1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "xattr.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 27 28 static struct kmem_cache *nat_entry_slab; 29 static struct kmem_cache *free_nid_slab; 30 static struct kmem_cache *nat_entry_set_slab; 31 32 /* 33 * Check whether the given nid is within node id range. 34 */ 35 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 36 { 37 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 38 set_sbi_flag(sbi, SBI_NEED_FSCK); 39 f2fs_msg(sbi->sb, KERN_WARNING, 40 "%s: out-of-range nid=%x, run fsck to fix.", 41 __func__, nid); 42 return -EINVAL; 43 } 44 return 0; 45 } 46 47 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 48 { 49 struct f2fs_nm_info *nm_i = NM_I(sbi); 50 struct sysinfo val; 51 unsigned long avail_ram; 52 unsigned long mem_size = 0; 53 bool res = false; 54 55 si_meminfo(&val); 56 57 /* only uses low memory */ 58 avail_ram = val.totalram - val.totalhigh; 59 60 /* 61 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 62 */ 63 if (type == FREE_NIDS) { 64 mem_size = (nm_i->nid_cnt[FREE_NID] * 65 sizeof(struct free_nid)) >> PAGE_SHIFT; 66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 67 } else if (type == NAT_ENTRIES) { 68 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 69 PAGE_SHIFT; 70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 71 if (excess_cached_nats(sbi)) 72 res = false; 73 } else if (type == DIRTY_DENTS) { 74 if (sbi->sb->s_bdi->wb.dirty_exceeded) 75 return false; 76 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 77 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 78 } else if (type == INO_ENTRIES) { 79 int i; 80 81 for (i = 0; i < MAX_INO_ENTRY; i++) 82 mem_size += sbi->im[i].ino_num * 83 sizeof(struct ino_entry); 84 mem_size >>= PAGE_SHIFT; 85 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 86 } else if (type == EXTENT_CACHE) { 87 mem_size = (atomic_read(&sbi->total_ext_tree) * 88 sizeof(struct extent_tree) + 89 atomic_read(&sbi->total_ext_node) * 90 sizeof(struct extent_node)) >> PAGE_SHIFT; 91 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 92 } else if (type == INMEM_PAGES) { 93 /* it allows 20% / total_ram for inmemory pages */ 94 mem_size = get_pages(sbi, F2FS_INMEM_PAGES); 95 res = mem_size < (val.totalram / 5); 96 } else { 97 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 98 return true; 99 } 100 return res; 101 } 102 103 static void clear_node_page_dirty(struct page *page) 104 { 105 if (PageDirty(page)) { 106 f2fs_clear_radix_tree_dirty_tag(page); 107 clear_page_dirty_for_io(page); 108 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 109 } 110 ClearPageUptodate(page); 111 } 112 113 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 114 { 115 pgoff_t index = current_nat_addr(sbi, nid); 116 return f2fs_get_meta_page(sbi, index); 117 } 118 119 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 120 { 121 struct page *src_page; 122 struct page *dst_page; 123 pgoff_t src_off; 124 pgoff_t dst_off; 125 void *src_addr; 126 void *dst_addr; 127 struct f2fs_nm_info *nm_i = NM_I(sbi); 128 129 src_off = current_nat_addr(sbi, nid); 130 dst_off = next_nat_addr(sbi, src_off); 131 132 /* get current nat block page with lock */ 133 src_page = f2fs_get_meta_page(sbi, src_off); 134 dst_page = f2fs_grab_meta_page(sbi, dst_off); 135 f2fs_bug_on(sbi, PageDirty(src_page)); 136 137 src_addr = page_address(src_page); 138 dst_addr = page_address(dst_page); 139 memcpy(dst_addr, src_addr, PAGE_SIZE); 140 set_page_dirty(dst_page); 141 f2fs_put_page(src_page, 1); 142 143 set_to_next_nat(nm_i, nid); 144 145 return dst_page; 146 } 147 148 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail) 149 { 150 struct nat_entry *new; 151 152 if (no_fail) 153 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 154 else 155 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 156 if (new) { 157 nat_set_nid(new, nid); 158 nat_reset_flag(new); 159 } 160 return new; 161 } 162 163 static void __free_nat_entry(struct nat_entry *e) 164 { 165 kmem_cache_free(nat_entry_slab, e); 166 } 167 168 /* must be locked by nat_tree_lock */ 169 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 170 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 171 { 172 if (no_fail) 173 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 174 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 175 return NULL; 176 177 if (raw_ne) 178 node_info_from_raw_nat(&ne->ni, raw_ne); 179 list_add_tail(&ne->list, &nm_i->nat_entries); 180 nm_i->nat_cnt++; 181 return ne; 182 } 183 184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 185 { 186 return radix_tree_lookup(&nm_i->nat_root, n); 187 } 188 189 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 190 nid_t start, unsigned int nr, struct nat_entry **ep) 191 { 192 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 193 } 194 195 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 196 { 197 list_del(&e->list); 198 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 199 nm_i->nat_cnt--; 200 __free_nat_entry(e); 201 } 202 203 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 204 struct nat_entry *ne) 205 { 206 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 207 struct nat_entry_set *head; 208 209 head = radix_tree_lookup(&nm_i->nat_set_root, set); 210 if (!head) { 211 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 212 213 INIT_LIST_HEAD(&head->entry_list); 214 INIT_LIST_HEAD(&head->set_list); 215 head->set = set; 216 head->entry_cnt = 0; 217 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 218 } 219 return head; 220 } 221 222 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 223 struct nat_entry *ne) 224 { 225 struct nat_entry_set *head; 226 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 227 228 if (!new_ne) 229 head = __grab_nat_entry_set(nm_i, ne); 230 231 /* 232 * update entry_cnt in below condition: 233 * 1. update NEW_ADDR to valid block address; 234 * 2. update old block address to new one; 235 */ 236 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 237 !get_nat_flag(ne, IS_DIRTY))) 238 head->entry_cnt++; 239 240 set_nat_flag(ne, IS_PREALLOC, new_ne); 241 242 if (get_nat_flag(ne, IS_DIRTY)) 243 goto refresh_list; 244 245 nm_i->dirty_nat_cnt++; 246 set_nat_flag(ne, IS_DIRTY, true); 247 refresh_list: 248 if (new_ne) 249 list_del_init(&ne->list); 250 else 251 list_move_tail(&ne->list, &head->entry_list); 252 } 253 254 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 255 struct nat_entry_set *set, struct nat_entry *ne) 256 { 257 list_move_tail(&ne->list, &nm_i->nat_entries); 258 set_nat_flag(ne, IS_DIRTY, false); 259 set->entry_cnt--; 260 nm_i->dirty_nat_cnt--; 261 } 262 263 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 264 nid_t start, unsigned int nr, struct nat_entry_set **ep) 265 { 266 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 267 start, nr); 268 } 269 270 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 271 { 272 struct f2fs_nm_info *nm_i = NM_I(sbi); 273 struct nat_entry *e; 274 bool need = false; 275 276 down_read(&nm_i->nat_tree_lock); 277 e = __lookup_nat_cache(nm_i, nid); 278 if (e) { 279 if (!get_nat_flag(e, IS_CHECKPOINTED) && 280 !get_nat_flag(e, HAS_FSYNCED_INODE)) 281 need = true; 282 } 283 up_read(&nm_i->nat_tree_lock); 284 return need; 285 } 286 287 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 288 { 289 struct f2fs_nm_info *nm_i = NM_I(sbi); 290 struct nat_entry *e; 291 bool is_cp = true; 292 293 down_read(&nm_i->nat_tree_lock); 294 e = __lookup_nat_cache(nm_i, nid); 295 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 296 is_cp = false; 297 up_read(&nm_i->nat_tree_lock); 298 return is_cp; 299 } 300 301 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 302 { 303 struct f2fs_nm_info *nm_i = NM_I(sbi); 304 struct nat_entry *e; 305 bool need_update = true; 306 307 down_read(&nm_i->nat_tree_lock); 308 e = __lookup_nat_cache(nm_i, ino); 309 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 310 (get_nat_flag(e, IS_CHECKPOINTED) || 311 get_nat_flag(e, HAS_FSYNCED_INODE))) 312 need_update = false; 313 up_read(&nm_i->nat_tree_lock); 314 return need_update; 315 } 316 317 /* must be locked by nat_tree_lock */ 318 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 319 struct f2fs_nat_entry *ne) 320 { 321 struct f2fs_nm_info *nm_i = NM_I(sbi); 322 struct nat_entry *new, *e; 323 324 new = __alloc_nat_entry(nid, false); 325 if (!new) 326 return; 327 328 down_write(&nm_i->nat_tree_lock); 329 e = __lookup_nat_cache(nm_i, nid); 330 if (!e) 331 e = __init_nat_entry(nm_i, new, ne, false); 332 else 333 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 334 nat_get_blkaddr(e) != 335 le32_to_cpu(ne->block_addr) || 336 nat_get_version(e) != ne->version); 337 up_write(&nm_i->nat_tree_lock); 338 if (e != new) 339 __free_nat_entry(new); 340 } 341 342 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 343 block_t new_blkaddr, bool fsync_done) 344 { 345 struct f2fs_nm_info *nm_i = NM_I(sbi); 346 struct nat_entry *e; 347 struct nat_entry *new = __alloc_nat_entry(ni->nid, true); 348 349 down_write(&nm_i->nat_tree_lock); 350 e = __lookup_nat_cache(nm_i, ni->nid); 351 if (!e) { 352 e = __init_nat_entry(nm_i, new, NULL, true); 353 copy_node_info(&e->ni, ni); 354 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 355 } else if (new_blkaddr == NEW_ADDR) { 356 /* 357 * when nid is reallocated, 358 * previous nat entry can be remained in nat cache. 359 * So, reinitialize it with new information. 