xref: /linux/fs/f2fs/node.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_msg(sbi->sb, KERN_WARNING,
38 				"%s: out-of-range nid=%x, run fsck to fix.",
39 				__func__, nid);
40 		return -EINVAL;
41 	}
42 	return 0;
43 }
44 
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct sysinfo val;
49 	unsigned long avail_ram;
50 	unsigned long mem_size = 0;
51 	bool res = false;
52 
53 	si_meminfo(&val);
54 
55 	/* only uses low memory */
56 	avail_ram = val.totalram - val.totalhigh;
57 
58 	/*
59 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60 	 */
61 	if (type == FREE_NIDS) {
62 		mem_size = (nm_i->nid_cnt[FREE_NID] *
63 				sizeof(struct free_nid)) >> PAGE_SHIFT;
64 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
65 	} else if (type == NAT_ENTRIES) {
66 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
67 							PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 		if (excess_cached_nats(sbi))
70 			res = false;
71 	} else if (type == DIRTY_DENTS) {
72 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
73 			return false;
74 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
75 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
76 	} else if (type == INO_ENTRIES) {
77 		int i;
78 
79 		for (i = 0; i < MAX_INO_ENTRY; i++)
80 			mem_size += sbi->im[i].ino_num *
81 						sizeof(struct ino_entry);
82 		mem_size >>= PAGE_SHIFT;
83 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
84 	} else if (type == EXTENT_CACHE) {
85 		mem_size = (atomic_read(&sbi->total_ext_tree) *
86 				sizeof(struct extent_tree) +
87 				atomic_read(&sbi->total_ext_node) *
88 				sizeof(struct extent_node)) >> PAGE_SHIFT;
89 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
90 	} else if (type == INMEM_PAGES) {
91 		/* it allows 20% / total_ram for inmemory pages */
92 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
93 		res = mem_size < (val.totalram / 5);
94 	} else {
95 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
96 			return true;
97 	}
98 	return res;
99 }
100 
101 static void clear_node_page_dirty(struct page *page)
102 {
103 	if (PageDirty(page)) {
104 		f2fs_clear_page_cache_dirty_tag(page);
105 		clear_page_dirty_for_io(page);
106 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
107 	}
108 	ClearPageUptodate(page);
109 }
110 
111 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
112 {
113 	return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
114 }
115 
116 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
117 {
118 	struct page *src_page;
119 	struct page *dst_page;
120 	pgoff_t dst_off;
121 	void *src_addr;
122 	void *dst_addr;
123 	struct f2fs_nm_info *nm_i = NM_I(sbi);
124 
125 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
126 
127 	/* get current nat block page with lock */
128 	src_page = get_current_nat_page(sbi, nid);
129 	if (IS_ERR(src_page))
130 		return src_page;
131 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
132 	f2fs_bug_on(sbi, PageDirty(src_page));
133 
134 	src_addr = page_address(src_page);
135 	dst_addr = page_address(dst_page);
136 	memcpy(dst_addr, src_addr, PAGE_SIZE);
137 	set_page_dirty(dst_page);
138 	f2fs_put_page(src_page, 1);
139 
140 	set_to_next_nat(nm_i, nid);
141 
142 	return dst_page;
143 }
144 
145 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
146 {
147 	struct nat_entry *new;
148 
149 	if (no_fail)
150 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
151 	else
152 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
153 	if (new) {
154 		nat_set_nid(new, nid);
155 		nat_reset_flag(new);
156 	}
157 	return new;
158 }
159 
160 static void __free_nat_entry(struct nat_entry *e)
161 {
162 	kmem_cache_free(nat_entry_slab, e);
163 }
164 
165 /* must be locked by nat_tree_lock */
166 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
167 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
168 {
169 	if (no_fail)
170 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
171 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
172 		return NULL;
173 
174 	if (raw_ne)
175 		node_info_from_raw_nat(&ne->ni, raw_ne);
176 
177 	spin_lock(&nm_i->nat_list_lock);
178 	list_add_tail(&ne->list, &nm_i->nat_entries);
179 	spin_unlock(&nm_i->nat_list_lock);
180 
181 	nm_i->nat_cnt++;
182 	return ne;
183 }
184 
185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187 	struct nat_entry *ne;
188 
189 	ne = radix_tree_lookup(&nm_i->nat_root, n);
190 
191 	/* for recent accessed nat entry, move it to tail of lru list */
192 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 		spin_lock(&nm_i->nat_list_lock);
194 		if (!list_empty(&ne->list))
195 			list_move_tail(&ne->list, &nm_i->nat_entries);
196 		spin_unlock(&nm_i->nat_list_lock);
197 	}
198 
199 	return ne;
200 }
201 
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 		nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207 
208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 	nm_i->nat_cnt--;
212 	__free_nat_entry(e);
213 }
214 
215 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
216 							struct nat_entry *ne)
217 {
218 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
219 	struct nat_entry_set *head;
220 
221 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
222 	if (!head) {
223 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
224 
225 		INIT_LIST_HEAD(&head->entry_list);
226 		INIT_LIST_HEAD(&head->set_list);
227 		head->set = set;
228 		head->entry_cnt = 0;
229 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
230 	}
231 	return head;
232 }
233 
234 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
235 						struct nat_entry *ne)
236 {
237 	struct nat_entry_set *head;
238 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
239 
240 	if (!new_ne)
241 		head = __grab_nat_entry_set(nm_i, ne);
242 
243 	/*
244 	 * update entry_cnt in below condition:
245 	 * 1. update NEW_ADDR to valid block address;
246 	 * 2. update old block address to new one;
247 	 */
248 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
249 				!get_nat_flag(ne, IS_DIRTY)))
250 		head->entry_cnt++;
251 
252 	set_nat_flag(ne, IS_PREALLOC, new_ne);
253 
254 	if (get_nat_flag(ne, IS_DIRTY))
255 		goto refresh_list;
256 
257 	nm_i->dirty_nat_cnt++;
258 	set_nat_flag(ne, IS_DIRTY, true);
259 refresh_list:
260 	spin_lock(&nm_i->nat_list_lock);
261 	if (new_ne)
262 		list_del_init(&ne->list);
263 	else
264 		list_move_tail(&ne->list, &head->entry_list);
265 	spin_unlock(&nm_i->nat_list_lock);
266 }
267 
268 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
269 		struct nat_entry_set *set, struct nat_entry *ne)
270 {
271 	spin_lock(&nm_i->nat_list_lock);
272 	list_move_tail(&ne->list, &nm_i->nat_entries);
273 	spin_unlock(&nm_i->nat_list_lock);
274 
275 	set_nat_flag(ne, IS_DIRTY, false);
276 	set->entry_cnt--;
277 	nm_i->dirty_nat_cnt--;
278 }
279 
280 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
281 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
282 {
283 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
284 							start, nr);
285 }
286 
287 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
288 {
289 	return NODE_MAPPING(sbi) == page->mapping &&
290 			IS_DNODE(page) && is_cold_node(page);
291 }
292 
293 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
294 {
295 	spin_lock_init(&sbi->fsync_node_lock);
296 	INIT_LIST_HEAD(&sbi->fsync_node_list);
297 	sbi->fsync_seg_id = 0;
298 	sbi->fsync_node_num = 0;
299 }
300 
301 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
302 							struct page *page)
303 {
304 	struct fsync_node_entry *fn;
305 	unsigned long flags;
306 	unsigned int seq_id;
307 
308 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
309 
310 	get_page(page);
311 	fn->page = page;
312 	INIT_LIST_HEAD(&fn->list);
313 
314 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
315 	list_add_tail(&fn->list, &sbi->fsync_node_list);
316 	fn->seq_id = sbi->fsync_seg_id++;
317 	seq_id = fn->seq_id;
318 	sbi->fsync_node_num++;
319 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
320 
321 	return seq_id;
322 }
323 
324 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
325 {
326 	struct fsync_node_entry *fn;
327 	unsigned long flags;
328 
329 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
330 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
331 		if (fn->page == page) {
332 			list_del(&fn->list);
333 			sbi->fsync_node_num--;
334 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
335 			kmem_cache_free(fsync_node_entry_slab, fn);
336 			put_page(page);
337 			return;
338 		}
339 	}
340 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
341 	f2fs_bug_on(sbi, 1);
342 }
343 
344 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
345 {
346 	unsigned long flags;
347 
348 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
349 	sbi->fsync_seg_id = 0;
350 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
351 }
352 
353 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
354 {
355 	struct f2fs_nm_info *nm_i = NM_I(sbi);
356 	struct nat_entry *e;
357 	bool need = false;
358 
359 	down_read(&nm_i->nat_tree_lock);
360 	e = __lookup_nat_cache(nm_i, nid);
361 	if (e) {
362 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
363 				!get_nat_flag(e, HAS_FSYNCED_INODE))
364 			need = true;
365 	}
366 	up_read(&nm_i->nat_tree_lock);
367 	return need;
368 }
369 
370 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
371 {
372 	struct f2fs_nm_info *nm_i = NM_I(sbi);
373 	struct nat_entry *e;
374 	bool is_cp = true;
375 
376 	down_read(&nm_i->nat_tree_lock);
377 	e = __lookup_nat_cache(nm_i, nid);
378 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
379 		is_cp = false;
380 	up_read(&nm_i->nat_tree_lock);
381 	return is_cp;
382 }
383 
384 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
385 {
386 	struct f2fs_nm_info *nm_i = NM_I(sbi);
387 	struct nat_entry *e;
388 	bool need_update = true;
389 
390 	down_read(&nm_i->nat_tree_lock);
391 	e = __lookup_nat_cache(nm_i, ino);
392 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
393 			(get_nat_flag(e, IS_CHECKPOINTED) ||
394 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
395 		need_update = false;
396 	up_read(&nm_i->nat_tree_lock);
397 	return need_update;
398 }
399 
400 /* must be locked by nat_tree_lock */
401 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
402 						struct f2fs_nat_entry *ne)
403 {
404 	struct f2fs_nm_info *nm_i = NM_I(sbi);
405 	struct nat_entry *new, *e;
406 
407 	new = __alloc_nat_entry(nid, false);
408 	if (!new)
409 		return;
410 
411 	down_write(&nm_i->nat_tree_lock);
412 	e = __lookup_nat_cache(nm_i, nid);
413 	if (!e)
414 		e = __init_nat_entry(nm_i, new, ne, false);
415 	else
416 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
417 				nat_get_blkaddr(e) !=
418 					le32_to_cpu(ne->block_addr) ||
419 				nat_get_version(e) != ne->version);
420 	up_write(&nm_i->nat_tree_lock);
421 	if (e != new)
422 		__free_nat_entry(new);
423 }
424 
425 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
426 			block_t new_blkaddr, bool fsync_done)
427 {
428 	struct f2fs_nm_info *nm_i = NM_I(sbi);
429 	struct nat_entry *e;
430 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
431 
432 	down_write(&nm_i->nat_tree_lock);
433 	e = __lookup_nat_cache(nm_i, ni->nid);
434 	if (!e) {
435 		e = __init_nat_entry(nm_i, new, NULL, true);
436 		copy_node_info(&e->ni, ni);
437 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
438 	} else if (new_blkaddr == NEW_ADDR) {
439 		/*
440 		 * when nid is reallocated,
441 		 * previous nat entry can be remained in nat cache.
442 		 * So, reinitialize it with new information.
