_nat_entry *raw_ne)
109 {
110 	ni->ino = le32_to_cpu(raw_ne->ino);
111 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
112 	ni->version = raw_ne->version;
113 }
114 
115 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
116 						struct node_info *ni)
117 {
118 	raw_ne->ino = cpu_to_le32(ni->ino);
119 	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
120 	raw_ne->version = ni->version;
121 }
122 
123 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
124 {
125 	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
126 					NM_I(sbi)->dirty_nats_ratio / 100;
127 }
128 
129 enum mem_type {
130 	FREE_NIDS,	/* indicates the free nid list */
131 	NAT_ENTRIES,	/* indicates the cached nat entry */
132 	DIRTY_DENTS,	/* indicates dirty dentry pages */
133 	INO_ENTRIES,	/* indicates inode entries */
134 	EXTENT_CACHE,	/* indicates extent cache */
135 	BASE_CHECK,	/* check kernel status */
136 };
137 
138 struct nat_entry_set {
139 	struct list_head set_list;	/* link with other nat sets */
140 	struct list_head entry_list;	/* link with dirty nat entries */
141 	nid_t set;			/* set number*/
142 	unsigned int entry_cnt;		/* the # of nat entries in set */
143 };
144 
145 /*
146  * For free nid mangement
147  */
148 enum nid_state {
149 	NID_NEW,	/* newly added to free nid list */
150 	NID_ALLOC	/* it is allocated */
151 };
152 
153 struct free_nid {
154 	struct list_head list;	/* for free node id list */
155 	nid_t nid;		/* node id */
156 	int state;		/* in use or not: NID_NEW or NID_ALLOC */
157 };
158 
159 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
160 {
161 	struct f2fs_nm_info *nm_i = NM_I(sbi);
162 	struct free_nid *fnid;
163 
164 	spin_lock(&nm_i->free_nid_list_lock);
165 	if (nm_i->fcnt <= 0) {
166 		spin_unlock(&nm_i->free_nid_list_lock);
167 		return;
168 	}
169 	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
170 	*nid = fnid->nid;
171 	spin_unlock(&nm_i->free_nid_list_lock);
172 }
173 
174 /*
175  * inline functions
176  */
177 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
178 {
179 	struct f2fs_nm_info *nm_i = NM_I(sbi);
180 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
181 }
182 
183 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
184 {
185 	struct f2fs_nm_info *nm_i = NM_I(sbi);
186 	pgoff_t block_off;
187 	pgoff_t block_addr;
188 	int seg_off;
189 
190 	block_off = NAT_BLOCK_OFFSET(start);
191 	seg_off = block_off >> sbi->log_blocks_per_seg;
192 
193 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
194 		(seg_off << sbi->log_blocks_per_seg << 1) +
195 		(block_off & (sbi->blocks_per_seg - 1)));
196 
197 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
198 		block_addr += sbi->blocks_per_seg;
199 
200 	return block_addr;
201 }
202 
203 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
204 						pgoff_t block_addr)
205 {
206 	struct f2fs_nm_info *nm_i = NM_I(sbi);
207 
208 	block_addr -= nm_i->nat_blkaddr;
209 	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
210 		block_addr -= sbi->blocks_per_seg;
211 	else
212 		block_addr += sbi->blocks_per_seg;
213 
214 	return block_addr + nm_i->nat_blkaddr;
215 }
216 
217 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
218 {
219 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
220 
221 	f2fs_change_bit(block_off, nm_i->nat_bitmap);
222 }
223 
224 static inline void fill_node_footer(struct page *page, nid_t nid,
225 				nid_t ino, unsigned int ofs, bool reset)
226 {
227 	struct f2fs_node *rn = F2FS_NODE(page);
228 	unsigned int old_flag = 0;
229 
230 	if (reset)
231 		memset(rn, 0, sizeof(*rn));
232 	else
233 		old_flag = le32_to_cpu(rn->footer.flag);
234 
235 	rn->footer.nid = cpu_to_le32(nid);
236 	rn->footer.ino = cpu_to_le32(ino);
237 
238 	/* should remain old flag bits such as COLD_BIT_SHIFT */
239 	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
240 					(old_flag & OFFSET_BIT_MASK));
241 }
242 
243 static inline void copy_node_footer(struct page *dst, struct page *src)
244 {
245 	struct f2fs_node *src_rn = F2FS_NODE(src);
246 	struct f2fs_node *dst_rn = F2FS_NODE(dst);
247 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
248 }
249 
250 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
251 {
252 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
253 	struct f2fs_node *rn = F2FS_NODE(page);
254 
255 	rn->footer.cp_ver = ckpt->checkpoint_ver;
256 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
257 }
258 
259 static inline nid_t ino_of_node(struct page *node_page)
260 {
261 	struct f2fs_node *rn = F2FS_NODE(node_page);
262 	return le32_to_cpu(rn->footer.ino);
263 }
264 
265 static inline nid_t nid_of_node(struct page *node_page)
266 {
267 	struct f2fs_node *rn = F2FS_NODE(node_page);
268 	return le32_to_cpu(rn->footer.nid);
269 }
270 
271 static inline unsigned int ofs_of_node(struct page *node_page)
272 {
273 	struct f2fs_node *rn = F2FS_NODE(node_page);
274 	unsigned flag = le32_to_cpu(rn->footer.flag);
275 	return flag >> OFFSET_BIT_SHIFT;
276 }
277 
278 static inline unsigned long long cpver_of_node(struct page *node_page)
279 {
280 	struct f2fs_node *rn = F2FS_NODE(node_page);
281 	return le64_to_cpu(rn->footer.cp_ver);
282 }
283 
284 static inline block_t next_blkaddr_of_node(struct page *node_page)
285 {
286 	struct f2fs_node *rn = F2FS_NODE(node_page);
287 	return le32_to_cpu(rn->footer.next_blkaddr);
288 }
289 
290 /*
291  * f2fs assigns the following node offsets described as (num).