360 */ 361 copy_node_info(&e->ni, ni); 362 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 363 } 364 /* let's free early to reduce memory consumption */ 365 if (e != new) 366 __free_nat_entry(new); 367 368 /* sanity check */ 369 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 370 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 371 new_blkaddr == NULL_ADDR); 372 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 373 new_blkaddr == NEW_ADDR); 374 f2fs_bug_on(sbi, is_valid_blkaddr(nat_get_blkaddr(e)) && 375 new_blkaddr == NEW_ADDR); 376 377 /* increment version no as node is removed */ 378 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 379 unsigned char version = nat_get_version(e); 380 nat_set_version(e, inc_node_version(version)); 381 } 382 383 /* change address */ 384 nat_set_blkaddr(e, new_blkaddr); 385 if (!is_valid_blkaddr(new_blkaddr)) 386 set_nat_flag(e, IS_CHECKPOINTED, false); 387 __set_nat_cache_dirty(nm_i, e); 388 389 /* update fsync_mark if its inode nat entry is still alive */ 390 if (ni->nid != ni->ino) 391 e = __lookup_nat_cache(nm_i, ni->ino); 392 if (e) { 393 if (fsync_done && ni->nid == ni->ino) 394 set_nat_flag(e, HAS_FSYNCED_INODE, true); 395 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 396 } 397 up_write(&nm_i->nat_tree_lock); 398 } 399 400 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 401 { 402 struct f2fs_nm_info *nm_i = NM_I(sbi); 403 int nr = nr_shrink; 404 405 if (!down_write_trylock(&nm_i->nat_tree_lock)) 406 return 0; 407 408 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 409 struct nat_entry *ne; 410 ne = list_first_entry(&nm_i->nat_entries, 411 struct nat_entry, list); 412 __del_from_nat_cache(nm_i, ne); 413 nr_shrink--; 414 } 415 up_write(&nm_i->nat_tree_lock); 416 return nr - nr_shrink; 417 } 418 419 /* 420 * This function always returns success 421 */ 422 void f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 423 struct node_info *ni) 424 { 425 struct f2fs_nm_info *nm_i = NM_I(sbi); 426 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 427 struct f2fs_journal *journal = curseg->journal; 428 nid_t start_nid = START_NID(nid); 429 struct f2fs_nat_block *nat_blk; 430 struct page *page = NULL; 431 struct f2fs_nat_entry ne; 432 struct nat_entry *e; 433 pgoff_t index; 434 int i; 435 436 ni->nid = nid; 437 438 /* Check nat cache */ 439 down_read(&nm_i->nat_tree_lock); 440 e = __lookup_nat_cache(nm_i, nid); 441 if (e) { 442 ni->ino = nat_get_ino(e); 443 ni->blk_addr = nat_get_blkaddr(e); 444 ni->version = nat_get_version(e); 445 up_read(&nm_i->nat_tree_lock); 446 return; 447 } 448 449 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 450 451 /* Check current segment summary */ 452 down_read(&curseg->journal_rwsem); 453 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 454 if (i >= 0) { 455 ne = nat_in_journal(journal, i); 456 node_info_from_raw_nat(ni, &ne); 457 } 458 up_read(&curseg->journal_rwsem); 459 if (i >= 0) { 460 up_read(&nm_i->nat_tree_lock); 461 goto cache; 462 } 463 464 /* Fill node_info from nat page */ 465 index = current_nat_addr(sbi, nid); 466 up_read(&nm_i->nat_tree_lock); 467 468 page = f2fs_get_meta_page(sbi, index); 469 nat_blk = (struct f2fs_nat_block *)page_address(page); 470 ne = nat_blk->entries[nid - start_nid]; 471 node_info_from_raw_nat(ni, &ne); 472 f2fs_put_page(page, 1); 473 cache: 474 /* cache nat entry */ 475 cache_nat_entry(sbi, nid, &ne); 476 } 477 478 /* 479 * readahead MAX_RA_NODE number of node pages. 480 */ 481 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 482 { 483 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 484 struct blk_plug plug; 485 int i, end; 486 nid_t nid; 487 488 blk_start_plug(&plug); 489 490 /* Then, try readahead for siblings of the desired node */ 491 end = start + n; 492 end = min(end, NIDS_PER_BLOCK); 493 for (i = start; i < end; i++) { 494 nid = get_nid(parent, i, false); 495 f2fs_ra_node_page(sbi, nid); 496 } 497 498 blk_finish_plug(&plug); 499 } 500 501 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 502 { 503 const long direct_index = ADDRS_PER_INODE(dn->inode); 504 const long direct_blks = ADDRS_PER_BLOCK; 505 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 506 unsigned int skipped_unit = ADDRS_PER_BLOCK; 507 int cur_level = dn->cur_level; 508 int max_level = dn->max_level; 509 pgoff_t base = 0; 510 511 if (!dn->max_level) 512 return pgofs + 1; 513 514 while (max_level-- > cur_level) 515 skipped_unit *= NIDS_PER_BLOCK; 516 517 switch (dn->max_level) { 518 case 3: 519 base += 2 * indirect_blks; 520 case 2: 521 base += 2 * direct_blks; 522 case 1: 523 base += direct_index; 524 break; 525 default: 526 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 527 } 528 529 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 530 } 531 532 /* 533 * The maximum depth is four. 534 * Offset[0] will have raw inode offset. 535 */ 536 static int get_node_path(struct inode *inode, long block, 537 int offset[4], unsigned int noffset[4]) 538 { 539 const long direct_index = ADDRS_PER_INODE(inode); 540 const long direct_blks = ADDRS_PER_BLOCK; 541 const long dptrs_per_blk = NIDS_PER_BLOCK; 542 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 543 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 544 int n = 0; 545 int level = 0; 546 547 noffset[0] = 0; 548 549 if (block < direct_index) { 550 offset[n] = block; 551 goto got; 552 } 553 block -= direct_index; 554 if (block < direct_blks) { 555 offset[n++] = NODE_DIR1_BLOCK; 556 noffset[n] = 1; 557 offset[n] = block; 558 level = 1; 559 goto got; 560 } 561 block -= direct_blks; 562 if (block < direct_blks) { 563 offset[n++] = NODE_DIR2_BLOCK; 564 noffset[n] = 2; 565 offset[n] = block; 566 level = 1; 567 goto got; 568 } 569 block -= direct_blks; 570 if (block < indirect_blks) { 571 offset[n++] = NODE_IND1_BLOCK; 572 noffset[n] = 3; 573 offset[n++] = block / direct_blks; 574 noffset[n] = 4 + offset[n - 1]; 575 offset[n] = block % direct_blks; 576 level = 2; 577 goto got; 578 } 579 block -= indirect_blks; 580 if (block < indirect_blks) { 581 offset[n++] = NODE_IND2_BLOCK; 582 noffset[n] = 4 + dptrs_per_blk; 583 offset[n++] = block / direct_blks; 584 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 585 offset[n] = block % direct_blks; 586 level = 2; 587 goto got; 588 } 589 block -= indirect_blks; 590 if (block < dindirect_blks) { 591 offset[n++] = NODE_DIND_BLOCK; 592 noffset[n] = 5 + (dptrs_per_blk * 2); 593 offset[n++] = block / indirect_blks; 594 noffset[n] = 6 + (dptrs_per_blk * 2) + 595 offset[n - 1] * (dptrs_per_blk + 1); 596 offset[n++] = (block / direct_blks) % dptrs_per_blk; 597 noffset[n] = 7 + (dptrs_per_blk * 2) + 598 offset[n - 2] * (dptrs_per_blk + 1) + 599 offset[n - 1]; 600 offset[n] = block % direct_blks; 601 level = 3; 602 goto got; 603 } else { 604 return -E2BIG; 605 } 606 got: 607 return level; 608 } 609 610 /* 611 * Caller should call f2fs_put_dnode(dn). 612 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 613 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 614 * In the case of RDONLY_NODE, we don't need to care about mutex. 615 */ 616 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 617 { 618 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 619 struct page *npage[4]; 620 struct page *parent = NULL; 621 int offset[4]; 622 unsigned int noffset[4]; 623 nid_t nids[4]; 624 int level, i = 0; 625 int err = 0; 626 627 level = get_node_path(dn->inode, index, offset, noffset); 628 if (level < 0) 629 return level; 630 631 nids[0] = dn->inode->i_ino; 632 npage[0] = dn->inode_page; 633 634 if (!npage[0]) { 635 npage[0] = f2fs_get_node_page(sbi, nids[0]); 636 if (IS_ERR(npage[0])) 637 return PTR_ERR(npage[0]); 638 } 639 640 /* if inline_data is set, should not report any block indices */ 641 if (f2fs_has_inline_data(dn->inode) && index) { 642 err = -ENOENT; 643 f2fs_put_page(npage[0], 1); 644 goto release_out; 645 } 646 647 parent = npage[0]; 648 if (level != 0) 649 nids[1] = get_nid(parent, offset[0], true); 650 dn->inode_page = npage[0]; 651 dn->inode_page_locked = true; 652 653 /* get indirect or direct nodes */ 654 for (i = 1; i <= level; i++) { 655 bool done = false; 656 657 if (!nids[i] && mode == ALLOC_NODE) { 658 /* alloc new node */ 659 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 660 err = -ENOSPC; 661 goto release_pages; 662 } 663 664 dn->nid = nids[i]; 665 npage[i] = f2fs_new_node_page(dn, noffset[i]); 666 if (IS_ERR(npage[i])) { 667 f2fs_alloc_nid_failed(sbi, nids[i]); 668 err = PTR_ERR(npage[i]); 669 goto release_pages; 670 } 671 672 set_nid(parent, offset[i - 1], nids[i], i == 1); 673 f2fs_alloc_nid_done(sbi, nids[i]); 674 done = true; 675 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 676 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 677 if (IS_ERR(npage[i])) { 678 err = PTR_ERR(npage[i]); 679 goto release_pages; 680 } 681 done = true; 682 } 683 if (i == 1) { 684 dn->inode_page_locked = false; 685 unlock_page(parent); 686 } else { 687 f2fs_put_page(parent, 1); 688 } 689 690 if (!done) { 691 npage[i] = f2fs_get_node_page(sbi, nids[i]); 692 if (IS_ERR(npage[i])) { 693 err = PTR_ERR(npage[i]); 694 f2fs_put_page(npage[0], 0); 695 goto release_out; 696 } 697 } 698 if (i < level) { 699 parent = npage[i]; 700 nids[i + 1] = get_nid(parent, offset[i], false); 701 } 702 } 703 dn->nid = nids[level]; 704 dn->ofs_in_node = offset[level]; 705 dn->node_page = npage[level]; 706 dn->data_blkaddr = datablock_addr(dn->inode, 707 dn->node_page, dn->ofs_in_node); 708 return 0; 709 710 release_pages: 711 f2fs_put_page(parent, 1); 712 if (i > 1) 713 f2fs_put_page(npage[0], 0); 714 release_out: 715 dn->inode_page = NULL; 716 dn->node_page = NULL; 717 if (err == -ENOENT) { 718 dn->cur_level = i; 719 dn->max_level = level; 720 dn->ofs_in_node = offset[level]; 721 } 722 return err; 723 } 724 725 static void truncate_node(struct dnode_of_data *dn) 726 { 727 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 728 struct node_info ni; 729 730 f2fs_get_node_info(sbi, dn->nid, &ni); 731 732 /* Deallocate node address */ 733 f2fs_invalidate_blocks(sbi, ni.blk_addr); 734 