443 		 */
444 		copy_node_info(&e->ni, ni);
445 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
446 	}
447 	/* let's free early to reduce memory consumption */
448 	if (e != new)
449 		__free_nat_entry(new);
450 
451 	/* sanity check */
452 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
453 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
454 			new_blkaddr == NULL_ADDR);
455 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
456 			new_blkaddr == NEW_ADDR);
457 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
458 			new_blkaddr == NEW_ADDR);
459 
460 	/* increment version no as node is removed */
461 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
462 		unsigned char version = nat_get_version(e);
463 		nat_set_version(e, inc_node_version(version));
464 	}
465 
466 	/* change address */
467 	nat_set_blkaddr(e, new_blkaddr);
468 	if (!__is_valid_data_blkaddr(new_blkaddr))
469 		set_nat_flag(e, IS_CHECKPOINTED, false);
470 	__set_nat_cache_dirty(nm_i, e);
471 
472 	/* update fsync_mark if its inode nat entry is still alive */
473 	if (ni->nid != ni->ino)
474 		e = __lookup_nat_cache(nm_i, ni->ino);
475 	if (e) {
476 		if (fsync_done && ni->nid == ni->ino)
477 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
478 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
479 	}
480 	up_write(&nm_i->nat_tree_lock);
481 }
482 
483 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
484 {
485 	struct f2fs_nm_info *nm_i = NM_I(sbi);
486 	int nr = nr_shrink;
487 
488 	if (!down_write_trylock(&nm_i->nat_tree_lock))
489 		return 0;
490 
491 	spin_lock(&nm_i->nat_list_lock);
492 	while (nr_shrink) {
493 		struct nat_entry *ne;
494 
495 		if (list_empty(&nm_i->nat_entries))
496 			break;
497 
498 		ne = list_first_entry(&nm_i->nat_entries,
499 					struct nat_entry, list);
500 		list_del(&ne->list);
501 		spin_unlock(&nm_i->nat_list_lock);
502 
503 		__del_from_nat_cache(nm_i, ne);
504 		nr_shrink--;
505 
506 		spin_lock(&nm_i->nat_list_lock);
507 	}
508 	spin_unlock(&nm_i->nat_list_lock);
509 
510 	up_write(&nm_i->nat_tree_lock);
511 	return nr - nr_shrink;
512 }
513 
514 /*
515  * This function always returns success
516  */
517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 						struct node_info *ni)
519 {
520 	struct f2fs_nm_info *nm_i = NM_I(sbi);
521 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 	struct f2fs_journal *journal = curseg->journal;
523 	nid_t start_nid = START_NID(nid);
524 	struct f2fs_nat_block *nat_blk;
525 	struct page *page = NULL;
526 	struct f2fs_nat_entry ne;
527 	struct nat_entry *e;
528 	pgoff_t index;
529 	block_t blkaddr;
530 	int i;
531 
532 	ni->nid = nid;
533 
534 	/* Check nat cache */
535 	down_read(&nm_i->nat_tree_lock);
536 	e = __lookup_nat_cache(nm_i, nid);
537 	if (e) {
538 		ni->ino = nat_get_ino(e);
539 		ni->blk_addr = nat_get_blkaddr(e);
540 		ni->version = nat_get_version(e);
541 		up_read(&nm_i->nat_tree_lock);
542 		return 0;
543 	}
544 
545 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546 
547 	/* Check current segment summary */
548 	down_read(&curseg->journal_rwsem);
549 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 	if (i >= 0) {
551 		ne = nat_in_journal(journal, i);
552 		node_info_from_raw_nat(ni, &ne);
553 	}
554 	up_read(&curseg->journal_rwsem);
555 	if (i >= 0) {
556 		up_read(&nm_i->nat_tree_lock);
557 		goto cache;
558 	}
559 
560 	/* Fill node_info from nat page */
561 	index = current_nat_addr(sbi, nid);
562 	up_read(&nm_i->nat_tree_lock);
563 
564 	page = f2fs_get_meta_page(sbi, index);
565 	if (IS_ERR(page))
566 		return PTR_ERR(page);
567 
568 	nat_blk = (struct f2fs_nat_block *)page_address(page);
569 	ne = nat_blk->entries[nid - start_nid];
570 	node_info_from_raw_nat(ni, &ne);
571 	f2fs_put_page(page, 1);
572 cache:
573 	blkaddr = le32_to_cpu(ne.block_addr);
574 	if (__is_valid_data_blkaddr(blkaddr) &&
575 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576 		return -EFAULT;
577 
578 	/* cache nat entry */
579 	cache_nat_entry(sbi, nid, &ne);
580 	return 0;
581 }
582 
583 /*
584  * readahead MAX_RA_NODE number of node pages.
585  */
586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589 	struct blk_plug plug;
590 	int i, end;
591 	nid_t nid;
592 
593 	blk_start_plug(&plug);
594 
595 	/* Then, try readahead for siblings of the desired node */
596 	end = start + n;
597 	end = min(end, NIDS_PER_BLOCK);
598 	for (i = start; i < end; i++) {
599 		nid = get_nid(parent, i, false);
600 		f2fs_ra_node_page(sbi, nid);
601 	}
602 
603 	blk_finish_plug(&plug);
604 }
605 
606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608 	const long direct_index = ADDRS_PER_INODE(dn->inode);
609 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612 	int cur_level = dn->cur_level;
613 	int max_level = dn->max_level;
614 	pgoff_t base = 0;
615 
616 	if (!dn->max_level)
617 		return pgofs + 1;
618 
619 	while (max_level-- > cur_level)
620 		skipped_unit *= NIDS_PER_BLOCK;
621 
622 	switch (dn->max_level) {
623 	case 3:
624 		base += 2 * indirect_blks;
625 		/* fall through */
626 	case 2:
627 		base += 2 * direct_blks;
628 		/* fall through */
629 	case 1:
630 		base += direct_index;
631 		break;
632 	default:
633 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634 	}
635 
636 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638 
639 /*
640  * The maximum depth is four.
641  * Offset[0] will have raw inode offset.
642  */
643 static int get_node_path(struct inode *inode, long block,
644 				int offset[4], unsigned int noffset[4])
645 {
646 	const long direct_index = ADDRS_PER_INODE(inode);
647 	const long direct_blks = ADDRS_PER_BLOCK(inode);
648 	const long dptrs_per_blk = NIDS_PER_BLOCK;
649 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651 	int n = 0;
652 	int level = 0;
653 
654 	noffset[0] = 0;
655 
656 	if (block < direct_index) {
657 		offset[n] = block;
658 		goto got;
659 	}
660 	block -= direct_index;
661 	if (block < direct_blks) {
662 		offset[n++] = NODE_DIR1_BLOCK;
663 		noffset[n] = 1;
664 		offset[n] = block;
665 		level = 1;
666 		goto got;
667 	}
668 	block -= direct_blks;
669 	if (block < direct_blks) {
670 		offset[n++] = NODE_DIR2_BLOCK;
671 		noffset[n] = 2;
672 		offset[n] = block;
673 		level = 1;
674 		goto got;
675 	}
676 	block -= direct_blks;
677 	if (block < indirect_blks) {
678 		offset[n++] = NODE_IND1_BLOCK;
679 		noffset[n] = 3;
680 		offset[n++] = block / direct_blks;
681 		noffset[n] = 4 + offset[n - 1];
682 		offset[n] = block % direct_blks;
683 		level = 2;
684 		goto got;
685 	}
686 	block -= indirect_blks;
687 	if (block < indirect_blks) {
688 		offset[n++] = NODE_IND2_BLOCK;
689 		noffset[n] = 4 + dptrs_per_blk;
690 		offset[n++] = block / direct_blks;
691 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692 		offset[n] = block % direct_blks;
693 		level = 2;
694 		goto got;
695 	}
696 	block -= indirect_blks;
697 	if (block < dindirect_blks) {
698 		offset[n++] = NODE_DIND_BLOCK;
699 		noffset[n] = 5 + (dptrs_per_blk * 2);
700 		offset[n++] = block / indirect_blks;
701 		noffset[n] = 6 + (dptrs_per_blk * 2) +
702 			      offset[n - 1] * (dptrs_per_blk + 1);
703 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
704 		noffset[n] = 7 + (dptrs_per_blk * 2) +
705 			      offset[n - 2] * (dptrs_per_blk + 1) +
706 			      offset[n - 1];
707 		offset[n] = block % direct_blks;
708 		level = 3;
709 		goto got;
710 	} else {
711 		return -E2BIG;
712 	}
713 got:
714 	return level;
715 }
716 
717 /*
718  * Caller should call f2fs_put_dnode(dn).
719  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
721  * In the case of RDONLY_NODE, we don't need to care about mutex.
