1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/sched/mm.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "iostat.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nm_i) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); 40 return -EFSCORRUPTED; 41 } 42 return 0; 43 } 44 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 46 { 47 struct f2fs_nm_info *nm_i = NM_I(sbi); 48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 49 struct sysinfo val; 50 unsigned long avail_ram; 51 unsigned long mem_size = 0; 52 bool res = false; 53 54 if (!nm_i) 55 return true; 56 57 si_meminfo(&val); 58 59 /* only uses low memory */ 60 avail_ram = val.totalram - val.totalhigh; 61 62 /* 63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively 64 */ 65 if (type == FREE_NIDS) { 66 mem_size = (nm_i->nid_cnt[FREE_NID] * 67 sizeof(struct free_nid)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 69 } else if (type == NAT_ENTRIES) { 70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 71 sizeof(struct nat_entry)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 73 if (excess_cached_nats(sbi)) 74 res = false; 75 } else if (type == DIRTY_DENTS) { 76 if (sbi->sb->s_bdi->wb.dirty_exceeded) 77 return false; 78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 80 } else if (type == INO_ENTRIES) { 81 int i; 82 83 for (i = 0; i < MAX_INO_ENTRY; i++) 84 mem_size += sbi->im[i].ino_num * 85 sizeof(struct ino_entry); 86 mem_size >>= PAGE_SHIFT; 87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) { 89 enum extent_type etype = type == READ_EXTENT_CACHE ? 90 EX_READ : EX_BLOCK_AGE; 91 struct extent_tree_info *eti = &sbi->extent_tree[etype]; 92 93 mem_size = (atomic_read(&eti->total_ext_tree) * 94 sizeof(struct extent_tree) + 95 atomic_read(&eti->total_ext_node) * 96 sizeof(struct extent_node)) >> PAGE_SHIFT; 97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 98 } else if (type == DISCARD_CACHE) { 99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) * 100 sizeof(struct discard_cmd)) >> PAGE_SHIFT; 101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100); 102 } else if (type == COMPRESS_PAGE) { 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 unsigned long free_ram = val.freeram; 105 106 /* 107 * free memory is lower than watermark or cached page count 108 * exceed threshold, deny caching compress page. 109 */ 110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) && 111 (COMPRESS_MAPPING(sbi)->nrpages < 112 free_ram * sbi->compress_percent / 100); 113 #else 114 res = false; 115 #endif 116 } else { 117 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 118 return true; 119 } 120 return res; 121 } 122 123 static void clear_node_folio_dirty(struct folio *folio) 124 { 125 if (folio_test_dirty(folio)) { 126 f2fs_clear_page_cache_dirty_tag(folio); 127 folio_clear_dirty_for_io(folio); 128 dec_page_count(F2FS_F_SB(folio), F2FS_DIRTY_NODES); 129 } 130 folio_clear_uptodate(folio); 131 } 132 133 static struct folio *get_current_nat_folio(struct f2fs_sb_info *sbi, nid_t nid) 134 { 135 return f2fs_get_meta_folio_retry(sbi, current_nat_addr(sbi, nid)); 136 } 137 138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 139 { 140 struct folio *src_folio; 141 struct folio *dst_folio; 142 pgoff_t dst_off; 143 void *src_addr; 144 void *dst_addr; 145 struct f2fs_nm_info *nm_i = NM_I(sbi); 146 147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 148 149 /* get current nat block page with lock */ 150 src_folio = get_current_nat_folio(sbi, nid); 151 if (IS_ERR(src_folio)) 152 return &src_folio->page; 153 dst_folio = f2fs_grab_meta_folio(sbi, dst_off); 154 f2fs_bug_on(sbi, folio_test_dirty(src_folio)); 155 156 src_addr = folio_address(src_folio); 157 dst_addr = folio_address(dst_folio); 158 memcpy(dst_addr, src_addr, PAGE_SIZE); 159 folio_mark_dirty(dst_folio); 160 f2fs_folio_put(src_folio, true); 161 162 set_to_next_nat(nm_i, nid); 163 164 return &dst_folio->page; 165 } 166 167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, 168 nid_t nid, bool no_fail) 169 { 170 struct nat_entry *new; 171 172 new = f2fs_kmem_cache_alloc(nat_entry_slab, 173 GFP_F2FS_ZERO, no_fail, sbi); 174 if (new) { 175 nat_set_nid(new, nid); 176 nat_reset_flag(new); 177 } 178 return new; 179 } 180 181 static void __free_nat_entry(struct nat_entry *e) 182 { 183 kmem_cache_free(nat_entry_slab, e); 184 } 185 186 /* must be locked by nat_tree_lock */ 187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 