1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/sched/mm.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "iostat.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); 40 return -EFSCORRUPTED; 41 } 42 return 0; 43 } 44 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 46 { 47 struct f2fs_nm_info *nm_i = NM_I(sbi); 48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 49 struct sysinfo val; 50 unsigned long avail_ram; 51 unsigned long mem_size = 0; 52 bool res = false; 53 54 if (!nm_i) 55 return true; 56 57 si_meminfo(&val); 58 59 /* only uses low memory */ 60 avail_ram = val.totalram - val.totalhigh; 61 62 /* 63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively 64 */ 65 if (type == FREE_NIDS) { 66 mem_size = (nm_i->nid_cnt[FREE_NID] * 67 sizeof(struct free_nid)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 69 } else if (type == NAT_ENTRIES) { 70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 71 sizeof(struct nat_entry)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 73 if (excess_cached_nats(sbi)) 74 res = false; 75 } else if (type == DIRTY_DENTS) { 76 if (sbi->sb->s_bdi->wb.dirty_exceeded) 77 return false; 78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 80 } else if (type == INO_ENTRIES) { 81 int i; 82 83 for (i = 0; i < MAX_INO_ENTRY; i++) 84 mem_size += sbi->im[i].ino_num * 85 sizeof(struct ino_entry); 86 mem_size >>= PAGE_SHIFT; 87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) { 89 enum extent_type etype = type == READ_EXTENT_CACHE ? 90 EX_READ : EX_BLOCK_AGE; 91 struct extent_tree_info *eti = &sbi->extent_tree[etype]; 92 93 mem_size = (atomic_read(&eti->total_ext_tree) * 94 sizeof(struct extent_tree) + 95 atomic_read(&eti->total_ext_node) * 96 sizeof(struct extent_node)) >> PAGE_SHIFT; 97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 98 } else if (type == DISCARD_CACHE) { 99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) * 100 sizeof(struct discard_cmd)) >> PAGE_SHIFT; 101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100); 102 } else if (type == COMPRESS_PAGE) { 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 unsigned long free_ram = val.freeram; 105 106 /* 107 * free memory is lower than watermark or cached page count 108 * exceed threshold, deny caching compress page. 109 */ 110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) && 111 (COMPRESS_MAPPING(sbi)->nrpages < 112 free_ram * sbi->compress_percent / 100); 113 #else 114 res = false; 115 #endif 116 } else { 117 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 118 return true; 119 } 120 return res; 121 } 122 123 static void clear_node_page_dirty(struct page *page) 124 { 125 if (PageDirty(page)) { 126 f2fs_clear_page_cache_dirty_tag(page); 127 clear_page_dirty_for_io(page); 128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 129 } 130 ClearPageUptodate(page); 131 } 132 133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 134 { 135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 136 } 137 138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 139 { 140 struct page *src_page; 141 struct page *dst_page; 142 pgoff_t dst_off; 143 void *src_addr; 144 void *dst_addr; 145 struct f2fs_nm_info *nm_i = NM_I(sbi); 146 147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 148 149 /* get current nat block page with lock */ 150 src_page = get_current_nat_page(sbi, nid); 151 if (IS_ERR(src_page)) 152 return src_page; 153 dst_page = f2fs_grab_meta_page(sbi, dst_off); 154 f2fs_bug_on(sbi, PageDirty(src_page)); 155 156 src_addr = page_address(src_page); 157 dst_addr = page_address(dst_page); 158 memcpy(dst_addr, src_addr, PAGE_SIZE); 159 set_page_dirty(dst_page); 160 f2fs_put_page(src_page, 1); 161 162 set_to_next_nat(nm_i, nid); 163 164 return dst_page; 165 } 166 167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, 168 nid_t nid, bool no_fail) 169 { 170 struct nat_entry *new; 171 172 new = f2fs_kmem_cache_alloc(nat_entry_slab, 173 GFP_F2FS_ZERO, no_fail, sbi); 174 if (new) { 175 nat_set_nid(new, nid); 176 nat_reset_flag(new); 177 } 178 return new; 179 } 180 181 static void __free_nat_entry(struct nat_entry *e) 182 { 183 kmem_cache_free(nat_entry_slab, e); 184 } 185 186 /* must be locked by nat_tree_lock */ 187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 189 { 190 if (no_fail) 191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 193 return NULL; 194 195 if (raw_ne) 196 node_info_from_raw_nat(&ne->ni, raw_ne); 197 198 spin_lock(&nm_i->nat_list_lock); 199 list_add_tail(&ne->list, &nm_i->nat_entries); 200 spin_unlock(&nm_i->nat_list_lock); 201 202 nm_i->nat_cnt[TOTAL_NAT]++; 203 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 204 return ne; 205 } 206 207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 208 { 209 struct nat_entry *ne; 210 211 ne = radix_tree_lookup(&nm_i->nat_root, n); 212 213 /* for recent accessed nat entry, move it to tail of lru list */ 214 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 215 spin_lock(&nm_i->nat_list_lock); 216 if (!list_empty(&ne->list)) 217 list_move_tail(&ne->list, &nm_i->nat_entries); 218 spin_unlock(&nm_i->nat_list_lock); 219 } 220 221 return ne; 222 } 223 224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 225 nid_t start, unsigned int nr, struct nat_entry **ep) 226 { 227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 228 } 229 230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 231 { 232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 233 nm_i->nat_cnt[TOTAL_NAT]--; 234 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 235 __free_nat_entry(e); 236 } 237 238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 239 struct nat_entry *ne) 240 { 241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 242 struct nat_entry_set *head; 243 244 head = radix_tree_lookup(&nm_i->nat_set_root, set); 245 if (!head) { 246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, 247 GFP_NOFS, true, NULL); 248 249 INIT_LIST_HEAD(&head->entry_list); 250 INIT_LIST_HEAD(&head->set_list); 251 head->set = set; 252 head->entry_cnt = 0; 253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 254 } 255 return head; 256 } 257 258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 259 struct nat_entry *ne) 260 { 261 struct nat_entry_set *head; 262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 263 264 if (!new_ne) 265 head = __grab_nat_entry_set(nm_i, ne); 266 267 /* 268 * update entry_cnt in below condition: 269 * 1. update NEW_ADDR to valid block address; 270 * 2. update old block address to new one; 271 */ 272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 273 !get_nat_flag(ne, IS_DIRTY))) 274 head->entry_cnt++; 275 276 set_nat_flag(ne, IS_PREALLOC, new_ne); 277 278 if (get_nat_flag(ne, IS_DIRTY)) 279 goto refresh_list; 280 281 nm_i->nat_cnt[DIRTY_NAT]++; 282 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 283 set_nat_flag(ne, IS_DIRTY, true); 284 refresh_list: 285 spin_lock(&nm_i->nat_list_lock); 286 if (new_ne) 287 list_del_init(&ne->list); 288 else 289 list_move_tail(&ne->list, &head->entry_list); 290 spin_unlock(&nm_i->nat_list_lock); 291 } 292 293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 294 struct nat_entry_set *set, struct nat_entry *ne) 295 { 296 spin_lock(&nm_i->nat_list_lock); 297 list_move_tail(&ne->list, &nm_i->nat_entries); 298 spin_unlock(&nm_i->nat_list_lock); 299 300 set_nat_flag(ne, IS_DIRTY, false); 301 set->entry_cnt--; 302 nm_i->nat_cnt[DIRTY_NAT]--; 303 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 304 } 305 306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 307 nid_t start, unsigned int nr, struct nat_entry_set **ep) 308 { 309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 310 start, nr); 311 } 312 313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 314 { 315 return NODE_MAPPING(sbi) == page->mapping && 316 IS_DNODE(page) && is_cold_node(page); 317 } 318 319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 320 { 321 spin_lock_init(&sbi->fsync_node_lock); 322 INIT_LIST_HEAD(&sbi->fsync_node_list); 323 sbi->fsync_seg_id = 0; 324 sbi->fsync_node_num = 0; 325 } 326 327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 328 struct page *page) 329 { 330 struct fsync_node_entry *fn; 331 unsigned long flags; 332 unsigned int seq_id; 333 334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, 335 GFP_NOFS, true, NULL); 336 337 get_page(page); 338 fn->page = page; 339 INIT_LIST_HEAD(&fn->list); 340 341 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 342 list_add_tail(&fn->list, &sbi->fsync_node_list); 343 fn->seq_id = sbi->fsync_seg_id++; 344 seq_id = fn->seq_id; 345 sbi->fsync_node_num++; 346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 347 348 return seq_id; 349 } 350 351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 352 { 353 struct fsync_node_entry *fn; 354 unsigned long flags; 355 356 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 357 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 358 if (fn->page == page) { 359 list_del(&fn->list); 360 sbi->fsync_node_num--; 361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 362 kmem_cache_free(fsync_node_entry_slab, fn); 363 put_page(page); 364 return; 365 } 366 } 367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 368 f2fs_bug_on(sbi, 1); 369 } 370 371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 372 { 373 unsigned long flags; 374 375 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 376 sbi->fsync_seg_id = 0; 377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 378 } 379 380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 381 { 382 struct f2fs_nm_info *nm_i = NM_I(sbi); 383 struct nat_entry *e; 384 bool need = false; 385 386 f2fs_down_read(&nm_i->nat_tree_lock); 387 e = __lookup_nat_cache(nm_i, nid); 388 if (e) { 389 if (!get_nat_flag(e, IS_CHECKPOINTED) && 390 !get_nat_flag(e, HAS_FSYNCED_INODE)) 391 need = true; 392 } 393 f2fs_up_read(&nm_i->nat_tree_lock); 394 return need; 395 } 396 397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 398 { 399 struct f2fs_nm_info *nm_i = NM_I(sbi); 400 struct nat_entry *e; 401 bool is_cp = true; 402 403 f2fs_down_read(&nm_i->nat_tree_lock); 404 e = __lookup_nat_cache(nm_i, nid); 405 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 406 is_cp = false; 407 f2fs_up_read(&nm_i->nat_tree_lock); 408 return is_cp; 409 } 410 411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 412 { 413 struct f2fs_nm_info *nm_i = NM_I(sbi); 414 struct nat_entry *e; 415 bool need_update = true; 416 417 f2fs_down_read(&nm_i->nat_tree_lock); 418 e = __lookup_nat_cache(nm_i, ino); 419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 420 (get_nat_flag(e, IS_CHECKPOINTED) || 421 get_nat_flag(e, HAS_FSYNCED_INODE))) 422 need_update = false; 423 f2fs_up_read(&nm_i->nat_tree_lock); 424 return need_update; 425 } 426 427 /* must be locked by nat_tree_lock */ 428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 429 struct f2fs_nat_entry *ne) 430 { 431 struct f2fs_nm_info *nm_i = NM_I(sbi); 432 struct nat_entry *new, *e; 433 434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ 435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) 436 return; 437 438 new = __alloc_nat_entry(sbi, nid, false); 439 if (!new) 440 return; 441 442 f2fs_down_write(&nm_i->nat_tree_lock); 443 e = __lookup_nat_cache(nm_i, nid); 444 if (!e) 445 e = __init_nat_entry(nm_i, new, ne, false); 446 else 447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 448 nat_get_blkaddr(e) != 449 le32_to_cpu(ne->block_addr) || 450 nat_get_version(e) != ne->version); 451 f2fs_up_write(&nm_i->nat_tree_lock); 452 if (e != new) 453 __free_nat_entry(new); 454 } 455 456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 457 block_t new_blkaddr, bool fsync_done) 458 { 459 struct f2fs_nm_info *nm_i = NM_I(sbi); 460 struct nat_entry *e; 461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); 462 463 f2fs_down_write(&nm_i->nat_tree_lock); 464 e = __lookup_nat_cache(nm_i, ni->nid); 465 if (!e) { 466 e = __init_nat_entry(nm_i, new, NULL, true); 467 copy_node_info(&e->ni, ni); 468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 469 } else if (new_blkaddr == NEW_ADDR) { 470 /* 471 * when nid is reallocated, 472 * previous nat entry can be remained in nat cache. 