722  */
723 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
724 {
725 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
726 	struct page *npage[4];
727 	struct page *parent = NULL;
728 	int offset[4];
729 	unsigned int noffset[4];
730 	nid_t nids[4];
731 	int level, i = 0;
732 	int err = 0;
733 
734 	level = get_node_path(dn->inode, index, offset, noffset);
735 	if (level < 0)
736 		return level;
737 
738 	nids[0] = dn->inode->i_ino;
739 	npage[0] = dn->inode_page;
740 
741 	if (!npage[0]) {
742 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
743 		if (IS_ERR(npage[0]))
744 			return PTR_ERR(npage[0]);
745 	}
746 
747 	/* if inline_data is set, should not report any block indices */
748 	if (f2fs_has_inline_data(dn->inode) && index) {
749 		err = -ENOENT;
750 		f2fs_put_page(npage[0], 1);
751 		goto release_out;
752 	}
753 
754 	parent = npage[0];
755 	if (level != 0)
756 		nids[1] = get_nid(parent, offset[0], true);
757 	dn->inode_page = npage[0];
758 	dn->inode_page_locked = true;
759 
760 	/* get indirect or direct nodes */
761 	for (i = 1; i <= level; i++) {
762 		bool done = false;
763 
764 		if (!nids[i] && mode == ALLOC_NODE) {
765 			/* alloc new node */
766 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
767 				err = -ENOSPC;
768 				goto release_pages;
769 			}
770 
771 			dn->nid = nids[i];
772 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
773 			if (IS_ERR(npage[i])) {
774 				f2fs_alloc_nid_failed(sbi, nids[i]);
775 				err = PTR_ERR(npage[i]);
776 				goto release_pages;
777 			}
778 
779 			set_nid(parent, offset[i - 1], nids[i], i == 1);
780 			f2fs_alloc_nid_done(sbi, nids[i]);
781 			done = true;
782 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
783 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
784 			if (IS_ERR(npage[i])) {
785 				err = PTR_ERR(npage[i]);
786 				goto release_pages;
787 			}
788 			done = true;
789 		}
790 		if (i == 1) {
791 			dn->inode_page_locked = false;
792 			unlock_page(parent);
793 		} else {
794 			f2fs_put_page(parent, 1);
795 		}
796 
797 		if (!done) {
798 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
799 			if (IS_ERR(npage[i])) {
800 				err = PTR_ERR(npage[i]);
801 				f2fs_put_page(npage[0], 0);
802 				goto release_out;
803 			}
804 		}
805 		if (i < level) {
806 			parent = npage[i];
807 			nids[i + 1] = get_nid(parent, offset[i], false);
808 		}
809 	}
810 	dn->nid = nids[level];
811 	dn->ofs_in_node = offset[level];
812 	dn->node_page = npage[level];
813 	dn->data_blkaddr = datablock_addr(dn->inode,
814 				dn->node_page, dn->ofs_in_node);
815 	return 0;
816 
817 release_pages:
818 	f2fs_put_page(parent, 1);
819 	if (i > 1)
820 		f2fs_put_page(npage[0], 0);
821 release_out:
822 	dn->inode_page = NULL;
823 	dn->node_page = NULL;
824 	if (err == -ENOENT) {
825 		dn->cur_level = i;
826 		dn->max_level = level;
827 		dn->ofs_in_node = offset[level];
828 	}
829 	return err;
830 }
831 
832 static int truncate_node(struct dnode_of_data *dn)
833 {
834 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
835 	struct node_info ni;
836 	int err;
837 	pgoff_t index;
838 
839 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
840 	if (err)
841 		return err;
842 
843 	/* Deallocate node address */
844 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
845 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
846 	set_node_addr(sbi, &ni, NULL_ADDR, false);
847 
848 	if (dn->nid == dn->inode->i_ino) {
849 		f2fs_remove_orphan_inode(sbi, dn->nid);
850 		dec_valid_inode_count(sbi);
851 		f2fs_inode_synced(dn->inode);
852 	}
853 
854 	clear_node_page_dirty(dn->node_page);
855 	set_sbi_flag(sbi, SBI_IS_DIRTY);
856 
857 	index = dn->node_page->index;
858 	f2fs_put_page(dn->node_page, 1);
859 
860 	invalidate_mapping_pages(NODE_MAPPING(sbi),
861 			index, index);
862 
863 	dn->node_page = NULL;
864 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
865 
866 	return 0;
867 }
868 
869 static int truncate_dnode(struct dnode_of_data *dn)
870 {
871 	struct page *page;
872 	int err;
873 
874 	if (dn->nid == 0)
875 		return 1;
876 
877 	/* get direct node */
878 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
879 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
880 		return 1;
881 	else if (IS_ERR(page))
882 		return PTR_ERR(page);
883 
884 	/* Make dnode_of_data for parameter */
885 	dn->node_page = page;
886 	dn->ofs_in_node = 0;
887 	f2fs_truncate_data_blocks(dn);
888 	err = truncate_node(dn);
889 	if (err)
890 		return err;
891 
892 	return 1;
893 }
894 
895 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
896 						int ofs, int depth)
897 {
898 	struct dnode_of_data rdn = *dn;
899 	struct page *page;
900 	struct f2fs_node *rn;
901 	nid_t child_nid;
902 	unsigned int child_nofs;
903 	int freed = 0;
904 	int i, ret;
905 
906 	if (dn->nid == 0)
907 		return NIDS_PER_BLOCK + 1;
908 
909 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
910 
911 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
912 	if (IS_ERR(page)) {
913 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
914 		return PTR_ERR(page);
915 	}
916 
917 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
918 
919 	rn = F2FS_NODE(page);
920 	if (depth < 3) {
921 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
922 			child_nid = le32_to_cpu(rn->in.nid[i]);
923 			if (child_nid == 0)
924 				continue;
925 			rdn.nid = child_nid;
926 			ret = truncate_dnode(&rdn);
927 			if (ret < 0)
928 				goto out_err;
929 			if (set_nid(page, i, 0, false))
930 				dn->node_changed = true;
931 		}
932 	} else {
933 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
934 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
935 			child_nid = le32_to_cpu(rn->in.nid[i]);
936 			if (child_nid == 0) {
937 				child_nofs += NIDS_PER_BLOCK + 1;
938 				continue;
939 			}
940 			rdn.nid = child_nid;
941 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
942 			if (ret == (NIDS_PER_BLOCK + 1)) {
943 				if (set_nid(page, i, 0, false))
944 					dn->node_changed = true;
945 				child_nofs += ret;
946 			} else if (ret < 0 && ret != -ENOENT) {
947 				goto out_err;
948 			}
949 		}
950 		freed = child_nofs;
951 	}
952 
953 	if (!ofs) {
954 		/* remove current indirect node */
955 		dn->node_page = page;
956 		ret = truncate_node(dn);
957 		if (ret)
958 			goto out_err;
959 		freed++;
960 	} else {
961 		f2fs_put_page(page, 1);
962 	}
963 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
964 	return freed;
965 
966 out_err:
967 	f2fs_put_page(page, 1);
968 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
969 	return ret;
970 }
971 
972 static int truncate_partial_nodes(struct dnode_of_data *dn,
973 			struct f2fs_inode *ri, int *offset, int depth)
974 {
975 	struct page *pages[2];
976 	nid_t nid[3];
977 	nid_t child_nid;
978 	int err = 0;
979 	int i;
980 	int idx = depth - 2;
981 
982 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
983 	if (!nid[0])
984 		return 0;
985 
986 	/* get indirect nodes in the path */
987 	for (i = 0; i < idx + 1; i++) {
988 		/* reference count'll be increased */
989 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
990 		if (IS_ERR(pages[i])) {
991 			err = PTR_ERR(pages[i]);
992 			idx = i - 1;
993 			goto fail;
994 		}
995 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
996 	}
997 
998 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
999 
1000 	/* free direct nodes linked to a partial indirect node */
1001 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1002 		child_nid = get_nid(pages[idx], i, false);
1003 		if (!child_nid)
1004 			continue;
1005 		dn->nid = child_nid;
1006 		err = truncate_dnode(dn);
1007 		if (err < 0)
1008 			goto fail;
1009 		if (set_nid(pages[idx], i, 0, false))
1010 			dn->node_changed = true;
1011 	}
1012 
1013 	if (offset[idx + 1] == 0) {
1014 		dn->node_page = pages[idx];
1015 		dn->nid = nid[idx];
1016 		err = truncate_node(dn);
1017 		if (err)
1018 			goto fail;
1019 	} else {
1020 		f2fs_put_page(pages[idx], 1);
1021 	}
1022 	offset[idx]++;
1023 	offset[idx + 1] = 0;
1024 	idx--;
1025 fail:
1026 	for (i = idx; i >= 0; i--)
1027 		f2fs_put_page(pages[i], 1);
1028 
1029 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1030 
1031 	return err;
1032 }
1033 
1034 /*
1035  * All the block addresses of data and nodes should be nullified.
1036  */
1037 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1038 {
1039 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1040 	int err = 0, cont = 1;
1041 	int level, offset[4], noffset[4];
1042 	unsigned int nofs = 0;
1043 	struct f2fs_inode *ri;
1044 	struct dnode_of_data dn;
1045 	struct page *page;
1046 
1047 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1048 
1049 	level = get_node_path(inode, from, offset, noffset);
1050 	if (level < 0)
1051 		return level;
1052 
1053 	page = f2fs_get_node_page(sbi, inode->i_ino);
1054 	if (IS_ERR(page)) {
1055 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1056 		return PTR_ERR(page);
1057 	}
1058 
1059 	set_new_dnode(&dn, inode, page, NULL, 0);
1060 	unlock_page(page);
1061 
1062 	ri = F2FS_INODE(page);
1063 	switch (level) {
1064 	case 0:
1065 	case 1:
1066 		nofs = noffset[1];
1067 		break;
1068 	case 2:
1069 		nofs = noffset[1];
1070 		if (!offset[level - 1])
1071 			goto skip_partial;
1072 		err = truncate_partial_nodes(&dn, ri, offset, level);
1073 		if (err < 0 && err != -ENOENT)
1074 			goto fail;
1075 		nofs += 1 + NIDS_PER_BLOCK;
1076 		break;
1077 	case 3:
1078 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1079 		if (!offset[level - 1])
1080 			goto skip_partial;
1081 		err = truncate_partial_nodes(&dn, ri, offset, level);
1082 		if (err < 0 && err != -ENOENT)
1083 			goto fail;
1084 		break;
1085 	default:
1086 		BUG();
1087 	}
1088 
1089 skip_partial:
1090 	while (cont) {
1091 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1092 		switch (offset[0]) {
1093 		case NODE_DIR1_BLOCK:
1094 		case NODE_DIR2_BLOCK:
1095 			err = truncate_dnode(&dn);
1096 			break;
1097 
1098 		case NODE_IND1_BLOCK:
1099 		case NODE_IND2_BLOCK:
1100 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1101 			break;
1102 
1103 		case NODE_DIND_BLOCK:
1104 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1105 			cont = 0;
1106 			break;
1107 
1108 		default:
1109 			BUG();
1110 		}
1111 		if (err < 0 && err != -ENOENT)
1112 			goto fail;
1113 		if (offset[1] == 0 &&
1114 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1115 			lock_page(page);
1116 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1117 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1118 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1119 			set_page_dirty(page);
1120 			unlock_page(page);
1121 		}
1122 		offset[1] = 0;
1123 		offset[0]++;
1124 		nofs += err;
1125 	}
1126 fail:
1127 	f2fs_put_page(page, 0);
1128 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1129 	return err > 0 ? 0 : err;
1130 }
1131 
1132 /* caller must lock inode page */
1133 int f2fs_truncate_xattr_node(struct inode *inode)
1134 {
1135 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1137 	struct dnode_of_data dn;
1138 	struct page *npage;
1139 	int err;
1140 
1141 	if (!nid)
1142 		return 0;
1143 
1144 	npage = f2fs_get_node_page(sbi, nid);
1145 	if (IS_ERR(npage))
1146 		return PTR_ERR(npage);
1147 
1148 	set_new_dnode(&dn, inode, NULL, npage, nid);
1149 	err = truncate_node(&dn);
1150 	if (err) {
1151 		f2fs_put_page(npage, 1);
1152 		return err;
1153 	}
1154 
1155 	f2fs_i_xnid_write(inode, 0);
1156 
1157 	return 0;
1158 }
1159 
1160 /*
1161  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1162  * f2fs_unlock_op().
1163  */
1164 int f2fs_remove_inode_page(struct inode *inode)
1165 {
1166 	struct dnode_of_data dn;
1167 	int err;
1168 
1169 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1170 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1171 	if (err)
1172 		return err;
1173 
1174 	err = f2fs_truncate_xattr_node(inode);
1175 	if (err) {
1176 		f2fs_put_dnode(&dn);
1177 		return err;
1178 	}
1179 
1180 	/* remove potential inline_data blocks */
1181 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1182 				S_ISLNK(inode->i_mode))
1183 		f2fs_truncate_data_blocks_range(&dn, 1);
1184 
1185 	/* 0 is possible, after f2fs_new_inode() has failed */
1186 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1187 		f2fs_put_dnode(&dn);
1188 		return -EIO;
1189 	}
1190 
1191 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1192 		f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1193 			"Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1194 			inode->i_ino,
1195 			(unsigned long long)inode->i_blocks);
1196 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1197 	}
1198 
1199 	/* will put inode & node pages */
1200 	err = truncate_node(&dn);
1201 	if (err) {
1202 		f2fs_put_dnode(&dn);
1203 		return err;
1204 	}
1205 	return 0;
1206 }
1207 
1208 struct page *f2fs_new_inode_page(struct inode *inode)
1209 {
1210 	struct dnode_of_data dn;
1211 
1212 	/* allocate inode page for new inode */
1213 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1214 
1215 	/* caller should f2fs_put_page(page, 1); */
1216 	return f2fs_new_node_page(&dn, 0);
1217 }
1218 
1219 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1220 {
1221 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1222 	struct node_info new_ni;
1223 	struct page *page;
1224 	int err;
1225 
1226 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1227 		return ERR_PTR(-EPERM);
1228 
1229 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1230 	if (!page)
1231 		return ERR_PTR(-ENOMEM);
1232 
1233 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1234 		goto fail;
1235 
1236 #ifdef CONFIG_F2FS_CHECK_FS
1237 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1238 	if (err) {
1239 		dec_valid_node_count(sbi, dn->inode, !ofs);
1240 		goto fail;
1241 	}
1242 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1243 #endif
1244 	new_ni.nid = dn->nid;
1245 	new_ni.ino = dn->inode->i_ino;
1246 	new_ni.blk_addr = NULL_ADDR;
1247 	new_ni.flag = 0;
1248 	new_ni.version = 0;
1249 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1250 
1251 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1252 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1253 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1254 	if (!PageUptodate(page))
1255 		SetPageUptodate(page);
1256 	if (set_page_dirty(page))
1257 		dn->node_changed = true;
1258 
1259 	if (f2fs_has_xattr_block(ofs))
1260 		f2fs_i_xnid_write(dn->inode, dn->nid);
1261 
1262 	if (ofs == 0)
1263 		inc_valid_inode_count(sbi);
1264 	return page;
1265 
1266 fail:
1267 	clear_node_page_dirty(page);
1268 	f2fs_put_page(page, 1);
1269 	return ERR_PTR(err);
1270 }
1271 
1272 /*
1273  * Caller should do after getting the following values.
