1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/backing-dev.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "trace.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_msg(sbi->sb, KERN_WARNING, 38 "%s: out-of-range nid=%x, run fsck to fix.", 39 __func__, nid); 40 return -EINVAL; 41 } 42 return 0; 43 } 44 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 46 { 47 struct f2fs_nm_info *nm_i = NM_I(sbi); 48 struct sysinfo val; 49 unsigned long avail_ram; 50 unsigned long mem_size = 0; 51 bool res = false; 52 53 si_meminfo(&val); 54 55 /* only uses low memory */ 56 avail_ram = val.totalram - val.totalhigh; 57 58 /* 59 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 60 */ 61 if (type == FREE_NIDS) { 62 mem_size = (nm_i->nid_cnt[FREE_NID] * 63 sizeof(struct free_nid)) >> PAGE_SHIFT; 64 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 65 } else if (type == NAT_ENTRIES) { 66 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 67 PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 69 if (excess_cached_nats(sbi)) 70 res = false; 71 } else if (type == DIRTY_DENTS) { 72 if (sbi->sb->s_bdi->wb.dirty_exceeded) 73 return false; 74 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 75 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 76 } else if (type == INO_ENTRIES) { 77 int i; 78 79 for (i = 0; i < MAX_INO_ENTRY; i++) 80 mem_size += sbi->im[i].ino_num * 81 sizeof(struct ino_entry); 82 mem_size >>= PAGE_SHIFT; 83 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 84 } else if (type == EXTENT_CACHE) { 85 mem_size = (atomic_read(&sbi->total_ext_tree) * 86 sizeof(struct extent_tree) + 87 atomic_read(&sbi->total_ext_node) * 88 sizeof(struct extent_node)) >> PAGE_SHIFT; 89 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 90 } else if (type == INMEM_PAGES) { 91 /* it allows 20% / total_ram for inmemory pages */ 92 mem_size = get_pages(sbi, F2FS_INMEM_PAGES); 93 res = mem_size < (val.totalram / 5); 94 } else { 95 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 96 return true; 97 } 98 return res; 99 } 100 101 static void clear_node_page_dirty(struct page *page) 102 { 103 if (PageDirty(page)) { 104 f2fs_clear_page_cache_dirty_tag(page); 105 clear_page_dirty_for_io(page); 106 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 107 } 108 ClearPageUptodate(page); 109 } 110 111 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 112 { 113 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid)); 114 } 115 116 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 117 { 118 struct page *src_page; 119 struct page *dst_page; 120 pgoff_t dst_off; 121 void *src_addr; 122 void *dst_addr; 123 struct f2fs_nm_info *nm_i = NM_I(sbi); 124 125 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 126 127 /* get current nat block page with lock */ 128 src_page = get_current_nat_page(sbi, nid); 129 if (IS_ERR(src_page)) 130 return src_page; 131 dst_page = f2fs_grab_meta_page(sbi, dst_off); 132 f2fs_bug_on(sbi, PageDirty(src_page)); 133 134 src_addr = page_address(src_page); 135 dst_addr = page_address(dst_page); 136 memcpy(dst_addr, src_addr, PAGE_SIZE); 137 set_page_dirty(dst_page); 138 f2fs_put_page(src_page, 1); 139 140 set_to_next_nat(nm_i, nid); 141 142 return dst_page; 143 } 144 145 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail) 146 { 147 struct nat_entry *new; 148 149 if (no_fail) 150 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 151 else 152 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); 153 if (new) { 154 nat_set_nid(new, nid); 155 nat_reset_flag(new); 156 } 157 return new; 158 } 159 160 static void __free_nat_entry(struct nat_entry *e) 161 { 162 kmem_cache_free(nat_entry_slab, e); 163 } 164 165 /* must be locked by nat_tree_lock */ 166 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 167 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 168 { 169 if (no_fail) 170 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 171 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 172 return NULL; 173 174 if (raw_ne) 175 node_info_from_raw_nat(&ne->ni, raw_ne); 176 177 spin_lock(&nm_i->nat_list_lock); 178 list_add_tail(&ne->list, &nm_i->nat_entries); 179 spin_unlock(&nm_i->nat_list_lock); 180 181 nm_i->nat_cnt++; 182 return ne; 183 } 184 185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 186 { 187 struct nat_entry *ne; 188 189 ne = radix_tree_lookup(&nm_i->nat_root, n); 190 191 /* for recent accessed nat entry, move it to tail of lru list */ 192 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 193 spin_lock(&nm_i->nat_list_lock); 194 if (!list_empty(&ne->list)) 195 list_move_tail(&ne->list, &nm_i->nat_entries); 196 spin_unlock(&nm_i->nat_list_lock); 197 } 198 199 return ne; 200 } 201 202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 203 nid_t start, unsigned int nr, struct nat_entry **ep) 204 { 205 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 206 } 207 208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 209 { 210 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 211 nm_i->nat_cnt--; 212 __free_nat_entry(e); 213 } 214 215 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 216 struct nat_entry *ne) 217 { 218 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 219 struct nat_entry_set *head; 220 221 head = radix_tree_lookup(&nm_i->nat_set_root, set); 222 if (!head) { 223 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 224 225 INIT_LIST_HEAD(&head->entry_list); 226 INIT_LIST_HEAD(&head->set_list); 227 head->set = set; 228 head->entry_cnt = 0; 229 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 230 } 231 return head; 232 } 233 234 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 235 struct nat_entry *ne) 236 { 237 struct nat_entry_set *head; 238 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 239 240 if (!new_ne) 241 head = __grab_nat_entry_set(nm_i, ne); 242 243 /* 244 * update entry_cnt in below condition: 245 * 1. update NEW_ADDR to valid block address; 246 * 2. update old block address to new one; 247 */ 248 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 249 !get_nat_flag(ne, IS_DIRTY))) 250 head->entry_cnt++; 251 252 set_nat_flag(ne, IS_PREALLOC, new_ne); 253 254 if (get_nat_flag(ne, IS_DIRTY)) 255 goto refresh_list; 256 257 nm_i->dirty_nat_cnt++; 258 set_nat_flag(ne, IS_DIRTY, true); 259 refresh_list: 260 spin_lock(&nm_i->nat_list_lock); 261 if (new_ne) 262 list_del_init(&ne->list); 263 else 264 list_move_tail(&ne->list, &head->entry_list); 265 spin_unlock(&nm_i->nat_list_lock); 266 } 267 268 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 269 struct nat_entry_set *set, struct nat_entry *ne) 270 { 271 spin_lock(&nm_i->nat_list_lock); 272 list_move_tail(&ne->list, &nm_i->nat_entries); 273 spin_unlock(&nm_i->nat_list_lock); 274 275 set_nat_flag(ne, IS_DIRTY, false); 276 set->entry_cnt--; 277 nm_i->dirty_nat_cnt--; 278 } 279 280 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 281 nid_t start, unsigned int nr, struct nat_entry_set **ep) 282 { 283 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 284 start, nr); 285 } 286 287 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 288 { 289 return NODE_MAPPING(sbi) == page->mapping && 290 IS_DNODE(page) && is_cold_node(page); 291 } 292 293 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 294 { 295 spin_lock_init(&sbi->fsync_node_lock); 296 INIT_LIST_HEAD(&sbi->fsync_node_list); 297 sbi->fsync_seg_id = 0; 298 sbi->fsync_node_num = 0; 299 } 300 301 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 302 struct page *page) 303 { 304 struct fsync_node_entry *fn; 305 unsigned long flags; 306 unsigned int seq_id; 307 308 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS); 309 310 get_page(page); 311 fn->page = page; 312 INIT_LIST_HEAD(&fn->list); 313 314 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 315 list_add_tail(&fn->list, &sbi->fsync_node_list); 316 fn->seq_id = sbi->fsync_seg_id++; 317 seq_id = fn->seq_id; 318 sbi->fsync_node_num++; 319 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 320 321 return seq_id; 322 } 323 324 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 325 { 326 struct fsync_node_entry *fn; 327 unsigned long flags; 328 329 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 330 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 331 if (fn->page == page) { 332 list_del(&fn->list); 333 sbi->fsync_node_num--; 334 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 335 kmem_cache_free(fsync_node_entry_slab, fn); 336 put_page(page); 337 return; 338 } 339 } 340 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 341 f2fs_bug_on(sbi, 1); 342 } 343 344 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 345 { 346 unsigned long flags; 347 348 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 349 sbi->fsync_seg_id = 0; 350 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 351 } 352 353 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 354 { 355 struct f2fs_nm_info *nm_i = NM_I(sbi); 356 struct nat_entry *e; 357 bool need = false; 358 359 down_read(&nm_i->nat_tree_lock); 360 e = __lookup_nat_cache(nm_i, nid); 361 if (e) { 362 if (!get_nat_flag(e, IS_CHECKPOINTED) && 363 !get_nat_flag(e, HAS_FSYNCED_INODE)) 364 need = true; 365 } 366 up_read(&nm_i->nat_tree_lock); 367 return need; 368 } 369 370 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 371 { 372 struct f2fs_nm_info *nm_i = NM_I(sbi); 373 struct nat_entry *e; 374 bool is_cp = true; 375 376 down_read(&nm_i->nat_tree_lock); 377 e = __lookup_nat_cache(nm_i, nid); 378 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 379 is_cp = false; 380 up_read(&nm_i->nat_tree_lock); 381 return is_cp; 382 } 383 384 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 385 { 386 struct f2fs_nm_info *nm_i = NM_I(sbi); 387 struct nat_entry *e; 388 bool need_update = true; 389 390 down_read(&nm_i->nat_tree_lock); 391 e = __lookup_nat_cache(nm_i, ino); 392 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 393 (get_nat_flag(e, IS_CHECKPOINTED) || 394 get_nat_flag(e, HAS_FSYNCED_INODE))) 395 need_update = false; 396 up_read(&nm_i->nat_tree_lock); 397 return need_update; 398 } 399 400 /* must be locked by nat_tree_lock */ 401 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 402 struct f2fs_nat_entry *ne) 403 { 404 struct f2fs_nm_info *nm_i = NM_I(sbi); 405 struct nat_entry *new, *e; 406 407 new = __alloc_nat_entry(nid, false); 408 if (!new) 409 return; 410 411 down_write(&nm_i->nat_tree_lock); 412 e = __lookup_nat_cache(nm_i, nid); 413 if (!e) 414 e = __init_nat_entry(nm_i, new, ne, false); 415 else 416 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 417 nat_get_blkaddr(e) != 418 le32_to_cpu(ne->block_addr) || 419 nat_get_version(e) != ne->version); 420 up_write(&nm_i->nat_tree_lock); 421 if (e != new) 422 __free_nat_entry(new); 423 } 424 425 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 426 block_t new_blkaddr, bool fsync_done) 427 { 428 struct f2fs_nm_info *nm_i = NM_I(sbi); 429 struct nat_entry *e; 430 struct nat_entry *new = __alloc_nat_entry(ni->nid, true); 431 432 down_write(&nm_i->nat_tree_lock); 433 e = __lookup_nat_cache(nm_i, ni->nid); 434 if (!e) { 435 e = __init_nat_entry(nm_i, new, NULL, true); 436 copy_node_info(&e->ni, ni); 437 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 438 } else if (new_blkaddr == NEW_ADDR) { 439 /* 440 * when nid is reallocated, 441 * previous nat entry can be remained in nat cache. 