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 735 set_node_addr(sbi, &ni, NULL_ADDR, false); 736 737 if (dn->nid == dn->inode->i_ino) { 738 f2fs_remove_orphan_inode(sbi, dn->nid); 739 dec_valid_inode_count(sbi); 740 f2fs_inode_synced(dn->inode); 741 } 742 743 clear_node_page_dirty(dn->node_page); 744 set_sbi_flag(sbi, SBI_IS_DIRTY); 745 746 f2fs_put_page(dn->node_page, 1); 747 748 invalidate_mapping_pages(NODE_MAPPING(sbi), 749 dn->node_page->index, dn->node_page->index); 750 751 dn->node_page = NULL; 752 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 753 } 754 755 static int truncate_dnode(struct dnode_of_data *dn) 756 { 757 struct page *page; 758 759 if (dn->nid == 0) 760 return 1; 761 762 /* get direct node */ 763 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 764 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 765 return 1; 766 else if (IS_ERR(page)) 767 return PTR_ERR(page); 768 769 /* Make dnode_of_data for parameter */ 770 dn->node_page = page; 771 dn->ofs_in_node = 0; 772 f2fs_truncate_data_blocks(dn); 773 truncate_node(dn); 774 return 1; 775 } 776 777 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 778 int ofs, int depth) 779 { 780 struct dnode_of_data rdn = *dn; 781 struct page *page; 782 struct f2fs_node *rn; 783 nid_t child_nid; 784 unsigned int child_nofs; 785 int freed = 0; 786 int i, ret; 787 788 if (dn->nid == 0) 789 return NIDS_PER_BLOCK + 1; 790 791 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 792 793 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 794 if (IS_ERR(page)) { 795 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 796 return PTR_ERR(page); 797 } 798 799 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 800 801 rn = F2FS_NODE(page); 802 if (depth < 3) { 803 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 804 child_nid = le32_to_cpu(rn->in.nid[i]); 805 if (child_nid == 0) 806 continue; 807 rdn.nid = child_nid; 808 ret = truncate_dnode(&rdn); 809 if (ret < 0) 810 goto out_err; 811 if (set_nid(page, i, 0, false)) 812 dn->node_changed = true; 813 } 814 } else { 815 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 816 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 817 child_nid = le32_to_cpu(rn->in.nid[i]); 818 if (child_nid == 0) { 819 child_nofs += NIDS_PER_BLOCK + 1; 820 continue; 821 } 822 rdn.nid = child_nid; 823 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 824 if (ret == (NIDS_PER_BLOCK + 1)) { 825 if (set_nid(page, i, 0, false)) 826 dn->node_changed = true; 827 child_nofs += ret; 828 } else if (ret < 0 && ret != -ENOENT) { 829 goto out_err; 830 } 831 } 832 freed = child_nofs; 833 } 834 835 if (!ofs) { 836 /* remove current indirect node */ 837 dn->node_page = page; 838 truncate_node(dn); 839 freed++; 840 } else { 841 f2fs_put_page(page, 1); 842 } 843 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 844 return freed; 845 846 out_err: 847 f2fs_put_page(page, 1); 848 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 849 return ret; 850 } 851 852 static int truncate_partial_nodes(struct dnode_of_data *dn, 853 struct f2fs_inode *ri, int *offset, int depth) 854 { 855 struct page *pages[2]; 856 nid_t nid[3]; 857 nid_t child_nid; 858 int err = 0; 859 int i; 860 int idx = depth - 2; 861 862 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 863 if (!nid[0]) 864 return 0; 865 866 /* get indirect nodes in the path */ 867 for (i = 0; i < idx + 1; i++) { 868 /* reference count'll be increased */ 869 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 870 if (IS_ERR(pages[i])) { 871 err = PTR_ERR(pages[i]); 872 idx = i - 1; 873 goto fail; 874 } 875 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 876 } 877 878 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 879 880 /* free direct nodes linked to a partial indirect node */ 881 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 882 child_nid = get_nid(pages[idx], i, false); 883 if (!child_nid) 884 continue; 885 dn->nid = child_nid; 886 err = truncate_dnode(dn); 887 if (err < 0) 888 goto fail; 889 if (set_nid(pages[idx], i, 0, false)) 890 dn->node_changed = true; 891 } 892 893 if (offset[idx + 1] == 0) { 894 dn->node_page = pages[idx]; 895 dn->nid = nid[idx]; 896 truncate_node(dn); 897 } else { 898 f2fs_put_page(pages[idx], 1); 899 } 900 offset[idx]++; 901 offset[idx + 1] = 0; 902 idx--; 903 fail: 904 for (i = idx; i >= 0; i--) 905 f2fs_put_page(pages[i], 1); 906 907 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 908 909 return err; 910 } 911 912 /* 913 * All the block addresses of data and nodes should be nullified. 914 */ 915 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 916 { 917 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 918 int err = 0, cont = 1; 919 int level, offset[4], noffset[4]; 920 unsigned int nofs = 0; 921 struct f2fs_inode *ri; 922 struct dnode_of_data dn; 923 struct page *page; 924 925 trace_f2fs_truncate_inode_blocks_enter(inode, from); 926 927 level = get_node_path(inode, from, offset, noffset); 928 if (level < 0) 929 return level; 930 931 page = f2fs_get_node_page(sbi, inode->i_ino); 932 if (IS_ERR(page)) { 933 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 934 return PTR_ERR(page); 935 } 936 937 set_new_dnode(&dn, inode, page, NULL, 0); 938 unlock_page(page); 939 940 ri = F2FS_INODE(page); 941 switch (level) { 942 case 0: 943 case 1: 944 nofs = noffset[1]; 945 break; 946 case 2: 947 nofs = noffset[1]; 948 if (!offset[level - 1]) 949 goto skip_partial; 950 err = truncate_partial_nodes(&dn, ri, offset, level); 951 if (err < 0 && err != -ENOENT) 952 goto fail; 953 nofs += 1 + NIDS_PER_BLOCK; 954 break; 955 case 3: 956 nofs = 5 + 2 * NIDS_PER_BLOCK; 957 if (!offset[level - 1]) 958 goto skip_partial; 959 err = truncate_partial_nodes(&dn, ri, offset, level); 960 if (err < 0 && err != -ENOENT) 961 goto fail; 962 break; 963 default: 964 BUG(); 965 } 966 967 skip_partial: 968 while (cont) { 969 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 970 switch (offset[0]) { 971 case NODE_DIR1_BLOCK: 972 case NODE_DIR2_BLOCK: 973 err = truncate_dnode(&dn); 974 break; 975 976 case NODE_IND1_BLOCK: 977 case NODE_IND2_BLOCK: 978 err = truncate_nodes(&dn, nofs, offset[1], 2); 979 break; 980 981 case NODE_DIND_BLOCK: 982 err = truncate_nodes(&dn, nofs, offset[1], 3); 983 cont = 0; 984 break; 985 986 default: 987 BUG(); 988 } 989 if (err < 0 && err != -ENOENT) 990 goto fail; 991 if (offset[1] == 0 && 992 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 993 lock_page(page); 994 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 995 f2fs_wait_on_page_writeback(page, NODE, true); 996 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 997 set_page_dirty(page); 998 unlock_page(page); 999 } 1000 offset[1] = 0; 1001 offset[0]++; 1002 nofs += err; 1003 } 1004 fail: 1005 f2fs_put_page(page, 0); 1006 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1007 return err > 0 ? 0 : err; 1008 } 1009 1010 /* caller must lock inode page */ 1011 int f2fs_truncate_xattr_node(struct inode *inode) 1012 { 1013 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1014 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1015 struct dnode_of_data dn; 1016 struct page *npage; 1017 1018 if (!nid) 1019 return 0; 1020 1021 npage = f2fs_get_node_page(sbi, nid); 1022 if (IS_ERR(npage)) 1023 return PTR_ERR(npage); 1024 1025 f2fs_i_xnid_write(inode, 0); 1026 1027 set_new_dnode(&dn, inode, NULL, npage, nid); 1028 truncate_node(&dn); 1029 return 0; 1030 } 1031 1032 /* 1033 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1034 * f2fs_unlock_op(). 1035 */ 1036 int f2fs_remove_inode_page(struct inode *inode) 1037 { 1038 struct dnode_of_data dn; 1039 int err; 1040 1041 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1042 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1043 if (err) 1044 return err; 1045 1046 err = f2fs_truncate_xattr_node(inode); 1047 if (err) { 1048 f2fs_put_dnode(&dn); 1049 return err; 1050 } 1051 1052 /* remove potential inline_data blocks */ 1053 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1054 S_ISLNK(inode->i_mode)) 1055 f2fs_truncate_data_blocks_range(&dn, 1); 1056 1057 /* 0 is possible, after f2fs_new_inode() has failed */ 1058 f2fs_bug_on(F2FS_I_SB(inode), 1059 inode->i_blocks != 0 && inode->i_blocks != 8); 1060 1061 /* will put inode & node pages */ 1062 truncate_node(&dn); 1063 return 0; 1064 } 1065 1066 struct page *f2fs_new_inode_page(struct inode *inode) 1067 { 1068 struct dnode_of_data dn; 1069 1070 /* allocate inode page for new inode */ 1071 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1072 1073 /* caller should f2fs_put_page(page, 1); */ 1074 return f2fs_new_node_page(&dn, 0); 1075 } 1076 1077 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1078 { 1079 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1080 struct node_info new_ni; 1081 struct page *page; 1082 int err; 1083 1084 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1085 return ERR_PTR(-EPERM); 1086 1087 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1088 if (!page) 1089 return ERR_PTR(-ENOMEM); 1090 1091 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1092 goto fail; 1093 1094 #ifdef CONFIG_F2FS_CHECK_FS 1095 f2fs_get_node_info(sbi, dn->nid, &new_ni); 1096 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1097 #endif 1098 new_ni.nid = dn->nid; 1099 new_ni.ino = dn->inode->i_ino; 1100 new_ni.blk_addr = NULL_ADDR; 1101 new_ni.flag = 0; 1102 new_ni.version = 0; 1103 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1104 1105 f2fs_wait_on_page_writeback(page, NODE, true); 1106 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1107 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1108 if (!PageUptodate(page)) 1109 SetPageUptodate(page); 1110 if (set_page_dirty(page)) 1111 dn->node_changed = true; 1112 1113 if (f2fs_has_xattr_block(ofs)) 1114 f2fs_i_xnid_write(dn->inode, dn->nid); 1115 1116 if (ofs == 0) 1117 inc_valid_inode_count(sbi); 1118 return page; 1119 1120 fail: 1121 clear_node_page_dirty(page); 1122 f2fs_put_page(page, 1); 1123 return ERR_PTR(err); 1124 } 1125 1126 /* 1127 * Caller should do after getting the following values. 