1274  * 0: f2fs_put_page(page, 0)
1275  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1276  */
1277 static int read_node_page(struct page *page, int op_flags)
1278 {
1279 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1280 	struct node_info ni;
1281 	struct f2fs_io_info fio = {
1282 		.sbi = sbi,
1283 		.type = NODE,
1284 		.op = REQ_OP_READ,
1285 		.op_flags = op_flags,
1286 		.page = page,
1287 		.encrypted_page = NULL,
1288 	};
1289 	int err;
1290 
1291 	if (PageUptodate(page)) {
1292 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1293 			ClearPageUptodate(page);
1294 			return -EBADMSG;
1295 		}
1296 		return LOCKED_PAGE;
1297 	}
1298 
1299 	err = f2fs_get_node_info(sbi, page->index, &ni);
1300 	if (err)
1301 		return err;
1302 
1303 	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1304 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1305 		ClearPageUptodate(page);
1306 		return -ENOENT;
1307 	}
1308 
1309 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1310 	return f2fs_submit_page_bio(&fio);
1311 }
1312 
1313 /*
1314  * Readahead a node page
1315  */
1316 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1317 {
1318 	struct page *apage;
1319 	int err;
1320 
1321 	if (!nid)
1322 		return;
1323 	if (f2fs_check_nid_range(sbi, nid))
1324 		return;
1325 
1326 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1327 	if (apage)
1328 		return;
1329 
1330 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1331 	if (!apage)
1332 		return;
1333 
1334 	err = read_node_page(apage, REQ_RAHEAD);
1335 	f2fs_put_page(apage, err ? 1 : 0);
1336 }
1337 
1338 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1339 					struct page *parent, int start)
1340 {
1341 	struct page *page;
1342 	int err;
1343 
1344 	if (!nid)
1345 		return ERR_PTR(-ENOENT);
1346 	if (f2fs_check_nid_range(sbi, nid))
1347 		return ERR_PTR(-EINVAL);
1348 repeat:
1349 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1350 	if (!page)
1351 		return ERR_PTR(-ENOMEM);
1352 
1353 	err = read_node_page(page, 0);
1354 	if (err < 0) {
1355 		f2fs_put_page(page, 1);
1356 		return ERR_PTR(err);
1357 	} else if (err == LOCKED_PAGE) {
1358 		err = 0;
1359 		goto page_hit;
1360 	}
1361 
1362 	if (parent)
1363 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1364 
1365 	lock_page(page);
1366 
1367 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1368 		f2fs_put_page(page, 1);
1369 		goto repeat;
1370 	}
1371 
1372 	if (unlikely(!PageUptodate(page))) {
1373 		err = -EIO;
1374 		goto out_err;
1375 	}
1376 
1377 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1378 		err = -EBADMSG;
1379 		goto out_err;
1380 	}
1381 page_hit:
1382 	if(unlikely(nid != nid_of_node(page))) {
1383 		f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1384 			"nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1385 			nid, nid_of_node(page), ino_of_node(page),
1386 			ofs_of_node(page), cpver_of_node(page),
1387 			next_blkaddr_of_node(page));
1388 		err = -EINVAL;
1389 out_err:
1390 		ClearPageUptodate(page);
1391 		f2fs_put_page(page, 1);
1392 		return ERR_PTR(err);
1393 	}
1394 	return page;
1395 }
1396 
1397 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1398 {
1399 	return __get_node_page(sbi, nid, NULL, 0);
1400 }
1401 
1402 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1403 {
1404 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1405 	nid_t nid = get_nid(parent, start, false);
1406 
1407 	return __get_node_page(sbi, nid, parent, start);
1408 }
1409 
1410 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1411 {
1412 	struct inode *inode;
1413 	struct page *page;
1414 	int ret;
1415 
1416 	/* should flush inline_data before evict_inode */
1417 	inode = ilookup(sbi->sb, ino);
1418 	if (!inode)
1419 		return;
1420 
1421 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1422 					FGP_LOCK|FGP_NOWAIT, 0);
1423 	if (!page)
1424 		goto iput_out;
1425 
1426 	if (!PageUptodate(page))
1427 		goto page_out;
1428 
1429 	if (!PageDirty(page))
1430 		goto page_out;
1431 
1432 	if (!clear_page_dirty_for_io(page))
1433 		goto page_out;
1434 
1435 	ret = f2fs_write_inline_data(inode, page);
1436 	inode_dec_dirty_pages(inode);
1437 	f2fs_remove_dirty_inode(inode);
1438 	if (ret)
1439 		set_page_dirty(page);
1440 page_out:
1441 	f2fs_put_page(page, 1);
1442 iput_out:
1443 	iput(inode);
1444 }
1445 
1446 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1447 {
1448 	pgoff_t index;
1449 	struct pagevec pvec;
1450 	struct page *last_page = NULL;
1451 	int nr_pages;
1452 
1453 	pagevec_init(&pvec);
1454 	index = 0;
1455 
1456 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1457 				PAGECACHE_TAG_DIRTY))) {
1458 		int i;
1459 
1460 		for (i = 0; i < nr_pages; i++) {
1461 			struct page *page = pvec.pages[i];
1462 
1463 			if (unlikely(f2fs_cp_error(sbi))) {
1464 				f2fs_put_page(last_page, 0);
1465 				pagevec_release(&pvec);
1466 				return ERR_PTR(-EIO);
1467 			}
1468 
1469 			if (!IS_DNODE(page) || !is_cold_node(page))
1470 				continue;
1471 			if (ino_of_node(page) != ino)
1472 				continue;
1473 
1474 			lock_page(page);
1475 
1476 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1477 continue_unlock:
1478 				unlock_page(page);
1479 				continue;
1480 			}
1481 			if (ino_of_node(page) != ino)
1482 				goto continue_unlock;
1483 
1484 			if (!PageDirty(page)) {
1485 				/* someone wrote it for us */
1486 				goto continue_unlock;
1487 			}
1488 
1489 			if (last_page)
1490 				f2fs_put_page(last_page, 0);
1491 
1492 			get_page(page);
1493 			last_page = page;
1494 			unlock_page(page);
1495 		}
1496 		pagevec_release(&pvec);
1497 		cond_resched();
1498 	}
1499 	return last_page;
1500 }
1501 
1502 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1503 				struct writeback_control *wbc, bool do_balance,
1504 				enum iostat_type io_type, unsigned int *seq_id)
1505 {
1506 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1507 	nid_t nid;
1508 	struct node_info ni;
1509 	struct f2fs_io_info fio = {
1510 		.sbi = sbi,
1511 		.ino = ino_of_node(page),
1512 		.type = NODE,
1513 		.op = REQ_OP_WRITE,
1514 		.op_flags = wbc_to_write_flags(wbc),
1515 		.page = page,
1516 		.encrypted_page = NULL,
1517 		.submitted = false,
1518 		.io_type = io_type,
1519 		.io_wbc = wbc,
1520 	};
1521 	unsigned int seq;
1522 
1523 	trace_f2fs_writepage(page, NODE);
1524 
1525 	if (unlikely(f2fs_cp_error(sbi)))
1526 		goto redirty_out;
1527 
1528 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1529 		goto redirty_out;
1530 
1531 	if (wbc->sync_mode == WB_SYNC_NONE &&
1532 			IS_DNODE(page) && is_cold_node(page))
1533 		goto redirty_out;
1534 
1535 	/* get old block addr of this node page */
1536 	nid = nid_of_node(page);
1537 	f2fs_bug_on(sbi, page->index != nid);
1538 
1539 	if (f2fs_get_node_info(sbi, nid, &ni))
1540 		goto redirty_out;
1541 
1542 	if (wbc->for_reclaim) {
1543 		if (!down_read_trylock(&sbi->node_write))
1544 			goto redirty_out;
1545 	} else {
1546 		down_read(&sbi->node_write);
1547 	}
1548 
1549 	/* This page is already truncated */
1550 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1551 		ClearPageUptodate(page);
1552 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1553 		up_read(&sbi->node_write);
1554 		unlock_page(page);
1555 		return 0;
1556 	}
1557 
1558 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1559 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1560 					DATA_GENERIC_ENHANCE)) {
1561 		up_read(&sbi->node_write);
1562 		goto redirty_out;
1563 	}
1564 
1565 	if (atomic && !test_opt(sbi, NOBARRIER))
1566 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1567 
1568 	set_page_writeback(page);
1569 	ClearPageError(page);
1570 
1571 	if (f2fs_in_warm_node_list(sbi, page)) {
1572 		seq = f2fs_add_fsync_node_entry(sbi, page);
1573 		if (seq_id)
1574 			*seq_id = seq;
1575 	}
1576 
1577 	fio.old_blkaddr = ni.blk_addr;
1578 	f2fs_do_write_node_page(nid, &fio);
1579 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1580 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1581 	up_read(&sbi->node_write);
1582 
1583 	if (wbc->for_reclaim) {
1584 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1585 		submitted = NULL;
1586 	}
1587 
1588 	unlock_page(page);
1589 
1590 	if (unlikely(f2fs_cp_error(sbi))) {
1591 		f2fs_submit_merged_write(sbi, NODE);
1592 		submitted = NULL;
1593 	}
1594 	if (submitted)
1595 		*submitted = fio.submitted;
1596 
1597 	if (do_balance)
1598 		f2fs_balance_fs(sbi, false);
1599 	return 0;
1600 
1601 redirty_out:
1602 	redirty_page_for_writepage(wbc, page);
1603 	return AOP_WRITEPAGE_ACTIVATE;
1604 }
1605 
1606 int f2fs_move_node_page(struct page *node_page, int gc_type)
1607 {
1608 	int err = 0;
1609 
1610 	if (gc_type == FG_GC) {
1611 		struct writeback_control wbc = {
1612 			.sync_mode = WB_SYNC_ALL,
1613 			.nr_to_write = 1,
1614 			.for_reclaim = 0,
1615 		};
1616 
1617 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1618 
1619 		set_page_dirty(node_page);
1620 
1621 		if (!clear_page_dirty_for_io(node_page)) {
1622 			err = -EAGAIN;
1623 			goto out_page;
1624 		}
1625 
1626 		if (__write_node_page(node_page, false, NULL,
1627 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1628 			err = -EAGAIN;
1629 			unlock_page(node_page);
1630 		}
1631 		goto release_page;
1632 	} else {
1633 		/* set page dirty and write it */
1634 		if (!PageWriteback(node_page))
1635 			set_page_dirty(node_page);
1636 	}
1637 out_page:
1638 	unlock_page(node_page);
1639 release_page:
1640 	f2fs_put_page(node_page, 0);
1641 	return err;
1642 }
1643 
1644 static int f2fs_write_node_page(struct page *page,
1645 				struct writeback_control *wbc)
1646 {
1647 	return __write_node_page(page, false, NULL, wbc, false,
1648 						FS_NODE_IO, NULL);
1649 }
1650 
1651 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1652 			struct writeback_control *wbc, bool atomic,
1653 			unsigned int *seq_id)
1654 {
1655 	pgoff_t index;
1656 	struct pagevec pvec;
1657 	int ret = 0;
1658 	struct page *last_page = NULL;
1659 	bool marked = false;
1660 	nid_t ino = inode->i_ino;
1661 	int nr_pages;
1662 	int nwritten = 0;
1663 
1664 	if (atomic) {
1665 		last_page = last_fsync_dnode(sbi, ino);
1666 		if (IS_ERR_OR_NULL(last_page))
1667 			return PTR_ERR_OR_ZERO(last_page);
1668 	}
1669 retry:
1670 	pagevec_init(&pvec);
1671 	index = 0;
1672 
1673 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1674 				PAGECACHE_TAG_DIRTY))) {