189 { 190 if (no_fail) 191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 193 return NULL; 194 195 if (raw_ne) 196 node_info_from_raw_nat(&ne->ni, raw_ne); 197 198 spin_lock(&nm_i->nat_list_lock); 199 list_add_tail(&ne->list, &nm_i->nat_entries); 200 spin_unlock(&nm_i->nat_list_lock); 201 202 nm_i->nat_cnt[TOTAL_NAT]++; 203 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 204 return ne; 205 } 206 207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 208 { 209 struct nat_entry *ne; 210 211 ne = radix_tree_lookup(&nm_i->nat_root, n); 212 213 /* for recent accessed nat entry, move it to tail of lru list */ 214 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 215 spin_lock(&nm_i->nat_list_lock); 216 if (!list_empty(&ne->list)) 217 list_move_tail(&ne->list, &nm_i->nat_entries); 218 spin_unlock(&nm_i->nat_list_lock); 219 } 220 221 return ne; 222 } 223 224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 225 nid_t start, unsigned int nr, struct nat_entry **ep) 226 { 227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 228 } 229 230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 231 { 232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 233 nm_i->nat_cnt[TOTAL_NAT]--; 234 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 235 __free_nat_entry(e); 236 } 237 238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 239 struct nat_entry *ne) 240 { 241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 242 struct nat_entry_set *head; 243 244 head = radix_tree_lookup(&nm_i->nat_set_root, set); 245 if (!head) { 246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, 247 GFP_NOFS, true, NULL); 248 249 INIT_LIST_HEAD(&head->entry_list); 250 INIT_LIST_HEAD(&head->set_list); 251 head->set = set; 252 head->entry_cnt = 0; 253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 254 } 255 return head; 256 } 257 258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 259 struct nat_entry *ne) 260 { 261 struct nat_entry_set *head; 262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 263 264 if (!new_ne) 265 head = __grab_nat_entry_set(nm_i, ne); 266 267 /* 268 * update entry_cnt in below condition: 269 * 1. update NEW_ADDR to valid block address; 270 * 2. update old block address to new one; 271 */ 272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 273 !get_nat_flag(ne, IS_DIRTY))) 274 head->entry_cnt++; 275 276 set_nat_flag(ne, IS_PREALLOC, new_ne); 277 278 if (get_nat_flag(ne, IS_DIRTY)) 279 goto refresh_list; 280 281 nm_i->nat_cnt[DIRTY_NAT]++; 282 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 283 set_nat_flag(ne, IS_DIRTY, true); 284 refresh_list: 285 spin_lock(&nm_i->nat_list_lock); 286 if (new_ne) 287 list_del_init(&ne->list); 288 else 289 list_move_tail(&ne->list, &head->entry_list); 290 spin_unlock(&nm_i->nat_list_lock); 291 } 292 293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 294 struct nat_entry_set *set, struct nat_entry *ne) 295 { 296 spin_lock(&nm_i->nat_list_lock); 297 list_move_tail(&ne->list, &nm_i->nat_entries); 298 spin_unlock(&nm_i->nat_list_lock); 299 300 set_nat_flag(ne, IS_DIRTY, false); 301 set->entry_cnt--; 302 nm_i->nat_cnt[DIRTY_NAT]--; 303 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 304 } 305 306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 307 nid_t start, unsigned int nr, struct nat_entry_set **ep) 308 { 309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 310 start, nr); 311 } 312 313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct folio *folio) 314 { 315 return is_node_folio(folio) && IS_DNODE(&folio->page) && 316 is_cold_node(&folio->page); 317 } 318 319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 320 { 321 spin_lock_init(&sbi->fsync_node_lock); 322 INIT_LIST_HEAD(&sbi->fsync_node_list); 323 sbi->fsync_seg_id = 0; 324 sbi->fsync_node_num = 0; 325 } 326 327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 328 struct folio *folio) 329 { 330 struct fsync_node_entry *fn; 331 unsigned long flags; 332 unsigned int seq_id; 333 334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, 335 GFP_NOFS, true, NULL); 336 337 folio_get(folio); 338 fn->folio = folio; 339 INIT_LIST_HEAD(&fn->list); 340 341 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 342 list_add_tail(&fn->list, &sbi->fsync_node_list); 343 fn->seq_id = sbi->fsync_seg_id++; 344 seq_id = fn->seq_id; 345 sbi->fsync_node_num++; 346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 347 348 return