442 * So, reinitialize it with new information. 443 */ 444 copy_node_info(&e->ni, ni); 445 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 446 } 447 /* let's free early to reduce memory consumption */ 448 if (e != new) 449 __free_nat_entry(new); 450 451 /* sanity check */ 452 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 453 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 454 new_blkaddr == NULL_ADDR); 455 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 456 new_blkaddr == NEW_ADDR); 457 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 458 new_blkaddr == NEW_ADDR); 459 460 /* increment version no as node is removed */ 461 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 462 unsigned char version = nat_get_version(e); 463 nat_set_version(e, inc_node_version(version)); 464 } 465 466 /* change address */ 467 nat_set_blkaddr(e, new_blkaddr); 468 if (!__is_valid_data_blkaddr(new_blkaddr)) 469 set_nat_flag(e, IS_CHECKPOINTED, false); 470 __set_nat_cache_dirty(nm_i, e); 471 472 /* update fsync_mark if its inode nat entry is still alive */ 473 if (ni->nid != ni->ino) 474 e = __lookup_nat_cache(nm_i, ni->ino); 475 if (e) { 476 if (fsync_done && ni->nid == ni->ino) 477 set_nat_flag(e, HAS_FSYNCED_INODE, true); 478 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 479 } 480 up_write(&nm_i->nat_tree_lock); 481 } 482 483 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 484 { 485 struct f2fs_nm_info *nm_i = NM_I(sbi); 486 int nr = nr_shrink; 487 488 if (!down_write_trylock(&nm_i->nat_tree_lock)) 489 return 0; 490 491 spin_lock(&nm_i->nat_list_lock); 492 while (nr_shrink) { 493 struct nat_entry *ne; 494 495 if (list_empty(&nm_i->nat_entries)) 496 break; 497 498 ne = list_first_entry(&nm_i->nat_entries, 499 struct nat_entry, list); 500 list_del(&ne->list); 501 spin_unlock(&nm_i->nat_list_lock); 502 503 __del_from_nat_cache(nm_i, ne); 504 nr_shrink--; 505 506 spin_lock(&nm_i->nat_list_lock); 507 } 508 spin_unlock(&nm_i->nat_list_lock); 509 510 up_write(&nm_i->nat_tree_lock); 511 return nr - nr_shrink; 512 } 513 514 /* 515 * This function always returns success 516 */ 517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 518 struct node_info *ni) 519 { 520 struct f2fs_nm_info *nm_i = NM_I(sbi); 521 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 522 struct f2fs_journal *journal = curseg->journal; 523 nid_t start_nid = START_NID(nid); 524 struct f2fs_nat_block *nat_blk; 525 struct page *page = NULL; 526 struct f2fs_nat_entry ne; 527 struct nat_entry *e; 528 pgoff_t index; 529 block_t blkaddr; 530 int i; 531 532 ni->nid = nid; 533 534 /* Check nat cache */ 535 down_read(&nm_i->nat_tree_lock); 536 e = __lookup_nat_cache(nm_i, nid); 537 if (e) { 538 ni->ino = nat_get_ino(e); 539 ni->blk_addr = nat_get_blkaddr(e); 540 ni->version = nat_get_version(e); 541 up_read(&nm_i->nat_tree_lock); 542 return 0; 543 } 544 545 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 546 547 /* Check current segment summary */ 548 down_read(&curseg->journal_rwsem); 549 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 550 if (i >= 0) { 551 ne = nat_in_journal(journal, i); 552 node_info_from_raw_nat(ni, &ne); 553 } 554 up_read(&curseg->journal_rwsem); 555 if (i >= 0) { 556 up_read(&nm_i->nat_tree_lock); 557 goto cache; 558 } 559 560 /* Fill node_info from nat page */ 561 index = current_nat_addr(sbi, nid); 562 up_read(&nm_i->nat_tree_lock); 563 564 page = f2fs_get_meta_page(sbi, index); 565 if (IS_ERR(page)) 566 return PTR_ERR(page); 567 568 nat_blk = (struct f2fs_nat_block *)page_address(page); 569 ne = nat_blk->entries[nid - start_nid]; 570 node_info_from_raw_nat(ni, &ne); 571 f2fs_put_page(page, 1); 572 cache: 573 blkaddr = le32_to_cpu(ne.block_addr); 574 if (__is_valid_data_blkaddr(blkaddr) && 575 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 576 return -EFAULT; 577 578 /* cache nat entry */ 579 cache_nat_entry(sbi, nid, &ne); 580 return 0; 581 } 582 583 /* 584 * readahead MAX_RA_NODE number of node pages. 585 */ 586 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 587 { 588 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 589 struct blk_plug plug; 590 int i, end; 591 nid_t nid; 592 593 blk_start_plug(&plug); 594 595 /* Then, try readahead for siblings of the desired node */ 596 end = start + n; 597 end = min(end, NIDS_PER_BLOCK); 598 for (i = start; i < end; i++) { 599 nid = get_nid(parent, i, false); 600 f2fs_ra_node_page(sbi, nid); 601 } 602 603 blk_finish_plug(&plug); 604 } 605 606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 607 { 608 const long direct_index = ADDRS_PER_INODE(dn->inode); 609 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 610 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 611 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 612 int cur_level = dn->cur_level; 613 int max_level = dn->max_level; 614 pgoff_t base = 0; 615 616 if (!dn->max_level) 617 return pgofs + 1; 618 619 while (max_level-- > cur_level) 620 skipped_unit *= NIDS_PER_BLOCK; 621 622 switch (dn->max_level) { 623 case 3: 624 base += 2 * indirect_blks; 625 /* fall through */ 626 case 2: 627 base += 2 * direct_blks; 628 /* fall through */ 629 case 1: 630 base += direct_index; 631 break; 632 default: 633 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 634 } 635 636 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 637 } 638 639 /* 640 * The maximum depth is four. 641 * Offset[0] will have raw inode offset. 642 */ 643 static int get_node_path(struct inode *inode, long block, 644 int offset[4], unsigned int noffset[4]) 645 { 646 const long direct_index = ADDRS_PER_INODE(inode); 647 const long direct_blks = ADDRS_PER_BLOCK(inode); 648 const long dptrs_per_blk = NIDS_PER_BLOCK; 649 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 650 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 651 int n = 0; 652 int level = 0; 653 654 noffset[0] = 0; 655 656 if (block < direct_index) { 657 offset[n] = block; 658 goto got; 659 } 660 block -= direct_index; 661 if (block < direct_blks) { 662 offset[n++] = NODE_DIR1_BLOCK; 663 noffset[n] = 1; 664 offset[n] = block; 665 level = 1; 666 goto got; 667 } 668 block -= direct_blks; 669 if (block < direct_blks) { 670 offset[n++] = NODE_DIR2_BLOCK; 671 noffset[n] = 2; 672 offset[n] = block; 673 level = 1; 674 goto got; 675 } 676 block -= direct_blks; 677 if (block < indirect_blks) { 678 offset[n++] = NODE_IND1_BLOCK; 679 noffset[n] = 3; 680 offset[n++] = block / direct_blks; 681 noffset[n] = 4 + offset[n - 1]; 682 offset[n] = block % direct_blks; 683 level = 2; 684 goto got; 685 } 686 block -= indirect_blks; 687 if (block < indirect_blks) { 688 offset[n++] = NODE_IND2_BLOCK; 689 noffset[n] = 4 + dptrs_per_blk; 690 offset[n++] = block / direct_blks; 691 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 692 offset[n] = block % direct_blks; 693 level = 2; 694 goto got; 695 } 696 block -= indirect_blks; 697 if (block < dindirect_blks) { 698 offset[n++] = NODE_DIND_BLOCK; 699 noffset[n] = 5 + (dptrs_per_blk * 2); 700 offset[n++] = block / indirect_blks; 701 noffset[n] = 6 + (dptrs_per_blk * 2) + 702 offset[n - 1] * (dptrs_per_blk + 1); 703 offset[n++] = (block / direct_blks) % dptrs_per_blk; 704 noffset[n] = 7 + (dptrs_per_blk * 2) + 705 offset[n - 2] * (dptrs_per_blk + 1) + 706 offset[n - 1]; 707 offset[n] = block % direct_blks; 708 level = 3; 709 goto got; 710 } else { 711 return -E2BIG; 712 } 713 got: 714 return level; 715 } 716 717 /* 718 * Caller should call f2fs_put_dnode(dn). 719 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 720 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 721 * In the case of RDONLY_NODE, we don't need to care about mutex. 722 */ 723 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 724 { 725 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 726 struct page *npage[4]; 727 struct page *parent = NULL; 728 int offset[4]; 729 unsigned int noffset[4]; 730 nid_t nids[4]; 731 int level, i = 0; 732 int err = 0; 733 734 level = get_node_path(dn->inode, index, offset, noffset); 735 if (level < 0) 736 return level; 737 738 nids[0] = dn->inode->i_ino; 739 npage[0] = dn->inode_page; 740 741 if (!npage[0]) { 742 npage[0] = f2fs_get_node_page(sbi, nids[0]); 743 if (IS_ERR(npage[0])) 744 return PTR_ERR(npage[0]); 745 } 746 747 /* if inline_data is set, should not report any block indices */ 748 if (f2fs_has_inline_data(dn->inode) && index) { 749 err = -ENOENT; 750 f2fs_put_page(npage[0], 1); 751 goto release_out; 752 } 753 754 parent = npage[0]; 755 if (level != 0) 756 nids[1] = get_nid(parent, offset[0], true); 757 dn->inode_page = npage[0]; 758 dn->inode_page_locked = true; 759 760 /* get indirect or direct nodes */ 761 for (i = 1; i <= level; i++) { 762 bool done = false; 763 764 if (!nids[i] && mode == ALLOC_NODE) { 765 /* alloc new node */ 766 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 767 err = -ENOSPC; 768 goto release_pages; 769 } 770 771 dn->nid = nids[i]; 772 npage[i] = f2fs_new_node_page(dn, noffset[i]); 773 if (IS_ERR(npage[i])) { 774 f2fs_alloc_nid_failed(sbi, nids[i]); 775 err = PTR_ERR(npage[i]); 776 goto release_pages; 777 } 778 779 set_nid(parent, offset[i - 1], nids[i], i == 1); 780 f2fs_alloc_nid_done(sbi, nids[i]); 781 done = true; 782 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 783 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 784 if (IS_ERR(npage[i])) { 785 err = PTR_ERR(npage[i]); 786 goto release_pages; 787 } 788 done = true; 789 } 790 if (i == 1) { 791 dn->inode_page_locked = false; 792 unlock_page(parent); 793 } else { 794 f2fs_put_page(parent, 1); 795 } 796 797 if (!done) { 798 npage[i] = f2fs_get_node_page(sbi, nids[i]); 799 if (IS_ERR(npage[i])) { 800 err = PTR_ERR(npage[i]); 801 f2fs_put_page(npage[0], 0); 802 goto release_out; 803 } 804 } 