1128 * 0: f2fs_put_page(page, 0) 1129 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1130 */ 1131 static int read_node_page(struct page *page, int op_flags) 1132 { 1133 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1134 struct node_info ni; 1135 struct f2fs_io_info fio = { 1136 .sbi = sbi, 1137 .type = NODE, 1138 .op = REQ_OP_READ, 1139 .op_flags = op_flags, 1140 .page = page, 1141 .encrypted_page = NULL, 1142 }; 1143 1144 if (PageUptodate(page)) 1145 return LOCKED_PAGE; 1146 1147 f2fs_get_node_info(sbi, page->index, &ni); 1148 1149 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1150 ClearPageUptodate(page); 1151 return -ENOENT; 1152 } 1153 1154 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1155 return f2fs_submit_page_bio(&fio); 1156 } 1157 1158 /* 1159 * Readahead a node page 1160 */ 1161 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1162 { 1163 struct page *apage; 1164 int err; 1165 1166 if (!nid) 1167 return; 1168 if (f2fs_check_nid_range(sbi, nid)) 1169 return; 1170 1171 rcu_read_lock(); 1172 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid); 1173 rcu_read_unlock(); 1174 if (apage) 1175 return; 1176 1177 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1178 if (!apage) 1179 return; 1180 1181 err = read_node_page(apage, REQ_RAHEAD); 1182 f2fs_put_page(apage, err ? 1 : 0); 1183 } 1184 1185 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1186 struct page *parent, int start) 1187 { 1188 struct page *page; 1189 int err; 1190 1191 if (!nid) 1192 return ERR_PTR(-ENOENT); 1193 if (f2fs_check_nid_range(sbi, nid)) 1194 return ERR_PTR(-EINVAL); 1195 repeat: 1196 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1197 if (!page) 1198 return ERR_PTR(-ENOMEM); 1199 1200 err = read_node_page(page, 0); 1201 if (err < 0) { 1202 f2fs_put_page(page, 1); 1203 return ERR_PTR(err); 1204 } else if (err == LOCKED_PAGE) { 1205 err = 0; 1206 goto page_hit; 1207 } 1208 1209 if (parent) 1210 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1211 1212 lock_page(page); 1213 1214 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1215 f2fs_put_page(page, 1); 1216 goto repeat; 1217 } 1218 1219 if (unlikely(!PageUptodate(page))) { 1220 err = -EIO; 1221 goto out_err; 1222 } 1223 1224 if (!f2fs_inode_chksum_verify(sbi, page)) { 1225 err = -EBADMSG; 1226 goto out_err; 1227 } 1228 page_hit: 1229 if(unlikely(nid != nid_of_node(page))) { 1230 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, " 1231 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1232 nid, nid_of_node(page), ino_of_node(page), 1233 ofs_of_node(page), cpver_of_node(page), 1234 next_blkaddr_of_node(page)); 1235 err = -EINVAL; 1236 out_err: 1237 ClearPageUptodate(page); 1238 f2fs_put_page(page, 1); 1239 return ERR_PTR(err); 1240 } 1241 return page; 1242 } 1243 1244 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1245 { 1246 return __get_node_page(sbi, nid, NULL, 0); 1247 } 1248 1249 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1250 { 1251 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1252 nid_t nid = get_nid(parent, start, false); 1253 1254 return __get_node_page(sbi, nid, parent, start); 1255 } 1256 1257 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1258 { 1259 struct inode *inode; 1260 struct page *page; 1261 int ret; 1262 1263 /* should flush inline_data before evict_inode */ 1264 inode = ilookup(sbi->sb, ino); 1265 if (!inode) 1266 return; 1267 1268 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1269 FGP_LOCK|FGP_NOWAIT, 0); 1270 if (!page) 1271 goto iput_out; 1272 1273 if (!PageUptodate(page)) 1274 goto page_out; 1275 1276 if (!PageDirty(page)) 1277 goto page_out; 1278 1279 if (!clear_page_dirty_for_io(page)) 1280 goto page_out; 1281 1282 ret = f2fs_write_inline_data(inode, page); 1283 inode_dec_dirty_pages(inode); 1284 f2fs_remove_dirty_inode(inode); 1285 if (ret) 1286 set_page_dirty(page); 1287 page_out: 1288 f2fs_put_page(page, 1); 1289 iput_out: 1290 iput(inode); 1291 } 1292 1293 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1294 { 1295 pgoff_t index; 1296 struct pagevec pvec; 1297 struct page *last_page = NULL; 1298 int nr_pages; 1299 1300 pagevec_init(&pvec); 1301 index = 0; 1302 1303 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1304 PAGECACHE_TAG_DIRTY))) { 1305 int i; 1306 1307 for (i = 0; i < nr_pages; i++) { 1308 struct page *page = pvec.pages[i]; 1309 1310 if (unlikely(f2fs_cp_error(sbi))) { 1311 f2fs_put_page(last_page, 0); 1312 pagevec_release(&pvec); 1313 return ERR_PTR(-EIO); 1314 } 1315 1316 if (!IS_DNODE(page) || !is_cold_node(page)) 1317 continue; 1318 if (ino_of_node(page) != ino) 1319 continue; 1320 1321 lock_page(page); 1322 1323 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1324 continue_unlock: 1325 unlock_page(page); 1326 continue; 1327 } 1328 if (ino_of_node(page) != ino) 1329 goto continue_unlock; 1330 1331 if (!PageDirty(page)) { 1332 /* someone wrote it for us */ 1333 goto continue_unlock; 1334 } 1335 1336 if (last_page) 1337 f2fs_put_page(last_page, 0); 1338 1339 get_page(page); 1340 last_page = page; 1341 unlock_page(page); 1342 } 1343 pagevec_release(&pvec); 1344 cond_resched(); 1345 } 1346 return last_page; 1347 } 1348 1349 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1350 struct writeback_control *wbc, bool do_balance, 1351 enum iostat_type io_type) 1352 { 1353 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1354 nid_t nid; 1355 struct node_info ni; 1356 struct f2fs_io_info fio = { 1357 .sbi = sbi, 1358 .ino = ino_of_node(page), 1359 .type = NODE, 1360 .op = REQ_OP_WRITE, 1361 .op_flags = wbc_to_write_flags(wbc), 1362 .page = page, 1363 .encrypted_page = NULL, 1364 .submitted = false, 1365 .io_type = io_type, 1366 .io_wbc = wbc, 1367 }; 1368 1369 trace_f2fs_writepage(page, NODE); 1370 1371 if (unlikely(f2fs_cp_error(sbi))) 1372 goto redirty_out; 1373 1374 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1375 goto redirty_out; 1376 1377 /* get old block addr of this node page */ 1378 nid = nid_of_node(page); 1379 f2fs_bug_on(sbi, page->index != nid); 1380 1381 if (wbc->for_reclaim) { 1382 if (!down_read_trylock(&sbi->node_write)) 1383 goto redirty_out; 1384 } else { 1385 down_read(&sbi->node_write); 1386 } 1387 1388 f2fs_get_node_info(sbi, nid, &ni); 1389 1390 /* This page is already truncated */ 1391 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1392 ClearPageUptodate(page); 1393 dec_page_count(sbi, F2FS_DIRTY_NODES); 1394 up_read(&sbi->node_write); 1395 unlock_page(page); 1396 return 0; 1397 } 1398 1399 if (atomic && !test_opt(sbi, NOBARRIER)) 1400 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1401 1402 set_page_writeback(page); 1403 ClearPageError(page); 1404 fio.old_blkaddr = ni.blk_addr; 1405 f2fs_do_write_node_page(nid, &fio); 1406 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1407 dec_page_count(sbi, F2FS_DIRTY_NODES); 1408 up_read(&sbi->node_write); 1409 1410 if (wbc->for_reclaim) { 1411 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0, 1412 page->index, NODE); 1413 submitted = NULL; 1414 } 1415 1416 unlock_page(page); 1417 1418 if (unlikely(f2fs_cp_error(sbi))) { 1419 f2fs_submit_merged_write(sbi, NODE); 1420 submitted = NULL; 1421 } 1422 if (submitted) 1423 *submitted = fio.submitted; 1424 1425 if (do_balance) 1426 f2fs_balance_fs(sbi, false); 1427 return 0; 1428 1429 redirty_out: 1430 redirty_page_for_writepage(wbc, page); 1431 return AOP_WRITEPAGE_ACTIVATE; 1432 } 1433 1434 void f2fs_move_node_page(struct page *node_page, int gc_type) 1435 { 1436 if (gc_type == FG_GC) { 1437 struct writeback_control wbc = { 1438 .sync_mode = WB_SYNC_ALL, 1439 .nr_to_write = 1, 1440 .for_reclaim = 0, 1441 }; 1442 1443 set_page_dirty(node_page); 1444 f2fs_wait_on_page_writeback(node_page, NODE, true); 1445 1446 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page)); 1447 if (!clear_page_dirty_for_io(node_page)) 1448 goto out_page; 1449 1450 if (__write_node_page(node_page, false, NULL, 1451 &wbc, false, FS_GC_NODE_IO)) 1452 unlock_page(node_page); 1453 goto release_page; 1454 } else { 1455 /* set page dirty and write it */ 1456 if (!PageWriteback(node_page)) 1457 set_page_dirty(node_page); 1458 } 1459 out_page: 1460 unlock_page(node_page); 1461 release_page: 1462 f2fs_put_page(node_page, 0); 1463 } 1464 1465 static int f2fs_write_node_page(struct page *page, 1466 struct writeback_control *wbc) 1467 { 1468 return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO); 1469 } 1470 1471 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1472 struct writeback_control *wbc, bool atomic) 1473 { 1474 pgoff_t index; 1475 pgoff_t last_idx = ULONG_MAX; 1476 struct pagevec pvec; 1477 int ret = 0; 1478 struct page *last_page = NULL; 1479 bool marked = false; 1480 nid_t ino = inode->i_ino; 1481 int nr_pages; 1482 1483 if (atomic) { 1484 last_page = last_fsync_dnode(sbi, ino); 1485 if (IS_ERR_OR_NULL(last_page)) 1486 return PTR_ERR_OR_ZERO(last_page); 1487 } 1488 retry: 1489 pagevec_init(&pvec); 1490 index = 0; 1491 1492 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1493 PAGECACHE_TAG_DIRTY))) { 1494 int i; 1495 1496 for (i = 0; i < nr_pages; i++) { 1497 struct page *page = pvec.pages[i]; 1498 bool submitted = false; 1499 1500 if (unlikely(f2fs_cp_error(sbi))) { 1501 f2fs_put_page(last_page, 0); 1502 pagevec_release(&pvec); 1503 ret = -EIO; 1504 goto out; 1505 } 1506 1507 if (!IS_DNODE(page) || !is_cold_node(page)) 1508 continue; 1509 if (ino_of_node(page) != ino) 