seq_id; 349 } 350 351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct folio *folio) 352 { 353 struct fsync_node_entry *fn; 354 unsigned long flags; 355 356 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 357 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 358 if (fn->folio == folio) { 359 list_del(&fn->list); 360 sbi->fsync_node_num--; 361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 362 kmem_cache_free(fsync_node_entry_slab, fn); 363 folio_put(folio); 364 return; 365 } 366 } 367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 368 f2fs_bug_on(sbi, 1); 369 } 370 371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 372 { 373 unsigned long flags; 374 375 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 376 sbi->fsync_seg_id = 0; 377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 378 } 379 380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 381 { 382 struct f2fs_nm_info *nm_i = NM_I(sbi); 383 struct nat_entry *e; 384 bool need = false; 385 386 f2fs_down_read(&nm_i->nat_tree_lock); 387 e = __lookup_nat_cache(nm_i, nid); 388 if (e) { 389 if (!get_nat_flag(e, IS_CHECKPOINTED) && 390 !get_nat_flag(e, HAS_FSYNCED_INODE)) 391 need = true; 392 } 393 f2fs_up_read(&nm_i->nat_tree_lock); 394 return need; 395 } 396 397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 398 { 399 struct f2fs_nm_info *nm_i = NM_I(sbi); 400 struct nat_entry *e; 401 bool is_cp = true; 402 403 f2fs_down_read(&nm_i->nat_tree_lock); 404 e = __lookup_nat_cache(nm_i, nid); 405 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 406 is_cp = false; 407 f2fs_up_read(&nm_i->nat_tree_lock); 408 return is_cp; 409 } 410 411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 412 { 413 struct f2fs_nm_info *nm_i = NM_I(sbi); 414 struct nat_entry *e; 415 bool need_update = true; 416 417 f2fs_down_read(&nm_i->nat_tree_lock); 418 e = __lookup_nat_cache(nm_i, ino); 419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 420 (get_nat_flag(e, IS_CHECKPOINTED) || 421 get_nat_flag(e, HAS_FSYNCED_INODE))) 422 need_update = false; 423 f2fs_up_read(&nm_i->nat_tree_lock); 424 return need_update; 425 } 426 427 /* must be locked by nat_tree_lock */ 428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 429 struct f2fs_nat_entry *ne) 430 { 431 struct f2fs_nm_info *nm_i = NM_I(sbi); 432 struct nat_entry *new, *e; 433 434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ 435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) 436 return; 437 438 new = __alloc_nat_entry(sbi, nid, false); 439 if (!new) 440 return; 441 442 f2fs_down_write(&nm_i->nat_tree_lock); 443 e = __lookup_nat_cache(nm_i, nid); 444 if (!e) 445 e = __init_nat_entry(nm_i, new, ne, false); 446 else 447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 448 nat_get_blkaddr(e) != 449 le32_to_cpu(ne->block_addr) || 450 nat_get_version(e) != ne->version); 451 f2fs_up_write(&nm_i->nat_tree_lock); 452 if (e != new) 453 __free_nat_entry(new); 454 } 455 456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 457 block_t new_blkaddr, bool fsync_done) 458 { 459 struct f2fs_nm_info *nm_i = NM_I(sbi); 460 struct nat_entry *e; 461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); 462 463 f2fs_down_write(&nm_i->nat_tree_lock); 464 e = __lookup_nat_cache(nm_i, ni->nid); 465 if (!e) { 466 e = __init_nat_entry(nm_i, new, NULL, true); 467 copy_node_info(&e->ni, ni); 468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 469 } else if (new_blkaddr == NEW_ADDR) { 470 /* 471 * when nid is reallocated, 472 * previous nat entry can be remained in nat cache. 473 * So, reinitialize it with new information. 474 */ 475 copy_node_info(&e->ni, ni); 476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 477 } 478 /* let's free early to reduce memory consumption */ 479 if (e != new) 480 __free_nat_entry(new); 481 482 /* sanity check */ 483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 485 new_blkaddr == NULL_ADDR); 486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 487 new_blkaddr == NEW_ADDR); 488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 489 new_blkaddr == NEW_ADDR); 490 491 /* increment version no as node is removed */ 492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 493 unsigned char version = nat_get_version(e); 494 495 nat_set_version(e, inc_node_version(version)); 496 } 497 498 /* change address */ 499 nat_set_blkaddr(e, new_blkaddr); 500 if (!