805 if (i < level) { 806 parent = npage[i]; 807 nids[i + 1] = get_nid(parent, offset[i], false); 808 } 809 } 810 dn->nid = nids[level]; 811 dn->ofs_in_node = offset[level]; 812 dn->node_page = npage[level]; 813 dn->data_blkaddr = datablock_addr(dn->inode, 814 dn->node_page, dn->ofs_in_node); 815 return 0; 816 817 release_pages: 818 f2fs_put_page(parent, 1); 819 if (i > 1) 820 f2fs_put_page(npage[0], 0); 821 release_out: 822 dn->inode_page = NULL; 823 dn->node_page = NULL; 824 if (err == -ENOENT) { 825 dn->cur_level = i; 826 dn->max_level = level; 827 dn->ofs_in_node = offset[level]; 828 } 829 return err; 830 } 831 832 static int truncate_node(struct dnode_of_data *dn) 833 { 834 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 835 struct node_info ni; 836 int err; 837 pgoff_t index; 838 839 err = f2fs_get_node_info(sbi, dn->nid, &ni); 840 if (err) 841 return err; 842 843 /* Deallocate node address */ 844 f2fs_invalidate_blocks(sbi, ni.blk_addr); 845 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 846 set_node_addr(sbi, &ni, NULL_ADDR, false); 847 848 if (dn->nid == dn->inode->i_ino) { 849 f2fs_remove_orphan_inode(sbi, dn->nid); 850 dec_valid_inode_count(sbi); 851 f2fs_inode_synced(dn->inode); 852 } 853 854 clear_node_page_dirty(dn->node_page); 855 set_sbi_flag(sbi, SBI_IS_DIRTY); 856 857 index = dn->node_page->index; 858 f2fs_put_page(dn->node_page, 1); 859 860 invalidate_mapping_pages(NODE_MAPPING(sbi), 861 index, index); 862 863 dn->node_page = NULL; 864 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 865 866 return 0; 867 } 868 869 static int truncate_dnode(struct dnode_of_data *dn) 870 { 871 struct page *page; 872 int err; 873 874 if (dn->nid == 0) 875 return 1; 876 877 /* get direct node */ 878 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 879 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 880 return 1; 881 else if (IS_ERR(page)) 882 return PTR_ERR(page); 883 884 /* Make dnode_of_data for parameter */ 885 dn->node_page = page; 886 dn->ofs_in_node = 0; 887 f2fs_truncate_data_blocks(dn); 888 err = truncate_node(dn); 889 if (err) 890 return err; 891 892 return 1; 893 } 894 895 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 896 int ofs, int depth) 897 { 898 struct dnode_of_data rdn = *dn; 899 struct page *page; 900 struct f2fs_node *rn; 901 nid_t child_nid; 902 unsigned int child_nofs; 903 int freed = 0; 904 int i, ret; 905 906 if (dn->nid == 0) 907 return NIDS_PER_BLOCK + 1; 908 909 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 910 911 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 912 if (IS_ERR(page)) { 913 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 914 return PTR_ERR(page); 915 } 916 917 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 918 919 rn = F2FS_NODE(page); 920 if (depth < 3) { 921 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 922 child_nid = le32_to_cpu(rn->in.nid[i]); 923 if (child_nid == 0) 924 continue; 925 rdn.nid = child_nid; 926 ret = truncate_dnode(&rdn); 927 if (ret < 0) 928 goto out_err; 929 if (set_nid(page, i, 0, false)) 930 dn->node_changed = true; 931 } 932 } else { 933 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 934 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 935 child_nid = le32_to_cpu(rn->in.nid[i]); 936 if (child_nid == 0) { 937 child_nofs += NIDS_PER_BLOCK + 1; 938 continue; 939 } 940 rdn.nid = child_nid; 941 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 942 if (ret == (NIDS_PER_BLOCK + 1)) { 943 if (set_nid(page, i, 0, false)) 944 dn->node_changed = true; 945 child_nofs += ret; 946 } else if (ret < 0 && ret != -ENOENT) { 947 goto out_err; 948 } 949 } 950 freed = child_nofs; 951 } 952 953 if (!ofs) { 954 /* remove current indirect node */ 955 dn->node_page = page; 956 ret = truncate_node(dn); 957 if (ret) 958 goto out_err; 959 freed++; 960 } else { 961 f2fs_put_page(page, 1); 962 } 963 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 964 return freed; 965 966 out_err: 967 f2fs_put_page(page, 1); 968 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 969 return ret; 970 } 971 972 static int truncate_partial_nodes(struct dnode_of_data *dn, 973 struct f2fs_inode *ri, int *offset, int depth) 974 { 975 struct page *pages[2]; 976 nid_t nid[3]; 977 nid_t child_nid; 978 int err = 0; 979 int i; 980 int idx = depth - 2; 981 982 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 983 if (!nid[0]) 984 return 0; 985 986 /* get indirect nodes in the path */ 987 for (i = 0; i < idx + 1; i++) { 988 /* reference count'll be increased */ 989 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 990 if (IS_ERR(pages[i])) { 991 err = PTR_ERR(pages[i]); 992 idx = i - 1; 993 goto fail; 994 } 995 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 996 } 997 998 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 999 1000 /* free direct nodes linked to a partial indirect node */ 1001 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1002 child_nid = get_nid(pages[idx], i, false); 1003 if (!child_nid) 1004 continue; 1005 dn->nid = child_nid; 1006 err = truncate_dnode(dn); 1007 if (err < 0) 1008 goto fail; 1009 if (set_nid(pages[idx], i, 0, false)) 1010 dn->node_changed = true; 1011 } 1012 1013 if (offset[idx + 1] == 0) { 1014 dn->node_page = pages[idx]; 1015 dn->nid = nid[idx]; 1016 err = truncate_node(dn); 1017 if (err) 1018 goto fail; 1019 } else { 1020 f2fs_put_page(pages[idx], 1); 1021 } 1022 offset[idx]++; 1023 offset[idx + 1] = 0; 1024 idx--; 1025 fail: 1026 for (i = idx; i >= 0; i--) 1027 f2fs_put_page(pages[i], 1); 1028 1029 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1030 1031 return err; 1032 } 1033 1034 /* 1035 * All the block addresses of data and nodes should be nullified. 1036 */ 1037 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1038 { 1039 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1040 int err = 0, cont = 1; 1041 int level, offset[4], noffset[4]; 1042 unsigned int nofs = 0; 1043 struct f2fs_inode *ri; 1044 struct dnode_of_data dn; 1045 struct page *page; 1046 1047 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1048 1049 level = get_node_path(inode, from, offset, noffset); 1050 if (level < 0) 1051 return level; 1052 1053 page = f2fs_get_node_page(sbi, inode->i_ino); 1054 if (IS_ERR(page)) { 1055 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1056 return PTR_ERR(page); 1057 } 1058 1059 set_new_dnode(&dn, inode, page, NULL, 0); 1060 unlock_page(page); 1061 1062 ri = F2FS_INODE(page); 1063 switch (level) { 1064 case 0: 1065 case 1: 1066 nofs = noffset[1]; 1067 break; 1068 case 2: 1069 nofs = noffset[1]; 1070 if (!offset[level - 1]) 1071 goto skip_partial; 1072 err = truncate_partial_nodes(&dn, ri, offset, level); 1073 if (err < 0 && err != -ENOENT) 1074 goto fail; 1075 nofs += 1 + NIDS_PER_BLOCK; 1076 break; 1077 case 3: 1078 nofs = 5 + 2 * NIDS_PER_BLOCK; 1079 if (!offset[level - 1]) 1080 goto skip_partial; 1081 err = truncate_partial_nodes(&dn, ri, offset, level); 1082 if (err < 0 && err != -ENOENT) 1083 goto fail; 1084 break; 1085 default: 1086 BUG(); 1087 } 1088 1089 skip_partial: 1090 while (cont) { 1091 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1092 switch (offset[0]) { 1093 case NODE_DIR1_BLOCK: 1094 case NODE_DIR2_BLOCK: 1095 err = truncate_dnode(&dn); 1096 break; 1097 1098 case NODE_IND1_BLOCK: 1099 case NODE_IND2_BLOCK: 1100 err = truncate_nodes(&dn, nofs, offset[1], 2); 1101 break; 1102 1103 case NODE_DIND_BLOCK: 1104 err = truncate_nodes(&dn, nofs, offset[1], 3); 1105 cont = 0; 1106 break; 1107 1108 default: 1109 BUG(); 1110 } 1111 if (err < 0 && err != -ENOENT) 1112 goto fail; 1113 if (offset[1] == 0 && 1114 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1115 lock_page(page); 1116 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1117 f2fs_wait_on_page_writeback(page, NODE, true, true); 1118 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1119 set_page_dirty(page); 1120 unlock_page(page); 1121 } 1122 offset[1] = 0; 1123 offset[0]++; 1124 nofs += err; 1125 } 1126 fail: 1127 f2fs_put_page(page, 0); 1128 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1129 return err > 0 ? 0 : err; 1130 } 1131 1132 /* caller must lock inode page */ 1133 int f2fs_truncate_xattr_node(struct inode *inode) 1134 { 1135 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1136 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1137 struct dnode_of_data dn; 1138 struct page *npage; 1139 int err; 1140 1141 if (!nid) 1142 return 0; 1143 1144 npage = f2fs_get_node_page(sbi, nid); 1145 if (IS_ERR(npage)) 1146 return PTR_ERR(npage); 1147 1148 set_new_dnode(&dn, inode, NULL, npage, nid); 1149 err = truncate_node(&dn); 1150 if (err) { 1151 f2fs_put_page(npage, 1); 1152 return err; 1153 } 1154 1155 f2fs_i_xnid_write(inode, 0); 1156 1157 return 0; 1158 } 1159 1160 /* 1161 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1162 * f2fs_unlock_op(). 1163 */ 1164 int f2fs_remove_inode_page(struct inode *inode) 1165 { 1166 struct dnode_of_data dn; 1167 int err; 1168 1169 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1170 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1171 if (err) 1172 return err; 1173 1174 err = f2fs_truncate_xattr_node(inode); 1175 if (err) { 1176 f2fs_put_dnode(&dn); 1177 return err; 1178 } 1179 1180 /* remove potential inline_data blocks */ 1181 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1182 S_ISLNK(inode->i_mode)) 1183 f2fs_truncate_data_blocks_range(&dn, 1); 1184 1185 /* 0 is possible, after f2fs_new_inode() has failed */ 1186 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1187 f2fs_put_dnode(&dn); 1188 return -EIO; 1189 } 1190 1191 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1192 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING, 1193 "Inconsistent i_blocks, ino:%lu, iblocks:%llu", 1194 inode->i_ino, 1195 (unsigned long long)inode->i_blocks); 1196 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1197 } 1198 1199 /* will put inode & node pages */ 1200 err = truncate_node(&dn); 1201 if (err) { 1202 f2fs_put_dnode(&dn); 1203 return err; 1204 } 1205 return 0; 1206 } 1207 1208 struct page *f2fs_new_inode_page(struct inode *inode) 1209 { 1210 struct dnode_of_data dn; 1211 1212 /* allocate inode page for new inode */ 1213 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1214 1215 /* caller should f2fs_put_page(page, 1); */ 1216 return f2fs_new_node_page(&dn, 0); 1217 } 1218 1219 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1220 { 1221 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1222 struct node_info new_ni; 1223 struct page *page; 1224 int err; 1225 1226 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1227 return ERR_PTR(-EPERM); 1228 1229 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1230 if (!page) 1231 return ERR_PTR(-ENOMEM); 1232 1233 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1234 goto fail; 1235 1236 #ifdef CONFIG_F2FS_CHECK_FS 1237 err = f2fs_get_node_info(sbi, dn->nid, &new_ni); 1238 if (err) { 1239 dec_valid_node_count(sbi, dn->inode, !ofs); 1240 goto fail; 1241 } 1242 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1243 #endif 1244 new_ni.nid = dn->nid; 1245 new_ni.ino = dn->inode->i_ino; 1246 new_ni.blk_addr = NULL_ADDR; 1247 new_ni.flag = 0; 1248 new_ni.version = 0; 1249 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1250 1251 f2fs_wait_on_page_writeback(page, NODE, true, true); 1252 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1253 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1254 if (!PageUptodate(page)) 1255 SetPageUptodate(page); 1256 if (set_page_dirty(page)) 1257 dn->node_changed = true; 1258 1259 if (f2fs_has_xattr_block(ofs)) 1260 f2fs_i_xnid_write(dn->inode, dn->nid); 1261 1262 if (ofs == 0) 1263 inc_valid_inode_count(sbi); 1264 return page; 1265 1266 fail: 1267 clear_node_page_dirty(page); 1268 f2fs_put_page(page, 1); 1269 return ERR_PTR(err); 1270 } 1271 1272 /* 1273 * Caller should do after getting the following values. 