1510 continue; 1511 1512 lock_page(page); 1513 1514 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1515 continue_unlock: 1516 unlock_page(page); 1517 continue; 1518 } 1519 if (ino_of_node(page) != ino) 1520 goto continue_unlock; 1521 1522 if (!PageDirty(page) && page != last_page) { 1523 /* someone wrote it for us */ 1524 goto continue_unlock; 1525 } 1526 1527 f2fs_wait_on_page_writeback(page, NODE, true); 1528 BUG_ON(PageWriteback(page)); 1529 1530 set_fsync_mark(page, 0); 1531 set_dentry_mark(page, 0); 1532 1533 if (!atomic || page == last_page) { 1534 set_fsync_mark(page, 1); 1535 if (IS_INODE(page)) { 1536 if (is_inode_flag_set(inode, 1537 FI_DIRTY_INODE)) 1538 f2fs_update_inode(inode, page); 1539 set_dentry_mark(page, 1540 f2fs_need_dentry_mark(sbi, ino)); 1541 } 1542 /* may be written by other thread */ 1543 if (!PageDirty(page)) 1544 set_page_dirty(page); 1545 } 1546 1547 if (!clear_page_dirty_for_io(page)) 1548 goto continue_unlock; 1549 1550 ret = __write_node_page(page, atomic && 1551 page == last_page, 1552 &submitted, wbc, true, 1553 FS_NODE_IO); 1554 if (ret) { 1555 unlock_page(page); 1556 f2fs_put_page(last_page, 0); 1557 break; 1558 } else if (submitted) { 1559 last_idx = page->index; 1560 } 1561 1562 if (page == last_page) { 1563 f2fs_put_page(page, 0); 1564 marked = true; 1565 break; 1566 } 1567 } 1568 pagevec_release(&pvec); 1569 cond_resched(); 1570 1571 if (ret || marked) 1572 break; 1573 } 1574 if (!ret && atomic && !marked) { 1575 f2fs_msg(sbi->sb, KERN_DEBUG, 1576 "Retry to write fsync mark: ino=%u, idx=%lx", 1577 ino, last_page->index); 1578 lock_page(last_page); 1579 f2fs_wait_on_page_writeback(last_page, NODE, true); 1580 set_page_dirty(last_page); 1581 unlock_page(last_page); 1582 goto retry; 1583 } 1584 out: 1585 if (last_idx != ULONG_MAX) 1586 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE); 1587 return ret ? -EIO: 0; 1588 } 1589 1590 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1591 struct writeback_control *wbc, 1592 bool do_balance, enum iostat_type io_type) 1593 { 1594 pgoff_t index; 1595 struct pagevec pvec; 1596 int step = 0; 1597 int nwritten = 0; 1598 int ret = 0; 1599 int nr_pages, done = 0; 1600 1601 pagevec_init(&pvec); 1602 1603 next_step: 1604 index = 0; 1605 1606 while (!done && (nr_pages = pagevec_lookup_tag(&pvec, 1607 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1608 int i; 1609 1610 for (i = 0; i < nr_pages; i++) { 1611 struct page *page = pvec.pages[i]; 1612 bool submitted = false; 1613 1614 /* give a priority to WB_SYNC threads */ 1615 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1616 wbc->sync_mode == WB_SYNC_NONE) { 1617 done = 1; 1618 break; 1619 } 1620 1621 /* 1622 * flushing sequence with step: 1623 * 0. indirect nodes 1624 * 1. dentry dnodes 1625 * 2. file dnodes 1626 */ 1627 if (step == 0 && IS_DNODE(page)) 1628 continue; 1629 if (step == 1 && (!IS_DNODE(page) || 1630 is_cold_node(page))) 1631 continue; 1632 if (step == 2 && (!IS_DNODE(page) || 1633 !is_cold_node(page))) 1634 continue; 1635 lock_node: 1636 if (!trylock_page(page)) 1637 continue; 1638 1639 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1640 continue_unlock: 1641 unlock_page(page); 1642 continue; 1643 } 1644 1645 if (!PageDirty(page)) { 1646 /* someone wrote it for us */ 1647 goto continue_unlock; 1648 } 1649 1650 /* flush inline_data */ 1651 if (is_inline_node(page)) { 1652 clear_inline_node(page); 1653 unlock_page(page); 1654 flush_inline_data(sbi, ino_of_node(page)); 1655 goto lock_node; 1656 } 1657 1658 f2fs_wait_on_page_writeback(page, NODE, true); 1659 1660 BUG_ON(PageWriteback(page)); 1661 if (!clear_page_dirty_for_io(page)) 1662 goto continue_unlock; 1663 1664 set_fsync_mark(page, 0); 1665 set_dentry_mark(page, 0); 1666 1667 ret = __write_node_page(page, false, &submitted, 1668 wbc, do_balance, io_type); 1669 if (ret) 1670 unlock_page(page); 1671 else if (submitted) 1672 nwritten++; 1673 1674 if (--wbc->nr_to_write == 0) 1675 break; 1676 } 1677 pagevec_release(&pvec); 1678 cond_resched(); 1679 1680 if (wbc->nr_to_write == 0) { 1681 step = 2; 1682 break; 1683 } 1684 } 1685 1686 if (step < 2) { 1687 step++; 1688 goto next_step; 1689 } 1690 1691 if (nwritten) 1692 f2fs_submit_merged_write(sbi, NODE); 1693 1694 if (unlikely(f2fs_cp_error(sbi))) 1695 return -EIO; 1696 return ret; 1697 } 1698 1699 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1700 { 1701 pgoff_t index = 0; 1702 struct pagevec pvec; 1703 int ret2, ret = 0; 1704 int nr_pages; 1705 1706 pagevec_init(&pvec); 1707 1708 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1709 PAGECACHE_TAG_WRITEBACK))) { 1710 int i; 1711 1712 for (i = 0; i < nr_pages; i++) { 1713 struct page *page = pvec.pages[i]; 1714 1715 if (ino && ino_of_node(page) == ino) { 1716 f2fs_wait_on_page_writeback(page, NODE, true); 1717 if (TestClearPageError(page)) 1718 ret = -EIO; 1719 } 1720 } 1721 pagevec_release(&pvec); 1722 cond_resched(); 1723 } 1724 1725 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 1726 if (!ret) 1727 ret = ret2; 1728 return ret; 1729 } 1730 1731 static int f2fs_write_node_pages(struct address_space *mapping, 1732 struct writeback_control *wbc) 1733 { 1734 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1735 struct blk_plug plug; 1736 long diff; 1737 1738 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1739 goto skip_write; 1740 1741 /* balancing f2fs's metadata in background */ 1742 f2fs_balance_fs_bg(sbi); 1743 1744 /* collect a number of dirty node pages and write together */ 1745 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1746 goto skip_write; 1747 1748 if (wbc->sync_mode == WB_SYNC_ALL) 1749 atomic_inc(&sbi->wb_sync_req[NODE]); 1750 else if (atomic_read(&sbi->wb_sync_req[NODE])) 1751 goto skip_write; 1752 1753 trace_f2fs_writepages(mapping->host, wbc, NODE); 1754 1755 diff = nr_pages_to_write(sbi, NODE, wbc); 1756 blk_start_plug(&plug); 1757 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 1758 blk_finish_plug(&plug); 1759 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1760 1761 if (wbc->sync_mode == WB_SYNC_ALL) 1762 atomic_dec(&sbi->wb_sync_req[NODE]); 1763 return 0; 1764 1765 skip_write: 1766 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1767 trace_f2fs_writepages(mapping->host, wbc, NODE); 1768 return 0; 1769 } 1770 1771 static int f2fs_set_node_page_dirty(struct page *page) 1772 { 1773 trace_f2fs_set_page_dirty(page, NODE); 1774 1775 if (!PageUptodate(page)) 1776 SetPageUptodate(page); 1777 if (!PageDirty(page)) { 1778 __set_page_dirty_nobuffers(page); 1779 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1780 SetPagePrivate(page); 1781 f2fs_trace_pid(page); 1782 return 1; 1783 } 1784 return 0; 1785 } 1786 1787 /* 1788 * Structure of the f2fs node operations 1789 */ 1790 const struct address_space_operations f2fs_node_aops = { 1791 .writepage = f2fs_write_node_page, 1792 .writepages = f2fs_write_node_pages, 1793 .set_page_dirty = f2fs_set_node_page_dirty, 1794 .invalidatepage = f2fs_invalidate_page, 1795 .releasepage = f2fs_release_page, 1796 #ifdef CONFIG_MIGRATION 1797 .migratepage = f2fs_migrate_page, 1798 #endif 1799 }; 1800 1801 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1802 nid_t n) 1803 { 1804 return radix_tree_lookup(&nm_i->free_nid_root, n); 1805 } 1806 1807 static int __insert_free_nid(struct f2fs_sb_info *sbi, 1808 struct free_nid *i, enum nid_state state) 1809 { 1810 struct f2fs_nm_info *nm_i = NM_I(sbi); 1811 1812 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 1813 if (err) 1814 return err; 1815 1816 f2fs_bug_on(sbi, state != i->state); 1817 nm_i->nid_cnt[state]++; 1818 if (state == FREE_NID) 1819 list_add_tail(&i->list, &nm_i->free_nid_list); 1820 return 0; 1821 } 1822 1823 static void __remove_free_nid(struct f2fs_sb_info *sbi, 1824 struct free_nid *i, enum nid_state state) 1825 { 1826 struct f2fs_nm_info *nm_i = NM_I(sbi); 1827 1828 f2fs_bug_on(sbi, state != i->state); 1829 nm_i->nid_cnt[state]--; 1830 if (state == FREE_NID) 1831 list_del(&i->list); 1832 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1833 } 1834 1835 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 1836 enum nid_state org_state, enum nid_state dst_state) 1837 { 1838 struct f2fs_nm_info *nm_i = NM_I(sbi); 1839 1840 f2fs_bug_on(sbi, org_state != i->state); 1841 i->state = dst_state; 1842 nm_i->nid_cnt[org_state]--; 1843 nm_i->nid_cnt[dst_state]++; 1844 1845 switch (dst_state) { 1846 case PREALLOC_NID: 1847 list_del(&i->list); 1848 break; 1849 case FREE_NID: 1850 list_add_tail(&i->list, &nm_i->free_nid_list); 1851 break; 1852 default: 1853 BUG_ON(1); 1854 } 1855 } 1856 1857 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 1858 bool set, bool build) 1859 { 1860 struct f2fs_nm_info *nm_i = NM_I(sbi); 1861 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 1862 unsigned int nid_ofs = nid - START_NID(nid); 1863 1864 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 1865 return; 1866 1867 if (set) { 1868 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 1869 return; 1870 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1871 nm_i->free_nid_count[nat_ofs]++; 1872 } else { 1873 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 1874 return; 1875 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 1876 if (!build) 1877 nm_i->free_nid_count[nat_ofs]--; 1878 } 1879 } 1880 1881 /* return if the nid is recognized as free */ 1882 static bool add_free_nid(struct f2fs_sb_info *sbi, 1883 nid_t nid, bool build, bool update) 1884 { 1885 struct f2fs_nm_info *nm_i = NM_I(sbi); 1886 struct free_nid *i, *e; 1887 struct nat_entry *ne; 1888 int err = -EINVAL; 1889 bool ret = false; 1890 1891 /* 0 nid should not be used */ 1892 if (unlikely(nid == 0)) 1893 return false; 1894 1895 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1896 