__is_valid_data_blkaddr(new_blkaddr)) 501 set_nat_flag(e, IS_CHECKPOINTED, false); 502 __set_nat_cache_dirty(nm_i, e); 503 504 /* update fsync_mark if its inode nat entry is still alive */ 505 if (ni->nid != ni->ino) 506 e = __lookup_nat_cache(nm_i, ni->ino); 507 if (e) { 508 if (fsync_done && ni->nid == ni->ino) 509 set_nat_flag(e, HAS_FSYNCED_INODE, true); 510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 511 } 512 f2fs_up_write(&nm_i->nat_tree_lock); 513 } 514 515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 516 { 517 struct f2fs_nm_info *nm_i = NM_I(sbi); 518 int nr = nr_shrink; 519 520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) 521 return 0; 522 523 spin_lock(&nm_i->nat_list_lock); 524 while (nr_shrink) { 525 struct nat_entry *ne; 526 527 if (list_empty(&nm_i->nat_entries)) 528 break; 529 530 ne = list_first_entry(&nm_i->nat_entries, 531 struct nat_entry, list); 532 list_del(&ne->list); 533 spin_unlock(&nm_i->nat_list_lock); 534 535 __del_from_nat_cache(nm_i, ne); 536 nr_shrink--; 537 538 spin_lock(&nm_i->nat_list_lock); 539 } 540 spin_unlock(&nm_i->nat_list_lock); 541 542 f2fs_up_write(&nm_i->nat_tree_lock); 543 return nr - nr_shrink; 544 } 545 546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 547 struct node_info *ni, bool checkpoint_context) 548 { 549 struct f2fs_nm_info *nm_i = NM_I(sbi); 550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 551 struct f2fs_journal *journal = curseg->journal; 552 nid_t start_nid = START_NID(nid); 553 struct f2fs_nat_block *nat_blk; 554 struct folio *folio = NULL; 555 struct f2fs_nat_entry ne; 556 struct nat_entry *e; 557 pgoff_t index; 558 block_t blkaddr; 559 int i; 560 561 ni->flag = 0; 562 ni->nid = nid; 563 retry: 564 /* Check nat cache */ 565 f2fs_down_read(&nm_i->nat_tree_lock); 566 e = __lookup_nat_cache(nm_i, nid); 567 if (e) { 568 ni->ino = nat_get_ino(e); 569 ni->blk_addr = nat_get_blkaddr(e); 570 ni->version = nat_get_version(e); 571 f2fs_up_read(&nm_i->nat_tree_lock); 572 return 0; 573 } 574 575 /* 576 * Check current segment summary by trying to grab journal_rwsem first. 577 * This sem is on the critical path on the checkpoint requiring the above 578 * nat_tree_lock. Therefore, we should retry, if we failed to grab here 579 * while not bothering checkpoint. 580 */ 581 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { 582 down_read(&curseg->journal_rwsem); 583 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || 584 !down_read_trylock(&curseg->journal_rwsem)) { 585 f2fs_up_read(&nm_i->nat_tree_lock); 586 goto retry; 587 } 588 589 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 590 if (i >= 0) { 591 ne = nat_in_journal(journal, i); 592 node_info_from_raw_nat(ni, &ne); 593 } 594 up_read(&curseg->journal_rwsem); 595 if (i >= 0) { 596 f2fs_up_read(&nm_i->nat_tree_lock); 597 goto cache; 598 } 599 600 /* Fill node_info from nat page */ 601 index = current_nat_addr(sbi, nid); 602 f2fs_up_read(&nm_i->nat_tree_lock); 603 604 folio = f2fs_get_meta_folio(sbi, index); 605 if (IS_ERR(folio)) 606 return PTR_ERR(folio); 607 608 nat_blk = folio_address(folio); 609 ne = nat_blk->entries[nid - start_nid]; 610 node_info_from_raw_nat(ni, &ne); 611 f2fs_folio_put(folio, true); 612 cache: 613 blkaddr = le32_to_cpu(ne.block_addr); 614 if (__is_valid_data_blkaddr(blkaddr) && 615 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 616 return -EFAULT; 617 618 /* cache nat entry */ 619 cache_nat_entry(sbi, nid, &ne); 620 return 0; 621 } 622 623 /* 624 * readahead MAX_RA_NODE number of node pages. 625 */ 626 static void f2fs_ra_node_pages(struct folio *parent, int start, int n) 627 { 628 struct f2fs_sb_info *sbi = F2FS_F_SB(parent); 629 struct blk_plug plug; 630 int i, end; 631 nid_t nid; 632 633 blk_start_plug(&plug); 634 635 /* Then, try readahead for siblings of the desired node */ 636 end = start + n; 637 end = min(end, (int)NIDS_PER_BLOCK); 638 for (i = start; i < end; i++) { 639 nid = get_nid(&parent->page, i, false); 640 f2fs_ra_node_page(sbi, nid); 641 } 642 643 blk_finish_plug(&plug); 644 } 645 646 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 647 { 648 const long direct_index = ADDRS_PER_INODE(dn->inode); 649 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 650 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 651 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 652 int cur_level = dn->cur_level; 653 int max_level = dn->max_level; 654 pgoff_t base = 0; 655 656 if (!dn->max_level) 657 return pgofs + 1; 658 659 while (max_level-- > cur_level) 660 skipped_unit *= NIDS_PER_BLOCK; 661 662 switch (dn->max_level) { 663 case 3: 664 base += 2 * indirect_blks; 665 fallthrough; 666 case 2: 667 base += 2 * direct_blks; 668 fallthrough; 669 case 1: 670 base += direct_index; 671 break; 672 default: 673 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 674 } 675 676 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 677 } 678 679 /* 680 * The maximum depth is four. 681 * Offset[0] will have raw inode offset. 