1274 * 0: f2fs_put_page(page, 0) 1275 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1276 */ 1277 static int read_node_page(struct page *page, int op_flags) 1278 { 1279 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1280 struct node_info ni; 1281 struct f2fs_io_info fio = { 1282 .sbi = sbi, 1283 .type = NODE, 1284 .op = REQ_OP_READ, 1285 .op_flags = op_flags, 1286 .page = page, 1287 .encrypted_page = NULL, 1288 }; 1289 int err; 1290 1291 if (PageUptodate(page)) { 1292 if (!f2fs_inode_chksum_verify(sbi, page)) { 1293 ClearPageUptodate(page); 1294 return -EBADMSG; 1295 } 1296 return LOCKED_PAGE; 1297 } 1298 1299 err = f2fs_get_node_info(sbi, page->index, &ni); 1300 if (err) 1301 return err; 1302 1303 if (unlikely(ni.blk_addr == NULL_ADDR) || 1304 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) { 1305 ClearPageUptodate(page); 1306 return -ENOENT; 1307 } 1308 1309 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1310 return f2fs_submit_page_bio(&fio); 1311 } 1312 1313 /* 1314 * Readahead a node page 1315 */ 1316 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1317 { 1318 struct page *apage; 1319 int err; 1320 1321 if (!nid) 1322 return; 1323 if (f2fs_check_nid_range(sbi, nid)) 1324 return; 1325 1326 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1327 if (apage) 1328 return; 1329 1330 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1331 if (!apage) 1332 return; 1333 1334 err = read_node_page(apage, REQ_RAHEAD); 1335 f2fs_put_page(apage, err ? 1 : 0); 1336 } 1337 1338 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1339 struct page *parent, int start) 1340 { 1341 struct page *page; 1342 int err; 1343 1344 if (!nid) 1345 return ERR_PTR(-ENOENT); 1346 if (f2fs_check_nid_range(sbi, nid)) 1347 return ERR_PTR(-EINVAL); 1348 repeat: 1349 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1350 if (!page) 1351 return ERR_PTR(-ENOMEM); 1352 1353 err = read_node_page(page, 0); 1354 if (err < 0) { 1355 f2fs_put_page(page, 1); 1356 return ERR_PTR(err); 1357 } else if (err == LOCKED_PAGE) { 1358 err = 0; 1359 goto page_hit; 1360 } 1361 1362 if (parent) 1363 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1364 1365 lock_page(page); 1366 1367 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1368 f2fs_put_page(page, 1); 1369 goto repeat; 1370 } 1371 1372 if (unlikely(!PageUptodate(page))) { 1373 err = -EIO; 1374 goto out_err; 1375 } 1376 1377 if (!f2fs_inode_chksum_verify(sbi, page)) { 1378 err = -EBADMSG; 1379 goto out_err; 1380 } 1381 page_hit: 1382 if(unlikely(nid != nid_of_node(page))) { 1383 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, " 1384 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1385 nid, nid_of_node(page), ino_of_node(page), 1386 ofs_of_node(page), cpver_of_node(page), 1387 next_blkaddr_of_node(page)); 1388 err = -EINVAL; 1389 out_err: 1390 ClearPageUptodate(page); 1391 f2fs_put_page(page, 1); 1392 return ERR_PTR(err); 1393 } 1394 return page; 1395 } 1396 1397 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1398 { 1399 return __get_node_page(sbi, nid, NULL, 0); 1400 } 1401 1402 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1403 { 1404 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1405 nid_t nid = get_nid(parent, start, false); 1406 1407 return __get_node_page(sbi, nid, parent, start); 1408 } 1409 1410 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1411 { 1412 struct inode *inode; 1413 struct page *page; 1414 int ret; 1415 1416 /* should flush inline_data before evict_inode */ 1417 inode = ilookup(sbi->sb, ino); 1418 if (!inode) 1419 return; 1420 1421 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1422 FGP_LOCK|FGP_NOWAIT, 0); 1423 if (!page) 1424 goto iput_out; 1425 1426 if (!PageUptodate(page)) 1427 goto page_out; 1428 1429 if (!PageDirty(page)) 1430 goto page_out; 1431 1432 if (!clear_page_dirty_for_io(page)) 1433 goto page_out; 1434 1435 ret = f2fs_write_inline_data(inode, page); 1436 inode_dec_dirty_pages(inode); 1437 f2fs_remove_dirty_inode(inode); 1438 if (ret) 1439 set_page_dirty(page); 1440 page_out: 1441 f2fs_put_page(page, 1); 1442 iput_out: 1443 iput(inode); 1444 } 1445 1446 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1447 { 1448 pgoff_t index; 1449 struct pagevec pvec; 1450 struct page *last_page = NULL; 1451 int nr_pages; 1452 1453 pagevec_init(&pvec); 1454 index = 0; 1455 1456 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1457 PAGECACHE_TAG_DIRTY))) { 1458 int i; 1459 1460 for (i = 0; i < nr_pages; i++) { 1461 struct page *page = pvec.pages[i]; 1462 1463 if (unlikely(f2fs_cp_error(sbi))) { 1464 f2fs_put_page(last_page, 0); 1465 pagevec_release(&pvec); 1466 return ERR_PTR(-EIO); 1467 } 1468 1469 if (!IS_DNODE(page) || !is_cold_node(page)) 1470 continue; 1471 if (ino_of_node(page) != ino) 1472 continue; 1473 1474 lock_page(page); 1475 1476 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1477 continue_unlock: 1478 unlock_page(page); 1479 continue; 1480 } 1481 if (ino_of_node(page) != ino) 1482 goto continue_unlock; 1483 1484 if (!PageDirty(page)) { 1485 /* someone wrote it for us */ 1486 goto continue_unlock; 1487 } 1488 1489 if (last_page) 1490 f2fs_put_page(last_page, 0); 1491 1492 get_page(page); 1493 last_page = page; 1494 unlock_page(page); 1495 } 1496 pagevec_release(&pvec); 1497 cond_resched(); 1498 } 1499 return last_page; 1500 } 1501 1502 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1503 struct writeback_control *wbc, bool do_balance, 1504 enum iostat_type io_type, unsigned int *seq_id) 1505 { 1506 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1507 nid_t nid; 1508 struct node_info ni; 1509 struct f2fs_io_info fio = { 1510 .sbi = sbi, 1511 .ino = ino_of_node(page), 1512 .type = NODE, 1513 .op = REQ_OP_WRITE, 1514 .op_flags = wbc_to_write_flags(wbc), 1515 .page = page, 1516 .encrypted_page = NULL, 1517 .submitted = false, 1518 .io_type = io_type, 1519 .io_wbc = wbc, 1520 }; 1521 unsigned int seq; 1522 1523 trace_f2fs_writepage(page, NODE); 1524 1525 if (unlikely(f2fs_cp_error(sbi))) 1526 goto redirty_out; 1527 1528 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1529 goto redirty_out; 1530 1531 if (wbc->sync_mode == WB_SYNC_NONE && 1532 IS_DNODE(page) && is_cold_node(page)) 1533 goto redirty_out; 1534 1535 /* get old block addr of this node page */ 1536 nid = nid_of_node(page); 1537 f2fs_bug_on(sbi, page->index != nid); 1538 1539 if (f2fs_get_node_info(sbi, nid, &ni)) 1540 goto redirty_out; 1541 1542 if (wbc->for_reclaim) { 1543 if (!down_read_trylock(&sbi->node_write)) 1544 goto redirty_out; 1545 } else { 1546 down_read(&sbi->node_write); 1547 } 1548 1549 /* This page is already truncated */ 1550 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1551 ClearPageUptodate(page); 1552 dec_page_count(sbi, F2FS_DIRTY_NODES); 1553 up_read(&sbi->node_write); 1554 unlock_page(page); 1555 return 0; 1556 } 1557 1558 if (__is_valid_data_blkaddr(ni.blk_addr) && 1559 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1560 DATA_GENERIC_ENHANCE)) { 1561 up_read(&sbi->node_write); 1562 goto redirty_out; 1563 } 1564 1565 if (atomic && !test_opt(sbi, NOBARRIER)) 1566 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1567 1568 set_page_writeback(page); 1569 ClearPageError(page); 1570 1571 if (f2fs_in_warm_node_list(sbi, page)) { 1572 seq = f2fs_add_fsync_node_entry(sbi, page); 1573 if (seq_id) 1574 *seq_id = seq; 1575 } 1576 1577 fio.old_blkaddr = ni.blk_addr; 1578 f2fs_do_write_node_page(nid, &fio); 1579 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1580 dec_page_count(sbi, F2FS_DIRTY_NODES); 1581 up_read(&sbi->node_write); 1582 1583 if (wbc->for_reclaim) { 1584 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1585 submitted = NULL; 1586 } 1587 1588 unlock_page(page); 1589 1590 if (unlikely(f2fs_cp_error(sbi))) { 1591 f2fs_submit_merged_write(sbi, NODE); 1592 submitted = NULL; 1593 } 1594 if (submitted) 1595 *submitted = fio.submitted; 1596 1597 if (do_balance) 1598 f2fs_balance_fs(sbi, false); 1599 return 0; 1600 1601 redirty_out: 1602 redirty_page_for_writepage(wbc, page); 1603 return AOP_WRITEPAGE_ACTIVATE; 1604 } 1605 1606 int f2fs_move_node_page(struct page *node_page, int gc_type) 1607 { 1608 int err = 0; 1609 1610 if (gc_type == FG_GC) { 1611 struct writeback_control wbc = { 1612 .sync_mode = WB_SYNC_ALL, 1613 .nr_to_write = 1, 1614 .for_reclaim = 0, 1615 }; 1616 1617 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1618 1619 set_page_dirty(node_page); 1620 1621 if (!clear_page_dirty_for_io(node_page)) { 1622 err = -EAGAIN; 1623 goto out_page; 1624 } 1625 1626 if (__write_node_page(node_page, false, NULL, 1627 &wbc, false, FS_GC_NODE_IO, NULL)) { 1628 err = -EAGAIN; 1629 unlock_page(node_page); 1630 } 1631 goto release_page; 1632 } else { 1633 /* set page dirty and write it */ 1634 if (!PageWriteback(node_page)) 1635 set_page_dirty(node_page); 1636 } 1637 out_page: 1638 unlock_page(node_page); 1639 release_page: 1640 f2fs_put_page(node_page, 0); 1641 return err; 1642 } 1643 1644 static int f2fs_write_node_page(struct page *page, 1645 struct writeback_control *wbc) 1646 { 1647 return __write_node_page(page, false, NULL, wbc, false, 1648 FS_NODE_IO, NULL); 1649 } 1650 1651 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1652 