473 * So, reinitialize it with new information. 474 */ 475 copy_node_info(&e->ni, ni); 476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 477 } 478 /* let's free early to reduce memory consumption */ 479 if (e != new) 480 __free_nat_entry(new); 481 482 /* sanity check */ 483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 485 new_blkaddr == NULL_ADDR); 486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 487 new_blkaddr == NEW_ADDR); 488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 489 new_blkaddr == NEW_ADDR); 490 491 /* increment version no as node is removed */ 492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 493 unsigned char version = nat_get_version(e); 494 495 nat_set_version(e, inc_node_version(version)); 496 } 497 498 /* change address */ 499 nat_set_blkaddr(e, new_blkaddr); 500 if (!__is_valid_data_blkaddr(new_blkaddr)) 501 set_nat_flag(e, IS_CHECKPOINTED, false); 502 __set_nat_cache_dirty(nm_i, e); 503 504 /* update fsync_mark if its inode nat entry is still alive */ 505 if (ni->nid != ni->ino) 506 e = __lookup_nat_cache(nm_i, ni->ino); 507 if (e) { 508 if (fsync_done && ni->nid == ni->ino) 509 set_nat_flag(e, HAS_FSYNCED_INODE, true); 510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 511 } 512 f2fs_up_write(&nm_i->nat_tree_lock); 513 } 514 515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 516 { 517 struct f2fs_nm_info *nm_i = NM_I(sbi); 518 int nr = nr_shrink; 519 520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) 521 return 0; 522 523 spin_lock(&nm_i->nat_list_lock); 524 while (nr_shrink) { 525 struct nat_entry *ne; 526 527 if (list_empty(&nm_i->nat_entries)) 528 break; 529 530 ne = list_first_entry(&nm_i->nat_entries, 531 struct nat_entry, list); 532 list_del(&ne->list); 533 spin_unlock(&nm_i->nat_list_lock); 534 535 __del_from_nat_cache(nm_i, ne); 536 nr_shrink--; 537 538 spin_lock(&nm_i->nat_list_lock); 539 } 540 spin_unlock(&nm_i->nat_list_lock); 541 542 f2fs_up_write(&nm_i->nat_tree_lock); 543 return nr - nr_shrink; 544 } 545 546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 547 struct node_info *ni, bool checkpoint_context) 548 { 549 struct f2fs_nm_info *nm_i = NM_I(sbi); 550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 551 struct f2fs_journal *journal = curseg->journal; 552 nid_t start_nid = START_NID(nid); 553 struct f2fs_nat_block *nat_blk; 554 struct page *page = NULL; 555 struct f2fs_nat_entry ne; 556 struct nat_entry *e; 557 pgoff_t index; 558 block_t blkaddr; 559 int i; 560 561 ni->nid = nid; 562 retry: 563 /* Check nat cache */ 564 f2fs_down_read(&nm_i->nat_tree_lock); 565 e = __lookup_nat_cache(nm_i, nid); 566 if (e) { 567 ni->ino = nat_get_ino(e); 568 ni->blk_addr = nat_get_blkaddr(e); 569 ni->version = nat_get_version(e); 570 f2fs_up_read(&nm_i->nat_tree_lock); 571 return 0; 572 } 573 574 /* 575 * Check current segment summary by trying to grab journal_rwsem first. 576 * This sem is on the critical path on the checkpoint requiring the above 577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here 578 * while not bothering checkpoint. 579 */ 580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { 581 down_read(&curseg->journal_rwsem); 582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || 583 !down_read_trylock(&curseg->journal_rwsem)) { 584 f2fs_up_read(&nm_i->nat_tree_lock); 585 goto retry; 586 } 587 588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 589 if (i >= 0) { 590 ne = nat_in_journal(journal, i); 591 node_info_from_raw_nat(ni, &ne); 592 } 593 up_read(&curseg->journal_rwsem); 594 if (i >= 0) { 595 f2fs_up_read(&nm_i->nat_tree_lock); 596 goto cache; 597 } 598 599 /* Fill node_info from nat page */ 600 index = current_nat_addr(sbi, nid); 601 f2fs_up_read(&nm_i->nat_tree_lock); 602 603 page = f2fs_get_meta_page(sbi, index); 604 if (IS_ERR(page)) 605 return PTR_ERR(page); 606 607 nat_blk = (struct f2fs_nat_block *)page_address(page); 608 ne = nat_blk->entries[nid - start_nid]; 609 node_info_from_raw_nat(ni, &ne); 610 f2fs_put_page(page, 1); 611 cache: 612 blkaddr = le32_to_cpu(ne.block_addr); 613 if (__is_valid_data_blkaddr(blkaddr) && 614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 615 return -EFAULT; 616 617 /* cache nat entry */ 618 cache_nat_entry(sbi, nid, &ne); 619 return 0; 620 } 621 622 /* 623 * readahead MAX_RA_NODE number of node pages. 624 */ 625 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 626 { 627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 628 struct blk_plug plug; 629 int i, end; 630 nid_t nid; 631 632 blk_start_plug(&plug); 633 634 /* Then, try readahead for siblings of the desired node */ 635 end = start + n; 636 end = min(end, NIDS_PER_BLOCK); 637 for (i = start; i < end; i++) { 638 nid = get_nid(parent, i, false); 639 f2fs_ra_node_page(sbi, nid); 640 } 641 642 blk_finish_plug(&plug); 643 } 644 645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 646 { 647 const long direct_index = ADDRS_PER_INODE(dn->inode); 648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 651 int cur_level = dn->cur_level; 652 int max_level = dn->max_level; 653 pgoff_t base = 0; 654 655 if (!dn->max_level) 656 return pgofs + 1; 657 658 while (max_level-- > cur_level) 659 skipped_unit *= NIDS_PER_BLOCK; 660 661 switch (dn->max_level) { 662 case 3: 663 base += 2 * indirect_blks; 664 fallthrough; 665 case 2: 666 base += 2 * direct_blks; 667 fallthrough; 668 case 1: 669 base += direct_index; 670 break; 671 default: 672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 673 } 674 675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 676 } 677 678 /* 679 * The maximum depth is four. 680 * Offset[0] will have raw inode offset. 681 */ 682 static int get_node_path(struct inode *inode, long block, 683 int offset[4], unsigned int noffset[4]) 684 { 685 const long direct_index = ADDRS_PER_INODE(inode); 686 const long direct_blks = ADDRS_PER_BLOCK(inode); 687 const long dptrs_per_blk = NIDS_PER_BLOCK; 688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 690 int n = 0; 691 int level = 0; 692 693 noffset[0] = 0; 694 695 if (block < direct_index) { 696 offset[n] = block; 697 goto got; 698 } 699 block -= direct_index; 700 if (block < direct_blks) { 701 offset[n++] = NODE_DIR1_BLOCK; 702 noffset[n] = 1; 703 offset[n] = block; 704 level = 1; 705 goto got; 706 } 707 block -= direct_blks; 708 if (block < direct_blks) { 709 offset[n++] = NODE_DIR2_BLOCK; 710 noffset[n] = 2; 711 offset[n] = block; 712 level = 1; 713 goto got; 714 } 715 block -= direct_blks; 716 if (block < indirect_blks) { 717 offset[n++] = NODE_IND1_BLOCK; 718 noffset[n] = 3; 719 offset[n++] = block / direct_blks; 720 noffset[n] = 4 + offset[n - 1]; 721 offset[n] = block % direct_blks; 722 level = 2; 723 goto got; 724 } 725 block -= indirect_blks; 726 if (block < indirect_blks) { 727 offset[n++] = NODE_IND2_BLOCK; 728 noffset[n] = 4 + dptrs_per_blk; 729 offset[n++] = block / direct_blks; 730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 731 offset[n] = block % direct_blks; 732 level = 2; 733 goto got; 734 } 735 block -= indirect_blks; 736 if (block < dindirect_blks) { 737 offset[n++] = NODE_DIND_BLOCK; 738 noffset[n] = 5 + (dptrs_per_blk * 2); 739 offset[n++] = block / indirect_blks; 740 noffset[n] = 6 + (dptrs_per_blk * 2) + 741 offset[n - 1] * (dptrs_per_blk + 1); 742 offset[n++] = (block / direct_blks) % dptrs_per_blk; 743 noffset[n] = 7 + (dptrs_per_blk * 2) + 744 offset[n - 2] * (dptrs_per_blk + 1) + 745 offset[n - 1]; 746 offset[n] = block % direct_blks; 747 level = 3; 748 goto got; 749 } else { 750 return -E2BIG; 751 } 752 got: 753 return level; 754 } 755 756 /* 757 * Caller should call f2fs_put_dnode(dn). 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 760 */ 761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 762 { 763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 764 struct page *npage[4]; 765 struct page *parent = NULL; 766 int offset[4]; 767 unsigned int noffset[4]; 768 nid_t nids[4]; 769 int level, i = 0; 770 int err = 0; 771 772 level = get_node_path(dn->inode, index, offset, noffset); 773 if (level < 0) 774 return level; 775 776 nids[0] = dn->inode->i_ino; 777 npage[0] = dn->inode_page; 778 779 if (!npage[0]) { 780 npage[0] = f2fs_get_node_page(sbi, nids[0]); 781 if (IS_ERR(npage[0])) 782 return PTR_ERR(npage[0]); 783 } 784 785 /* if inline_data is set, should not report any block indices */ 786 if (f2fs_has_inline_data(dn->inode) && index) { 787 err = -ENOENT; 788 f2fs_put_page(npage[0], 1); 789 goto release_out; 790 } 791 792 parent = npage[0]; 793 if (level != 0) 794 nids[1] = get_nid(parent, offset[0], true); 795 dn->inode_page = npage[0]; 796 dn->inode_page_locked = true; 797 798 /* get indirect or direct nodes */ 799 for (i = 1; i <= level; i++) { 800 bool done = false; 801 802 if (!nids[i] && mode == ALLOC_NODE) { 803 /* alloc new node */ 804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 805 err = -ENOSPC; 806 goto release_pages; 807 } 808 809 dn->nid = nids[i]; 810 npage[i] = f2fs_new_node_page(dn, noffset[i]); 811 if (IS_ERR(npage[i])) { 812 f2fs_alloc_nid_failed(sbi, nids[i]); 813 err = PTR_ERR(npage[i]); 814 goto release_pages; 815 } 816 817 set_nid(parent, offset[i - 1], nids[i], i == 1); 818 f2fs_alloc_nid_done(sbi, nids[i]); 819 done = true; 820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 822 if (IS_ERR(npage[i])) { 823 err = PTR_ERR(npage[i]); 824 goto release_pages; 825 } 826 done = true; 827 } 828 if (i == 1) { 829 dn->inode_page_locked = false; 830 unlock_page(parent); 831 } else { 832 f2fs_put_page(parent, 1); 833 } 834 835 if (!done) { 836 npage[i] = f2fs_get_node_page(sbi, nids[i]); 837 if (IS_ERR(npage[i])) { 838 err = PTR_ERR(npage[i]); 839 f2fs_put_page(npage[0], 0); 840 goto release_out; 841 } 842 } 843 if (i < level) { 844 parent = npage[i]; 845 nids[i + 1] = get_nid(parent, offset[i], false); 846 } 847 } 848 dn->nid = nids[level]; 849 dn->ofs_in_node = offset[level]; 850 dn->node_page = npage[level]; 851 dn->data_blkaddr = f2fs_data_blkaddr(dn); 852 853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && 854 f2fs_sb_has_readonly(sbi)) { 855 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn); 856 block_t blkaddr; 857 858 if (!c_len) 859 goto out; 860 861 blkaddr = f2fs_data_blkaddr(dn); 862 if (blkaddr == COMPRESS_ADDR) 863 blkaddr = data_blkaddr(dn->inode, dn->node_page, 864 dn->ofs_in_node + 1); 865 866 f2fs_update_read_extent_tree_range_compressed(dn->inode, 867 index, blkaddr, 868 F2FS_I(dn->inode)->i_cluster_size, 869 c_len); 870 } 871 out: 872 return 0; 873 874 release_pages: 875 f2fs_put_page(parent, 1); 876 if (i > 1) 877 f2fs_put_page(npage[0], 0); 878 release_out: 879 dn->inode_page = NULL; 880 dn->node_page = NULL; 881 if (err == -ENOENT) { 882 