682 */ 683 static int get_node_path(struct inode *inode, long block, 684 int offset[4], unsigned int noffset[4]) 685 { 686 const long direct_index = ADDRS_PER_INODE(inode); 687 const long direct_blks = ADDRS_PER_BLOCK(inode); 688 const long dptrs_per_blk = NIDS_PER_BLOCK; 689 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 690 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 691 int n = 0; 692 int level = 0; 693 694 noffset[0] = 0; 695 696 if (block < direct_index) { 697 offset[n] = block; 698 goto got; 699 } 700 block -= direct_index; 701 if (block < direct_blks) { 702 offset[n++] = NODE_DIR1_BLOCK; 703 noffset[n] = 1; 704 offset[n] = block; 705 level = 1; 706 goto got; 707 } 708 block -= direct_blks; 709 if (block < direct_blks) { 710 offset[n++] = NODE_DIR2_BLOCK; 711 noffset[n] = 2; 712 offset[n] = block; 713 level = 1; 714 goto got; 715 } 716 block -= direct_blks; 717 if (block < indirect_blks) { 718 offset[n++] = NODE_IND1_BLOCK; 719 noffset[n] = 3; 720 offset[n++] = block / direct_blks; 721 noffset[n] = 4 + offset[n - 1]; 722 offset[n] = block % direct_blks; 723 level = 2; 724 goto got; 725 } 726 block -= indirect_blks; 727 if (block < indirect_blks) { 728 offset[n++] = NODE_IND2_BLOCK; 729 noffset[n] = 4 + dptrs_per_blk; 730 offset[n++] = block / direct_blks; 731 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 732 offset[n] = block % direct_blks; 733 level = 2; 734 goto got; 735 } 736 block -= indirect_blks; 737 if (block < dindirect_blks) { 738 offset[n++] = NODE_DIND_BLOCK; 739 noffset[n] = 5 + (dptrs_per_blk * 2); 740 offset[n++] = block / indirect_blks; 741 noffset[n] = 6 + (dptrs_per_blk * 2) + 742 offset[n - 1] * (dptrs_per_blk + 1); 743 offset[n++] = (block / direct_blks) % dptrs_per_blk; 744 noffset[n] = 7 + (dptrs_per_blk * 2) + 745 offset[n - 2] * (dptrs_per_blk + 1) + 746 offset[n - 1]; 747 offset[n] = block % direct_blks; 748 level = 3; 749 goto got; 750 } else { 751 return -E2BIG; 752 } 753 got: 754 return level; 755 } 756 757 static struct folio *f2fs_get_node_folio_ra(struct folio *parent, int start); 758 759 /* 760 * Caller should call f2fs_put_dnode(dn). 761 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 762 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 763 */ 764 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 765 { 766 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 767 struct folio *nfolio[4]; 768 struct folio *parent = NULL; 769 int offset[4]; 770 unsigned int noffset[4]; 771 nid_t nids[4]; 772 int level, i = 0; 773 int err = 0; 774 775 level = get_node_path(dn->inode, index, offset, noffset); 776 if (level < 0) 777 return level; 778 779 nids[0] = dn->inode->i_ino; 780 781 if (!dn->inode_folio) { 782 nfolio[0] = f2fs_get_inode_folio(sbi, nids[0]); 783 if (IS_ERR(nfolio[0])) 784 return PTR_ERR(nfolio[0]); 785 } else { 786 nfolio[0] = dn->inode_folio; 787 } 788 789 /* if inline_data is set, should not report any block indices */ 790 if (f2fs_has_inline_data(dn->inode) && index) { 791 err = -ENOENT; 792 f2fs_folio_put(nfolio[0], true); 793 goto release_out; 794 } 795 796 parent = nfolio[0]; 797 if (level != 0) 798 nids[1] = get_nid(&parent->page, offset[0], true); 799 dn->inode_folio = nfolio[0]; 800 dn->inode_folio_locked = true; 801 802 /* get indirect or direct nodes */ 803 for (i = 1; i <= level; i++) { 804 bool done = false; 805 806 if (!nids[i] && mode == ALLOC_NODE) { 807 /* alloc new node */ 808 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 809 err = -ENOSPC; 810 goto release_pages; 811 } 812 813 dn->nid = nids[i]; 814 nfolio[i] = f2fs_new_node_folio(dn, noffset[i]); 815 if (IS_ERR(nfolio[i])) { 816 f2fs_alloc_nid_failed(sbi, nids[i]); 817 err = PTR_ERR(nfolio[i]); 818 goto release_pages; 819 } 820 821 set_nid(parent, offset[i - 1], nids[i], i == 1); 822 f2fs_alloc_nid_done(sbi, nids[i]); 823 done = true; 824 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 825 nfolio[i] = f2fs_get_node_folio_ra(parent, offset[i - 1]); 826 if (IS_ERR(nfolio[i])) { 827 err = PTR_ERR(nfolio[i]); 828 goto release_pages; 829 } 830 done = true; 831 } 832 if (i == 1) { 833 dn->inode_folio_locked = false; 834 folio_unlock(parent); 835 } else { 836 f2fs_folio_put(parent, true); 837 } 838 839 if (!done) { 840 nfolio[i] = f2fs_get_node_folio(sbi, nids[i]); 841 if (IS_ERR(nfolio[i])) { 842 err = PTR_ERR(nfolio[i]); 843 f2fs_folio_put(nfolio[0], false); 844 goto release_out; 845 } 846 } 847 if (i < level) { 848 parent = nfolio[i]; 849 nids[i + 1] = get_nid(&parent->page, offset[i], false); 850 } 851 } 852 dn->nid = nids[level]; 853 dn->ofs_in_node = offset[level]; 854 dn->node_folio = nfolio[level]; 855 dn->data_blkaddr = f2fs_data_blkaddr(dn); 856 857 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && 858 f2fs_sb_has_readonly(sbi)) { 859 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 860 unsigned int ofs_in_node = dn->ofs_in_node; 861 pgoff_t fofs = index; 862 unsigned int c_len; 863 block_t blkaddr; 864 865 /* should align fofs and ofs_in_node to cluster_size */ 866 if (fofs % cluster_size) { 867 fofs = round_down(fofs, cluster_size); 868 ofs_in_node = round_down(ofs_in_node, cluster_size); 869 } 870 871 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node); 872 if (!c_len) 873 goto out; 874 875 blkaddr = data_blkaddr(dn->inode, dn->node_folio, ofs_in_node); 876 if (blkaddr == COMPRESS_ADDR) 877 blkaddr = data_blkaddr(dn->inode, dn->node_folio, 878 ofs_in_node + 1); 879 880 f2fs_update_read_extent_tree_range_compressed(dn->inode, 881 fofs, blkaddr, cluster_size, c_len); 882 } 883 out: 884 return 0; 885 886 release_pages: 887 f2fs_folio_put(parent, true); 888 if (i > 1) 889 f2fs_folio_put(nfolio[0], false); 890 release_out: 891 dn->inode_folio = NULL; 892 dn->node_folio = NULL; 893 if (err == -ENOENT) { 894 dn->cur_level = i; 895 dn->max_level = level; 896 dn->ofs_in_node = offset[level]; 897 } 898 return err; 899 } 900 901 static int truncate_node(struct dnode_of_data *dn) 902 { 903 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 904 struct node_info ni; 905 int err; 906 pgoff_t index; 907 908 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 909 if (err) 910 return err; 911 912 if (ni.blk_addr != NEW_ADDR && 913 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) { 914 f2fs_err_ratelimited(sbi, 915 "nat entry is corrupted, run fsck to fix it, ino:%u, " 916 "nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr); 917 set_sbi_flag(sbi, SBI_NEED_FSCK); 918 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT); 919 return -EFSCORRUPTED; 920 } 921 922 /* Deallocate node address */ 923 f2fs_invalidate_blocks(sbi, ni.blk_addr, 1); 924 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 925 set_node_addr(sbi, &ni, NULL_ADDR, false); 926 927 if (dn->nid == dn->inode->i_ino) { 928 f2fs_remove_orphan_inode(sbi, dn->nid); 929 dec_valid_inode_count(sbi); 930 f2fs_inode_synced(dn->inode); 931 } 932 933 clear_node_folio_dirty(dn->node_folio); 934 set_sbi_flag(sbi, SBI_IS_DIRTY); 935 936 index = dn->node_folio->index; 937 f2fs_folio_put(dn->node_folio, true); 938 939 invalidate_mapping_pages(NODE_MAPPING(sbi), 940 index, index); 941 942 dn->node_folio = NULL; 943 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 944 945 return 0; 946 } 947 948 static int truncate_dnode(struct dnode_of_data *dn) 949 { 950 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 951 struct folio *folio; 952 int err; 953 954 if (dn->nid == 0) 955 return 1; 956 957 /* get direct node */ 958 folio = f2fs_get_node_folio(sbi, dn->nid); 959 if (PTR_ERR(folio) == -ENOENT) 960 return 1; 961 else if (IS_ERR(folio)) 962 return PTR_ERR(folio); 963 964 if (IS_INODE(&folio->page) || ino_of_node(&folio->page) != dn->inode->i_ino) { 965 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u", 966 dn->inode->i_ino, dn->nid, ino_of_node(&folio->page)); 967 set_sbi_flag(sbi, SBI_NEED_FSCK); 968 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE); 969 f2fs_folio_put(folio, true); 970 return -EFSCORRUPTED; 971 } 972 973 /* Make dnode_of_data for parameter */ 974 dn->node_folio = folio; 975 dn->ofs_in_node = 0; 976 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 977 err = truncate_node(dn); 978 if (err) { 979 f2fs_folio_put(folio, true); 980 return err; 981 } 982 983 return 1; 984 } 985 986 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 987 int ofs, int depth) 988 { 989 struct dnode_of_data rdn = *dn; 990 