struct writeback_control *wbc, bool atomic, 1653 unsigned int *seq_id) 1654 { 1655 pgoff_t index; 1656 struct pagevec pvec; 1657 int ret = 0; 1658 struct page *last_page = NULL; 1659 bool marked = false; 1660 nid_t ino = inode->i_ino; 1661 int nr_pages; 1662 int nwritten = 0; 1663 1664 if (atomic) { 1665 last_page = last_fsync_dnode(sbi, ino); 1666 if (IS_ERR_OR_NULL(last_page)) 1667 return PTR_ERR_OR_ZERO(last_page); 1668 } 1669 retry: 1670 pagevec_init(&pvec); 1671 index = 0; 1672 1673 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1674 PAGECACHE_TAG_DIRTY))) { 1675 int i; 1676 1677 for (i = 0; i < nr_pages; i++) { 1678 struct page *page = pvec.pages[i]; 1679 bool submitted = false; 1680 1681 if (unlikely(f2fs_cp_error(sbi))) { 1682 f2fs_put_page(last_page, 0); 1683 pagevec_release(&pvec); 1684 ret = -EIO; 1685 goto out; 1686 } 1687 1688 if (!IS_DNODE(page) || !is_cold_node(page)) 1689 continue; 1690 if (ino_of_node(page) != ino) 1691 continue; 1692 1693 lock_page(page); 1694 1695 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1696 continue_unlock: 1697 unlock_page(page); 1698 continue; 1699 } 1700 if (ino_of_node(page) != ino) 1701 goto continue_unlock; 1702 1703 if (!PageDirty(page) && page != last_page) { 1704 /* someone wrote it for us */ 1705 goto continue_unlock; 1706 } 1707 1708 f2fs_wait_on_page_writeback(page, NODE, true, true); 1709 1710 set_fsync_mark(page, 0); 1711 set_dentry_mark(page, 0); 1712 1713 if (!atomic || page == last_page) { 1714 set_fsync_mark(page, 1); 1715 if (IS_INODE(page)) { 1716 if (is_inode_flag_set(inode, 1717 FI_DIRTY_INODE)) 1718 f2fs_update_inode(inode, page); 1719 set_dentry_mark(page, 1720 f2fs_need_dentry_mark(sbi, ino)); 1721 } 1722 /* may be written by other thread */ 1723 if (!PageDirty(page)) 1724 set_page_dirty(page); 1725 } 1726 1727 if (!clear_page_dirty_for_io(page)) 1728 goto continue_unlock; 1729 1730 ret = __write_node_page(page, atomic && 1731 page == last_page, 1732 &submitted, wbc, true, 1733 FS_NODE_IO, seq_id); 1734 if (ret) { 1735 unlock_page(page); 1736 f2fs_put_page(last_page, 0); 1737 break; 1738 } else if (submitted) { 1739 nwritten++; 1740 } 1741 1742 if (page == last_page) { 1743 f2fs_put_page(page, 0); 1744 marked = true; 1745 break; 1746 } 1747 } 1748 pagevec_release(&pvec); 1749 cond_resched(); 1750 1751 if (ret || marked) 1752 break; 1753 } 1754 if (!ret && atomic && !marked) { 1755 f2fs_msg(sbi->sb, KERN_DEBUG, 1756 "Retry to write fsync mark: ino=%u, idx=%lx", 1757 ino, last_page->index); 1758 lock_page(last_page); 1759 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1760 set_page_dirty(last_page); 1761 unlock_page(last_page); 1762 goto retry; 1763 } 1764 out: 1765 if (nwritten) 1766 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1767 return ret ? -EIO: 0; 1768 } 1769 1770 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1771 struct writeback_control *wbc, 1772 bool do_balance, enum iostat_type io_type) 1773 { 1774 pgoff_t index; 1775 struct pagevec pvec; 1776 int step = 0; 1777 int nwritten = 0; 1778 int ret = 0; 1779 int nr_pages, done = 0; 1780 1781 pagevec_init(&pvec); 1782 1783 next_step: 1784 index = 0; 1785 1786 while (!done && (nr_pages = pagevec_lookup_tag(&pvec, 1787 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1788 int i; 1789 1790 for (i = 0; i < nr_pages; i++) { 1791 struct page *page = pvec.pages[i]; 1792 bool submitted = false; 1793 1794 /* give a priority to WB_SYNC threads */ 1795 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1796 wbc->sync_mode == WB_SYNC_NONE) { 1797 done = 1; 1798 break; 1799 } 1800 1801 /* 1802 * flushing sequence with step: 1803 * 0. indirect nodes 1804 * 1. dentry dnodes 1805 * 2. file dnodes 1806 */ 1807 if (step == 0 && IS_DNODE(page)) 1808 continue; 1809 if (step == 1 && (!IS_DNODE(page) || 1810 is_cold_node(page))) 1811 continue; 1812 if (step == 2 && (!IS_DNODE(page) || 1813 !is_cold_node(page))) 1814 continue; 1815 lock_node: 1816 if (wbc->sync_mode == WB_SYNC_ALL) 1817 lock_page(page); 1818 else if (!trylock_page(page)) 1819 continue; 1820 1821 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1822 continue_unlock: 1823 unlock_page(page); 1824 continue; 1825 } 1826 1827 if (!PageDirty(page)) { 1828 /* someone wrote it for us */ 1829 goto continue_unlock; 1830 } 1831 1832 /* flush inline_data */ 1833 if (is_inline_node(page)) { 1834 clear_inline_node(page); 1835 unlock_page(page); 1836 flush_inline_data(sbi, ino_of_node(page)); 1837 goto lock_node; 1838 } 1839 1840 f2fs_wait_on_page_writeback(page, NODE, true, true); 1841 1842 if (!clear_page_dirty_for_io(page)) 1843 goto continue_unlock; 1844 1845 set_fsync_mark(page, 0); 1846 set_dentry_mark(page, 0); 1847 1848 ret = __write_node_page(page, false, &submitted, 1849 wbc, do_balance, io_type, NULL); 1850 if (ret) 1851 unlock_page(page); 1852 else if (submitted) 1853 nwritten++; 1854 1855 if (--wbc->nr_to_write == 0) 1856 break; 1857 } 1858 pagevec_release(&pvec); 1859 cond_resched(); 1860 1861 if (wbc->nr_to_write == 0) { 1862 step = 2; 1863 break; 1864 } 1865 } 1866 1867 if (step < 2) { 1868 if (wbc->sync_mode == WB_SYNC_NONE && step == 1) 1869 goto out; 1870 step++; 1871 goto next_step; 1872 } 1873 out: 1874 if (nwritten) 1875 f2fs_submit_merged_write(sbi, NODE); 1876 1877 if (unlikely(f2fs_cp_error(sbi))) 1878 return -EIO; 1879 return ret; 1880 } 1881 1882 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 1883 unsigned int seq_id) 1884 { 1885 struct fsync_node_entry *fn; 1886 struct page *page; 1887 struct list_head *head = &sbi->fsync_node_list; 1888 unsigned long flags; 1889 unsigned int cur_seq_id = 0; 1890 int ret2, ret = 0; 1891 1892 while (seq_id && cur_seq_id < seq_id) { 1893 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 1894 if (list_empty(head)) { 1895 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 1896 break; 1897 } 1898 fn = list_first_entry(head, struct fsync_node_entry, list); 1899 if (fn->seq_id > seq_id) { 1900 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 1901 break; 1902 } 1903 cur_seq_id = fn->seq_id; 1904 page = fn->page; 1905 get_page(page); 1906 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 1907 1908 f2fs_wait_on_page_writeback(page, NODE, true, false); 1909 if (TestClearPageError(page)) 1910 ret = -EIO; 1911 1912 put_page(page); 1913 1914 if (ret) 1915 break; 1916 } 1917 1918 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 1919 if (!ret) 1920 ret = ret2; 1921 1922 return ret; 1923 } 1924 1925 static int f2fs_write_node_pages(struct address_space *mapping, 1926 struct writeback_control *wbc) 1927 { 1928 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1929 struct blk_plug plug; 1930 long diff; 1931 1932 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1933 goto skip_write; 1934 1935 /* balancing f2fs's metadata in background */ 1936 f2fs_balance_fs_bg(sbi); 1937 1938 /* collect a number of dirty node pages and write together */ 1939 if (wbc->sync_mode != WB_SYNC_ALL && 1940 get_pages(sbi, F2FS_DIRTY_NODES) < 1941 nr_pages_to_skip(sbi, NODE)) 1942 goto skip_write; 1943 1944 if (wbc->sync_mode == WB_SYNC_ALL) 1945 atomic_inc(&sbi->wb_sync_req[NODE]); 1946 else if (atomic_read(&sbi->wb_sync_req[NODE])) 1947 goto skip_write; 1948 1949 trace_f2fs_writepages(mapping->host, wbc, NODE); 1950 1951 diff = nr_pages_to_write(sbi, NODE, wbc); 1952 blk_start_plug(&plug); 1953 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 1954 blk_finish_plug(&plug); 1955 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1956 1957 if (wbc->sync_mode == WB_SYNC_ALL) 1958 atomic_dec(&sbi->wb_sync_req[NODE]); 1959 return 0; 1960 1961 skip_write: 1962 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1963 trace_f2fs_writepages(mapping->host, wbc, NODE); 1964 return 0; 1965 } 1966 1967 static int f2fs_set_node_page_dirty(struct page *page) 1968 { 1969 trace_f2fs_set_page_dirty(page, NODE); 1970 1971 if (!PageUptodate(page)) 1972 SetPageUptodate(page); 1973 #ifdef CONFIG_F2FS_CHECK_FS 1974 if (IS_INODE(page)) 1975 f2fs_inode_chksum_set(F2FS_P_SB(page), page); 1976 #endif 1977 if (!PageDirty(page)) { 1978 __set_page_dirty_nobuffers(page); 1979 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1980 f2fs_set_page_private(page, 0); 1981 f2fs_trace_pid(page); 1982 return 1; 1983 } 1984 return 0; 1985 } 1986 1987 /* 1988 * Structure of the f2fs node operations 1989 */ 1990 const struct address_space_operations f2fs_node_aops = { 1991 .writepage = f2fs_write_node_page, 1992 .writepages = f2fs_write_node_pages, 1993 .set_page_dirty = f2fs_set_node_page_dirty, 1994 .invalidatepage = f2fs_invalidate_page, 1995 .releasepage = f2fs_release_page, 1996 #ifdef CONFIG_MIGRATION 1997 .migratepage = f2fs_migrate_page, 1998 #endif 1999 }; 2000 2001 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2002 nid_t n) 2003 { 2004 return radix_tree_lookup(&nm_i->free_nid_root, n); 2005 } 2006 2007 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2008 struct free_nid *i, enum nid_state state) 2009 { 2010 struct f2fs_nm_info *nm_i = NM_I(sbi); 2011 2012 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2013 if (err) 2014 return err; 2015 2016 f2fs_bug_on(sbi, state != i->state); 2017 nm_i->nid_cnt[state]++; 2018 if (state == FREE_NID) 2019 list_add_tail(&i->list, &nm_i->free_nid_list); 2020 return 0; 2021 } 2022 2023 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2024 struct free_nid *i, enum nid_state state) 2025 { 2026 struct f2fs_nm_info *nm_i = NM_I(sbi); 2027 2028 f2fs_bug_on(sbi, state != i->state); 2029 nm_i->nid_cnt[state]--; 2030 if (state == FREE_NID) 2031 list_del(&i->list); 2032 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2033 } 2034 2035 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2036 enum nid_state org_state, enum nid_state dst_state) 2037 { 2038 struct f2fs_nm_info *nm_i = NM_I(sbi); 2039 2040 f2fs_bug_on(sbi, org_state != i->state); 2041 i->state = dst_state; 2042 nm_i->nid_cnt[org_state]--; 2043 nm_i->nid_cnt[dst_state]++; 2044 2045 switch (dst_state) { 2046 case PREALLOC_NID: 2047 list_del(&i->list); 2048 break; 2049 case FREE_NID: 2050 list_add_tail(&i->list, &nm_i->free_nid_list); 2051 break; 2052 default: 2053 BUG_ON(1); 2054 } 2055 } 2056 2057 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2058 bool set, bool build) 2059 { 2060 struct f2fs_nm_info *nm_i = NM_I(sbi); 2061 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2062 unsigned int nid_ofs = nid - START_NID(nid); 2063 2064 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2065 return; 2066 2067 if (set) { 2068 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2069 