dn->cur_level = i; 883 dn->max_level = level; 884 dn->ofs_in_node = offset[level]; 885 } 886 return err; 887 } 888 889 static int truncate_node(struct dnode_of_data *dn) 890 { 891 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 892 struct node_info ni; 893 int err; 894 pgoff_t index; 895 896 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 897 if (err) 898 return err; 899 900 /* Deallocate node address */ 901 f2fs_invalidate_blocks(sbi, ni.blk_addr); 902 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 903 set_node_addr(sbi, &ni, NULL_ADDR, false); 904 905 if (dn->nid == dn->inode->i_ino) { 906 f2fs_remove_orphan_inode(sbi, dn->nid); 907 dec_valid_inode_count(sbi); 908 f2fs_inode_synced(dn->inode); 909 } 910 911 clear_node_page_dirty(dn->node_page); 912 set_sbi_flag(sbi, SBI_IS_DIRTY); 913 914 index = dn->node_page->index; 915 f2fs_put_page(dn->node_page, 1); 916 917 invalidate_mapping_pages(NODE_MAPPING(sbi), 918 index, index); 919 920 dn->node_page = NULL; 921 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 922 923 return 0; 924 } 925 926 static int truncate_dnode(struct dnode_of_data *dn) 927 { 928 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 929 struct page *page; 930 int err; 931 932 if (dn->nid == 0) 933 return 1; 934 935 /* get direct node */ 936 page = f2fs_get_node_page(sbi, dn->nid); 937 if (PTR_ERR(page) == -ENOENT) 938 return 1; 939 else if (IS_ERR(page)) 940 return PTR_ERR(page); 941 942 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) { 943 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u", 944 dn->inode->i_ino, dn->nid, ino_of_node(page)); 945 set_sbi_flag(sbi, SBI_NEED_FSCK); 946 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE); 947 f2fs_put_page(page, 1); 948 return -EFSCORRUPTED; 949 } 950 951 /* Make dnode_of_data for parameter */ 952 dn->node_page = page; 953 dn->ofs_in_node = 0; 954 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 955 err = truncate_node(dn); 956 if (err) { 957 f2fs_put_page(page, 1); 958 return err; 959 } 960 961 return 1; 962 } 963 964 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 965 int ofs, int depth) 966 { 967 struct dnode_of_data rdn = *dn; 968 struct page *page; 969 struct f2fs_node *rn; 970 nid_t child_nid; 971 unsigned int child_nofs; 972 int freed = 0; 973 int i, ret; 974 975 if (dn->nid == 0) 976 return NIDS_PER_BLOCK + 1; 977 978 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 979 980 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 981 if (IS_ERR(page)) { 982 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 983 return PTR_ERR(page); 984 } 985 986 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 987 988 rn = F2FS_NODE(page); 989 if (depth < 3) { 990 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 991 child_nid = le32_to_cpu(rn->in.nid[i]); 992 if (child_nid == 0) 993 continue; 994 rdn.nid = child_nid; 995 ret = truncate_dnode(&rdn); 996 if (ret < 0) 997 goto out_err; 998 if (set_nid(page, i, 0, false)) 999 dn->node_changed = true; 1000 } 1001 } else { 1002 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 1003 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 1004 child_nid = le32_to_cpu(rn->in.nid[i]); 1005 if (child_nid == 0) { 1006 child_nofs += NIDS_PER_BLOCK + 1; 1007 continue; 1008 } 1009 rdn.nid = child_nid; 1010 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 1011 if (ret == (NIDS_PER_BLOCK + 1)) { 1012 if (set_nid(page, i, 0, false)) 1013 dn->node_changed = true; 1014 child_nofs += ret; 1015 } else if (ret < 0 && ret != -ENOENT) { 1016 goto out_err; 1017 } 1018 } 1019 freed = child_nofs; 1020 } 1021 1022 if (!ofs) { 1023 /* remove current indirect node */ 1024 dn->node_page = page; 1025 ret = truncate_node(dn); 1026 if (ret) 1027 goto out_err; 1028 freed++; 1029 } else { 1030 f2fs_put_page(page, 1); 1031 } 1032 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 1033 return freed; 1034 1035 out_err: 1036 f2fs_put_page(page, 1); 1037 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 1038 return ret; 1039 } 1040 1041 static int truncate_partial_nodes(struct dnode_of_data *dn, 1042 struct f2fs_inode *ri, int *offset, int depth) 1043 { 1044 struct page *pages[2]; 1045 nid_t nid[3]; 1046 nid_t child_nid; 1047 int err = 0; 1048 int i; 1049 int idx = depth - 2; 1050 1051 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1052 if (!nid[0]) 1053 return 0; 1054 1055 /* get indirect nodes in the path */ 1056 for (i = 0; i < idx + 1; i++) { 1057 /* reference count'll be increased */ 1058 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 1059 if (IS_ERR(pages[i])) { 1060 err = PTR_ERR(pages[i]); 1061 idx = i - 1; 1062 goto fail; 1063 } 1064 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 1065 } 1066 1067 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 1068 1069 /* free direct nodes linked to a partial indirect node */ 1070 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1071 child_nid = get_nid(pages[idx], i, false); 1072 if (!child_nid) 1073 continue; 1074 dn->nid = child_nid; 1075 err = truncate_dnode(dn); 1076 if (err < 0) 1077 goto fail; 1078 if (set_nid(pages[idx], i, 0, false)) 1079 dn->node_changed = true; 1080 } 1081 1082 if (offset[idx + 1] == 0) { 1083 dn->node_page = pages[idx]; 1084 dn->nid = nid[idx]; 1085 err = truncate_node(dn); 1086 if (err) 1087 goto fail; 1088 } else { 1089 f2fs_put_page(pages[idx], 1); 1090 } 1091 offset[idx]++; 1092 offset[idx + 1] = 0; 1093 idx--; 1094 fail: 1095 for (i = idx; i >= 0; i--) 1096 f2fs_put_page(pages[i], 1); 1097 1098 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1099 1100 return err; 1101 } 1102 1103 /* 1104 * All the block addresses of data and nodes should be nullified. 1105 */ 1106 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1107 { 1108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1109 int err = 0, cont = 1; 1110 int level, offset[4], noffset[4]; 1111 unsigned int nofs = 0; 1112 struct f2fs_inode *ri; 1113 struct dnode_of_data dn; 1114 struct page *page; 1115 1116 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1117 1118 level = get_node_path(inode, from, offset, noffset); 1119 if (level < 0) { 1120 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1121 return level; 1122 } 1123 1124 page = f2fs_get_node_page(sbi, inode->i_ino); 1125 if (IS_ERR(page)) { 1126 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1127 return PTR_ERR(page); 1128 } 1129 1130 set_new_dnode(&dn, inode, page, NULL, 0); 1131 unlock_page(page); 1132 1133 ri = F2FS_INODE(page); 1134 switch (level) { 1135 case 0: 1136 case 1: 1137 nofs = noffset[1]; 1138 break; 1139 case 2: 1140 nofs = noffset[1]; 1141 if (!offset[level - 1]) 1142 goto skip_partial; 1143 err = truncate_partial_nodes(&dn, ri, offset, level); 1144 if (err < 0 && err != -ENOENT) 1145 goto fail; 1146 nofs += 1 + NIDS_PER_BLOCK; 1147 break; 1148 case 3: 1149 nofs = 5 + 2 * NIDS_PER_BLOCK; 1150 if (!offset[level - 1]) 1151 goto skip_partial; 1152 err = truncate_partial_nodes(&dn, ri, offset, level); 1153 if (err < 0 && err != -ENOENT) 1154 goto fail; 1155 break; 1156 default: 1157 BUG(); 1158 } 1159 1160 skip_partial: 1161 while (cont) { 1162 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1163 switch (offset[0]) { 1164 case NODE_DIR1_BLOCK: 1165 case NODE_DIR2_BLOCK: 1166 err = truncate_dnode(&dn); 1167 break; 1168 1169 case NODE_IND1_BLOCK: 1170 case NODE_IND2_BLOCK: 1171 err = truncate_nodes(&dn, nofs, offset[1], 2); 1172 break; 1173 1174 case NODE_DIND_BLOCK: 1175 err = truncate_nodes(&dn, nofs, offset[1], 3); 1176 cont = 0; 1177 break; 1178 1179 default: 1180 BUG(); 1181 } 1182 if (err < 0 && err != -ENOENT) 1183 goto fail; 1184 if (offset[1] == 0 && 1185 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1186 lock_page(page); 1187 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1188 f2fs_wait_on_page_writeback(page, NODE, true, true); 1189 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1190 set_page_dirty(page); 1191 unlock_page(page); 1192 } 1193 offset[1] = 0; 1194 offset[0]++; 1195 nofs += err; 1196 } 1197 fail: 1198 f2fs_put_page(page, 0); 1199 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1200 return err > 0 ? 0 : err; 1201 } 1202 1203 /* caller must lock inode page */ 1204 int f2fs_truncate_xattr_node(struct inode *inode) 1205 { 1206 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1207 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1208 struct dnode_of_data dn; 1209 struct page *npage; 1210 int err; 1211 1212 if (!nid) 1213 return 0; 1214 1215 npage = f2fs_get_node_page(sbi, nid); 1216 if (IS_ERR(npage)) 1217 return PTR_ERR(npage); 1218 1219 set_new_dnode(&dn, inode, NULL, npage, nid); 1220 err = truncate_node(&dn); 1221 if (err) { 1222 f2fs_put_page(npage, 1); 1223 return err; 1224 } 1225 1226 f2fs_i_xnid_write(inode, 0); 1227 1228 return 0; 1229 } 1230 1231 /* 1232 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1233 * f2fs_unlock_op(). 1234 */ 1235 int f2fs_remove_inode_page(struct inode *inode) 1236 { 1237 struct dnode_of_data dn; 1238 int err; 1239 1240 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1241 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1242 if (err) 1243 return err; 1244 1245 err = f2fs_truncate_xattr_node(inode); 1246 if (err) { 1247 f2fs_put_dnode(&dn); 1248 return err; 1249 } 1250 1251 /* remove potential inline_data blocks */ 1252 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1253 S_ISLNK(inode->i_mode)) 1254 f2fs_truncate_data_blocks_range(&dn, 1); 1255 1256 /* 0 is possible, after f2fs_new_inode() has failed */ 1257 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1258 f2fs_put_dnode(&dn); 1259 return -EIO; 1260 } 1261 1262 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1263 f2fs_warn(F2FS_I_SB(inode), 1264 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1265 inode->i_ino, (unsigned long long)inode->i_blocks); 1266 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1267 } 1268 1269 /* will put inode & node pages */ 1270 err = truncate_node(&dn); 1271 if (err) { 1272 f2fs_put_dnode(&dn); 1273 return err; 1274 } 1275 return 0; 1276 } 1277 1278 struct page *f2fs_new_inode_page(struct inode *inode) 1279 { 1280 struct dnode_of_data dn; 1281 1282 /* allocate inode page for new inode */ 1283 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1284 1285 /* caller should f2fs_put_page(page, 1); */ 1286 return f2fs_new_node_page(&dn, 0); 1287 } 1288 1289 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1290 { 1291 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1292 struct node_info new_ni; 1293 struct page *page; 1294 int err; 1295 1296 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1297 return ERR_PTR(-EPERM); 1298 1299 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1300 if (!page) 1301 return ERR_PTR(-ENOMEM); 1302 1303 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1304 goto fail; 1305 1306 #ifdef CONFIG_F2FS_CHECK_FS 1307 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); 1308 if (err) { 1309 dec_valid_node_count(sbi, dn->inode, !ofs); 1310 goto fail; 1311 } 1312 if (unlikely(new_ni.blk_addr != NULL_ADDR)) { 1313 err = -EFSCORRUPTED; 1314 set_sbi_flag(sbi, SBI_NEED_FSCK); 1315 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1316 goto fail; 1317 } 1318 #endif 1319 new_ni.nid = dn->nid; 1320 new_ni.ino = dn->inode->i_ino; 1321 new_ni.blk_addr = NULL_ADDR; 1322 new_ni.flag = 0; 1323 new_ni.version = 0; 1324 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1325 1326 f2fs_wait_on_page_writeback(page, NODE, true, true); 1327 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1328 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1329 if (!PageUptodate(page)) 1330 SetPageUptodate(page); 1331 if (set_page_dirty(page)) 1332 dn->node_changed = true; 1333 1334 if (f2fs_has_xattr_block(ofs)) 1335 f2fs_i_xnid_write(dn->inode, dn->nid); 1336 1337 if (ofs == 0) 1338 inc_valid_inode_count(sbi); 1339 return page; 1340 1341 fail: 1342 clear_node_page_dirty(page); 1343 f2fs_put_page(page, 1); 1344 return ERR_PTR(err); 1345 } 1346 1347 /* 1348 * Caller should do after getting the following values. 