i->nid = nid; 1897 i->state = FREE_NID; 1898 1899 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 1900 1901 spin_lock(&nm_i->nid_list_lock); 1902 1903 if (build) { 1904 /* 1905 * Thread A Thread B 1906 * - f2fs_create 1907 * - f2fs_new_inode 1908 * - f2fs_alloc_nid 1909 * - __insert_nid_to_list(PREALLOC_NID) 1910 * - f2fs_balance_fs_bg 1911 * - f2fs_build_free_nids 1912 * - __f2fs_build_free_nids 1913 * - scan_nat_page 1914 * - add_free_nid 1915 * - __lookup_nat_cache 1916 * - f2fs_add_link 1917 * - f2fs_init_inode_metadata 1918 * - f2fs_new_inode_page 1919 * - f2fs_new_node_page 1920 * - set_node_addr 1921 * - f2fs_alloc_nid_done 1922 * - __remove_nid_from_list(PREALLOC_NID) 1923 * - __insert_nid_to_list(FREE_NID) 1924 */ 1925 ne = __lookup_nat_cache(nm_i, nid); 1926 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 1927 nat_get_blkaddr(ne) != NULL_ADDR)) 1928 goto err_out; 1929 1930 e = __lookup_free_nid_list(nm_i, nid); 1931 if (e) { 1932 if (e->state == FREE_NID) 1933 ret = true; 1934 goto err_out; 1935 } 1936 } 1937 ret = true; 1938 err = __insert_free_nid(sbi, i, FREE_NID); 1939 err_out: 1940 if (update) { 1941 update_free_nid_bitmap(sbi, nid, ret, build); 1942 if (!build) 1943 nm_i->available_nids++; 1944 } 1945 spin_unlock(&nm_i->nid_list_lock); 1946 radix_tree_preload_end(); 1947 1948 if (err) 1949 kmem_cache_free(free_nid_slab, i); 1950 return ret; 1951 } 1952 1953 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 1954 { 1955 struct f2fs_nm_info *nm_i = NM_I(sbi); 1956 struct free_nid *i; 1957 bool need_free = false; 1958 1959 spin_lock(&nm_i->nid_list_lock); 1960 i = __lookup_free_nid_list(nm_i, nid); 1961 if (i && i->state == FREE_NID) { 1962 __remove_free_nid(sbi, i, FREE_NID); 1963 need_free = true; 1964 } 1965 spin_unlock(&nm_i->nid_list_lock); 1966 1967 if (need_free) 1968 kmem_cache_free(free_nid_slab, i); 1969 } 1970 1971 static void scan_nat_page(struct f2fs_sb_info *sbi, 1972 struct page *nat_page, nid_t start_nid) 1973 { 1974 struct f2fs_nm_info *nm_i = NM_I(sbi); 1975 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1976 block_t blk_addr; 1977 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 1978 int i; 1979 1980 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 1981 1982 i = start_nid % NAT_ENTRY_PER_BLOCK; 1983 1984 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1985 if (unlikely(start_nid >= nm_i->max_nid)) 1986 break; 1987 1988 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1989 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1990 if (blk_addr == NULL_ADDR) { 1991 add_free_nid(sbi, start_nid, true, true); 1992 } else { 1993 spin_lock(&NM_I(sbi)->nid_list_lock); 1994 update_free_nid_bitmap(sbi, start_nid, false, true); 1995 spin_unlock(&NM_I(sbi)->nid_list_lock); 1996 } 1997 } 1998 } 1999 2000 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2001 { 2002 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2003 struct f2fs_journal *journal = curseg->journal; 2004 int i; 2005 2006 down_read(&curseg->journal_rwsem); 2007 for (i = 0; i < nats_in_cursum(journal); i++) { 2008 block_t addr; 2009 nid_t nid; 2010 2011 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2012 nid = le32_to_cpu(nid_in_journal(journal, i)); 2013 if (addr == NULL_ADDR) 2014 add_free_nid(sbi, nid, true, false); 2015 else 2016 remove_free_nid(sbi, nid); 2017 } 2018 up_read(&curseg->journal_rwsem); 2019 } 2020 2021 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2022 { 2023 struct f2fs_nm_info *nm_i = NM_I(sbi); 2024 unsigned int i, idx; 2025 nid_t nid; 2026 2027 down_read(&nm_i->nat_tree_lock); 2028 2029 for (i = 0; i < nm_i->nat_blocks; i++) { 2030 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2031 continue; 2032 if (!nm_i->free_nid_count[i]) 2033 continue; 2034 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2035 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2036 NAT_ENTRY_PER_BLOCK, idx); 2037 if (idx >= NAT_ENTRY_PER_BLOCK) 2038 break; 2039 2040 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2041 add_free_nid(sbi, nid, true, false); 2042 2043 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2044 goto out; 2045 } 2046 } 2047 out: 2048 scan_curseg_cache(sbi); 2049 2050 up_read(&nm_i->nat_tree_lock); 2051 } 2052 2053 static void __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2054 bool sync, bool mount) 2055 { 2056 struct f2fs_nm_info *nm_i = NM_I(sbi); 2057 int i = 0; 2058 nid_t nid = nm_i->next_scan_nid; 2059 2060 if (unlikely(nid >= nm_i->max_nid)) 2061 nid = 0; 2062 2063 /* Enough entries */ 2064 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2065 return; 2066 2067 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2068 return; 2069 2070 if (!mount) { 2071 /* try to find free nids in free_nid_bitmap */ 2072 scan_free_nid_bits(sbi); 2073 2074 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2075 return; 2076 } 2077 2078 /* readahead nat pages to be scanned */ 2079 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2080 META_NAT, true); 2081 2082 down_read(&nm_i->nat_tree_lock); 2083 2084 while (1) { 2085 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2086 nm_i->nat_block_bitmap)) { 2087 struct page *page = get_current_nat_page(sbi, nid); 2088 2089 scan_nat_page(sbi, page, nid); 2090 f2fs_put_page(page, 1); 2091 } 2092 2093 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2094 if (unlikely(nid >= nm_i->max_nid)) 2095 nid = 0; 2096 2097 if (++i >= FREE_NID_PAGES) 2098 break; 2099 } 2100 2101 /* go to the next free nat pages to find free nids abundantly */ 2102 nm_i->next_scan_nid = nid; 2103 2104 /* find free nids from current sum_pages */ 2105 scan_curseg_cache(sbi); 2106 2107 up_read(&nm_i->nat_tree_lock); 2108 2109 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2110 nm_i->ra_nid_pages, META_NAT, false); 2111 } 2112 2113 void f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2114 { 2115 mutex_lock(&NM_I(sbi)->build_lock); 2116 __f2fs_build_free_nids(sbi, sync, mount); 2117 mutex_unlock(&NM_I(sbi)->build_lock); 2118 } 2119 2120 /* 2121 * If this function returns success, caller can obtain a new nid 2122 * from second parameter of this function. 2123 * The returned nid could be used ino as well as nid when inode is created. 2124 */ 2125 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2126 { 2127 struct f2fs_nm_info *nm_i = NM_I(sbi); 2128 struct free_nid *i = NULL; 2129 retry: 2130 #ifdef CONFIG_F2FS_FAULT_INJECTION 2131 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2132 f2fs_show_injection_info(FAULT_ALLOC_NID); 2133 return false; 2134 } 2135 #endif 2136 spin_lock(&nm_i->nid_list_lock); 2137 2138 if (unlikely(nm_i->available_nids == 0)) { 2139 spin_unlock(&nm_i->nid_list_lock); 2140 return false; 2141 } 2142 2143 /* We should not use stale free nids created by f2fs_build_free_nids */ 2144 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2145 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2146 i = list_first_entry(&nm_i->free_nid_list, 2147 struct free_nid, list); 2148 *nid = i->nid; 2149 2150 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2151 nm_i->available_nids--; 2152 2153 update_free_nid_bitmap(sbi, *nid, false, false); 2154 2155 spin_unlock(&nm_i->nid_list_lock); 2156 return true; 2157 } 2158 spin_unlock(&nm_i->nid_list_lock); 2159 2160 /* Let's scan nat pages and its caches to get free nids */ 2161 f2fs_build_free_nids(sbi, true, false); 2162 goto retry; 2163 } 2164 2165 /* 2166 * f2fs_alloc_nid() should be called prior to this function. 2167 */ 2168 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2169 { 2170 struct f2fs_nm_info *nm_i = NM_I(sbi); 2171 struct free_nid *i; 2172 2173 spin_lock(&nm_i->nid_list_lock); 2174 i = __lookup_free_nid_list(nm_i, nid); 2175 f2fs_bug_on(sbi, !i); 2176 __remove_free_nid(sbi, i, PREALLOC_NID); 2177 spin_unlock(&nm_i->nid_list_lock); 2178 2179 kmem_cache_free(free_nid_slab, i); 2180 } 2181 2182 /* 2183 * f2fs_alloc_nid() should be called prior to this function. 2184 */ 2185 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2186 { 2187 struct f2fs_nm_info *nm_i = NM_I(sbi); 2188 struct free_nid *i; 2189 bool need_free = false; 2190 2191 if (!nid) 2192 return; 2193 2194 spin_lock(&nm_i->nid_list_lock); 2195 i = __lookup_free_nid_list(nm_i, nid); 2196 f2fs_bug_on(sbi, !i); 2197 2198 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2199 __remove_free_nid(sbi, i, PREALLOC_NID); 2200 need_free = true; 2201 } else { 2202 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2203 } 2204 2205 nm_i->available_nids++; 2206 2207 update_free_nid_bitmap(sbi, nid, true, false); 2208 2209 spin_unlock(&nm_i->nid_list_lock); 2210 2211 if (need_free) 2212 kmem_cache_free(free_nid_slab, i); 2213 } 2214 2215 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2216 { 2217 struct f2fs_nm_info *nm_i = NM_I(sbi); 2218 struct free_nid *i, *next; 2219 int nr = nr_shrink; 2220 2221 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2222 return 0; 2223 2224 if (!mutex_trylock(&nm_i->build_lock)) 2225 return 0; 2226 2227 spin_lock(&nm_i->nid_list_lock); 2228 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2229 if (nr_shrink <= 0 || 2230 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2231 break; 2232 2233 __remove_free_nid(sbi, i, FREE_NID); 2234 kmem_cache_free(free_nid_slab, i); 2235 nr_shrink--; 2236 } 2237 spin_unlock(&nm_i->nid_list_lock); 2238 mutex_unlock(&nm_i->build_lock); 2239 2240 return nr - nr_shrink; 2241 } 2242 2243 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2244 { 2245 void *src_addr, *dst_addr; 2246 size_t inline_size; 2247 struct page *ipage; 2248 struct f2fs_inode *ri; 2249 2250 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2251 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 2252 2253 ri = F2FS_INODE(page); 