return; 2070 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2071 nm_i->free_nid_count[nat_ofs]++; 2072 } else { 2073 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2074 return; 2075 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2076 if (!build) 2077 nm_i->free_nid_count[nat_ofs]--; 2078 } 2079 } 2080 2081 /* return if the nid is recognized as free */ 2082 static bool add_free_nid(struct f2fs_sb_info *sbi, 2083 nid_t nid, bool build, bool update) 2084 { 2085 struct f2fs_nm_info *nm_i = NM_I(sbi); 2086 struct free_nid *i, *e; 2087 struct nat_entry *ne; 2088 int err = -EINVAL; 2089 bool ret = false; 2090 2091 /* 0 nid should not be used */ 2092 if (unlikely(nid == 0)) 2093 return false; 2094 2095 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2096 return false; 2097 2098 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 2099 i->nid = nid; 2100 i->state = FREE_NID; 2101 2102 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2103 2104 spin_lock(&nm_i->nid_list_lock); 2105 2106 if (build) { 2107 /* 2108 * Thread A Thread B 2109 * - f2fs_create 2110 * - f2fs_new_inode 2111 * - f2fs_alloc_nid 2112 * - __insert_nid_to_list(PREALLOC_NID) 2113 * - f2fs_balance_fs_bg 2114 * - f2fs_build_free_nids 2115 * - __f2fs_build_free_nids 2116 * - scan_nat_page 2117 * - add_free_nid 2118 * - __lookup_nat_cache 2119 * - f2fs_add_link 2120 * - f2fs_init_inode_metadata 2121 * - f2fs_new_inode_page 2122 * - f2fs_new_node_page 2123 * - set_node_addr 2124 * - f2fs_alloc_nid_done 2125 * - __remove_nid_from_list(PREALLOC_NID) 2126 * - __insert_nid_to_list(FREE_NID) 2127 */ 2128 ne = __lookup_nat_cache(nm_i, nid); 2129 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2130 nat_get_blkaddr(ne) != NULL_ADDR)) 2131 goto err_out; 2132 2133 e = __lookup_free_nid_list(nm_i, nid); 2134 if (e) { 2135 if (e->state == FREE_NID) 2136 ret = true; 2137 goto err_out; 2138 } 2139 } 2140 ret = true; 2141 err = __insert_free_nid(sbi, i, FREE_NID); 2142 err_out: 2143 if (update) { 2144 update_free_nid_bitmap(sbi, nid, ret, build); 2145 if (!build) 2146 nm_i->available_nids++; 2147 } 2148 spin_unlock(&nm_i->nid_list_lock); 2149 radix_tree_preload_end(); 2150 2151 if (err) 2152 kmem_cache_free(free_nid_slab, i); 2153 return ret; 2154 } 2155 2156 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2157 { 2158 struct f2fs_nm_info *nm_i = NM_I(sbi); 2159 struct free_nid *i; 2160 bool need_free = false; 2161 2162 spin_lock(&nm_i->nid_list_lock); 2163 i = __lookup_free_nid_list(nm_i, nid); 2164 if (i && i->state == FREE_NID) { 2165 __remove_free_nid(sbi, i, FREE_NID); 2166 need_free = true; 2167 } 2168 spin_unlock(&nm_i->nid_list_lock); 2169 2170 if (need_free) 2171 kmem_cache_free(free_nid_slab, i); 2172 } 2173 2174 static int scan_nat_page(struct f2fs_sb_info *sbi, 2175 struct page *nat_page, nid_t start_nid) 2176 { 2177 struct f2fs_nm_info *nm_i = NM_I(sbi); 2178 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2179 block_t blk_addr; 2180 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2181 int i; 2182 2183 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2184 2185 i = start_nid % NAT_ENTRY_PER_BLOCK; 2186 2187 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2188 if (unlikely(start_nid >= nm_i->max_nid)) 2189 break; 2190 2191 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2192 2193 if (blk_addr == NEW_ADDR) 2194 return -EINVAL; 2195 2196 if (blk_addr == NULL_ADDR) { 2197 add_free_nid(sbi, start_nid, true, true); 2198 } else { 2199 spin_lock(&NM_I(sbi)->nid_list_lock); 2200 update_free_nid_bitmap(sbi, start_nid, false, true); 2201 spin_unlock(&NM_I(sbi)->nid_list_lock); 2202 } 2203 } 2204 2205 return 0; 2206 } 2207 2208 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2209 { 2210 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2211 struct f2fs_journal *journal = curseg->journal; 2212 int i; 2213 2214 down_read(&curseg->journal_rwsem); 2215 for (i = 0; i < nats_in_cursum(journal); i++) { 2216 block_t addr; 2217 nid_t nid; 2218 2219 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2220 nid = le32_to_cpu(nid_in_journal(journal, i)); 2221 if (addr == NULL_ADDR) 2222 add_free_nid(sbi, nid, true, false); 2223 else 2224 remove_free_nid(sbi, nid); 2225 } 2226 up_read(&curseg->journal_rwsem); 2227 } 2228 2229 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2230 { 2231 struct f2fs_nm_info *nm_i = NM_I(sbi); 2232 unsigned int i, idx; 2233 nid_t nid; 2234 2235 down_read(&nm_i->nat_tree_lock); 2236 2237 for (i = 0; i < nm_i->nat_blocks; i++) { 2238 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2239 continue; 2240 if (!nm_i->free_nid_count[i]) 2241 continue; 2242 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2243 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2244 NAT_ENTRY_PER_BLOCK, idx); 2245 if (idx >= NAT_ENTRY_PER_BLOCK) 2246 break; 2247 2248 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2249 add_free_nid(sbi, nid, true, false); 2250 2251 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2252 goto out; 2253 } 2254 } 2255 out: 2256 scan_curseg_cache(sbi); 2257 2258 up_read(&nm_i->nat_tree_lock); 2259 } 2260 2261 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2262 bool sync, bool mount) 2263 { 2264 struct f2fs_nm_info *nm_i = NM_I(sbi); 2265 int i = 0, ret; 2266 nid_t nid = nm_i->next_scan_nid; 2267 2268 if (unlikely(nid >= nm_i->max_nid)) 2269 nid = 0; 2270 2271 /* Enough entries */ 2272 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2273 return 0; 2274 2275 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2276 return 0; 2277 2278 if (!mount) { 2279 /* try to find free nids in free_nid_bitmap */ 2280 scan_free_nid_bits(sbi); 2281 2282 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2283 return 0; 2284 } 2285 2286 /* readahead nat pages to be scanned */ 2287 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2288 META_NAT, true); 2289 2290 down_read(&nm_i->nat_tree_lock); 2291 2292 while (1) { 2293 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2294 nm_i->nat_block_bitmap)) { 2295 struct page *page = get_current_nat_page(sbi, nid); 2296 2297 if (IS_ERR(page)) { 2298 ret = PTR_ERR(page); 2299 } else { 2300 ret = scan_nat_page(sbi, page, nid); 2301 f2fs_put_page(page, 1); 2302 } 2303 2304 if (ret) { 2305 up_read(&nm_i->nat_tree_lock); 2306 f2fs_bug_on(sbi, !mount); 2307 f2fs_msg(sbi->sb, KERN_ERR, 2308 "NAT is corrupt, run fsck to fix it"); 2309 return ret; 2310 } 2311 } 2312 2313 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2314 if (unlikely(nid >= nm_i->max_nid)) 2315 nid = 0; 2316 2317 if (++i >= FREE_NID_PAGES) 2318 break; 2319 } 2320 2321 /* go to the next free nat pages to find free nids abundantly */ 2322 nm_i->next_scan_nid = nid; 2323 2324 /* find free nids from current sum_pages */ 2325 scan_curseg_cache(sbi); 2326 2327 up_read(&nm_i->nat_tree_lock); 2328 2329 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2330 nm_i->ra_nid_pages, META_NAT, false); 2331 2332 return 0; 2333 } 2334 2335 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2336 { 2337 int ret; 2338 2339 mutex_lock(&NM_I(sbi)->build_lock); 2340 ret = __f2fs_build_free_nids(sbi, sync, mount); 2341 mutex_unlock(&NM_I(sbi)->build_lock); 2342 2343 return ret; 2344 } 2345 2346 /* 2347 * If this function returns success, caller can obtain a new nid 2348 * from second parameter of this function. 2349 * The returned nid could be used ino as well as nid when inode is created. 2350 */ 2351 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2352 { 2353 struct f2fs_nm_info *nm_i = NM_I(sbi); 2354 struct free_nid *i = NULL; 2355 retry: 2356 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2357 f2fs_show_injection_info(FAULT_ALLOC_NID); 2358 return false; 2359 } 2360 2361 spin_lock(&nm_i->nid_list_lock); 2362 2363 if (unlikely(nm_i->available_nids == 0)) { 2364 spin_unlock(&nm_i->nid_list_lock); 2365 return false; 2366 } 2367 2368 /* We should not use stale free nids created by f2fs_build_free_nids */ 2369 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2370 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2371 i = list_first_entry(&nm_i->free_nid_list, 2372 struct free_nid, list); 2373 *nid = i->nid; 2374 2375 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2376 nm_i->available_nids--; 2377 2378 update_free_nid_bitmap(sbi, *nid, false, false); 2379 2380 spin_unlock(&nm_i->nid_list_lock); 2381 return true; 2382 } 2383 spin_unlock(&nm_i->nid_list_lock); 2384 2385 /* Let's scan nat pages and its caches to get free nids */ 2386 if (!f2fs_build_free_nids(sbi, true, false)) 2387 goto retry; 2388 return false; 2389 } 2390 2391 /* 2392 * f2fs_alloc_nid() should be called prior to this function. 2393 */ 2394 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2395 { 2396 struct f2fs_nm_info *nm_i = NM_I(sbi); 2397 struct free_nid *i; 2398 2399 spin_lock(&nm_i->nid_list_lock); 2400 i = __lookup_free_nid_list(nm_i, nid); 2401 f2fs_bug_on(sbi, !i); 2402 __remove_free_nid(sbi, i, PREALLOC_NID); 2403 spin_unlock(&nm_i->nid_list_lock); 2404 2405 kmem_cache_free(free_nid_slab, i); 2406 } 2407 2408 /* 2409 * f2fs_alloc_nid() should be called prior to this function. 