1349 * 0: f2fs_put_page(page, 0) 1350 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1351 */ 1352 static int read_node_page(struct page *page, blk_opf_t op_flags) 1353 { 1354 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1355 struct node_info ni; 1356 struct f2fs_io_info fio = { 1357 .sbi = sbi, 1358 .type = NODE, 1359 .op = REQ_OP_READ, 1360 .op_flags = op_flags, 1361 .page = page, 1362 .encrypted_page = NULL, 1363 }; 1364 int err; 1365 1366 if (PageUptodate(page)) { 1367 if (!f2fs_inode_chksum_verify(sbi, page)) { 1368 ClearPageUptodate(page); 1369 return -EFSBADCRC; 1370 } 1371 return LOCKED_PAGE; 1372 } 1373 1374 err = f2fs_get_node_info(sbi, page->index, &ni, false); 1375 if (err) 1376 return err; 1377 1378 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ 1379 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) { 1380 ClearPageUptodate(page); 1381 return -ENOENT; 1382 } 1383 1384 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1385 1386 err = f2fs_submit_page_bio(&fio); 1387 1388 if (!err) 1389 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE); 1390 1391 return err; 1392 } 1393 1394 /* 1395 * Readahead a node page 1396 */ 1397 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1398 { 1399 struct page *apage; 1400 int err; 1401 1402 if (!nid) 1403 return; 1404 if (f2fs_check_nid_range(sbi, nid)) 1405 return; 1406 1407 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1408 if (apage) 1409 return; 1410 1411 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1412 if (!apage) 1413 return; 1414 1415 err = read_node_page(apage, REQ_RAHEAD); 1416 f2fs_put_page(apage, err ? 1 : 0); 1417 } 1418 1419 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1420 struct page *parent, int start) 1421 { 1422 struct page *page; 1423 int err; 1424 1425 if (!nid) 1426 return ERR_PTR(-ENOENT); 1427 if (f2fs_check_nid_range(sbi, nid)) 1428 return ERR_PTR(-EINVAL); 1429 repeat: 1430 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1431 if (!page) 1432 return ERR_PTR(-ENOMEM); 1433 1434 err = read_node_page(page, 0); 1435 if (err < 0) { 1436 goto out_put_err; 1437 } else if (err == LOCKED_PAGE) { 1438 err = 0; 1439 goto page_hit; 1440 } 1441 1442 if (parent) 1443 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1444 1445 lock_page(page); 1446 1447 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1448 f2fs_put_page(page, 1); 1449 goto repeat; 1450 } 1451 1452 if (unlikely(!PageUptodate(page))) { 1453 err = -EIO; 1454 goto out_err; 1455 } 1456 1457 if (!f2fs_inode_chksum_verify(sbi, page)) { 1458 err = -EFSBADCRC; 1459 goto out_err; 1460 } 1461 page_hit: 1462 if (likely(nid == nid_of_node(page))) 1463 return page; 1464 1465 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1466 nid, nid_of_node(page), ino_of_node(page), 1467 ofs_of_node(page), cpver_of_node(page), 1468 next_blkaddr_of_node(page)); 1469 set_sbi_flag(sbi, SBI_NEED_FSCK); 1470 err = -EINVAL; 1471 out_err: 1472 ClearPageUptodate(page); 1473 out_put_err: 1474 /* ENOENT comes from read_node_page which is not an error. */ 1475 if (err != -ENOENT) 1476 f2fs_handle_page_eio(sbi, page->index, NODE); 1477 f2fs_put_page(page, 1); 1478 return ERR_PTR(err); 1479 } 1480 1481 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1482 { 1483 return __get_node_page(sbi, nid, NULL, 0); 1484 } 1485 1486 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1487 { 1488 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1489 nid_t nid = get_nid(parent, start, false); 1490 1491 return __get_node_page(sbi, nid, parent, start); 1492 } 1493 1494 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1495 { 1496 struct inode *inode; 1497 struct page *page; 1498 int ret; 1499 1500 /* should flush inline_data before evict_inode */ 1501 inode = ilookup(sbi->sb, ino); 1502 if (!inode) 1503 return; 1504 1505 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1506 FGP_LOCK|FGP_NOWAIT, 0); 1507 if (!page) 1508 goto iput_out; 1509 1510 if (!PageUptodate(page)) 1511 goto page_out; 1512 1513 if (!PageDirty(page)) 1514 goto page_out; 1515 1516 if (!clear_page_dirty_for_io(page)) 1517 goto page_out; 1518 1519 ret = f2fs_write_inline_data(inode, page); 1520 inode_dec_dirty_pages(inode); 1521 f2fs_remove_dirty_inode(inode); 1522 if (ret) 1523 set_page_dirty(page); 1524 page_out: 1525 f2fs_put_page(page, 1); 1526 iput_out: 1527 iput(inode); 1528 } 1529 1530 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1531 { 1532 pgoff_t index; 1533 struct folio_batch fbatch; 1534 struct page *last_page = NULL; 1535 int nr_folios; 1536 1537 folio_batch_init(&fbatch); 1538 index = 0; 1539 1540 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1541 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1542 &fbatch))) { 1543 int i; 1544 1545 for (i = 0; i < nr_folios; i++) { 1546 struct page *page = &fbatch.folios[i]->page; 1547 1548 if (unlikely(f2fs_cp_error(sbi))) { 1549 f2fs_put_page(last_page, 0); 1550 folio_batch_release(&fbatch); 1551 return ERR_PTR(-EIO); 1552 } 1553 1554 if (!IS_DNODE(page) || !is_cold_node(page)) 1555 continue; 1556 if (ino_of_node(page) != ino) 1557 continue; 1558 1559 lock_page(page); 1560 1561 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1562 continue_unlock: 1563 unlock_page(page); 1564 continue; 1565 } 1566 if (ino_of_node(page) != ino) 1567 goto continue_unlock; 1568 1569 if (!PageDirty(page)) { 1570 /* someone wrote it for us */ 1571 goto continue_unlock; 1572 } 1573 1574 if (last_page) 1575 f2fs_put_page(last_page, 0); 1576 1577 get_page(page); 1578 last_page = page; 1579 unlock_page(page); 1580 } 1581 folio_batch_release(&fbatch); 1582 cond_resched(); 1583 } 1584 return last_page; 1585 } 1586 1587 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1588 struct writeback_control *wbc, bool do_balance, 1589 enum iostat_type io_type, unsigned int *seq_id) 1590 { 1591 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1592 nid_t nid; 1593 struct node_info ni; 1594 struct f2fs_io_info fio = { 1595 .sbi = sbi, 1596 .ino = ino_of_node(page), 1597 .type = NODE, 1598 .op = REQ_OP_WRITE, 1599 .op_flags = wbc_to_write_flags(wbc), 1600 .page = page, 1601 .encrypted_page = NULL, 1602 .submitted = 0, 1603 .io_type = io_type, 1604 .io_wbc = wbc, 1605 }; 1606 unsigned int seq; 1607 1608 trace_f2fs_writepage(page, NODE); 1609 1610 if (unlikely(f2fs_cp_error(sbi))) { 1611 /* keep node pages in remount-ro mode */ 1612 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 1613 goto redirty_out; 1614 ClearPageUptodate(page); 1615 dec_page_count(sbi, F2FS_DIRTY_NODES); 1616 unlock_page(page); 1617 return 0; 1618 } 1619 1620 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1621 goto redirty_out; 1622 1623 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1624 wbc->sync_mode == WB_SYNC_NONE && 1625 IS_DNODE(page) && is_cold_node(page)) 1626 goto redirty_out; 1627 1628 /* get old block addr of this node page */ 1629 nid = nid_of_node(page); 1630 f2fs_bug_on(sbi, page->index != nid); 1631 1632 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) 1633 goto redirty_out; 1634 1635 if (wbc->for_reclaim) { 1636 if (!f2fs_down_read_trylock(&sbi->node_write)) 1637 goto redirty_out; 1638 } else { 1639 f2fs_down_read(&sbi->node_write); 1640 } 1641 1642 /* This page is already truncated */ 1643 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1644 ClearPageUptodate(page); 1645 dec_page_count(sbi, F2FS_DIRTY_NODES); 1646 f2fs_up_read(&sbi->node_write); 1647 unlock_page(page); 1648 return 0; 1649 } 1650 1651 if (__is_valid_data_blkaddr(ni.blk_addr) && 1652 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1653 DATA_GENERIC_ENHANCE)) { 1654 f2fs_up_read(&sbi->node_write); 1655 goto redirty_out; 1656 } 1657 1658 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi)) 1659 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1660 1661 /* should add to global list before clearing PAGECACHE status */ 1662 if (f2fs_in_warm_node_list(sbi, page)) { 1663 seq = f2fs_add_fsync_node_entry(sbi, page); 1664 if (seq_id) 1665 *seq_id = seq; 1666 } 1667 1668 set_page_writeback(page); 1669 1670 fio.old_blkaddr = ni.blk_addr; 1671 f2fs_do_write_node_page(nid, &fio); 1672 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1673 dec_page_count(sbi, F2FS_DIRTY_NODES); 1674 f2fs_up_read(&sbi->node_write); 1675 1676 if (wbc->for_reclaim) { 1677 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1678 submitted = NULL; 1679 } 1680 1681 unlock_page(page); 1682 1683 if (unlikely(f2fs_cp_error(sbi))) { 1684 f2fs_submit_merged_write(sbi, NODE); 1685 submitted = NULL; 1686 } 1687 if (submitted) 1688 *submitted = fio.submitted; 1689 1690 if (do_balance) 1691 f2fs_balance_fs(sbi, false); 1692 return 0; 1693 1694 redirty_out: 1695 redirty_page_for_writepage(wbc, page); 1696 return AOP_WRITEPAGE_ACTIVATE; 1697 } 1698 1699 int f2fs_move_node_page(struct page *node_page, int gc_type) 1700 { 1701 int err = 0; 1702 1703 if (gc_type == FG_GC) { 1704 struct writeback_control wbc = { 1705 .sync_mode = WB_SYNC_ALL, 1706 .nr_to_write = 1, 1707 .for_reclaim = 0, 1708 }; 1709 1710 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1711 1712 set_page_dirty(node_page); 1713 1714 if (!clear_page_dirty_for_io(node_page)) { 1715 err = -EAGAIN; 1716 goto out_page; 1717 } 1718 1719 if (__write_node_page(node_page, false, NULL, 1720 &wbc, false, FS_GC_NODE_IO, NULL)) { 1721 err = -EAGAIN; 1722 unlock_page(node_page); 1723 } 1724 goto release_page; 1725 } else { 1726 /* set page dirty and write it */ 1727 if (!PageWriteback(node_page)) 1728 set_page_dirty(node_page); 1729 } 1730 out_page: 1731 unlock_page(node_page); 1732 release_page: 1733 f2fs_put_page(node_page, 0); 1734 return err; 1735 } 1736 1737 static int f2fs_write_node_page(struct page *page, 1738 struct writeback_control *wbc) 1739 { 1740 return __write_node_page(page, false, NULL, wbc, false, 1741 FS_NODE_IO, NULL); 1742 } 1743 1744 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1745 struct writeback_control *wbc, bool atomic, 1746 unsigned int *seq_id) 1747 { 1748 pgoff_t index; 1749 struct folio_batch fbatch; 1750 int ret = 0; 1751 struct page *last_page = NULL; 1752 bool marked = false; 1753 nid_t ino = inode->i_ino; 1754 int nr_folios; 1755 int nwritten = 0; 1756 1757 if (atomic) { 1758 last_page = last_fsync_dnode(sbi, ino); 1759 if (IS_ERR_OR_NULL(last_page)) 1760 return PTR_ERR_OR_ZERO(last_page); 1761 } 1762 retry: 1763 folio_batch_init(&fbatch); 1764 index = 0; 1765 1766 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1767 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1768 &fbatch))) { 1769 int i; 1770 1771 for (i = 0; i < nr_folios; i++) { 1772 struct page *page = &fbatch.folios[i]->page; 1773 bool submitted = false; 1774 1775 if (unlikely(f2fs_cp_error(sbi))) { 1776 f2fs_put_page(last_page, 0); 1777 folio_batch_release(&fbatch); 1778 ret = -EIO; 1779 goto out; 