1675 		int i;
1676 
1677 		for (i = 0; i < nr_pages; i++) {
1678 			struct page *page = pvec.pages[i];
1679 			bool submitted = false;
1680 
1681 			if (unlikely(f2fs_cp_error(sbi))) {
1682 				f2fs_put_page(last_page, 0);
1683 				pagevec_release(&pvec);
1684 				ret = -EIO;
1685 				goto out;
1686 			}
1687 
1688 			if (!IS_DNODE(page) || !is_cold_node(page))
1689 				continue;
1690 			if (ino_of_node(page) != ino)
1691 				continue;
1692 
1693 			lock_page(page);
1694 
1695 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1696 continue_unlock:
1697 				unlock_page(page);
1698 				continue;
1699 			}
1700 			if (ino_of_node(page) != ino)
1701 				goto continue_unlock;
1702 
1703 			if (!PageDirty(page) && page != last_page) {
1704 				/* someone wrote it for us */
1705 				goto continue_unlock;
1706 			}
1707 
1708 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1709 
1710 			set_fsync_mark(page, 0);
1711 			set_dentry_mark(page, 0);
1712 
1713 			if (!atomic || page == last_page) {
1714 				set_fsync_mark(page, 1);
1715 				if (IS_INODE(page)) {
1716 					if (is_inode_flag_set(inode,
1717 								FI_DIRTY_INODE))
1718 						f2fs_update_inode(inode, page);
1719 					set_dentry_mark(page,
1720 						f2fs_need_dentry_mark(sbi, ino));
1721 				}
1722 				/*  may be written by other thread */
1723 				if (!PageDirty(page))
1724 					set_page_dirty(page);
1725 			}
1726 
1727 			if (!clear_page_dirty_for_io(page))
1728 				goto continue_unlock;
1729 
1730 			ret = __write_node_page(page, atomic &&
1731 						page == last_page,
1732 						&submitted, wbc, true,
1733 						FS_NODE_IO, seq_id);
1734 			if (ret) {
1735 				unlock_page(page);
1736 				f2fs_put_page(last_page, 0);
1737 				break;
1738 			} else if (submitted) {
1739 				nwritten++;
1740 			}
1741 
1742 			if (page == last_page) {
1743 				f2fs_put_page(page, 0);
1744 				marked = true;
1745 				break;
1746 			}
1747 		}
1748 		pagevec_release(&pvec);
1749 		cond_resched();
1750 
1751 		if (ret || marked)
1752 			break;
1753 	}
1754 	if (!ret && atomic && !marked) {
1755 		f2fs_msg(sbi->sb, KERN_DEBUG,
1756 			"Retry to write fsync mark: ino=%u, idx=%lx",
1757 					ino, last_page->index);
1758 		lock_page(last_page);
1759 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1760 		set_page_dirty(last_page);
1761 		unlock_page(last_page);
1762 		goto retry;
1763 	}
1764 out:
1765 	if (nwritten)
1766 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1767 	return ret ? -EIO: 0;
1768 }
1769 
1770 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1771 				struct writeback_control *wbc,
1772 				bool do_balance, enum iostat_type io_type)
1773 {
1774 	pgoff_t index;
1775 	struct pagevec pvec;
1776 	int step = 0;
1777 	int nwritten = 0;
1778 	int ret = 0;
1779 	int nr_pages, done = 0;
1780 
1781 	pagevec_init(&pvec);
1782 
1783 next_step:
1784 	index = 0;
1785 
1786 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1787 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1788 		int i;
1789 
1790 		for (i = 0; i < nr_pages; i++) {
1791 			struct page *page = pvec.pages[i];
1792 			bool submitted = false;
1793 
1794 			/* give a priority to WB_SYNC threads */
1795 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1796 					wbc->sync_mode == WB_SYNC_NONE) {
1797 				done = 1;
1798 				break;
1799 			}
1800 
1801 			/*
1802 			 * flushing sequence with step:
1803 			 * 0. indirect nodes
1804 			 * 1. dentry dnodes
1805 			 * 2. file dnodes
1806 			 */
1807 			if (step == 0 && IS_DNODE(page))
1808 				continue;
1809 			if (step == 1 && (!IS_DNODE(page) ||
1810 						is_cold_node(page)))
1811 				continue;
1812 			if (step == 2 && (!IS_DNODE(page) ||
1813 						!is_cold_node(page)))
1814 				continue;
1815 lock_node:
1816 			if (wbc->sync_mode == WB_SYNC_ALL)
1817 				lock_page(page);
1818 			else if (!trylock_page(page))
1819 				continue;
1820 
1821 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1822 continue_unlock:
1823 				unlock_page(page);
1824 				continue;
1825 			}
1826 
1827 			if (!PageDirty(page)) {
1828 				/* someone wrote it for us */
1829 				goto continue_unlock;
1830 			}
1831 
1832 			/* flush inline_data */
1833 			if (is_inline_node(page)) {
1834 				clear_inline_node(page);
1835 				unlock_page(page);
1836 				flush_inline_data(sbi, ino_of_node(page));
1837 				goto lock_node;
1838 			}
1839 
1840 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1841 
1842 			if (!clear_page_dirty_for_io(page))
1843 				goto continue_unlock;
1844 
1845 			set_fsync_mark(page, 0);
1846 			set_dentry_mark(page, 0);
1847 
1848 			ret = __write_node_page(page, false, &submitted,
1849 						wbc, do_balance, io_type, NULL);
1850 			if (ret)
1851 				unlock_page(page);
1852 			else if (submitted)
1853 				nwritten++;
1854 
1855 			if (--wbc->nr_to_write == 0)
1856 				break;
1857 		}
1858 		pagevec_release(&pvec);
1859 		cond_resched();
1860 
1861 		if (wbc->nr_to_write == 0) {
1862 			step = 2;
1863 			break;
1864 		}
1865 	}
1866 
1867 	if (step < 2) {
1868 		if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1869 			goto out;
1870 		step++;
1871 		goto next_step;
1872 	}
1873 out:
1874 	if (nwritten)
1875 		f2fs_submit_merged_write(sbi, NODE);
1876 
1877 	if (unlikely(f2fs_cp_error(sbi)))
1878 		return -EIO;
1879 	return ret;
1880 }
1881 
1882 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1883 						unsigned int seq_id)
1884 {
1885 	struct fsync_node_entry *fn;
1886 	struct page *page;
1887 	struct list_head *head = &sbi->fsync_node_list;
1888 	unsigned long flags;
1889 	unsigned int cur_seq_id = 0;
1890 	int ret2, ret = 0;
1891 
1892 	while (seq_id && cur_seq_id < seq_id) {
1893 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1894 		if (list_empty(head)) {
1895 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1896 			break;
1897 		}
1898 		fn = list_first_entry(head, struct fsync_node_entry, list);
1899 		if (fn->seq_id > seq_id) {
1900 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1901 			break;
1902 		}
1903 		cur_seq_id = fn->seq_id;
1904 		page = fn->page;
1905 		get_page(page);
1906 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1907 
1908 		f2fs_wait_on_page_writeback(page, NODE, true, false);
1909 		if (TestClearPageError(page))
1910 			ret = -EIO;
1911 
1912 		put_page(page);
1913 
1914 		if (ret)
1915 			break;
1916 	}
1917 
1918 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1919 	if (!ret)
1920 		ret = ret2;
1921 
1922 	return ret;
1923 }
1924 
1925 static int f2fs_write_node_pages(struct address_space *mapping,
1926 			    struct writeback_control *wbc)
1927 {
1928 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1929 	struct blk_plug plug;
1930 	long diff;
1931 
1932 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1933 		goto skip_write;
1934 
1935 	/* balancing f2fs's metadata in background */
1936 	f2fs_balance_fs_bg(sbi);
1937 
1938 	/* collect a number of dirty node pages and write together */
1939 	if (wbc->sync_mode != WB_SYNC_ALL &&
1940 			get_pages(sbi, F2FS_DIRTY_NODES) <
1941 					nr_pages_to_skip(sbi, NODE))
1942 		goto skip_write;
1943 
1944 	if (wbc->sync_mode == WB_SYNC_ALL)
1945 		atomic_inc(&sbi->wb_sync_req[NODE]);
1946 	else if (atomic_read(&sbi->wb_sync_req[NODE]))
1947 		goto skip_write;
1948 
1949 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1950 
1951 	diff = nr_pages_to_write(sbi, NODE, wbc);
1952 	blk_start_plug(&plug);
1953 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1954 	blk_finish_plug(&plug);
1955 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1956 
1957 	if (wbc->sync_mode == WB_SYNC_ALL)
1958 		atomic_dec(&sbi->wb_sync_req[NODE]);
1959 	return 0;
1960 
1961 skip_write:
1962 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1963 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1964 	return 0;
1965 }
1966 
1967 static int f2fs_set_node_page_dirty(struct page *page)
1968 {
1969 	trace_f2fs_set_page_dirty(page, NODE);
1970 
1971 	if (!PageUptodate(page))
1972 		SetPageUptodate(page);
1973 #ifdef CONFIG_F2FS_CHECK_FS
1974 	if (IS_INODE(page))
1975 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1976 #endif
1977 	if (!PageDirty(page)) {
1978 		__set_page_dirty_nobuffers(page);
1979 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1980 		f2fs_set_page_private(page, 0);
1981 		f2fs_trace_pid(page);
1982 		return 1;
1983 	}
1984 	return 0;
1985 }
1986 
1987 /*
1988  * Structure of the f2fs node operations
1989  */
1990 const struct address_space_operations f2fs_node_aops = {
1991 	.writepage	= f2fs_write_node_page,
1992 	.writepages	= f2fs_write_node_pages,
1993 	.set_page_dirty	= f2fs_set_node_page_dirty,
1994 	.invalidatepage	= f2fs_invalidate_page,
1995 	.releasepage	= f2fs_release_page,
1996 #ifdef CONFIG_MIGRATION
1997 	.migratepage    = f2fs_migrate_page,
1998 #endif
1999 };
2000 
2001 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2002 						nid_t n)
2003 {
2004 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2005 }
2006 
2007 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2008 			struct free_nid *i, enum nid_state state)
2009 {
2010 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2011 
2012 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2013 	if (err)
2014 		return err;
2015 
2016 	f2fs_bug_on(sbi, state != i->state);
2017 	nm_i->nid_cnt[state]++;
2018 	if (state == FREE_NID)
2019 		list_add_tail(&i->list, &nm_i->free_nid_list);
2020 	return 0;
2021 }
2022 
2023 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2024 			struct free_nid *i, enum nid_state state)
2025 {
2026 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2027 
2028 	f2fs_bug_on(sbi, state != i->state);
2029 	nm_i->nid_cnt[state]--;
2030 	if (state == FREE_NID)
2031 		list_del(&i->list);
2032 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2033 }
2034 
2035 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2036 			enum nid_state org_state, enum nid_state dst_state)
2037 {
2038 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2039 
2040 	f2fs_bug_on(sbi, org_state != i->state);
2041 	i->state = dst_state;
2042 	nm_i->nid_cnt[org_state]--;
2043 	nm_i->nid_cnt[dst_state]++;
2044 
2045 	switch (dst_state) {
2046 	case PREALLOC_NID:
2047 		list_del(&i->list);
2048 		break;
2049 	case FREE_NID:
2050 		list_add_tail(&i->list, &nm_i->free_nid_list);
2051 		break;
2052 	default:
2053 		BUG_ON(1);
2054 	}
2055 }
2056 
2057 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2058 							bool set, bool build)
2059 {
2060 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2061 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2062 	unsigned int nid_ofs = nid - START_NID(nid);
2063 
2064 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2065 		return;
2066 
2067 	if (set) {
2068 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2069 			return;
2070 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2071 		nm_i->free_nid_count[nat_ofs]++;
2072 	} else {
2073 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2074 			return;
2075 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2076 		if (!build)
2077 			nm_i->free_nid_count[nat_ofs]--;
2078 	}
2079 }
2080 
2081 /* return if the nid is recognized as free */
2082 static bool add_free_nid(struct f2fs_sb_info *sbi,
2083 				nid_t nid, bool build, bool update)
2084 {
2085 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2086 	struct free_nid *i, *e;
2087 	struct nat_entry *ne;
2088 	int err = -EINVAL;
2089 	bool ret = false;
2090 
2091 	/* 0 nid should not be used */
2092 	if (unlikely(nid == 0))
2093 		return false;
2094 
2095 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2096 		return false;
2097 
2098 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2099 	i->nid = nid;
2100 	i->state = FREE_NID;
2101 
2102 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2103 
2104 	spin_lock(&nm_i->nid_list_lock);
2105 
2106 	if (build) {
2107 		/*
2108 		 *   Thread A             Thread B
2109 		 *  - f2fs_create
2110 		 *   - f2fs_new_inode
2111 		 *    - f2fs_alloc_nid
2112 		 *     - __insert_nid_to_list(PREALLOC_NID)
2113 		 *                     - f2fs_balance_fs_bg
2114 		 *                      - f2fs_build_free_nids
2115 		 *                       - __f2fs_build_free_nids
2116 		 *                        - scan_nat_page
2117 		 *                         - add_free_nid
2118 		 *                          - __lookup_nat_cache
2119 		 *  - f2fs_add_link
2120 		 *   - f2fs_init_inode_metadata
2121 		 *    - f2fs_new_inode_page
2122 		 *     - f2fs_new_node_page
2123 		 *      - set_node_addr
2124 		 *  - f2fs_alloc_nid_done
2125 		 *   - __remove_nid_from_list(PREALLOC_NID)
2126 		 *                         - __insert_nid_to_list(FREE_NID)
2127 		 */
2128 		ne = __lookup_nat_cache(nm_i, nid);
2129 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2130 				nat_get_blkaddr(ne) != NULL_ADDR))
2131 			goto err_out;
2132 
2133 		e = __lookup_free_nid_list(nm_i, nid);
2134 		if (e) {
2135 			if (e->state == FREE_NID)
2136 				ret = true;
2137 			goto err_out;
2138 		}
2139 	}
2140 	ret = true;
2141 	err = __insert_free_nid(sbi, i, FREE_NID);
2142 err_out:
2143 	if (update) {
2144 		update_free_nid_bitmap(sbi, nid, ret, build);
2145 		if (!build)
2146 			nm_i->available_nids++;
2147 	}
2148 	spin_unlock(&nm_i->nid_list_lock);
2149 	radix_tree_preload_end();
2150 
2151 	if (err)
2152 		kmem_cache_free(free_nid_slab, i);
2153 	return ret;
2154 }
2155 
2156 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2157 {
2158 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2159 	struct free_nid *i;
2160 	bool need_free = false;
2161 
2162 	spin_lock(&nm_i->nid_list_lock);
2163 	i = __lookup_free_nid_list(nm_i, nid);
2164 	if (i && i->state == FREE_NID) {
2165 		__remove_free_nid(sbi, i, FREE_NID);
2166 		need_free = true;
2167 	}
2168 	spin_unlock(&nm_i->nid_list_lock);
2169 
2170 	if (need_free)
2171 		kmem_cache_free(free_nid_slab, i);
2172 }
2173 
2174 static int scan_nat_page(struct f2fs_sb_info *sbi,
2175 			struct page *nat_page, nid_t start_nid)
2176 {
2177 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2178 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2179 	block_t blk_addr;
2180 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2181 	int i;
2182 
2183 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2184 
2185 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2186 
2187 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2188 		if (unlikely(start_nid >= nm_i->max_nid))
2189 			break;
2190 
2191 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2192 
2193 		if (blk_addr == NEW_ADDR)
2194 			return -EINVAL;
2195 
2196 		if (blk_addr == NULL_ADDR) {
2197 			add_free_nid(sbi, start_nid, true, true);
2198 		} else {
2199 			spin_lock(&NM_I(sbi)->nid_list_lock);
2200 			update_free_nid_bitmap(sbi, start_nid, false, true);
2201 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2202 		}
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2209 {
2210 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2211 	struct f2fs_journal *journal = curseg->journal;
2212 	int i;
2213 
2214 	down_read(&curseg->journal_rwsem);
2215 	for (i = 0; i < nats_in_cursum(journal); i++) {
2216 		block_t addr;
2217 		nid_t nid;
2218 
2219 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2220 		nid = le32_to_cpu(nid_in_journal(journal, i));
2221 		if (addr == NULL_ADDR)
2222 			add_free_nid(sbi, nid, true, false);
2223 		else
2224 			remove_free_nid(sbi, nid);
2225 	}
2226 	up_read(&curseg->journal_rwsem);
2227 }
2228 
2229 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2230 {
2231 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2232 	unsigned int i, idx;
2233 	nid_t nid;
2234 
2235 	down_read(&nm_i->nat_tree_lock);
2236 
2237 	for (i = 0; i < nm_i->nat_blocks; i++) {
2238 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2239 			continue;
2240 		if (!nm_i->free_nid_count[i])
2241 			continue;
2242 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2243 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2244 						NAT_ENTRY_PER_BLOCK, idx);
2245 			if (idx >= NAT_ENTRY_PER_BLOCK)
2246 				break;
2247 
2248 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2249 			add_free_nid(sbi, nid, true, false);
2250 
2251 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2252 				goto out;
2253 		}
2254 	}
2255 out:
2256 	scan_curseg_cache(sbi);
2257 
2258 	up_read(&nm_i->nat_tree_lock);
2259 }
2260 
2261 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2262 						bool sync, bool mount)
2263 {
2264 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2265 	int i = 0, ret;
2266 	nid_t nid = nm_i->next_scan_nid;
2267 
2268 	if (unlikely(nid >= nm_i->max_nid))
2269 		nid = 0;
2270 
2271 	/* Enough entries */
2272 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2273 		return 0;
2274 
2275 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2276 		return 0;
2277 
2278 	if (!mount) {
2279 		/* try to find free nids in free_nid_bitmap */
2280 		scan_free_nid_bits(sbi);
2281 
2282 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2283 			return 0;
2284 	}
2285 
2286 	/* readahead nat pages to be scanned */
2287 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2288 							META_NAT, true);
2289 
2290 	down_read(&nm_i->nat_tree_lock);
2291 
2292 	while (1) {
2293 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2294 						nm_i->nat_block_bitmap)) {
2295 			struct page *page = get_current_nat_page(sbi, nid);
2296 
2297 			if (IS_ERR(page)) {
2298 				ret = PTR_ERR(page);
2299 			} else {
2300 				ret = scan_nat_page(sbi, page, nid);
2301 				f2fs_put_page(page, 1);
2302 			}
2303 
2304 			if (ret) {
2305 				up_read(&nm_i->nat_tree_lock);
2306 				f2fs_bug_on(sbi, !mount);
2307 				f2fs_msg(sbi->sb, KERN_ERR,
2308 					"NAT is corrupt, run fsck to fix it");
2309 				return ret;
2310 			}
2311 		}
2312 
2313 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2314 		if (unlikely(nid >= nm_i->max_nid))
2315 			nid = 0;
2316 
2317 		if (++i >= FREE_NID_PAGES)
2318 			break;
2319 	}
2320 
2321 	/* go to the next free nat pages to find free nids abundantly */
2322 	nm_i->next_scan_nid = nid;
2323 
2324 	/* find free nids from current sum_pages */
2325 	scan_curseg_cache(sbi);
2326 
2327 	up_read(&nm_i->nat_tree_lock);
2328 
2329 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2330 					nm_i->ra_nid_pages, META_NAT, false);
2331 
2332 	return 0;
2333 }
2334 
2335 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2336 {
2337 	int ret;
2338 
2339 	mutex_lock(&NM_I(sbi)->build_lock);
2340 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2341 	mutex_unlock(&NM_I(sbi)->build_lock);
2342 
2343 	return ret;
2344 }
2345 
2346 /*
2347  * If this function returns success, caller can obtain a new nid
2348  * from second parameter of this function.
2349  * The returned nid could be used ino as well as nid when inode is created.
2350  */
2351 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2352 {
2353 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2354 	struct free_nid *i = NULL;
2355 retry:
2356 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2357 		f2fs_show_injection_info(FAULT_ALLOC_NID);
2358 		return false;
2359 	}
2360 
2361 	spin_lock(&nm_i->nid_list_lock);
2362 
2363 	if (unlikely(nm_i->available_nids == 0)) {
2364 		spin_unlock(&nm_i->nid_list_lock);
2365 		return false;
2366 	}
2367 
2368 	/* We should not use stale free nids created by f2fs_build_free_nids */
2369 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2370 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2371 		i = list_first_entry(&nm_i->free_nid_list,
2372 					struct free_nid, list);
2373 		*nid = i->nid;
2374 
2375 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2376 		nm_i->available_nids--;
2377 
2378 		update_free_nid_bitmap(sbi, *nid, false, false);
2379 
2380 		spin_unlock(&nm_i->nid_list_lock);
2381 		return true;
2382 	}
2383 	spin_unlock(&nm_i->nid_list_lock);
2384 
2385 	/* Let's scan nat pages and its caches to get free nids */
2386 	if (!f2fs_build_free_nids(sbi, true, false))
2387 		goto retry;
2388 	return false;
2389 }
2390 
2391 /*
2392  * f2fs_alloc_nid() should be called prior to this function.
2393  */
2394 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2395 {
2396 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2397 	struct free_nid *i;
2398 
2399 	spin_lock(&nm_i->nid_list_lock);
2400 	i = __lookup_free_nid_list(nm_i, nid);
2401 	f2fs_bug_on(sbi, !i);
2402 	__remove_free_nid(sbi, i, PREALLOC_NID);
2403 	spin_unlock(&nm_i->nid_list_lock);
2404 
2405 	kmem_cache_free(free_nid_slab, i);
2406 }
2407 
2408 /*
2409  * f2fs_alloc_nid() should be called prior to this function.