2254 if (ri->i_inline & F2FS_INLINE_XATTR) { 2255 set_inode_flag(inode, FI_INLINE_XATTR); 2256 } else { 2257 clear_inode_flag(inode, FI_INLINE_XATTR); 2258 goto update_inode; 2259 } 2260 2261 dst_addr = inline_xattr_addr(inode, ipage); 2262 src_addr = inline_xattr_addr(inode, page); 2263 inline_size = inline_xattr_size(inode); 2264 2265 f2fs_wait_on_page_writeback(ipage, NODE, true); 2266 memcpy(dst_addr, src_addr, inline_size); 2267 update_inode: 2268 f2fs_update_inode(inode, ipage); 2269 f2fs_put_page(ipage, 1); 2270 } 2271 2272 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2273 { 2274 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2275 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2276 nid_t new_xnid; 2277 struct dnode_of_data dn; 2278 struct node_info ni; 2279 struct page *xpage; 2280 2281 if (!prev_xnid) 2282 goto recover_xnid; 2283 2284 /* 1: invalidate the previous xattr nid */ 2285 f2fs_get_node_info(sbi, prev_xnid, &ni); 2286 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2287 dec_valid_node_count(sbi, inode, false); 2288 set_node_addr(sbi, &ni, NULL_ADDR, false); 2289 2290 recover_xnid: 2291 /* 2: update xattr nid in inode */ 2292 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2293 return -ENOSPC; 2294 2295 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2296 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2297 if (IS_ERR(xpage)) { 2298 f2fs_alloc_nid_failed(sbi, new_xnid); 2299 return PTR_ERR(xpage); 2300 } 2301 2302 f2fs_alloc_nid_done(sbi, new_xnid); 2303 f2fs_update_inode_page(inode); 2304 2305 /* 3: update and set xattr node page dirty */ 2306 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2307 2308 set_page_dirty(xpage); 2309 f2fs_put_page(xpage, 1); 2310 2311 return 0; 2312 } 2313 2314 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2315 { 2316 struct f2fs_inode *src, *dst; 2317 nid_t ino = ino_of_node(page); 2318 struct node_info old_ni, new_ni; 2319 struct page *ipage; 2320 2321 f2fs_get_node_info(sbi, ino, &old_ni); 2322 2323 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2324 return -EINVAL; 2325 retry: 2326 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2327 if (!ipage) { 2328 congestion_wait(BLK_RW_ASYNC, HZ/50); 2329 goto retry; 2330 } 2331 2332 /* Should not use this inode from free nid list */ 2333 remove_free_nid(sbi, ino); 2334 2335 if (!PageUptodate(ipage)) 2336 SetPageUptodate(ipage); 2337 fill_node_footer(ipage, ino, ino, 0, true); 2338 set_cold_node(page, false); 2339 2340 src = F2FS_INODE(page); 2341 dst = F2FS_INODE(ipage); 2342 2343 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2344 dst->i_size = 0; 2345 dst->i_blocks = cpu_to_le64(1); 2346 dst->i_links = cpu_to_le32(1); 2347 dst->i_xattr_nid = 0; 2348 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2349 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2350 dst->i_extra_isize = src->i_extra_isize; 2351 2352 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) && 2353 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2354 i_inline_xattr_size)) 2355 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2356 2357 if (f2fs_sb_has_project_quota(sbi->sb) && 2358 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2359 i_projid)) 2360 dst->i_projid = src->i_projid; 2361 } 2362 2363 new_ni = old_ni; 2364 new_ni.ino = ino; 2365 2366 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2367 WARN_ON(1); 2368 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2369 inc_valid_inode_count(sbi); 2370 set_page_dirty(ipage); 2371 f2fs_put_page(ipage, 1); 2372 return 0; 2373 } 2374 2375 void f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2376 unsigned int segno, struct f2fs_summary_block *sum) 2377 { 2378 struct f2fs_node *rn; 2379 struct f2fs_summary *sum_entry; 2380 block_t addr; 2381 int i, idx, last_offset, nrpages; 2382 2383 /* scan the node segment */ 2384 last_offset = sbi->blocks_per_seg; 2385 addr = START_BLOCK(sbi, segno); 2386 sum_entry = &sum->entries[0]; 2387 2388 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2389 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2390 2391 /* readahead node pages */ 2392 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2393 2394 for (idx = addr; idx < addr + nrpages; idx++) { 2395 struct page *page = f2fs_get_tmp_page(sbi, idx); 2396 2397 rn = F2FS_NODE(page); 2398 sum_entry->nid = rn->footer.nid; 2399 sum_entry->version = 0; 2400 sum_entry->ofs_in_node = 0; 2401 sum_entry++; 2402 f2fs_put_page(page, 1); 2403 } 2404 2405 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2406 addr + nrpages); 2407 } 2408 } 2409 2410 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2411 { 2412 struct f2fs_nm_info *nm_i = NM_I(sbi); 2413 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2414 struct f2fs_journal *journal = curseg->journal; 2415 int i; 2416 2417 down_write(&curseg->journal_rwsem); 2418 for (i = 0; i < nats_in_cursum(journal); i++) { 2419 struct nat_entry *ne; 2420 struct f2fs_nat_entry raw_ne; 2421 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2422 2423 raw_ne = nat_in_journal(journal, i); 2424 2425 ne = __lookup_nat_cache(nm_i, nid); 2426 if (!ne) { 2427 ne = __alloc_nat_entry(nid, true); 2428 __init_nat_entry(nm_i, ne, &raw_ne, true); 2429 } 2430 2431 /* 2432 * if a free nat in journal has not been used after last 2433 * checkpoint, we should remove it from available nids, 2434 * since later we will add it again. 2435 */ 2436 if (!get_nat_flag(ne, IS_DIRTY) && 2437 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2438 spin_lock(&nm_i->nid_list_lock); 2439 nm_i->available_nids--; 2440 spin_unlock(&nm_i->nid_list_lock); 2441 } 2442 2443 __set_nat_cache_dirty(nm_i, ne); 2444 } 2445 update_nats_in_cursum(journal, -i); 2446 up_write(&curseg->journal_rwsem); 2447 } 2448 2449 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2450 struct list_head *head, int max) 2451 { 2452 struct nat_entry_set *cur; 2453 2454 if (nes->entry_cnt >= max) 2455 goto add_out; 2456 2457 list_for_each_entry(cur, head, set_list) { 2458 if (cur->entry_cnt >= nes->entry_cnt) { 2459 list_add(&nes->set_list, cur->set_list.prev); 2460 return; 2461 } 2462 } 2463 add_out: 2464 list_add_tail(&nes->set_list, head); 2465 } 2466 2467 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2468 struct page *page) 2469 { 2470 struct f2fs_nm_info *nm_i = NM_I(sbi); 2471 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2472 struct f2fs_nat_block *nat_blk = page_address(page); 2473 int valid = 0; 2474 int i = 0; 2475 2476 if (!enabled_nat_bits(sbi, NULL)) 2477 return; 2478 2479 if (nat_index == 0) { 2480 valid = 1; 2481 i = 1; 2482 } 2483 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2484 if (nat_blk->entries[i].block_addr != NULL_ADDR) 2485 valid++; 2486 } 2487 if (valid == 0) { 2488 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2489 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2490 return; 2491 } 2492 2493 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2494 if (valid == NAT_ENTRY_PER_BLOCK) 2495 __set_bit_le(nat_index, nm_i->full_nat_bits); 2496 else 2497 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2498 } 2499 2500 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2501 struct nat_entry_set *set, struct cp_control *cpc) 2502 { 2503 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2504 struct f2fs_journal *journal = curseg->journal; 2505 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2506 bool to_journal = true; 2507 struct f2fs_nat_block *nat_blk; 2508 struct nat_entry *ne, *cur; 2509 struct page *page = NULL; 2510 2511 /* 2512 * there are two steps to flush nat entries: 2513 * #1, flush nat entries to journal in current hot data summary block. 2514 * #2, flush nat entries to nat page. 2515 */ 2516 if (enabled_nat_bits(sbi, cpc) || 2517 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2518 to_journal = false; 2519 2520 if (to_journal) { 2521 down_write(&curseg->journal_rwsem); 2522 } else { 2523 page = get_next_nat_page(sbi, start_nid); 2524 nat_blk = page_address(page); 2525 f2fs_bug_on(sbi, !nat_blk); 2526 } 2527 2528 /* flush dirty nats in nat entry set */ 2529 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2530 struct f2fs_nat_entry *raw_ne; 2531 nid_t nid = nat_get_nid(ne); 2532 int offset; 2533 2534 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 2535 2536 if (to_journal) { 2537 offset = f2fs_lookup_journal_in_cursum(journal, 2538 NAT_JOURNAL, nid, 1); 2539 f2fs_bug_on(sbi, offset < 0); 2540 raw_ne = &nat_in_journal(journal, offset); 2541 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2542 } else { 2543 raw_ne = &nat_blk->entries[nid - start_nid]; 2544 } 2545 raw_nat_from_node_info(raw_ne, &ne->ni); 2546 nat_reset_flag(ne); 2547 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 2548 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2549 add_free_nid(sbi, nid, false, true); 2550 } else { 2551 spin_lock(&NM_I(sbi)->nid_list_lock); 2552 update_free_nid_bitmap(sbi, nid, false, false); 2553 spin_unlock(&NM_I(sbi)->nid_list_lock); 2554 } 2555 } 2556 2557 if (to_journal) { 2558 up_write(&curseg->journal_rwsem); 2559 } else { 2560 __update_nat_bits(sbi, start_nid, page); 2561 f2fs_put_page(page, 1); 2562 } 2563 2564 /* Allow dirty nats by node block allocation in write_begin */ 2565 if (!set->entry_cnt) { 2566 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2567 kmem_cache_free(nat_entry_set_slab, set); 2568 } 2569 } 2570 2571 /* 2572 * This function is called during the checkpointing process. 