1780 } 1781 1782 if (!IS_DNODE(page) || !is_cold_node(page)) 1783 continue; 1784 if (ino_of_node(page) != ino) 1785 continue; 1786 1787 lock_page(page); 1788 1789 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1790 continue_unlock: 1791 unlock_page(page); 1792 continue; 1793 } 1794 if (ino_of_node(page) != ino) 1795 goto continue_unlock; 1796 1797 if (!PageDirty(page) && page != last_page) { 1798 /* someone wrote it for us */ 1799 goto continue_unlock; 1800 } 1801 1802 f2fs_wait_on_page_writeback(page, NODE, true, true); 1803 1804 set_fsync_mark(page, 0); 1805 set_dentry_mark(page, 0); 1806 1807 if (!atomic || page == last_page) { 1808 set_fsync_mark(page, 1); 1809 percpu_counter_inc(&sbi->rf_node_block_count); 1810 if (IS_INODE(page)) { 1811 if (is_inode_flag_set(inode, 1812 FI_DIRTY_INODE)) 1813 f2fs_update_inode(inode, page); 1814 set_dentry_mark(page, 1815 f2fs_need_dentry_mark(sbi, ino)); 1816 } 1817 /* may be written by other thread */ 1818 if (!PageDirty(page)) 1819 set_page_dirty(page); 1820 } 1821 1822 if (!clear_page_dirty_for_io(page)) 1823 goto continue_unlock; 1824 1825 ret = __write_node_page(page, atomic && 1826 page == last_page, 1827 &submitted, wbc, true, 1828 FS_NODE_IO, seq_id); 1829 if (ret) { 1830 unlock_page(page); 1831 f2fs_put_page(last_page, 0); 1832 break; 1833 } else if (submitted) { 1834 nwritten++; 1835 } 1836 1837 if (page == last_page) { 1838 f2fs_put_page(page, 0); 1839 marked = true; 1840 break; 1841 } 1842 } 1843 folio_batch_release(&fbatch); 1844 cond_resched(); 1845 1846 if (ret || marked) 1847 break; 1848 } 1849 if (!ret && atomic && !marked) { 1850 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1851 ino, last_page->index); 1852 lock_page(last_page); 1853 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1854 set_page_dirty(last_page); 1855 unlock_page(last_page); 1856 goto retry; 1857 } 1858 out: 1859 if (nwritten) 1860 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1861 return ret ? -EIO : 0; 1862 } 1863 1864 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1865 { 1866 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1867 bool clean; 1868 1869 if (inode->i_ino != ino) 1870 return 0; 1871 1872 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1873 return 0; 1874 1875 spin_lock(&sbi->inode_lock[DIRTY_META]); 1876 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1877 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1878 1879 if (clean) 1880 return 0; 1881 1882 inode = igrab(inode); 1883 if (!inode) 1884 return 0; 1885 return 1; 1886 } 1887 1888 static bool flush_dirty_inode(struct page *page) 1889 { 1890 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1891 struct inode *inode; 1892 nid_t ino = ino_of_node(page); 1893 1894 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1895 if (!inode) 1896 return false; 1897 1898 f2fs_update_inode(inode, page); 1899 unlock_page(page); 1900 1901 iput(inode); 1902 return true; 1903 } 1904 1905 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1906 { 1907 pgoff_t index = 0; 1908 struct folio_batch fbatch; 1909 int nr_folios; 1910 1911 folio_batch_init(&fbatch); 1912 1913 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1914 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1915 &fbatch))) { 1916 int i; 1917 1918 for (i = 0; i < nr_folios; i++) { 1919 struct page *page = &fbatch.folios[i]->page; 1920 1921 if (!IS_DNODE(page)) 1922 continue; 1923 1924 lock_page(page); 1925 1926 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1927 continue_unlock: 1928 unlock_page(page); 1929 continue; 1930 } 1931 1932 if (!PageDirty(page)) { 1933 /* someone wrote it for us */ 1934 goto continue_unlock; 1935 } 1936 1937 /* flush inline_data, if it's async context. */ 1938 if (page_private_inline(page)) { 1939 clear_page_private_inline(page); 1940 unlock_page(page); 1941 flush_inline_data(sbi, ino_of_node(page)); 1942 continue; 1943 } 1944 unlock_page(page); 1945 } 1946 folio_batch_release(&fbatch); 1947 cond_resched(); 1948 } 1949 } 1950 1951 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1952 struct writeback_control *wbc, 1953 bool do_balance, enum iostat_type io_type) 1954 { 1955 pgoff_t index; 1956 struct folio_batch fbatch; 1957 int step = 0; 1958 int nwritten = 0; 1959 int ret = 0; 1960 int nr_folios, done = 0; 1961 1962 folio_batch_init(&fbatch); 1963 1964 next_step: 1965 index = 0; 1966 1967 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), 1968 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1969 &fbatch))) { 1970 int i; 1971 1972 for (i = 0; i < nr_folios; i++) { 1973 struct page *page = &fbatch.folios[i]->page; 1974 bool submitted = false; 1975 1976 /* give a priority to WB_SYNC threads */ 1977 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1978 wbc->sync_mode == WB_SYNC_NONE) { 1979 done = 1; 1980 break; 1981 } 1982 1983 /* 1984 * flushing sequence with step: 1985 * 0. indirect nodes 1986 * 1. dentry dnodes 1987 * 2. file dnodes 1988 */ 1989 if (step == 0 && IS_DNODE(page)) 1990 continue; 1991 if (step == 1 && (!IS_DNODE(page) || 1992 is_cold_node(page))) 1993 continue; 1994 if (step == 2 && (!IS_DNODE(page) || 1995 !is_cold_node(page))) 1996 continue; 1997 lock_node: 1998 if (wbc->sync_mode == WB_SYNC_ALL) 1999 lock_page(page); 2000 else if (!trylock_page(page)) 2001 continue; 2002 2003 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 2004 continue_unlock: 2005 unlock_page(page); 2006 continue; 2007 } 2008 2009 if (!PageDirty(page)) { 2010 /* someone wrote it for us */ 2011 goto continue_unlock; 2012 } 2013 2014 /* flush inline_data/inode, if it's async context. */ 2015 if (!do_balance) 2016 goto write_node; 2017 2018 /* flush inline_data */ 2019 if (page_private_inline(page)) { 2020 clear_page_private_inline(page); 2021 unlock_page(page); 2022 flush_inline_data(sbi, ino_of_node(page)); 2023 goto lock_node; 2024 } 2025 2026 /* flush dirty inode */ 2027 if (IS_INODE(page) && flush_dirty_inode(page)) 2028 goto lock_node; 2029 write_node: 2030 f2fs_wait_on_page_writeback(page, NODE, true, true); 2031 2032 if (!clear_page_dirty_for_io(page)) 2033 goto continue_unlock; 2034 2035 set_fsync_mark(page, 0); 2036 set_dentry_mark(page, 0); 2037 2038 ret = __write_node_page(page, false, &submitted, 2039 wbc, do_balance, io_type, NULL); 2040 if (ret) 2041 unlock_page(page); 2042 else if (submitted) 2043 nwritten++; 2044 2045 if (--wbc->nr_to_write == 0) 2046 break; 2047 } 2048 folio_batch_release(&fbatch); 2049 cond_resched(); 2050 2051 if (wbc->nr_to_write == 0) { 2052 step = 2; 2053 break; 2054 } 2055 } 2056 2057 if (step < 2) { 2058 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2059 wbc->sync_mode == WB_SYNC_NONE && step == 1) 2060 goto out; 2061 step++; 2062 goto next_step; 2063 } 2064 out: 2065 if (nwritten) 2066 f2fs_submit_merged_write(sbi, NODE); 2067 2068 if (unlikely(f2fs_cp_error(sbi))) 2069 return -EIO; 2070 return ret; 2071 } 2072 2073 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2074 unsigned int seq_id) 2075 { 2076 struct fsync_node_entry *fn; 2077 struct page *page; 2078 struct list_head *head = &sbi->fsync_node_list; 2079 unsigned long flags; 2080 unsigned int cur_seq_id = 0; 2081 2082 while (seq_id && cur_seq_id < seq_id) { 2083 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2084 if (list_empty(head)) { 2085 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2086 break; 2087 } 2088 fn = list_first_entry(head, struct fsync_node_entry, list); 2089 if (fn->seq_id > seq_id) { 2090 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2091 break; 2092 } 2093 cur_seq_id = fn->seq_id; 2094 page = fn->page; 2095 get_page(page); 2096 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2097 2098 f2fs_wait_on_page_writeback(page, NODE, true, false); 2099 2100 put_page(page); 2101 } 2102 2103 return filemap_check_errors(NODE_MAPPING(sbi)); 2104 } 2105 2106 static int f2fs_write_node_pages(struct address_space *mapping, 2107 struct writeback_control *wbc) 2108 { 2109 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2110 struct blk_plug plug; 2111 long diff; 2112 2113 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2114 goto skip_write; 2115 2116 /* balancing f2fs's metadata in background */ 2117 f2fs_balance_fs_bg(sbi, true); 2118 2119 /* collect a number of dirty node pages and write together */ 2120 if (wbc->sync_mode != WB_SYNC_ALL && 2121 get_pages(sbi, F2FS_DIRTY_NODES) < 2122 nr_pages_to_skip(sbi, NODE)) 2123 goto skip_write; 2124 2125 if (wbc->sync_mode == WB_SYNC_ALL) 2126 atomic_inc(&sbi->wb_sync_req[NODE]); 2127 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2128 /* to avoid potential deadlock */ 2129 if (current->plug) 2130 blk_finish_plug(current->plug); 2131 goto skip_write; 2132 } 2133 2134 trace_f2fs_writepages(mapping->host, wbc, NODE); 2135 2136 diff = nr_pages_to_write(sbi, NODE, wbc); 2137 blk_start_plug(&plug); 2138 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2139 blk_finish_plug(&plug); 2140 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2141 2142 if (wbc->sync_mode == WB_SYNC_ALL) 2143 atomic_dec(&sbi->wb_sync_req[NODE]); 2144 return 0; 2145 2146 skip_write: 2147 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2148 trace_f2fs_writepages(mapping->host, wbc, NODE); 2149 return 0; 2150 } 2151 2152 static bool f2fs_dirty_node_folio(struct address_space *mapping, 2153 struct folio *folio) 2154 { 2155 trace_f2fs_set_page_dirty(&folio->page, NODE); 2156 2157 if (!folio_test_uptodate(folio)) 2158 folio_mark_uptodate(folio); 2159 #ifdef CONFIG_F2FS_CHECK_FS 2160 if (IS_INODE(&folio->page)) 2161 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); 2162 #endif 2163 if (filemap_dirty_folio(mapping, folio)) { 2164 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 2165 set_page_private_reference(&folio->page); 2166 return true; 2167 } 2168 return false; 2169 } 2170 2171 /* 2172 * Structure of the f2fs node operations 2173 */ 2174 const struct address_space_operations f2fs_node_aops = { 2175 .writepage = f2fs_write_node_page, 2176 .writepages = f2fs_write_node_pages, 2177 .dirty_folio = f2fs_dirty_node_folio, 2178 .invalidate_folio = f2fs_invalidate_folio, 2179 .release_folio = f2fs_release_folio, 2180 .migrate_folio = filemap_migrate_folio, 2181 }; 2182 2183 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2184 nid_t n) 2185 { 2186 return radix_tree_lookup(&nm_i->free_nid_root, n); 2187 } 2188 2189 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2190 struct free_nid *i) 2191 { 2192 struct f2fs_nm_info *nm_i = NM_I(sbi); 2193 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2194 2195 if (err) 2196 return err; 2197 2198 nm_i->nid_cnt[FREE_NID]++; 2199 list_add_tail(&i->list, &nm_i->free_nid_list); 2200 return 0; 2201 } 2202 2203 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2204 struct free_nid *i, enum nid_state state) 2205 { 2206 struct f2fs_nm_info *nm_i = NM_I(sbi); 2207 2208 f2fs_bug_on(sbi, state != i->state); 2209 nm_i->nid_cnt[state]--; 2210 if (state == FREE_NID) 2211 list_del(&i->list); 2212 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2213 } 2214 2215 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2216 enum nid_state org_state, enum nid_state dst_state) 2217 { 2218 struct f2fs_nm_info *nm_i = NM_I(sbi); 2219 2220 f2fs_bug_on(sbi, org_state != i->state); 2221 i->state = dst_state; 2222 nm_i->nid_cnt[org_state]--; 2223 nm_i->nid_cnt[dst_state]++; 2224 2225 switch (dst_state) { 2226 case PREALLOC_NID: 2227 list_del(&i->list); 2228 break; 2229 