2410  */
2411 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2412 {
2413 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2414 	struct free_nid *i;
2415 	bool need_free = false;
2416 
2417 	if (!nid)
2418 		return;
2419 
2420 	spin_lock(&nm_i->nid_list_lock);
2421 	i = __lookup_free_nid_list(nm_i, nid);
2422 	f2fs_bug_on(sbi, !i);
2423 
2424 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2425 		__remove_free_nid(sbi, i, PREALLOC_NID);
2426 		need_free = true;
2427 	} else {
2428 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2429 	}
2430 
2431 	nm_i->available_nids++;
2432 
2433 	update_free_nid_bitmap(sbi, nid, true, false);
2434 
2435 	spin_unlock(&nm_i->nid_list_lock);
2436 
2437 	if (need_free)
2438 		kmem_cache_free(free_nid_slab, i);
2439 }
2440 
2441 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2442 {
2443 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2444 	struct free_nid *i, *next;
2445 	int nr = nr_shrink;
2446 
2447 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2448 		return 0;
2449 
2450 	if (!mutex_trylock(&nm_i->build_lock))
2451 		return 0;
2452 
2453 	spin_lock(&nm_i->nid_list_lock);
2454 	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2455 		if (nr_shrink <= 0 ||
2456 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2457 			break;
2458 
2459 		__remove_free_nid(sbi, i, FREE_NID);
2460 		kmem_cache_free(free_nid_slab, i);
2461 		nr_shrink--;
2462 	}
2463 	spin_unlock(&nm_i->nid_list_lock);
2464 	mutex_unlock(&nm_i->build_lock);
2465 
2466 	return nr - nr_shrink;
2467 }
2468 
2469 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2470 {
2471 	void *src_addr, *dst_addr;
2472 	size_t inline_size;
2473 	struct page *ipage;
2474 	struct f2fs_inode *ri;
2475 
2476 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2477 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2478 
2479 	ri = F2FS_INODE(page);
2480 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2481 		set_inode_flag(inode, FI_INLINE_XATTR);
2482 	} else {
2483 		clear_inode_flag(inode, FI_INLINE_XATTR);
2484 		goto update_inode;
2485 	}
2486 
2487 	dst_addr = inline_xattr_addr(inode, ipage);
2488 	src_addr = inline_xattr_addr(inode, page);
2489 	inline_size = inline_xattr_size(inode);
2490 
2491 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2492 	memcpy(dst_addr, src_addr, inline_size);
2493 update_inode:
2494 	f2fs_update_inode(inode, ipage);
2495 	f2fs_put_page(ipage, 1);
2496 }
2497 
2498 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2499 {
2500 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2501 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2502 	nid_t new_xnid;
2503 	struct dnode_of_data dn;
2504 	struct node_info ni;
2505 	struct page *xpage;
2506 	int err;
2507 
2508 	if (!prev_xnid)
2509 		goto recover_xnid;
2510 
2511 	/* 1: invalidate the previous xattr nid */
2512 	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2513 	if (err)
2514 		return err;
2515 
2516 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2517 	dec_valid_node_count(sbi, inode, false);
2518 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2519 
2520 recover_xnid:
2521 	/* 2: update xattr nid in inode */
2522 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2523 		return -ENOSPC;
2524 
2525 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2526 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2527 	if (IS_ERR(xpage)) {
2528 		f2fs_alloc_nid_failed(sbi, new_xnid);
2529 		return PTR_ERR(xpage);
2530 	}
2531 
2532 	f2fs_alloc_nid_done(sbi, new_xnid);
2533 	f2fs_update_inode_page(inode);
2534 
2535 	/* 3: update and set xattr node page dirty */
2536 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2537 
2538 	set_page_dirty(xpage);
2539 	f2fs_put_page(xpage, 1);
2540 
2541 	return 0;
2542 }
2543 
2544 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2545 {
2546 	struct f2fs_inode *src, *dst;
2547 	nid_t ino = ino_of_node(page);
2548 	struct node_info old_ni, new_ni;
2549 	struct page *ipage;
2550 	int err;
2551 
2552 	err = f2fs_get_node_info(sbi, ino, &old_ni);
2553 	if (err)
2554 		return err;
2555 
2556 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2557 		return -EINVAL;
2558 retry:
2559 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2560 	if (!ipage) {
2561 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2562 		goto retry;
2563 	}
2564 
2565 	/* Should not use this inode from free nid list */
2566 	remove_free_nid(sbi, ino);
2567 
2568 	if (!PageUptodate(ipage))
2569 		SetPageUptodate(ipage);
2570 	fill_node_footer(ipage, ino, ino, 0, true);
2571 	set_cold_node(ipage, false);
2572 
2573 	src = F2FS_INODE(page);
2574 	dst = F2FS_INODE(ipage);
2575 
2576 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2577 	dst->i_size = 0;
2578 	dst->i_blocks = cpu_to_le64(1);
2579 	dst->i_links = cpu_to_le32(1);
2580 	dst->i_xattr_nid = 0;
2581 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2582 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2583 		dst->i_extra_isize = src->i_extra_isize;
2584 
2585 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2586 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2587 							i_inline_xattr_size))
2588 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2589 
2590 		if (f2fs_sb_has_project_quota(sbi) &&
2591 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2592 								i_projid))
2593 			dst->i_projid = src->i_projid;
2594 
2595 		if (f2fs_sb_has_inode_crtime(sbi) &&
2596 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2597 							i_crtime_nsec)) {
2598 			dst->i_crtime = src->i_crtime;
2599 			dst->i_crtime_nsec = src->i_crtime_nsec;
2600 		}
2601 	}
2602 
2603 	new_ni = old_ni;
2604 	new_ni.ino = ino;
2605 
2606 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2607 		WARN_ON(1);
2608 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2609 	inc_valid_inode_count(sbi);
2610 	set_page_dirty(ipage);
2611 	f2fs_put_page(ipage, 1);
2612 	return 0;
2613 }
2614 
2615 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2616 			unsigned int segno, struct f2fs_summary_block *sum)
2617 {
2618 	struct f2fs_node *rn;
2619 	struct f2fs_summary *sum_entry;
2620 	block_t addr;
2621 	int i, idx, last_offset, nrpages;
2622 
2623 	/* scan the node segment */
2624 	last_offset = sbi->blocks_per_seg;
2625 	addr = START_BLOCK(sbi, segno);
2626 	sum_entry = &sum->entries[0];
2627 
2628 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2629 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2630 
2631 		/* readahead node pages */
2632 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2633 
2634 		for (idx = addr; idx < addr + nrpages; idx++) {
2635 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2636 
2637 			if (IS_ERR(page))
2638 				return PTR_ERR(page);
2639 
2640 			rn = F2FS_NODE(page);
2641 			sum_entry->nid = rn->footer.nid;
2642 			sum_entry->version = 0;
2643 			sum_entry->ofs_in_node = 0;
2644 			sum_entry++;
2645 			f2fs_put_page(page, 1);
2646 		}
2647 
2648 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2649 							addr + nrpages);
2650 	}
2651 	return 0;
2652 }
2653 
2654 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2655 {
2656 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2657 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2658 	struct f2fs_journal *journal = curseg->journal;
2659 	int i;
2660 
2661 	down_write(&curseg->journal_rwsem);
2662 	for (i = 0; i < nats_in_cursum(journal); i++) {
2663 		struct nat_entry *ne;
2664 		struct f2fs_nat_entry raw_ne;
2665 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2666 
2667 		raw_ne = nat_in_journal(journal, i);
2668 
2669 		ne = __lookup_nat_cache(nm_i, nid);
2670 		if (!ne) {
2671 			ne = __alloc_nat_entry(nid, true);
2672 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2673 		}
2674 
2675 		/*
2676 		 * if a free nat in journal has not been used after last
2677 		 * checkpoint, we should remove it from available nids,
2678 		 * since later we will add it again.
2679 		 */
2680 		if (!get_nat_flag(ne, IS_DIRTY) &&
2681 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2682 			spin_lock(&nm_i->nid_list_lock);
2683 			nm_i->available_nids--;
2684 			spin_unlock(&nm_i->nid_list_lock);
2685 		}
2686 
2687 		__set_nat_cache_dirty(nm_i, ne);
2688 	}
2689 	update_nats_in_cursum(journal, -i);
2690 	up_write(&curseg->journal_rwsem);
2691 }
2692 
2693 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2694 						struct list_head *head, int max)
2695 {
2696 	struct nat_entry_set *cur;
2697 
2698 	if (nes->entry_cnt >= max)
2699 		goto add_out;
2700 
2701 	list_for_each_entry(cur, head, set_list) {
2702 		if (cur->entry_cnt >= nes->entry_cnt) {
2703 			list_add(&nes->set_list, cur->set_list.prev);
2704 			return;
2705 		}
2706 	}
2707 add_out:
2708 	list_add_tail(&nes->set_list, head);
2709 }
2710 
2711 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2712 						struct page *page)
2713 {
2714 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2715 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2716 	struct f2fs_nat_block *nat_blk = page_address(page);
2717 	int valid = 0;
2718 	int i = 0;
2719 
2720 	if (!enabled_nat_bits(sbi, NULL))
2721 		return;
2722 
2723 	if (nat_index == 0) {
2724 		valid = 1;
2725 		i = 1;
2726 	}
2727 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2728 		if (nat_blk->entries[i].block_addr != NULL_ADDR)
2729 			valid++;
2730 	}
2731 	if (valid == 0) {
2732 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2733 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2734 		return;
2735 	}
2736 
2737 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2738 	if (valid == NAT_ENTRY_PER_BLOCK)
2739 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2740 	else
2741 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2742 }
2743 
2744 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2745 		struct nat_entry_set *set, struct cp_control *cpc)
2746 {
2747 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2748 	struct f2fs_journal *journal = curseg->journal;
2749 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2750 	bool to_journal = true;
2751 	struct f2fs_nat_block *nat_blk;
2752 	struct nat_entry *ne, *cur;
2753 	struct page *page = NULL;
2754 
2755 	/*
2756 	 * there are two steps to flush nat entries:
2757 	 * #1, flush nat entries to journal in current hot data summary block.
2758 	 * #2, flush nat entries to nat page.
2759 	 */
2760 	if (enabled_nat_bits(sbi, cpc) ||
2761 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2762 		to_journal = false;
2763 
2764 	if (to_journal) {
2765 		down_write(&curseg->journal_rwsem);
2766 	} else {
2767 		page = get_next_nat_page(sbi, start_nid);
2768 		if (IS_ERR(page))
2769 			return PTR_ERR(page);
2770 
2771 		nat_blk = page_address(page);
2772 		f2fs_bug_on(sbi, !nat_blk);
2773 	}
2774 
2775 	/* flush dirty nats in nat entry set */
2776 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2777 		struct f2fs_nat_entry *raw_ne;
2778 		nid_t nid = nat_get_nid(ne);
2779 		int offset;
2780 
2781 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2782 
2783 		if (to_journal) {
2784 			offset = f2fs_lookup_journal_in_cursum(journal,
2785 							NAT_JOURNAL, nid, 1);
2786 			f2fs_bug_on(sbi, offset < 0);
2787 			raw_ne = &nat_in_journal(journal, offset);
2788 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2789 		} else {
2790 			raw_ne = &nat_blk->entries[nid - start_nid];
2791 		}
2792 		raw_nat_from_node_info(raw_ne, &ne->ni);
2793 		nat_reset_flag(ne);
2794 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2795 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2796 			add_free_nid(sbi, nid, false, true);
2797 		} else {
2798 			spin_lock(&NM_I(sbi)->nid_list_lock);
2799 			update_free_nid_bitmap(sbi, nid, false, false);
2800 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2801 		}
2802 	}
2803 
2804 	if (to_journal) {
2805 		up_write(&curseg->journal_rwsem);
2806 	} else {
2807 		__update_nat_bits(sbi, start_nid, page);
2808 		f2fs_put_page(page, 1);
2809 	}
2810 
2811 	/* Allow dirty nats by node block allocation in write_begin */
2812 	if (!set->entry_cnt) {
2813 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2814 		kmem_cache_free(nat_entry_set_slab, set);
2815 	}
2816 	return 0;
2817 }
2818 
2819 /*
2820  * This function is called during the checkpointing process.