2410 */ 2411 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2412 { 2413 struct f2fs_nm_info *nm_i = NM_I(sbi); 2414 struct free_nid *i; 2415 bool need_free = false; 2416 2417 if (!nid) 2418 return; 2419 2420 spin_lock(&nm_i->nid_list_lock); 2421 i = __lookup_free_nid_list(nm_i, nid); 2422 f2fs_bug_on(sbi, !i); 2423 2424 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2425 __remove_free_nid(sbi, i, PREALLOC_NID); 2426 need_free = true; 2427 } else { 2428 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2429 } 2430 2431 nm_i->available_nids++; 2432 2433 update_free_nid_bitmap(sbi, nid, true, false); 2434 2435 spin_unlock(&nm_i->nid_list_lock); 2436 2437 if (need_free) 2438 kmem_cache_free(free_nid_slab, i); 2439 } 2440 2441 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2442 { 2443 struct f2fs_nm_info *nm_i = NM_I(sbi); 2444 struct free_nid *i, *next; 2445 int nr = nr_shrink; 2446 2447 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2448 return 0; 2449 2450 if (!mutex_trylock(&nm_i->build_lock)) 2451 return 0; 2452 2453 spin_lock(&nm_i->nid_list_lock); 2454 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2455 if (nr_shrink <= 0 || 2456 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2457 break; 2458 2459 __remove_free_nid(sbi, i, FREE_NID); 2460 kmem_cache_free(free_nid_slab, i); 2461 nr_shrink--; 2462 } 2463 spin_unlock(&nm_i->nid_list_lock); 2464 mutex_unlock(&nm_i->build_lock); 2465 2466 return nr - nr_shrink; 2467 } 2468 2469 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2470 { 2471 void *src_addr, *dst_addr; 2472 size_t inline_size; 2473 struct page *ipage; 2474 struct f2fs_inode *ri; 2475 2476 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2477 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 2478 2479 ri = F2FS_INODE(page); 2480 if (ri->i_inline & F2FS_INLINE_XATTR) { 2481 set_inode_flag(inode, FI_INLINE_XATTR); 2482 } else { 2483 clear_inode_flag(inode, FI_INLINE_XATTR); 2484 goto update_inode; 2485 } 2486 2487 dst_addr = inline_xattr_addr(inode, ipage); 2488 src_addr = inline_xattr_addr(inode, page); 2489 inline_size = inline_xattr_size(inode); 2490 2491 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2492 memcpy(dst_addr, src_addr, inline_size); 2493 update_inode: 2494 f2fs_update_inode(inode, ipage); 2495 f2fs_put_page(ipage, 1); 2496 } 2497 2498 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2499 { 2500 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2501 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2502 nid_t new_xnid; 2503 struct dnode_of_data dn; 2504 struct node_info ni; 2505 struct page *xpage; 2506 int err; 2507 2508 if (!prev_xnid) 2509 goto recover_xnid; 2510 2511 /* 1: invalidate the previous xattr nid */ 2512 err = f2fs_get_node_info(sbi, prev_xnid, &ni); 2513 if (err) 2514 return err; 2515 2516 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2517 dec_valid_node_count(sbi, inode, false); 2518 set_node_addr(sbi, &ni, NULL_ADDR, false); 2519 2520 recover_xnid: 2521 /* 2: update xattr nid in inode */ 2522 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2523 return -ENOSPC; 2524 2525 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2526 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2527 if (IS_ERR(xpage)) { 2528 f2fs_alloc_nid_failed(sbi, new_xnid); 2529 return PTR_ERR(xpage); 2530 } 2531 2532 f2fs_alloc_nid_done(sbi, new_xnid); 2533 f2fs_update_inode_page(inode); 2534 2535 /* 3: update and set xattr node page dirty */ 2536 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2537 2538 set_page_dirty(xpage); 2539 f2fs_put_page(xpage, 1); 2540 2541 return 0; 2542 } 2543 2544 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2545 { 2546 struct f2fs_inode *src, *dst; 2547 nid_t ino = ino_of_node(page); 2548 struct node_info old_ni, new_ni; 2549 struct page *ipage; 2550 int err; 2551 2552 err = f2fs_get_node_info(sbi, ino, &old_ni); 2553 if (err) 2554 return err; 2555 2556 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2557 return -EINVAL; 2558 retry: 2559 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2560 if (!ipage) { 2561 congestion_wait(BLK_RW_ASYNC, HZ/50); 2562 goto retry; 2563 } 2564 2565 /* Should not use this inode from free nid list */ 2566 remove_free_nid(sbi, ino); 2567 2568 if (!PageUptodate(ipage)) 2569 SetPageUptodate(ipage); 2570 fill_node_footer(ipage, ino, ino, 0, true); 2571 set_cold_node(ipage, false); 2572 2573 src = F2FS_INODE(page); 2574 dst = F2FS_INODE(ipage); 2575 2576 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 2577 dst->i_size = 0; 2578 dst->i_blocks = cpu_to_le64(1); 2579 dst->i_links = cpu_to_le32(1); 2580 dst->i_xattr_nid = 0; 2581 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2582 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2583 dst->i_extra_isize = src->i_extra_isize; 2584 2585 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2586 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2587 i_inline_xattr_size)) 2588 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2589 2590 if (f2fs_sb_has_project_quota(sbi) && 2591 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2592 i_projid)) 2593 dst->i_projid = src->i_projid; 2594 2595 if (f2fs_sb_has_inode_crtime(sbi) && 2596 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2597 i_crtime_nsec)) { 2598 dst->i_crtime = src->i_crtime; 2599 dst->i_crtime_nsec = src->i_crtime_nsec; 2600 } 2601 } 2602 2603 new_ni = old_ni; 2604 new_ni.ino = ino; 2605 2606 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2607 WARN_ON(1); 2608 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2609 inc_valid_inode_count(sbi); 2610 set_page_dirty(ipage); 2611 f2fs_put_page(ipage, 1); 2612 return 0; 2613 } 2614 2615 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2616 unsigned int segno, struct f2fs_summary_block *sum) 2617 { 2618 struct f2fs_node *rn; 2619 struct f2fs_summary *sum_entry; 2620 block_t addr; 2621 int i, idx, last_offset, nrpages; 2622 2623 /* scan the node segment */ 2624 last_offset = sbi->blocks_per_seg; 2625 addr = START_BLOCK(sbi, segno); 2626 sum_entry = &sum->entries[0]; 2627 2628 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2629 nrpages = min(last_offset - i, BIO_MAX_PAGES); 2630 2631 /* readahead node pages */ 2632 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2633 2634 for (idx = addr; idx < addr + nrpages; idx++) { 2635 struct page *page = f2fs_get_tmp_page(sbi, idx); 2636 2637 if (IS_ERR(page)) 2638 return PTR_ERR(page); 2639 2640 rn = F2FS_NODE(page); 2641 sum_entry->nid = rn->footer.nid; 2642 sum_entry->version = 0; 2643 sum_entry->ofs_in_node = 0; 2644 sum_entry++; 2645 f2fs_put_page(page, 1); 2646 } 2647 2648 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2649 addr + nrpages); 2650 } 2651 return 0; 2652 } 2653 2654 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2655 { 2656 struct f2fs_nm_info *nm_i = NM_I(sbi); 2657 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2658 struct f2fs_journal *journal = curseg->journal; 2659 int i; 2660 2661 down_write(&curseg->journal_rwsem); 2662 for (i = 0; i < nats_in_cursum(journal); i++) { 2663 struct nat_entry *ne; 2664 struct f2fs_nat_entry raw_ne; 2665 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2666 2667 raw_ne = nat_in_journal(journal, i); 2668 2669 ne = __lookup_nat_cache(nm_i, nid); 2670 if (!ne) { 2671 ne = __alloc_nat_entry(nid, true); 2672 __init_nat_entry(nm_i, ne, &raw_ne, true); 2673 } 2674 2675 /* 2676 * if a free nat in journal has not been used after last 2677 * checkpoint, we should remove it from available nids, 2678 * since later we will add it again. 2679 */ 2680 if (!get_nat_flag(ne, IS_DIRTY) && 2681 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2682 spin_lock(&nm_i->nid_list_lock); 2683 nm_i->available_nids--; 2684 spin_unlock(&nm_i->nid_list_lock); 2685 } 2686 2687 __set_nat_cache_dirty(nm_i, ne); 2688 } 2689 update_nats_in_cursum(journal, -i); 2690 up_write(&curseg->journal_rwsem); 2691 } 2692 2693 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2694 struct list_head *head, int max) 2695 { 2696 struct nat_entry_set *cur; 2697 2698 if (nes->entry_cnt >= max) 2699 goto add_out; 2700 2701 list_for_each_entry(cur, head, set_list) { 2702 if (cur->entry_cnt >= nes->entry_cnt) { 2703 list_add(&nes->set_list, cur->set_list.prev); 2704 return; 2705 } 2706 } 2707 add_out: 2708 list_add_tail(&nes->set_list, head); 2709 } 2710 2711 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2712 struct page *page) 2713 { 2714 struct f2fs_nm_info *nm_i = NM_I(sbi); 2715 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2716 struct f2fs_nat_block *nat_blk = page_address(page); 2717 int valid = 0; 2718 int i = 0; 2719 2720 if (!enabled_nat_bits(sbi, NULL)) 2721 return; 2722 2723 if (nat_index == 0) { 2724 valid = 1; 2725 i = 1; 2726 } 2727 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2728 if (nat_blk->entries[i].block_addr != NULL_ADDR) 2729 valid++; 2730 } 2731 if (valid == 0) { 2732 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2733 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2734 return; 2735 } 2736 2737 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2738 if (valid == NAT_ENTRY_PER_BLOCK) 2739 __set_bit_le(nat_index, nm_i->full_nat_bits); 2740 else 2741 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2742 } 2743 2744 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2745 struct nat_entry_set *set, struct cp_control *cpc) 2746 { 2747 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2748 struct f2fs_journal *journal = curseg->journal; 2749 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2750 bool to_journal = true; 2751 struct f2fs_nat_block *nat_blk; 2752 struct nat_entry *ne, *cur; 2753 struct page *page = NULL; 2754 2755 /* 2756 * there are two steps to flush nat entries: 2757 * #1, flush nat entries to journal in current hot data summary block. 2758 * #2, flush nat entries to nat page. 2759 */ 2760 if (enabled_nat_bits(sbi, cpc) || 2761 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 2762 to_journal = false; 2763 2764 if (to_journal) { 2765 down_write(&curseg->journal_rwsem); 2766 } else { 2767 page = get_next_nat_page(sbi, start_nid); 2768 if (IS_ERR(page)) 2769 return PTR_ERR(page); 2770 2771 nat_blk = page_address(page); 2772 f2fs_bug_on(sbi, !nat_blk); 2773 } 2774 2775 /* flush dirty nats in nat entry set */ 2776 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 2777 struct f2fs_nat_entry *raw_ne; 2778 nid_t nid = nat_get_nid(ne); 2779 int offset; 2780 2781 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 2782 2783 if (to_journal) { 2784 offset = f2fs_lookup_journal_in_cursum(journal, 2785 NAT_JOURNAL, nid, 1); 2786 f2fs_bug_on(sbi, offset < 0); 2787 raw_ne = &nat_in_journal(journal, offset); 2788 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2789 } else { 2790 raw_ne = &nat_blk->entries[nid - start_nid]; 2791 } 2792 raw_nat_from_node_info(raw_ne, &ne->ni); 2793 nat_reset_flag(ne); 2794 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 2795 if (nat_get_blkaddr(ne) == NULL_ADDR) { 2796 add_free_nid(sbi, nid, false, true); 2797 } else { 2798 spin_lock(&NM_I(sbi)->nid_list_lock); 2799 update_free_nid_bitmap(sbi, nid, false, false); 2800 spin_unlock(&NM_I(sbi)->nid_list_lock); 2801 } 2802 } 2803 2804 if (to_journal) { 2805 up_write(&curseg->journal_rwsem); 2806 } else { 2807 __update_nat_bits(sbi, start_nid, page); 2808 f2fs_put_page(page, 1); 2809 } 2810 2811 /* Allow dirty nats by node block allocation in write_begin */ 2812 if (!set->entry_cnt) { 2813 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2814 kmem_cache_free(nat_entry_set_slab, set); 2815 } 2816 return 0; 2817 } 2818 2819 /* 2820 * This function is called during the checkpointing process. 