case FREE_NID: 2230 list_add_tail(&i->list, &nm_i->free_nid_list); 2231 break; 2232 default: 2233 BUG_ON(1); 2234 } 2235 } 2236 2237 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi) 2238 { 2239 struct f2fs_nm_info *nm_i = NM_I(sbi); 2240 unsigned int i; 2241 bool ret = true; 2242 2243 f2fs_down_read(&nm_i->nat_tree_lock); 2244 for (i = 0; i < nm_i->nat_blocks; i++) { 2245 if (!test_bit_le(i, nm_i->nat_block_bitmap)) { 2246 ret = false; 2247 break; 2248 } 2249 } 2250 f2fs_up_read(&nm_i->nat_tree_lock); 2251 2252 return ret; 2253 } 2254 2255 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2256 bool set, bool build) 2257 { 2258 struct f2fs_nm_info *nm_i = NM_I(sbi); 2259 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2260 unsigned int nid_ofs = nid - START_NID(nid); 2261 2262 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2263 return; 2264 2265 if (set) { 2266 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2267 return; 2268 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2269 nm_i->free_nid_count[nat_ofs]++; 2270 } else { 2271 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2272 return; 2273 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2274 if (!build) 2275 nm_i->free_nid_count[nat_ofs]--; 2276 } 2277 } 2278 2279 /* return if the nid is recognized as free */ 2280 static bool add_free_nid(struct f2fs_sb_info *sbi, 2281 nid_t nid, bool build, bool update) 2282 { 2283 struct f2fs_nm_info *nm_i = NM_I(sbi); 2284 struct free_nid *i, *e; 2285 struct nat_entry *ne; 2286 int err = -EINVAL; 2287 bool ret = false; 2288 2289 /* 0 nid should not be used */ 2290 if (unlikely(nid == 0)) 2291 return false; 2292 2293 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2294 return false; 2295 2296 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); 2297 i->nid = nid; 2298 i->state = FREE_NID; 2299 2300 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2301 2302 spin_lock(&nm_i->nid_list_lock); 2303 2304 if (build) { 2305 /* 2306 * Thread A Thread B 2307 * - f2fs_create 2308 * - f2fs_new_inode 2309 * - f2fs_alloc_nid 2310 * - __insert_nid_to_list(PREALLOC_NID) 2311 * - f2fs_balance_fs_bg 2312 * - f2fs_build_free_nids 2313 * - __f2fs_build_free_nids 2314 * - scan_nat_page 2315 * - add_free_nid 2316 * - __lookup_nat_cache 2317 * - f2fs_add_link 2318 * - f2fs_init_inode_metadata 2319 * - f2fs_new_inode_page 2320 * - f2fs_new_node_page 2321 * - set_node_addr 2322 * - f2fs_alloc_nid_done 2323 * - __remove_nid_from_list(PREALLOC_NID) 2324 * - __insert_nid_to_list(FREE_NID) 2325 */ 2326 ne = __lookup_nat_cache(nm_i, nid); 2327 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2328 nat_get_blkaddr(ne) != NULL_ADDR)) 2329 goto err_out; 2330 2331 e = __lookup_free_nid_list(nm_i, nid); 2332 if (e) { 2333 if (e->state == FREE_NID) 2334 ret = true; 2335 goto err_out; 2336 } 2337 } 2338 ret = true; 2339 err = __insert_free_nid(sbi, i); 2340 err_out: 2341 if (update) { 2342 update_free_nid_bitmap(sbi, nid, ret, build); 2343 if (!build) 2344 nm_i->available_nids++; 2345 } 2346 spin_unlock(&nm_i->nid_list_lock); 2347 radix_tree_preload_end(); 2348 2349 if (err) 2350 kmem_cache_free(free_nid_slab, i); 2351 return ret; 2352 } 2353 2354 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2355 { 2356 struct f2fs_nm_info *nm_i = NM_I(sbi); 2357 struct free_nid *i; 2358 bool need_free = false; 2359 2360 spin_lock(&nm_i->nid_list_lock); 2361 i = __lookup_free_nid_list(nm_i, nid); 2362 if (i && i->state == FREE_NID) { 2363 __remove_free_nid(sbi, i, FREE_NID); 2364 need_free = true; 2365 } 2366 spin_unlock(&nm_i->nid_list_lock); 2367 2368 if (need_free) 2369 kmem_cache_free(free_nid_slab, i); 2370 } 2371 2372 static int scan_nat_page(struct f2fs_sb_info *sbi, 2373 struct page *nat_page, nid_t start_nid) 2374 { 2375 struct f2fs_nm_info *nm_i = NM_I(sbi); 2376 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2377 block_t blk_addr; 2378 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2379 int i; 2380 2381 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2382 2383 i = start_nid % NAT_ENTRY_PER_BLOCK; 2384 2385 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2386 if (unlikely(start_nid >= nm_i->max_nid)) 2387 break; 2388 2389 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2390 2391 if (blk_addr == NEW_ADDR) 2392 return -EINVAL; 2393 2394 if (blk_addr == NULL_ADDR) { 2395 add_free_nid(sbi, start_nid, true, true); 2396 } else { 2397 spin_lock(&NM_I(sbi)->nid_list_lock); 2398 update_free_nid_bitmap(sbi, start_nid, false, true); 2399 spin_unlock(&NM_I(sbi)->nid_list_lock); 2400 } 2401 } 2402 2403 return 0; 2404 } 2405 2406 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2407 { 2408 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2409 struct f2fs_journal *journal = curseg->journal; 2410 int i; 2411 2412 down_read(&curseg->journal_rwsem); 2413 for (i = 0; i < nats_in_cursum(journal); i++) { 2414 block_t addr; 2415 nid_t nid; 2416 2417 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2418 nid = le32_to_cpu(nid_in_journal(journal, i)); 2419 if (addr == NULL_ADDR) 2420 add_free_nid(sbi, nid, true, false); 2421 else 2422 remove_free_nid(sbi, nid); 2423 } 2424 up_read(&curseg->journal_rwsem); 2425 } 2426 2427 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2428 { 2429 struct f2fs_nm_info *nm_i = NM_I(sbi); 2430 unsigned int i, idx; 2431 nid_t nid; 2432 2433 f2fs_down_read(&nm_i->nat_tree_lock); 2434 2435 for (i = 0; i < nm_i->nat_blocks; i++) { 2436 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2437 continue; 2438 if (!nm_i->free_nid_count[i]) 2439 continue; 2440 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2441 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2442 NAT_ENTRY_PER_BLOCK, idx); 2443 if (idx >= NAT_ENTRY_PER_BLOCK) 2444 break; 2445 2446 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2447 add_free_nid(sbi, nid, true, false); 2448 2449 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2450 goto out; 2451 } 2452 } 2453 out: 2454 scan_curseg_cache(sbi); 2455 2456 f2fs_up_read(&nm_i->nat_tree_lock); 2457 } 2458 2459 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2460 bool sync, bool mount) 2461 { 2462 struct f2fs_nm_info *nm_i = NM_I(sbi); 2463 int i = 0, ret; 2464 nid_t nid = nm_i->next_scan_nid; 2465 2466 if (unlikely(nid >= nm_i->max_nid)) 2467 nid = 0; 2468 2469 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2470 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2471 2472 /* Enough entries */ 2473 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2474 return 0; 2475 2476 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2477 return 0; 2478 2479 if (!mount) { 2480 /* try to find free nids in free_nid_bitmap */ 2481 scan_free_nid_bits(sbi); 2482 2483 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2484 return 0; 2485 } 2486 2487 /* readahead nat pages to be scanned */ 2488 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2489 META_NAT, true); 2490 2491 f2fs_down_read(&nm_i->nat_tree_lock); 2492 2493 while (1) { 2494 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2495 nm_i->nat_block_bitmap)) { 2496 struct page *page = get_current_nat_page(sbi, nid); 2497 2498 if (IS_ERR(page)) { 2499 ret = PTR_ERR(page); 2500 } else { 2501 ret = scan_nat_page(sbi, page, nid); 2502 f2fs_put_page(page, 1); 2503 } 2504 2505 if (ret) { 2506 f2fs_up_read(&nm_i->nat_tree_lock); 2507 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2508 return ret; 2509 } 2510 } 2511 2512 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2513 if (unlikely(nid >= nm_i->max_nid)) 2514 nid = 0; 2515 2516 if (++i >= FREE_NID_PAGES) 2517 break; 2518 } 2519 2520 /* go to the next free nat pages to find free nids abundantly */ 2521 nm_i->next_scan_nid = nid; 2522 2523 /* find free nids from current sum_pages */ 2524 scan_curseg_cache(sbi); 2525 2526 f2fs_up_read(&nm_i->nat_tree_lock); 2527 2528 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2529 nm_i->ra_nid_pages, META_NAT, false); 2530 2531 return 0; 2532 } 2533 2534 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2535 { 2536 int ret; 2537 2538 mutex_lock(&NM_I(sbi)->build_lock); 2539 ret = __f2fs_build_free_nids(sbi, sync, mount); 2540 mutex_unlock(&NM_I(sbi)->build_lock); 2541 2542 return ret; 2543 } 2544 2545 /* 2546 * If this function returns success, caller can obtain a new nid 2547 * from second parameter of this function. 2548 * The returned nid could be used ino as well as nid when inode is created. 2549 */ 2550 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2551 { 2552 struct f2fs_nm_info *nm_i = NM_I(sbi); 2553 struct free_nid *i = NULL; 2554 retry: 2555 if (time_to_inject(sbi, FAULT_ALLOC_NID)) 2556 return false; 2557 2558 spin_lock(&nm_i->nid_list_lock); 2559 2560 if (unlikely(nm_i->available_nids == 0)) { 2561 spin_unlock(&nm_i->nid_list_lock); 2562 return false; 2563 } 2564 2565 /* We should not use stale free nids created by f2fs_build_free_nids */ 2566 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2567 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2568 i = list_first_entry(&nm_i->free_nid_list, 2569 struct free_nid, list); 2570 *nid = i->nid; 2571 2572 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2573 nm_i->available_nids--; 2574 2575 update_free_nid_bitmap(sbi, *nid, false, false); 2576 2577 spin_unlock(&nm_i->nid_list_lock); 2578 return true; 2579 } 2580 spin_unlock(&nm_i->nid_list_lock); 2581 2582 /* Let's scan nat pages and its caches to get free nids */ 2583 if (!f2fs_build_free_nids(sbi, true, false)) 2584 goto retry; 2585 return false; 2586 } 2587 2588 /* 2589 * f2fs_alloc_nid() should be called prior to this function. 2590 */ 2591 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2592 { 2593 struct f2fs_nm_info *nm_i = NM_I(sbi); 2594 struct free_nid *i; 2595 2596 spin_lock(&nm_i->nid_list_lock); 2597 i = __lookup_free_nid_list(nm_i, nid); 2598 f2fs_bug_on(sbi, !i); 2599 __remove_free_nid(sbi, i, PREALLOC_NID); 2600 spin_unlock(&nm_i->nid_list_lock); 2601 2602 kmem_cache_free(free_nid_slab, i); 2603 } 2604 2605 /* 2606 * f2fs_alloc_nid() should be called prior to this function. 