2573 */ 2574 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2575 { 2576 struct f2fs_nm_info *nm_i = NM_I(sbi); 2577 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2578 struct f2fs_journal *journal = curseg->journal; 2579 struct nat_entry_set *setvec[SETVEC_SIZE]; 2580 struct nat_entry_set *set, *tmp; 2581 unsigned int found; 2582 nid_t set_idx = 0; 2583 LIST_HEAD(sets); 2584 2585 if (!nm_i->dirty_nat_cnt) 2586 return; 2587 2588 down_write(&nm_i->nat_tree_lock); 2589 2590 /* 2591 * if there are no enough space in journal to store dirty nat 2592 * entries, remove all entries from journal and merge them 2593 * into nat entry set. 2594 */ 2595 if (enabled_nat_bits(sbi, cpc) || 2596 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2597 remove_nats_in_journal(sbi); 2598 2599 while ((found = __gang_lookup_nat_set(nm_i, 2600 set_idx, SETVEC_SIZE, setvec))) { 2601 unsigned idx; 2602 set_idx = setvec[found - 1]->set + 1; 2603 for (idx = 0; idx < found; idx++) 2604 __adjust_nat_entry_set(setvec[idx], &sets, 2605 MAX_NAT_JENTRIES(journal)); 2606 } 2607 2608 /* flush dirty nats in nat entry set */ 2609 list_for_each_entry_safe(set, tmp, &sets, set_list) 2610 __flush_nat_entry_set(sbi, set, cpc); 2611 2612 up_write(&nm_i->nat_tree_lock); 2613 /* Allow dirty nats by node block allocation in write_begin */ 2614 } 2615 2616 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 2617 { 2618 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2619 struct f2fs_nm_info *nm_i = NM_I(sbi); 2620 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 2621 unsigned int i; 2622 __u64 cp_ver = cur_cp_version(ckpt); 2623 block_t nat_bits_addr; 2624 2625 if (!enabled_nat_bits(sbi, NULL)) 2626 return 0; 2627 2628 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 2629 nm_i->nat_bits = f2fs_kzalloc(sbi, 2630 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 2631 if (!nm_i->nat_bits) 2632 return -ENOMEM; 2633 2634 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 2635 nm_i->nat_bits_blocks; 2636 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 2637 struct page *page = f2fs_get_meta_page(sbi, nat_bits_addr++); 2638 2639 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 2640 page_address(page), F2FS_BLKSIZE); 2641 f2fs_put_page(page, 1); 2642 } 2643 2644 cp_ver |= (cur_cp_crc(ckpt) << 32); 2645 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 2646 disable_nat_bits(sbi, true); 2647 return 0; 2648 } 2649 2650 nm_i->full_nat_bits = nm_i->nat_bits + 8; 2651 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 2652 2653 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint"); 2654 return 0; 2655 } 2656 2657 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 2658 { 2659 struct f2fs_nm_info *nm_i = NM_I(sbi); 2660 unsigned int i = 0; 2661 nid_t nid, last_nid; 2662 2663 if (!enabled_nat_bits(sbi, NULL)) 2664 return; 2665 2666 for (i = 0; i < nm_i->nat_blocks; i++) { 2667 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 2668 if (i >= nm_i->nat_blocks) 2669 break; 2670 2671 __set_bit_le(i, nm_i->nat_block_bitmap); 2672 2673 nid = i * NAT_ENTRY_PER_BLOCK; 2674 last_nid = nid + NAT_ENTRY_PER_BLOCK; 2675 2676 spin_lock(&NM_I(sbi)->nid_list_lock); 2677 for (; nid < last_nid; nid++) 2678 update_free_nid_bitmap(sbi, nid, true, true); 2679 spin_unlock(&NM_I(sbi)->nid_list_lock); 2680 } 2681 2682 for (i = 0; i < nm_i->nat_blocks; i++) { 2683 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 2684 if (i >= nm_i->nat_blocks) 2685 break; 2686 2687 __set_bit_le(i, nm_i->nat_block_bitmap); 2688 } 2689 } 2690 2691 static int init_node_manager(struct f2fs_sb_info *sbi) 2692 { 2693 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2694 struct f2fs_nm_info *nm_i = NM_I(sbi); 2695 unsigned char *version_bitmap; 2696 unsigned int nat_segs; 2697 int err; 2698 2699 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2700 2701 /* segment_count_nat includes pair segment so divide to 2. */ 2702 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2703 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2704 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 2705 2706 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2707 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 2708 sbi->nquota_files - F2FS_RESERVED_NODE_NUM; 2709 nm_i->nid_cnt[FREE_NID] = 0; 2710 nm_i->nid_cnt[PREALLOC_NID] = 0; 2711 nm_i->nat_cnt = 0; 2712 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2713 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2714 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2715 2716 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2717 INIT_LIST_HEAD(&nm_i->free_nid_list); 2718 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2719 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2720 INIT_LIST_HEAD(&nm_i->nat_entries); 2721 2722 mutex_init(&nm_i->build_lock); 2723 spin_lock_init(&nm_i->nid_list_lock); 2724 init_rwsem(&nm_i->nat_tree_lock); 2725 2726 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2727 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2728 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2729 if (!version_bitmap) 2730 return -EFAULT; 2731 2732 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2733 GFP_KERNEL); 2734 if (!nm_i->nat_bitmap) 2735 return -ENOMEM; 2736 2737 err = __get_nat_bitmaps(sbi); 2738 if (err) 2739 return err; 2740 2741 #ifdef CONFIG_F2FS_CHECK_FS 2742 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 2743 GFP_KERNEL); 2744 if (!nm_i->nat_bitmap_mir) 2745 return -ENOMEM; 2746 #endif 2747 2748 return 0; 2749 } 2750 2751 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 2752 { 2753 struct f2fs_nm_info *nm_i = NM_I(sbi); 2754 int i; 2755 2756 nm_i->free_nid_bitmap = 2757 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *), 2758 nm_i->nat_blocks), 2759 GFP_KERNEL); 2760 if (!nm_i->free_nid_bitmap) 2761 return -ENOMEM; 2762 2763 for (i = 0; i < nm_i->nat_blocks; i++) { 2764 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 2765 NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL); 2766 if (!nm_i->free_nid_bitmap) 2767 return -ENOMEM; 2768 } 2769 2770 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 2771 GFP_KERNEL); 2772 if (!nm_i->nat_block_bitmap) 2773 return -ENOMEM; 2774 2775 nm_i->free_nid_count = 2776 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 2777 nm_i->nat_blocks), 2778 GFP_KERNEL); 2779 if (!nm_i->free_nid_count) 2780 return -ENOMEM; 2781 return 0; 2782 } 2783 2784 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 2785 { 2786 int err; 2787 2788 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 2789 GFP_KERNEL); 2790 if (!sbi->nm_info) 2791 return -ENOMEM; 2792 2793 err = init_node_manager(sbi); 2794 if (err) 2795 return err; 2796 2797 err = init_free_nid_cache(sbi); 2798 if (err) 2799 return err; 2800 2801 /* load free nid status from nat_bits table */ 2802 load_free_nid_bitmap(sbi); 2803 2804 f2fs_build_free_nids(sbi, true, true); 2805 return 0; 2806 } 2807 2808 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 2809 { 2810 struct f2fs_nm_info *nm_i = NM_I(sbi); 2811 struct free_nid *i, *next_i; 2812 struct nat_entry *natvec[NATVEC_SIZE]; 2813 struct nat_entry_set *setvec[SETVEC_SIZE]; 2814 nid_t nid = 0; 2815 unsigned int found; 2816 2817 if (!nm_i) 2818 return; 2819 2820 /* destroy free nid list */ 2821 spin_lock(&nm_i->nid_list_lock); 2822 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 2823 __remove_free_nid(sbi, i, FREE_NID); 2824 spin_unlock(&nm_i->nid_list_lock); 2825 kmem_cache_free(free_nid_slab, i); 2826 spin_lock(&nm_i->nid_list_lock); 2827 } 2828 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 2829 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 2830 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 2831 spin_unlock(&nm_i->nid_list_lock); 2832 2833 /* destroy nat cache */ 2834 down_write(&nm_i->nat_tree_lock); 2835 while ((found = __gang_lookup_nat_cache(nm_i, 2836 nid, NATVEC_SIZE, natvec))) { 2837 unsigned idx; 2838 2839 nid = nat_get_nid(natvec[found - 1]) + 1; 2840 for (idx = 0; idx < found; idx++) 2841 __del_from_nat_cache(nm_i, natvec[idx]); 2842 } 2843 f2fs_bug_on(sbi, nm_i->nat_cnt); 2844 2845 /* destroy nat set cache */ 2846 nid = 0; 2847 while ((found = __gang_lookup_nat_set(nm_i, 2848 nid, SETVEC_SIZE, setvec))) { 2849 unsigned idx; 2850 2851 nid = setvec[found - 1]->set + 1; 2852 for (idx = 0; idx < found; idx++) { 2853 /* entry_cnt is not zero, when cp_error was occurred */ 2854 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2855 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2856 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2857 } 2858 } 2859 up_write(&nm_i->nat_tree_lock); 2860 2861 kvfree(nm_i->nat_block_bitmap); 2862 if (nm_i->free_nid_bitmap) { 2863 int i; 2864 2865 for (i = 0; i < nm_i->nat_blocks; i++) 2866 kvfree(nm_i->free_nid_bitmap[i]); 2867 kfree(nm_i->free_nid_bitmap); 2868 } 2869 kvfree(nm_i->free_nid_count); 2870 2871 kfree(nm_i->nat_bitmap); 2872 kfree(nm_i->nat_bits); 2873 #ifdef CONFIG_F2FS_CHECK_FS 2874 kfree(nm_i->nat_bitmap_mir); 2875 #endif 2876 sbi->nm_info = NULL; 2877 kfree(nm_i); 2878 } 2879 2880 int __init f2fs_create_node_manager_caches(void) 2881 { 2882 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2883 sizeof(struct nat_entry)); 2884 if (!nat_entry_slab) 2885 goto fail; 2886 2887 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2888 sizeof(struct free_nid)); 2889 if (!free_nid_slab) 2890 goto destroy_nat_entry; 2891 2892 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2893 sizeof(struct nat_entry_set)); 2894 if (!nat_entry_set_slab) 2895 goto destroy_free_nid; 2896 return 0; 2897 2898 destroy_free_nid: 2899 kmem_cache_destroy(free_nid_slab); 2900 destroy_nat_entry: 2901 kmem_cache_destroy(nat_entry_slab); 2902 fail: 2903 return -ENOMEM; 2904 } 2905 2906 void f2fs_destroy_node_manager_caches(void) 2907 { 2908 kmem_cache_destroy(nat_entry_set_slab); 2909 kmem_cache_destroy(free_nid_slab); 2910 kmem_cache_destroy(nat_entry_slab); 2911 } 2912