2821 */ 2822 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2823 { 2824 struct f2fs_nm_info *nm_i = NM_I(sbi); 2825 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2826 struct f2fs_journal *journal = curseg->journal; 2827 struct nat_entry_set *setvec[SETVEC_SIZE]; 2828 struct nat_entry_set *set, *tmp; 2829 unsigned int found; 2830 nid_t set_idx = 0; 2831 LIST_HEAD(sets); 2832 int err = 0; 2833 2834 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */ 2835 if (enabled_nat_bits(sbi, cpc)) { 2836 down_write(&nm_i->nat_tree_lock); 2837 remove_nats_in_journal(sbi); 2838 up_write(&nm_i->nat_tree_lock); 2839 } 2840 2841 if (!nm_i->dirty_nat_cnt) 2842 return 0; 2843 2844 down_write(&nm_i->nat_tree_lock); 2845 2846 /* 2847 * if there are no enough space in journal to store dirty nat 2848 * entries, remove all entries from journal and merge them 2849 * into nat entry set. 2850 */ 2851 if (enabled_nat_bits(sbi, cpc) || 2852 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2853 remove_nats_in_journal(sbi); 2854 2855 while ((found = __gang_lookup_nat_set(nm_i, 2856 set_idx, SETVEC_SIZE, setvec))) { 2857 unsigned idx; 2858 set_idx = setvec[found - 1]->set + 1; 2859 for (idx = 0; idx < found; idx++) 2860 __adjust_nat_entry_set(setvec[idx], &sets, 2861 MAX_NAT_JENTRIES(journal)); 2862 } 2863 2864 /* flush dirty nats in nat entry set */ 2865 list_for_each_entry_safe(set, tmp, &sets, set_list) { 2866 err = __flush_nat_entry_set(sbi, set, cpc); 2867 if (err) 2868 break; 2869 } 2870 2871 up_write(&nm_i->nat_tree_lock); 2872 /* Allow dirty nats by node block allocation in write_begin */ 2873 2874 return err; 2875 } 2876 2877 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 2878 { 2879 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2880 struct f2fs_nm_info *nm_i = NM_I(sbi); 2881 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 2882 unsigned int i; 2883 __u64 cp_ver = cur_cp_version(ckpt); 2884 block_t nat_bits_addr; 2885 2886 if (!enabled_nat_bits(sbi, NULL)) 2887 return 0; 2888 2889 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 2890 nm_i->nat_bits = f2fs_kzalloc(sbi, 2891 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 2892 if (!nm_i->nat_bits) 2893 return -ENOMEM; 2894 2895 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 2896 nm_i->nat_bits_blocks; 2897 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 2898 struct page *page; 2899 2900 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 2901 if (IS_ERR(page)) 2902 return PTR_ERR(page); 2903 2904 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 2905 page_address(page), F2FS_BLKSIZE); 2906 f2fs_put_page(page, 1); 2907 } 2908 2909 cp_ver |= (cur_cp_crc(ckpt) << 32); 2910 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 2911 disable_nat_bits(sbi, true); 2912 return 0; 2913 } 2914 2915 nm_i->full_nat_bits = nm_i->nat_bits + 8; 2916 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 2917 2918 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint"); 2919 return 0; 2920 } 2921 2922 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 2923 { 2924 struct f2fs_nm_info *nm_i = NM_I(sbi); 2925 unsigned int i = 0; 2926 nid_t nid, last_nid; 2927 2928 if (!enabled_nat_bits(sbi, NULL)) 2929 return; 2930 2931 for (i = 0; i < nm_i->nat_blocks; i++) { 2932 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 2933 if (i >= nm_i->nat_blocks) 2934 break; 2935 2936 __set_bit_le(i, nm_i->nat_block_bitmap); 2937 2938 nid = i * NAT_ENTRY_PER_BLOCK; 2939 last_nid = nid + NAT_ENTRY_PER_BLOCK; 2940 2941 spin_lock(&NM_I(sbi)->nid_list_lock); 2942 for (; nid < last_nid; nid++) 2943 update_free_nid_bitmap(sbi, nid, true, true); 2944 spin_unlock(&NM_I(sbi)->nid_list_lock); 2945 } 2946 2947 for (i = 0; i < nm_i->nat_blocks; i++) { 2948 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 2949 if (i >= nm_i->nat_blocks) 2950 break; 2951 2952 __set_bit_le(i, nm_i->nat_block_bitmap); 2953 } 2954 } 2955 2956 static int init_node_manager(struct f2fs_sb_info *sbi) 2957 { 2958 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2959 struct f2fs_nm_info *nm_i = NM_I(sbi); 2960 unsigned char *version_bitmap; 2961 unsigned int nat_segs; 2962 int err; 2963 2964 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2965 2966 /* segment_count_nat includes pair segment so divide to 2. */ 2967 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2968 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2969 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 2970 2971 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2972 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 2973 sbi->nquota_files - F2FS_RESERVED_NODE_NUM; 2974 nm_i->nid_cnt[FREE_NID] = 0; 2975 nm_i->nid_cnt[PREALLOC_NID] = 0; 2976 nm_i->nat_cnt = 0; 2977 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2978 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2979 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2980 2981 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2982 INIT_LIST_HEAD(&nm_i->free_nid_list); 2983 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2984 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2985 INIT_LIST_HEAD(&nm_i->nat_entries); 2986 spin_lock_init(&nm_i->nat_list_lock); 2987 2988 mutex_init(&nm_i->build_lock); 2989 spin_lock_init(&nm_i->nid_list_lock); 2990 init_rwsem(&nm_i->nat_tree_lock); 2991 2992 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2993 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2994 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2995 if (!version_bitmap) 2996 return -EFAULT; 2997 2998 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2999 GFP_KERNEL); 3000 if (!nm_i->nat_bitmap) 3001 return -ENOMEM; 3002 3003 err = __get_nat_bitmaps(sbi); 3004 if (err) 3005 return err; 3006 3007 #ifdef CONFIG_F2FS_CHECK_FS 3008 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3009 GFP_KERNEL); 3010 if (!nm_i->nat_bitmap_mir) 3011 return -ENOMEM; 3012 #endif 3013 3014 return 0; 3015 } 3016 3017 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3018 { 3019 struct f2fs_nm_info *nm_i = NM_I(sbi); 3020 int i; 3021 3022 nm_i->free_nid_bitmap = 3023 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *), 3024 nm_i->nat_blocks), 3025 GFP_KERNEL); 3026 if (!nm_i->free_nid_bitmap) 3027 return -ENOMEM; 3028 3029 for (i = 0; i < nm_i->nat_blocks; i++) { 3030 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3031 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3032 if (!nm_i->free_nid_bitmap[i]) 3033 return -ENOMEM; 3034 } 3035 3036 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3037 GFP_KERNEL); 3038 if (!nm_i->nat_block_bitmap) 3039 return -ENOMEM; 3040 3041 nm_i->free_nid_count = 3042 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3043 nm_i->nat_blocks), 3044 GFP_KERNEL); 3045 if (!nm_i->free_nid_count) 3046 return -ENOMEM; 3047 return 0; 3048 } 3049 3050 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3051 { 3052 int err; 3053 3054 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3055 GFP_KERNEL); 3056 if (!sbi->nm_info) 3057 return -ENOMEM; 3058 3059 err = init_node_manager(sbi); 3060 if (err) 3061 return err; 3062 3063 err = init_free_nid_cache(sbi); 3064 if (err) 3065 return err; 3066 3067 /* load free nid status from nat_bits table */ 3068 load_free_nid_bitmap(sbi); 3069 3070 return f2fs_build_free_nids(sbi, true, true); 3071 } 3072 3073 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3074 { 3075 struct f2fs_nm_info *nm_i = NM_I(sbi); 3076 struct free_nid *i, *next_i; 3077 struct nat_entry *natvec[NATVEC_SIZE]; 3078 struct nat_entry_set *setvec[SETVEC_SIZE]; 3079 nid_t nid = 0; 3080 unsigned int found; 3081 3082 if (!nm_i) 3083 return; 3084 3085 /* destroy free nid list */ 3086 spin_lock(&nm_i->nid_list_lock); 3087 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3088 __remove_free_nid(sbi, i, FREE_NID); 3089 spin_unlock(&nm_i->nid_list_lock); 3090 kmem_cache_free(free_nid_slab, i); 3091 spin_lock(&nm_i->nid_list_lock); 3092 } 3093 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3094 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3095 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3096 spin_unlock(&nm_i->nid_list_lock); 3097 3098 /* destroy nat cache */ 3099 down_write(&nm_i->nat_tree_lock); 3100 while ((found = __gang_lookup_nat_cache(nm_i, 3101 nid, NATVEC_SIZE, natvec))) { 3102 unsigned idx; 3103 3104 nid = nat_get_nid(natvec[found - 1]) + 1; 3105 for (idx = 0; idx < found; idx++) { 3106 spin_lock(&nm_i->nat_list_lock); 3107 list_del(&natvec[idx]->list); 3108 spin_unlock(&nm_i->nat_list_lock); 3109 3110 __del_from_nat_cache(nm_i, natvec[idx]); 3111 } 3112 } 3113 f2fs_bug_on(sbi, nm_i->nat_cnt); 3114 3115 /* destroy nat set cache */ 3116 nid = 0; 3117 while ((found = __gang_lookup_nat_set(nm_i, 3118 nid, SETVEC_SIZE, setvec))) { 3119 unsigned idx; 3120 3121 nid = setvec[found - 1]->set + 1; 3122 for (idx = 0; idx < found; idx++) { 3123 /* entry_cnt is not zero, when cp_error was occurred */ 3124 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3125 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3126 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3127 } 3128 } 3129 up_write(&nm_i->nat_tree_lock); 3130 3131 kvfree(nm_i->nat_block_bitmap); 3132 if (nm_i->free_nid_bitmap) { 3133 int i; 3134 3135 for (i = 0; i < nm_i->nat_blocks; i++) 3136 kvfree(nm_i->free_nid_bitmap[i]); 3137 kvfree(nm_i->free_nid_bitmap); 3138 } 3139 kvfree(nm_i->free_nid_count); 3140 3141 kvfree(nm_i->nat_bitmap); 3142 kvfree(nm_i->nat_bits); 3143 #ifdef CONFIG_F2FS_CHECK_FS 3144 kvfree(nm_i->nat_bitmap_mir); 3145 #endif 3146 sbi->nm_info = NULL; 3147 kvfree(nm_i); 3148 } 3149 3150 int __init f2fs_create_node_manager_caches(void) 3151 { 3152 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 3153 sizeof(struct nat_entry)); 3154 if (!nat_entry_slab) 3155 goto fail; 3156 3157 free_nid_slab = f2fs_kmem_cache_create("free_nid", 3158 sizeof(struct free_nid)); 3159 if (!free_nid_slab) 3160 goto destroy_nat_entry; 3161 3162 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 3163 sizeof(struct nat_entry_set)); 3164 if (!nat_entry_set_slab) 3165 goto destroy_free_nid; 3166 3167 fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry", 3168 sizeof(struct fsync_node_entry)); 3169 if (!fsync_node_entry_slab) 3170 goto destroy_nat_entry_set; 3171 return 0; 3172 3173 destroy_nat_entry_set: 3174 kmem_cache_destroy(nat_entry_set_slab); 3175 destroy_free_nid: 3176 kmem_cache_destroy(free_nid_slab); 3177 destroy_nat_entry: 3178 kmem_cache_destroy(nat_entry_slab); 3179 fail: 3180 return -ENOMEM; 3181 } 3182 3183 void f2fs_destroy_node_manager_caches(void) 3184 { 3185 kmem_cache_destroy(fsync_node_entry_slab); 3186 kmem_cache_destroy(nat_entry_set_slab); 3187 kmem_cache_destroy(free_nid_slab); 3188 kmem_cache_destroy(nat_entry_slab); 3189 } 3190