2607 */ 2608 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2609 { 2610 struct f2fs_nm_info *nm_i = NM_I(sbi); 2611 struct free_nid *i; 2612 bool need_free = false; 2613 2614 if (!nid) 2615 return; 2616 2617 spin_lock(&nm_i->nid_list_lock); 2618 i = __lookup_free_nid_list(nm_i, nid); 2619 f2fs_bug_on(sbi, !i); 2620 2621 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2622 __remove_free_nid(sbi, i, PREALLOC_NID); 2623 need_free = true; 2624 } else { 2625 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2626 } 2627 2628 nm_i->available_nids++; 2629 2630 update_free_nid_bitmap(sbi, nid, true, false); 2631 2632 spin_unlock(&nm_i->nid_list_lock); 2633 2634 if (need_free) 2635 kmem_cache_free(free_nid_slab, i); 2636 } 2637 2638 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2639 { 2640 struct f2fs_nm_info *nm_i = NM_I(sbi); 2641 int nr = nr_shrink; 2642 2643 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2644 return 0; 2645 2646 if (!mutex_trylock(&nm_i->build_lock)) 2647 return 0; 2648 2649 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2650 struct free_nid *i, *next; 2651 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2652 2653 spin_lock(&nm_i->nid_list_lock); 2654 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2655 if (!nr_shrink || !batch || 2656 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2657 break; 2658 __remove_free_nid(sbi, i, FREE_NID); 2659 kmem_cache_free(free_nid_slab, i); 2660 nr_shrink--; 2661 batch--; 2662 } 2663 spin_unlock(&nm_i->nid_list_lock); 2664 } 2665 2666 mutex_unlock(&nm_i->build_lock); 2667 2668 return nr - nr_shrink; 2669 } 2670 2671 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2672 { 2673 void *src_addr, *dst_addr; 2674 size_t inline_size; 2675 struct page *ipage; 2676 struct f2fs_inode *ri; 2677 2678 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2679 if (IS_ERR(ipage)) 2680 return PTR_ERR(ipage); 2681 2682 ri = F2FS_INODE(page); 2683 if (ri->i_inline & F2FS_INLINE_XATTR) { 2684 if (!f2fs_has_inline_xattr(inode)) { 2685 set_inode_flag(inode, FI_INLINE_XATTR); 2686 stat_inc_inline_xattr(inode); 2687 } 2688 } else { 2689 if (f2fs_has_inline_xattr(inode)) { 2690 stat_dec_inline_xattr(inode); 2691 clear_inode_flag(inode, FI_INLINE_XATTR); 2692 } 2693 goto update_inode; 2694 } 2695 2696 dst_addr = inline_xattr_addr(inode, ipage); 2697 src_addr = inline_xattr_addr(inode, page); 2698 inline_size = inline_xattr_size(inode); 2699 2700 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2701 memcpy(dst_addr, src_addr, inline_size); 2702 update_inode: 2703 f2fs_update_inode(inode, ipage); 2704 f2fs_put_page(ipage, 1); 2705 return 0; 2706 } 2707 2708 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2709 { 2710 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2711 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2712 nid_t new_xnid; 2713 struct dnode_of_data dn; 2714 struct node_info ni; 2715 struct page *xpage; 2716 int err; 2717 2718 if (!prev_xnid) 2719 goto recover_xnid; 2720 2721 /* 1: invalidate the previous xattr nid */ 2722 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); 2723 if (err) 2724 return err; 2725 2726 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2727 dec_valid_node_count(sbi, inode, false); 2728 set_node_addr(sbi, &ni, NULL_ADDR, false); 2729 2730 recover_xnid: 2731 /* 2: update xattr nid in inode */ 2732 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2733 return -ENOSPC; 2734 2735 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2736 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2737 if (IS_ERR(xpage)) { 2738 f2fs_alloc_nid_failed(sbi, new_xnid); 2739 return PTR_ERR(xpage); 2740 } 2741 2742 f2fs_alloc_nid_done(sbi, new_xnid); 2743 f2fs_update_inode_page(inode); 2744 2745 /* 3: update and set xattr node page dirty */ 2746 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2747 2748 set_page_dirty(xpage); 2749 f2fs_put_page(xpage, 1); 2750 2751 return 0; 2752 } 2753 2754 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2755 { 2756 struct f2fs_inode *src, *dst; 2757 nid_t ino = ino_of_node(page); 2758 struct node_info old_ni, new_ni; 2759 struct page *ipage; 2760 int err; 2761 2762 err = f2fs_get_node_info(sbi, ino, &old_ni, false); 2763 if (err) 2764 return err; 2765 2766 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2767 return -EINVAL; 2768 retry: 2769 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2770 if (!ipage) { 2771 memalloc_retry_wait(GFP_NOFS); 2772 goto retry; 2773 } 2774 2775 /* Should not use this inode from free nid list */ 2776 remove_free_nid(sbi, ino); 2777 2778 if (!PageUptodate(ipage)) 2779 SetPageUptodate(ipage); 2780 fill_node_footer(ipage, ino, ino, 0, true); 2781 set_cold_node(ipage, false); 2782 2783 src = F2FS_INODE(page); 2784 dst = F2FS_INODE(ipage); 2785 2786 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2787 dst->i_size = 0; 2788 dst->i_blocks = cpu_to_le64(1); 2789 dst->i_links = cpu_to_le32(1); 2790 dst->i_xattr_nid = 0; 2791 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2792 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2793 dst->i_extra_isize = src->i_extra_isize; 2794 2795 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2796 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2797 i_inline_xattr_size)) 2798 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2799 2800 if (f2fs_sb_has_project_quota(sbi) && 2801 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2802 i_projid)) 2803 dst->i_projid = src->i_projid; 2804 2805 if (f2fs_sb_has_inode_crtime(sbi) && 2806 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2807 i_crtime_nsec)) { 2808 dst->i_crtime = src->i_crtime; 2809 dst->i_crtime_nsec = src->i_crtime_nsec; 2810 } 2811 } 2812 2813 new_ni = old_ni; 2814 new_ni.ino = ino; 2815 2816 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2817 WARN_ON(1); 2818 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2819 inc_valid_inode_count(sbi); 2820 set_page_dirty(ipage); 2821 f2fs_put_page(ipage, 1); 2822 return 0; 2823 } 2824 2825 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2826 unsigned int segno, struct f2fs_summary_block *sum) 2827 { 2828 struct f2fs_node *rn; 2829 struct f2fs_summary *sum_entry; 2830 block_t addr; 2831 int i, idx, last_offset, nrpages; 2832 2833 /* scan the node segment */ 2834 last_offset = sbi->blocks_per_seg; 2835 addr = START_BLOCK(sbi, segno); 2836 sum_entry = &sum->entries[0]; 2837 2838 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2839 nrpages = bio_max_segs(last_offset - i); 2840 2841 /* readahead node pages */ 2842 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2843 2844 for (idx = addr; idx < addr + nrpages; idx++) { 2845 struct page *page = f2fs_get_tmp_page(sbi, idx); 2846 2847 if (IS_ERR(page)) 2848 return PTR_ERR(page); 2849 2850 rn = F2FS_NODE(page); 2851 sum_entry->nid = rn->footer.nid; 2852 sum_entry->version = 0; 2853 sum_entry->ofs_in_node = 0; 2854 sum_entry++; 2855 f2fs_put_page(page, 1); 2856 } 2857 2858 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2859 addr + nrpages); 2860 } 2861 return 0; 2862 } 2863 2864 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2865 { 2866 struct f2fs_nm_info *nm_i = NM_I(sbi); 2867 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2868 struct f2fs_journal *journal = curseg->journal; 2869 int i; 2870 2871 down_write(&curseg->journal_rwsem); 2872 for (i = 0; i < nats_in_cursum(journal); i++) { 2873 struct nat_entry *ne; 2874 struct f2fs_nat_entry raw_ne; 2875 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2876 2877 if (f2fs_check_nid_range(sbi, nid)) 2878 continue; 2879 2880 raw_ne = nat_in_journal(journal, i); 2881 2882 ne = __lookup_nat_cache(nm_i, nid); 2883 if (!ne) { 2884 ne = __alloc_nat_entry(sbi, nid, true); 2885 __init_nat_entry(nm_i, ne, &raw_ne, true); 2886 } 2887 2888 /* 2889 * if a free nat in journal has not been used after last 2890 * checkpoint, we should remove it from available nids, 2891 * since later we will add it again. 2892 */ 2893 if (!get_nat_flag(ne, IS_DIRTY) && 2894 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2895 spin_lock(&nm_i->nid_list_lock); 2896 nm_i->available_nids--; 2897 spin_unlock(&nm_i->nid_list_lock); 2898 } 2899 2900 __set_nat_cache_dirty(nm_i, ne); 2901 } 2902 update_nats_in_cursum(journal, -i); 2903 up_write(&curseg->journal_rwsem); 2904 } 2905 2906 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2907 struct list_head *head, int max) 2908 { 2909 struct nat_entry_set *cur; 2910 2911 if (nes->entry_cnt >= max) 2912 goto add_out; 2913 2914 list_for_each_entry(cur, head, set_list) { 2915 if (cur->entry_cnt >= nes->entry_cnt) { 2916 list_add(&nes->set_list, cur->set_list.prev); 2917 return; 2918 } 2919 } 2920 add_out: 2921 list_add_tail(&nes->set_list, head); 2922 } 2923 2924 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs, 2925 unsigned int valid) 2926 { 2927 if (valid == 0) { 2928 __set_bit_le(nat_ofs, nm_i->empty_nat_bits); 2929 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2930 return; 2931 } 2932 2933 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits); 2934 if (valid == NAT_ENTRY_PER_BLOCK) 2935 __set_bit_le(nat_ofs, nm_i->full_nat_bits); 2936 else 2937 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2938 } 2939 2940 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2941 struct page *page) 2942 { 2943 struct f2fs_nm_info *nm_i = NM_I(sbi); 2944 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2945 struct f2fs_nat_block *nat_blk = page_address(page); 2946 int valid = 0; 2947 int i = 0; 2948 2949 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 2950 return; 2951 2952 if (nat_index == 0) { 2953 valid = 1; 2954 i = 1; 2955 } 2956 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2957 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2958 valid++; 2959 } 2960 2961 __update_nat_bits(nm_i, nat_index, valid); 2962 } 2963 2964 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi) 2965 { 2966 struct f2fs_nm_info *nm_i = NM_I(sbi); 2967 unsigned int nat_ofs; 2968 2969 f2fs_down_read(&nm_i->nat_tree_lock); 2970 2971 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) { 2972 unsigned int valid = 0, nid_ofs = 0; 2973 2974 /* handle nid zero due to it should never be used */ 2975 if (unlikely(nat_ofs == 0)) { 2976 valid = 1; 2977 nid_ofs = 1; 2978 } 2979 2980 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) { 2981 if (!test_bit_le(nid_ofs, 2982 nm_i->free_nid_bitmap[nat_ofs])) 2983 valid++; 2984 } 2985 2986 __update_nat_bits(nm_i, nat_ofs, valid); 2987 } 2988 2989 f2fs_up_read(&nm_i->nat_tree_lock); 2990 } 2991 2992 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2993 struct nat_entry_set *set, struct cp_control *cpc) 2994 { 2995 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2996 struct f2fs_journal *journal = curseg->journal; 2997 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2998 bool to_journal = true; 2999 struct f2fs_nat_block *nat_blk; 3000 struct nat_entry *ne, *cur; 3001 struct page *page = NULL; 3002 3003 /* 3004 * there are two steps to flush nat entries: 3005 * #1, flush nat entries to journal in current hot data summary block. 3006 * #2, flush nat entries to nat page. 3007 */ 3008 if ((cpc->reason & CP_UMOUNT) || 3009 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 3010 to_journal = false; 3011 3012 if (to_journal) { 3013 down_write(&curseg->journal_rwsem); 3014 } else { 3015 page = get_next_nat_page(sbi, start_nid); 3016 if (IS_ERR(page)) 3017 return PTR_ERR(page); 3018 3019 nat_blk = page_address(page); 3020 f2fs_bug_on(sbi, !nat_blk); 3021 } 3022 3023 /* flush dirty nats in nat entry set */ 3024 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 3025 struct f2fs_nat_entry *raw_ne; 3026 nid_t nid = nat_get_nid(ne); 3027 int offset; 3028 3029 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 3030 3031 if (to_journal) { 3032 offset = f2fs_lookup_journal_in_cursum(journal, 3033 NAT_JOURNAL, nid, 1); 3034 f2fs_bug_on(sbi, offset < 0); 3035 raw_ne = &nat_in_journal(journal, offset); 3036 nid_in_journal(journal, offset) = cpu_to_le32(nid); 3037 } else { 3038 raw_ne = &nat_blk->entries[nid - start_nid]; 3039 } 3040 raw_nat_from_node_info(raw_ne, &ne->ni); 3041 nat_reset_flag(ne); 3042 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 3043 if (nat_get_blkaddr(ne) == NULL_ADDR) { 3044 add_free_nid(sbi, nid, false, true); 3045 } else { 3046 spin_lock(&NM_I(sbi)->nid_list_lock); 3047 update_free_nid_bitmap(sbi, nid, false, false); 3048 spin_unlock(&NM_I(sbi)->nid_list_lock); 3049 } 3050 } 3051 3052 if (to_journal) { 3053 up_write(&curseg->journal_rwsem); 3054 } else { 3055 update_nat_bits(sbi, start_nid, page); 3056 f2fs_put_page(page, 1); 3057 } 3058 3059 /* Allow dirty nats by node block allocation in write_begin */ 3060 if (!set->entry_cnt) { 3061 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 3062 kmem_cache_free(nat_entry_set_slab, set); 3063 } 3064 return 0; 3065 } 3066 3067 /* 3068 * This function is called during the checkpointing process. 