292  * N = NIDS_PER_BLOCK
293  *
294  *  Inode block (0)
295  *    |- direct node (1)
296  *    |- direct node (2)
297  *    |- indirect node (3)
298  *    |            `- direct node (4 => 4 + N - 1)
299  *    |- indirect node (4 + N)
300  *    |            `- direct node (5 + N => 5 + 2N - 1)
301  *    `- double indirect node (5 + 2N)
302  *                 `- indirect node (6 + 2N)
303  *                       `- direct node
304  *                 ......
305  *                 `- indirect node ((6 + 2N) + x(N + 1))
306  *                       `- direct node
307  *                 ......
308  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
309  *                       `- direct node
310  */
311 static inline bool IS_DNODE(struct page *node_page)
312 {
313 	unsigned int ofs = ofs_of_node(node_page);
314 
315 	if (f2fs_has_xattr_block(ofs))
316 		return false;
317 
318 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
319 			ofs == 5 + 2 * NIDS_PER_BLOCK)
320 		return false;
321 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
322 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
323 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
324 			return false;
325 	}
326 	return true;
327 }
328 
329 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
330 {
331 	struct f2fs_node *rn = F2FS_NODE(p);
332 
333 	f2fs_wait_on_page_writeback(p, NODE, true);
334 
335 	if (i)
336 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
337 	else
338 		rn->in.nid[off] = cpu_to_le32(nid);
339 	return set_page_dirty(p);
340 }
341 
342 static inline nid_t get_nid(struct page *p, int off, bool i)
343 {
344 	struct f2fs_node *rn = F2FS_NODE(p);
345 
346 	if (i)
347 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
348 	return le32_to_cpu(rn->in.nid[off]);
349 }
350 
351 /*
352  * Coldness identification:
353  *  - Mark cold files in f2fs_inode_info
354  *  - Mark cold node blocks in their node footer
355  *  - Mark cold data pages in page cache
356  */
357 static inline int is_cold_data(struct page *page)
358 {
359 	return PageChecked(page);
360 }
361 
362 static inline void set_cold_data(struct page *page)
363 {
364 	SetPageChecked(page);
365 }
366 
367 static inline void clear_cold_data(struct page *page)
368 {
369 	ClearPageChecked(page);
370 }
371 
372 static inline int is_node(struct page *page, int type)
373 {
374 	struct f2fs_node *rn = F2FS_NODE(page);
375 	return le32_to_cpu(rn->footer.flag) & (1 << type);
376 }
377 
378 #define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
379 #define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
380 #define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
381 
382 static inline int is_inline_node(struct page *page)
383 {
384 	return PageChecked(page);
385 }
386 
387 static inline void set_inline_node(struct page *page)
388 {
389 	SetPageChecked(page);
390 }
391 
392 static inline void clear_inline_node(struct page *page)
393 {
394 	ClearPageChecked(page);
395 }
396 
397 static inline void set_cold_node(struct inode *inode, struct page *page)
398 {
399 	struct f2fs_node *rn = F2FS_NODE(page);
400 	unsigned int flag = le32_to_cpu(rn->footer.flag);
401 
402 	if (S_ISDIR(inode->i_mode))
403 		flag &= ~(0x1 << COLD_BIT_SHIFT);
404 	else
405 		flag |= (0x1 << COLD_BIT_SHIFT);
406 	rn->footer.flag = cpu_to_le32(flag);
407 }
408 
409 static inline void set_mark(struct page *page, int mark, int type)
410 {
411 	struct f2fs_node *rn = F2FS_NODE(page);
412 	unsigned int flag = le32_to_cpu(rn->footer.flag);
413 	if (mark)
414 		flag |= (0x1 << type);
415 	else
416 		flag &= ~(0x1 << type);
417 	rn->footer.flag = cpu_to_le32(flag);
418 }
419 #define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
420 #define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
421