2821  */
2822 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2823 {
2824 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2825 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2826 	struct f2fs_journal *journal = curseg->journal;
2827 	struct nat_entry_set *setvec[SETVEC_SIZE];
2828 	struct nat_entry_set *set, *tmp;
2829 	unsigned int found;
2830 	nid_t set_idx = 0;
2831 	LIST_HEAD(sets);
2832 	int err = 0;
2833 
2834 	/* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2835 	if (enabled_nat_bits(sbi, cpc)) {
2836 		down_write(&nm_i->nat_tree_lock);
2837 		remove_nats_in_journal(sbi);
2838 		up_write(&nm_i->nat_tree_lock);
2839 	}
2840 
2841 	if (!nm_i->dirty_nat_cnt)
2842 		return 0;
2843 
2844 	down_write(&nm_i->nat_tree_lock);
2845 
2846 	/*
2847 	 * if there are no enough space in journal to store dirty nat
2848 	 * entries, remove all entries from journal and merge them
2849 	 * into nat entry set.
2850 	 */
2851 	if (enabled_nat_bits(sbi, cpc) ||
2852 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2853 		remove_nats_in_journal(sbi);
2854 
2855 	while ((found = __gang_lookup_nat_set(nm_i,
2856 					set_idx, SETVEC_SIZE, setvec))) {
2857 		unsigned idx;
2858 		set_idx = setvec[found - 1]->set + 1;
2859 		for (idx = 0; idx < found; idx++)
2860 			__adjust_nat_entry_set(setvec[idx], &sets,
2861 						MAX_NAT_JENTRIES(journal));
2862 	}
2863 
2864 	/* flush dirty nats in nat entry set */
2865 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
2866 		err = __flush_nat_entry_set(sbi, set, cpc);
2867 		if (err)
2868 			break;
2869 	}
2870 
2871 	up_write(&nm_i->nat_tree_lock);
2872 	/* Allow dirty nats by node block allocation in write_begin */
2873 
2874 	return err;
2875 }
2876 
2877 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2878 {
2879 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2880 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2881 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2882 	unsigned int i;
2883 	__u64 cp_ver = cur_cp_version(ckpt);
2884 	block_t nat_bits_addr;
2885 
2886 	if (!enabled_nat_bits(sbi, NULL))
2887 		return 0;
2888 
2889 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2890 	nm_i->nat_bits = f2fs_kzalloc(sbi,
2891 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2892 	if (!nm_i->nat_bits)
2893 		return -ENOMEM;
2894 
2895 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2896 						nm_i->nat_bits_blocks;
2897 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2898 		struct page *page;
2899 
2900 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2901 		if (IS_ERR(page))
2902 			return PTR_ERR(page);
2903 
2904 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2905 					page_address(page), F2FS_BLKSIZE);
2906 		f2fs_put_page(page, 1);
2907 	}
2908 
2909 	cp_ver |= (cur_cp_crc(ckpt) << 32);
2910 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2911 		disable_nat_bits(sbi, true);
2912 		return 0;
2913 	}
2914 
2915 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2916 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2917 
2918 	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2919 	return 0;
2920 }
2921 
2922 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2923 {
2924 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2925 	unsigned int i = 0;
2926 	nid_t nid, last_nid;
2927 
2928 	if (!enabled_nat_bits(sbi, NULL))
2929 		return;
2930 
2931 	for (i = 0; i < nm_i->nat_blocks; i++) {
2932 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2933 		if (i >= nm_i->nat_blocks)
2934 			break;
2935 
2936 		__set_bit_le(i, nm_i->nat_block_bitmap);
2937 
2938 		nid = i * NAT_ENTRY_PER_BLOCK;
2939 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2940 
2941 		spin_lock(&NM_I(sbi)->nid_list_lock);
2942 		for (; nid < last_nid; nid++)
2943 			update_free_nid_bitmap(sbi, nid, true, true);
2944 		spin_unlock(&NM_I(sbi)->nid_list_lock);
2945 	}
2946 
2947 	for (i = 0; i < nm_i->nat_blocks; i++) {
2948 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2949 		if (i >= nm_i->nat_blocks)
2950 			break;
2951 
2952 		__set_bit_le(i, nm_i->nat_block_bitmap);
2953 	}
2954 }
2955 
2956 static int init_node_manager(struct f2fs_sb_info *sbi)
2957 {
2958 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2959 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2960 	unsigned char *version_bitmap;
2961 	unsigned int nat_segs;
2962 	int err;
2963 
2964 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2965 
2966 	/* segment_count_nat includes pair segment so divide to 2. */
2967 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2968 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2969 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2970 
2971 	/* not used nids: 0, node, meta, (and root counted as valid node) */
2972 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2973 				sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2974 	nm_i->nid_cnt[FREE_NID] = 0;
2975 	nm_i->nid_cnt[PREALLOC_NID] = 0;
2976 	nm_i->nat_cnt = 0;
2977 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2978 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2979 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2980 
2981 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2982 	INIT_LIST_HEAD(&nm_i->free_nid_list);
2983 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2984 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2985 	INIT_LIST_HEAD(&nm_i->nat_entries);
2986 	spin_lock_init(&nm_i->nat_list_lock);
2987 
2988 	mutex_init(&nm_i->build_lock);
2989 	spin_lock_init(&nm_i->nid_list_lock);
2990 	init_rwsem(&nm_i->nat_tree_lock);
2991 
2992 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2993 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2994 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2995 	if (!version_bitmap)
2996 		return -EFAULT;
2997 
2998 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2999 					GFP_KERNEL);
3000 	if (!nm_i->nat_bitmap)
3001 		return -ENOMEM;
3002 
3003 	err = __get_nat_bitmaps(sbi);
3004 	if (err)
3005 		return err;
3006 
3007 #ifdef CONFIG_F2FS_CHECK_FS
3008 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3009 					GFP_KERNEL);
3010 	if (!nm_i->nat_bitmap_mir)
3011 		return -ENOMEM;
3012 #endif
3013 
3014 	return 0;
3015 }
3016 
3017 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3018 {
3019 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3020 	int i;
3021 
3022 	nm_i->free_nid_bitmap =
3023 		f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3024 					     nm_i->nat_blocks),
3025 			     GFP_KERNEL);
3026 	if (!nm_i->free_nid_bitmap)
3027 		return -ENOMEM;
3028 
3029 	for (i = 0; i < nm_i->nat_blocks; i++) {
3030 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3031 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3032 		if (!nm_i->free_nid_bitmap[i])
3033 			return -ENOMEM;
3034 	}
3035 
3036 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3037 								GFP_KERNEL);
3038 	if (!nm_i->nat_block_bitmap)
3039 		return -ENOMEM;
3040 
3041 	nm_i->free_nid_count =
3042 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3043 					      nm_i->nat_blocks),
3044 			      GFP_KERNEL);
3045 	if (!nm_i->free_nid_count)
3046 		return -ENOMEM;
3047 	return 0;
3048 }
3049 
3050 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3051 {
3052 	int err;
3053 
3054 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3055 							GFP_KERNEL);
3056 	if (!sbi->nm_info)
3057 		return -ENOMEM;
3058 
3059 	err = init_node_manager(sbi);
3060 	if (err)
3061 		return err;
3062 
3063 	err = init_free_nid_cache(sbi);
3064 	if (err)
3065 		return err;
3066 
3067 	/* load free nid status from nat_bits table */
3068 	load_free_nid_bitmap(sbi);
3069 
3070 	return f2fs_build_free_nids(sbi, true, true);
3071 }
3072 
3073 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3074 {
3075 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3076 	struct free_nid *i, *next_i;
3077 	struct nat_entry *natvec[NATVEC_SIZE];
3078 	struct nat_entry_set *setvec[SETVEC_SIZE];
3079 	nid_t nid = 0;
3080 	unsigned int found;
3081 
3082 	if (!nm_i)
3083 		return;
3084 
3085 	/* destroy free nid list */
3086 	spin_lock(&nm_i->nid_list_lock);
3087 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3088 		__remove_free_nid(sbi, i, FREE_NID);
3089 		spin_unlock(&nm_i->nid_list_lock);
3090 		kmem_cache_free(free_nid_slab, i);
3091 		spin_lock(&nm_i->nid_list_lock);
3092 	}
3093 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3094 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3095 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3096 	spin_unlock(&nm_i->nid_list_lock);
3097 
3098 	/* destroy nat cache */
3099 	down_write(&nm_i->nat_tree_lock);
3100 	while ((found = __gang_lookup_nat_cache(nm_i,
3101 					nid, NATVEC_SIZE, natvec))) {
3102 		unsigned idx;
3103 
3104 		nid = nat_get_nid(natvec[found - 1]) + 1;
3105 		for (idx = 0; idx < found; idx++) {
3106 			spin_lock(&nm_i->nat_list_lock);
3107 			list_del(&natvec[idx]->list);
3108 			spin_unlock(&nm_i->nat_list_lock);
3109 
3110 			__del_from_nat_cache(nm_i, natvec[idx]);
3111 		}
3112 	}
3113 	f2fs_bug_on(sbi, nm_i->nat_cnt);
3114 
3115 	/* destroy nat set cache */
3116 	nid = 0;
3117 	while ((found = __gang_lookup_nat_set(nm_i,
3118 					nid, SETVEC_SIZE, setvec))) {
3119 		unsigned idx;
3120 
3121 		nid = setvec[found - 1]->set + 1;
3122 		for (idx = 0; idx < found; idx++) {
3123 			/* entry_cnt is not zero, when cp_error was occurred */
3124 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3125 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3126 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3127 		}
3128 	}
3129 	up_write(&nm_i->nat_tree_lock);
3130 
3131 	kvfree(nm_i->nat_block_bitmap);
3132 	if (nm_i->free_nid_bitmap) {
3133 		int i;
3134 
3135 		for (i = 0; i < nm_i->nat_blocks; i++)
3136 			kvfree(nm_i->free_nid_bitmap[i]);
3137 		kvfree(nm_i->free_nid_bitmap);
3138 	}
3139 	kvfree(nm_i->free_nid_count);
3140 
3141 	kvfree(nm_i->nat_bitmap);
3142 	kvfree(nm_i->nat_bits);
3143 #ifdef CONFIG_F2FS_CHECK_FS
3144 	kvfree(nm_i->nat_bitmap_mir);
3145 #endif
3146 	sbi->nm_info = NULL;
3147 	kvfree(nm_i);
3148 }
3149 
3150 int __init f2fs_create_node_manager_caches(void)
3151 {
3152 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3153 			sizeof(struct nat_entry));
3154 	if (!nat_entry_slab)
3155 		goto fail;
3156 
3157 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
3158 			sizeof(struct free_nid));
3159 	if (!free_nid_slab)
3160 		goto destroy_nat_entry;
3161 
3162 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3163 			sizeof(struct nat_entry_set));
3164 	if (!nat_entry_set_slab)
3165 		goto destroy_free_nid;
3166 
3167 	fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3168 			sizeof(struct fsync_node_entry));
3169 	if (!fsync_node_entry_slab)
3170 		goto destroy_nat_entry_set;
3171 	return 0;
3172 
3173 destroy_nat_entry_set:
3174 	kmem_cache_destroy(nat_entry_set_slab);
3175 destroy_free_nid:
3176 	kmem_cache_destroy(free_nid_slab);
3177 destroy_nat_entry:
3178 	kmem_cache_destroy(nat_entry_slab);
3179 fail:
3180 	return -ENOMEM;
3181 }
3182 
3183 void f2fs_destroy_node_manager_caches(void)
3184 {
3185 	kmem_cache_destroy(fsync_node_entry_slab);
3186 	kmem_cache_destroy(nat_entry_set_slab);
3187 	kmem_cache_destroy(free_nid_slab);
3188 	kmem_cache_destroy(nat_entry_slab);
3189 }
3190