3069 */ 3070 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3071 { 3072 struct f2fs_nm_info *nm_i = NM_I(sbi); 3073 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3074 struct f2fs_journal *journal = curseg->journal; 3075 struct nat_entry_set *setvec[NAT_VEC_SIZE]; 3076 struct nat_entry_set *set, *tmp; 3077 unsigned int found; 3078 nid_t set_idx = 0; 3079 LIST_HEAD(sets); 3080 int err = 0; 3081 3082 /* 3083 * during unmount, let's flush nat_bits before checking 3084 * nat_cnt[DIRTY_NAT]. 3085 */ 3086 if (cpc->reason & CP_UMOUNT) { 3087 f2fs_down_write(&nm_i->nat_tree_lock); 3088 remove_nats_in_journal(sbi); 3089 f2fs_up_write(&nm_i->nat_tree_lock); 3090 } 3091 3092 if (!nm_i->nat_cnt[DIRTY_NAT]) 3093 return 0; 3094 3095 f2fs_down_write(&nm_i->nat_tree_lock); 3096 3097 /* 3098 * if there are no enough space in journal to store dirty nat 3099 * entries, remove all entries from journal and merge them 3100 * into nat entry set. 3101 */ 3102 if (cpc->reason & CP_UMOUNT || 3103 !__has_cursum_space(journal, 3104 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 3105 remove_nats_in_journal(sbi); 3106 3107 while ((found = __gang_lookup_nat_set(nm_i, 3108 set_idx, NAT_VEC_SIZE, setvec))) { 3109 unsigned idx; 3110 3111 set_idx = setvec[found - 1]->set + 1; 3112 for (idx = 0; idx < found; idx++) 3113 __adjust_nat_entry_set(setvec[idx], &sets, 3114 MAX_NAT_JENTRIES(journal)); 3115 } 3116 3117 /* flush dirty nats in nat entry set */ 3118 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3119 err = __flush_nat_entry_set(sbi, set, cpc); 3120 if (err) 3121 break; 3122 } 3123 3124 f2fs_up_write(&nm_i->nat_tree_lock); 3125 /* Allow dirty nats by node block allocation in write_begin */ 3126 3127 return err; 3128 } 3129 3130 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3131 { 3132 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3133 struct f2fs_nm_info *nm_i = NM_I(sbi); 3134 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3135 unsigned int i; 3136 __u64 cp_ver = cur_cp_version(ckpt); 3137 block_t nat_bits_addr; 3138 3139 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3140 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3141 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3142 if (!nm_i->nat_bits) 3143 return -ENOMEM; 3144 3145 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3146 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3147 3148 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3149 return 0; 3150 3151 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 3152 nm_i->nat_bits_blocks; 3153 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3154 struct page *page; 3155 3156 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3157 if (IS_ERR(page)) 3158 return PTR_ERR(page); 3159 3160 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3161 page_address(page), F2FS_BLKSIZE); 3162 f2fs_put_page(page, 1); 3163 } 3164 3165 cp_ver |= (cur_cp_crc(ckpt) << 32); 3166 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3167 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 3168 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)", 3169 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits)); 3170 return 0; 3171 } 3172 3173 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3174 return 0; 3175 } 3176 3177 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3178 { 3179 struct f2fs_nm_info *nm_i = NM_I(sbi); 3180 unsigned int i = 0; 3181 nid_t nid, last_nid; 3182 3183 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3184 return; 3185 3186 for (i = 0; i < nm_i->nat_blocks; i++) { 3187 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3188 if (i >= nm_i->nat_blocks) 3189 break; 3190 3191 __set_bit_le(i, nm_i->nat_block_bitmap); 3192 3193 nid = i * NAT_ENTRY_PER_BLOCK; 3194 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3195 3196 spin_lock(&NM_I(sbi)->nid_list_lock); 3197 for (; nid < last_nid; nid++) 3198 update_free_nid_bitmap(sbi, nid, true, true); 3199 spin_unlock(&NM_I(sbi)->nid_list_lock); 3200 } 3201 3202 for (i = 0; i < nm_i->nat_blocks; i++) { 3203 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3204 if (i >= nm_i->nat_blocks) 3205 break; 3206 3207 __set_bit_le(i, nm_i->nat_block_bitmap); 3208 } 3209 } 3210 3211 static int init_node_manager(struct f2fs_sb_info *sbi) 3212 { 3213 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3214 struct f2fs_nm_info *nm_i = NM_I(sbi); 3215 unsigned char *version_bitmap; 3216 unsigned int nat_segs; 3217 int err; 3218 3219 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3220 3221 /* segment_count_nat includes pair segment so divide to 2. */ 3222 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3223 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3224 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3225 3226 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3227 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3228 F2FS_RESERVED_NODE_NUM; 3229 nm_i->nid_cnt[FREE_NID] = 0; 3230 nm_i->nid_cnt[PREALLOC_NID] = 0; 3231 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3232 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3233 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3234 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; 3235 3236 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3237 INIT_LIST_HEAD(&nm_i->free_nid_list); 3238 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3239 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3240 INIT_LIST_HEAD(&nm_i->nat_entries); 3241 spin_lock_init(&nm_i->nat_list_lock); 3242 3243 mutex_init(&nm_i->build_lock); 3244 spin_lock_init(&nm_i->nid_list_lock); 3245 init_f2fs_rwsem(&nm_i->nat_tree_lock); 3246 3247 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3248 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3249 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3250 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3251 GFP_KERNEL); 3252 if (!nm_i->nat_bitmap) 3253 return -ENOMEM; 3254 3255 err = __get_nat_bitmaps(sbi); 3256 if (err) 3257 return err; 3258 3259 #ifdef CONFIG_F2FS_CHECK_FS 3260 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3261 GFP_KERNEL); 3262 if (!nm_i->nat_bitmap_mir) 3263 return -ENOMEM; 3264 #endif 3265 3266 return 0; 3267 } 3268 3269 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3270 { 3271 struct f2fs_nm_info *nm_i = NM_I(sbi); 3272 int i; 3273 3274 nm_i->free_nid_bitmap = 3275 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3276 nm_i->nat_blocks), 3277 GFP_KERNEL); 3278 if (!nm_i->free_nid_bitmap) 3279 return -ENOMEM; 3280 3281 for (i = 0; i < nm_i->nat_blocks; i++) { 3282 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3283 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3284 if (!nm_i->free_nid_bitmap[i]) 3285 return -ENOMEM; 3286 } 3287 3288 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3289 GFP_KERNEL); 3290 if (!nm_i->nat_block_bitmap) 3291 return -ENOMEM; 3292 3293 nm_i->free_nid_count = 3294 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3295 nm_i->nat_blocks), 3296 GFP_KERNEL); 3297 if (!nm_i->free_nid_count) 3298 return -ENOMEM; 3299 return 0; 3300 } 3301 3302 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3303 { 3304 int err; 3305 3306 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3307 GFP_KERNEL); 3308 if (!sbi->nm_info) 3309 return -ENOMEM; 3310 3311 err = init_node_manager(sbi); 3312 if (err) 3313 return err; 3314 3315 err = init_free_nid_cache(sbi); 3316 if (err) 3317 return err; 3318 3319 /* load free nid status from nat_bits table */ 3320 load_free_nid_bitmap(sbi); 3321 3322 return f2fs_build_free_nids(sbi, true, true); 3323 } 3324 3325 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3326 { 3327 struct f2fs_nm_info *nm_i = NM_I(sbi); 3328 struct free_nid *i, *next_i; 3329 void *vec[NAT_VEC_SIZE]; 3330 struct nat_entry **natvec = (struct nat_entry **)vec; 3331 struct nat_entry_set **setvec = (struct nat_entry_set **)vec; 3332 nid_t nid = 0; 3333 unsigned int found; 3334 3335 if (!nm_i) 3336 return; 3337 3338 /* destroy free nid list */ 3339 spin_lock(&nm_i->nid_list_lock); 3340 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3341 __remove_free_nid(sbi, i, FREE_NID); 3342 spin_unlock(&nm_i->nid_list_lock); 3343 kmem_cache_free(free_nid_slab, i); 3344 spin_lock(&nm_i->nid_list_lock); 3345 } 3346 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3347 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3348 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3349 spin_unlock(&nm_i->nid_list_lock); 3350 3351 /* destroy nat cache */ 3352 f2fs_down_write(&nm_i->nat_tree_lock); 3353 while ((found = __gang_lookup_nat_cache(nm_i, 3354 nid, NAT_VEC_SIZE, natvec))) { 3355 unsigned idx; 3356 3357 nid = nat_get_nid(natvec[found - 1]) + 1; 3358 for (idx = 0; idx < found; idx++) { 3359 spin_lock(&nm_i->nat_list_lock); 3360 list_del(&natvec[idx]->list); 3361 spin_unlock(&nm_i->nat_list_lock); 3362 3363 __del_from_nat_cache(nm_i, natvec[idx]); 3364 } 3365 } 3366 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3367 3368 /* destroy nat set cache */ 3369 nid = 0; 3370 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE); 3371 while ((found = __gang_lookup_nat_set(nm_i, 3372 nid, NAT_VEC_SIZE, setvec))) { 3373 unsigned idx; 3374 3375 nid = setvec[found - 1]->set + 1; 3376 for (idx = 0; idx < found; idx++) { 3377 /* entry_cnt is not zero, when cp_error was occurred */ 3378 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3379 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3380 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3381 } 3382 } 3383 f2fs_up_write(&nm_i->nat_tree_lock); 3384 3385 kvfree(nm_i->nat_block_bitmap); 3386 if (nm_i->free_nid_bitmap) { 3387 int i; 3388 3389 for (i = 0; i < nm_i->nat_blocks; i++) 3390 kvfree(nm_i->free_nid_bitmap[i]); 3391 kvfree(nm_i->free_nid_bitmap); 3392 } 3393 kvfree(nm_i->free_nid_count); 3394 3395 kvfree(nm_i->nat_bitmap); 3396 kvfree(nm_i->nat_bits); 3397 #ifdef CONFIG_F2FS_CHECK_FS 3398 kvfree(nm_i->nat_bitmap_mir); 3399 #endif 3400 sbi->nm_info = NULL; 3401 kfree(nm_i); 3402 } 3403 3404 int __init f2fs_create_node_manager_caches(void) 3405 { 3406 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3407 sizeof(struct nat_entry)); 3408 if (!nat_entry_slab) 3409 goto fail; 3410 3411 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3412 sizeof(struct free_nid)); 3413 if (!free_nid_slab) 3414 goto destroy_nat_entry; 3415 3416 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3417 sizeof(struct nat_entry_set)); 3418 if (!nat_entry_set_slab) 3419 goto destroy_free_nid; 3420 3421 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3422 sizeof(struct fsync_node_entry)); 3423 if (!fsync_node_entry_slab) 3424 goto destroy_nat_entry_set; 3425 return 0; 3426 3427 destroy_nat_entry_set: 3428 kmem_cache_destroy(nat_entry_set_slab); 3429 destroy_free_nid: 3430 kmem_cache_destroy(free_nid_slab); 3431 destroy_nat_entry: 3432 kmem_cache_destroy(nat_entry_slab); 3433 fail: 3434 return -ENOMEM; 3435 } 3436 3437 void f2fs_destroy_node_manager_caches(void) 3438 { 3439 kmem_cache_destroy(fsync_node_entry_slab); 3440 kmem_cache_destroy(nat_entry_set_slab); 3441 kmem_cache_destroy(free_nid_slab); 3442 kmem_cache_destroy(nat_entry_slab); 3443 } 3444