struct folio *folio; 991 struct f2fs_node *rn; 992 nid_t child_nid; 993 unsigned int child_nofs; 994 int freed = 0; 995 int i, ret; 996 997 if (dn->nid == 0) 998 return NIDS_PER_BLOCK + 1; 999 1000 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 1001 1002 folio = f2fs_get_node_folio(F2FS_I_SB(dn->inode), dn->nid); 1003 if (IS_ERR(folio)) { 1004 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(folio)); 1005 return PTR_ERR(folio); 1006 } 1007 1008 f2fs_ra_node_pages(folio, ofs, NIDS_PER_BLOCK); 1009 1010 rn = F2FS_NODE(&folio->page); 1011 if (depth < 3) { 1012 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 1013 child_nid = le32_to_cpu(rn->in.nid[i]); 1014 if (child_nid == 0) 1015 continue; 1016 rdn.nid = child_nid; 1017 ret = truncate_dnode(&rdn); 1018 if (ret < 0) 1019 goto out_err; 1020 if (set_nid(folio, i, 0, false)) 1021 dn->node_changed = true; 1022 } 1023 } else { 1024 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 1025 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 1026 child_nid = le32_to_cpu(rn->in.nid[i]); 1027 if (child_nid == 0) { 1028 child_nofs += NIDS_PER_BLOCK + 1; 1029 continue; 1030 } 1031 rdn.nid = child_nid; 1032 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 1033 if (ret == (NIDS_PER_BLOCK + 1)) { 1034 if (set_nid(folio, i, 0, false)) 1035 dn->node_changed = true; 1036 child_nofs += ret; 1037 } else if (ret < 0 && ret != -ENOENT) { 1038 goto out_err; 1039 } 1040 } 1041 freed = child_nofs; 1042 } 1043 1044 if (!ofs) { 1045 /* remove current indirect node */ 1046 dn->node_folio = folio; 1047 ret = truncate_node(dn); 1048 if (ret) 1049 goto out_err; 1050 freed++; 1051 } else { 1052 f2fs_folio_put(folio, true); 1053 } 1054 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 1055 return freed; 1056 1057 out_err: 1058 f2fs_folio_put(folio, true); 1059 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 1060 return ret; 1061 } 1062 1063 static int truncate_partial_nodes(struct dnode_of_data *dn, 1064 struct f2fs_inode *ri, int *offset, int depth) 1065 { 1066 struct folio *folios[2]; 1067 nid_t nid[3]; 1068 nid_t child_nid; 1069 int err = 0; 1070 int i; 1071 int idx = depth - 2; 1072 1073 nid[0] = get_nid(&dn->inode_folio->page, offset[0], true); 1074 if (!nid[0]) 1075 return 0; 1076 1077 /* get indirect nodes in the path */ 1078 for (i = 0; i < idx + 1; i++) { 1079 /* reference count'll be increased */ 1080 folios[i] = f2fs_get_node_folio(F2FS_I_SB(dn->inode), nid[i]); 1081 if (IS_ERR(folios[i])) { 1082 err = PTR_ERR(folios[i]); 1083 idx = i - 1; 1084 goto fail; 1085 } 1086 nid[i + 1] = get_nid(&folios[i]->page, offset[i + 1], false); 1087 } 1088 1089 f2fs_ra_node_pages(folios[idx], offset[idx + 1], NIDS_PER_BLOCK); 1090 1091 /* free direct nodes linked to a partial indirect node */ 1092 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1093 child_nid = get_nid(&folios[idx]->page, i, false); 1094 if (!child_nid) 1095 continue; 1096 dn->nid = child_nid; 1097 err = truncate_dnode(dn); 1098 if (err < 0) 1099 goto fail; 1100 if (set_nid(folios[idx], i, 0, false)) 1101 dn->node_changed = true; 1102 } 1103 1104 if (offset[idx + 1] == 0) { 1105 dn->node_folio = folios[idx]; 1106 dn->nid = nid[idx]; 1107 err = truncate_node(dn); 1108 if (err) 1109 goto fail; 1110 } else { 1111 f2fs_folio_put(folios[idx], true); 1112 } 1113 offset[idx]++; 1114 offset[idx + 1] = 0; 1115 idx--; 1116 fail: 1117 for (i = idx; i >= 0; i--) 1118 f2fs_folio_put(folios[i], true); 1119 1120 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1121 1122 return err; 1123 } 1124 1125 /* 1126 * All the block addresses of data and nodes should be nullified. 1127 */ 1128 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1129 { 1130 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1131 int err = 0, cont = 1; 1132 int level, offset[4], noffset[4]; 1133 unsigned int nofs = 0; 1134 struct f2fs_inode *ri; 1135 struct dnode_of_data dn; 1136 struct folio *folio; 1137 1138 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1139 1140 level = get_node_path(inode, from, offset, noffset); 1141 if (level <= 0) { 1142 if (!level) { 1143 level = -EFSCORRUPTED; 1144 f2fs_err(sbi, "%s: inode ino=%lx has corrupted node block, from:%lu addrs:%u", 1145 __func__, inode->i_ino, 1146 from, ADDRS_PER_INODE(inode)); 1147 set_sbi_flag(sbi, SBI_NEED_FSCK); 1148 } 1149 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1150 return level; 1151 } 1152 1153 folio = f2fs_get_inode_folio(sbi, inode->i_ino); 1154 if (IS_ERR(folio)) { 1155 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(folio)); 1156 return PTR_ERR(folio); 1157 } 1158 1159 set_new_dnode(&dn, inode, folio, NULL, 0); 1160 folio_unlock(folio); 1161 1162 ri = F2FS_INODE(&folio->page); 1163 switch (level) { 1164 case 0: 1165 case 1: 1166 nofs = noffset[1]; 1167 break; 1168 case 2: 1169 nofs = noffset[1]; 1170 if (!offset[level - 1]) 1171 goto skip_partial; 1172 err = truncate_partial_nodes(&dn, ri, offset, level); 1173 if (err < 0 && err != -ENOENT) 1174 goto fail; 1175 nofs += 1 + NIDS_PER_BLOCK; 1176 break; 1177 case 3: 1178 nofs = 5 + 2 * NIDS_PER_BLOCK; 1179 if (!offset[level - 1]) 1180 goto skip_partial; 1181 err = truncate_partial_nodes(&dn, ri, offset, level); 1182 if (err < 0 && err != -ENOENT) 1183 goto fail; 1184 break; 1185 default: 1186 BUG(); 1187 } 1188 1189 skip_partial: 1190 while (cont) { 1191 dn.nid = get_nid(&folio->page, offset[0], true); 1192 switch (offset[0]) { 1193 case NODE_DIR1_BLOCK: 1194 case NODE_DIR2_BLOCK: 1195 err = truncate_dnode(&dn); 1196 break; 1197 1198 case NODE_IND1_BLOCK: 1199 case NODE_IND2_BLOCK: 1200 err = truncate_nodes(&dn, nofs, offset[1], 2); 1201 break; 1202 1203 case NODE_DIND_BLOCK: 1204 err = truncate_nodes(&dn, nofs, offset[1], 3); 1205 cont = 0; 1206 break; 1207 1208 default: 1209 BUG(); 1210 } 1211 if (err == -ENOENT) { 1212 set_sbi_flag(F2FS_F_SB(folio), SBI_NEED_FSCK); 1213 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1214 f2fs_err_ratelimited(sbi, 1215 "truncate node fail, ino:%lu, nid:%u, " 1216 "offset[0]:%d, offset[1]:%d, nofs:%d", 1217 inode->i_ino, dn.nid, offset[0], 1218 offset[1], nofs); 1219 err = 0; 1220 } 1221 if (err < 0) 1222 goto fail; 1223 if (offset[1] == 0 && get_nid(&folio->page, offset[0], true)) { 1224 folio_lock(folio); 1225 BUG_ON(!is_node_folio(folio)); 1226 set_nid(folio, offset[0], 0, true); 1227 folio_unlock(folio); 1228 } 1229 offset[1] = 0; 1230 offset[0]++; 1231 nofs += err; 1232 } 1233 fail: 1234 f2fs_folio_put(folio, false); 1235 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1236 return err > 0 ? 0 : err; 1237 } 1238 1239 /* caller must lock inode page */ 1240 int f2fs_truncate_xattr_node(struct inode *inode) 1241 { 1242 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1243 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1244 struct dnode_of_data dn; 1245 struct folio *nfolio; 1246 int err; 1247 1248 if (!nid) 1249 return 0; 1250 1251 nfolio = f2fs_get_xnode_folio(sbi, nid); 1252 if (IS_ERR(nfolio)) 1253 return PTR_ERR(nfolio); 1254 1255 set_new_dnode(&dn, inode, NULL, nfolio, nid); 1256 err = truncate_node(&dn); 1257 if (err) { 1258 f2fs_folio_put(nfolio, true); 1259 return err; 1260 } 1261 1262 f2fs_i_xnid_write(inode, 0); 1263 1264 return 0; 1265 } 1266 1267 /* 1268 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1269 * f2fs_unlock_op(). 1270 */ 1271 int f2fs_remove_inode_page(struct inode *inode) 1272 { 1273 struct dnode_of_data dn; 1274 int err; 1275 1276 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1277 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1278 if (err) 1279 return err; 1280 1281 err = f2fs_truncate_xattr_node(inode); 1282 if (err) { 1283 f2fs_put_dnode(&dn); 1284 return err; 1285 } 1286 1287 /* remove potential inline_data blocks */ 1288 if (!IS_DEVICE_ALIASING(inode) && 1289 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1290 S_ISLNK(inode->i_mode))) 1291 f2fs_truncate_data_blocks_range(&dn, 1); 1292 1293 /* 0 is possible, after f2fs_new_inode() has failed */ 1294 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1295 f2fs_put_dnode(&dn); 1296 return -EIO; 1297 } 1298 1299 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1300 f2fs_warn(F2FS_I_SB(inode), 1301 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1302 inode->i_ino, (unsigned long long)inode->i_blocks); 1303 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1304 } 1305 1306 /* will put inode & node pages */ 1307 err = truncate_node(&dn); 1308 if (err) { 1309 f2fs_put_dnode(&dn); 1310 return err; 1311 } 1312 return 0; 1313 } 1314 1315 struct folio *f2fs_new_inode_folio(struct inode *inode) 1316 { 1317 struct dnode_of_data dn; 1318 1319 /* allocate inode page for new inode */ 1320 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1321 1322 /* caller should f2fs_folio_put(folio, true); */ 1323 return f2fs_new_node_folio(&dn, 0); 1324 } 1325 1326 struct folio *f2fs_new_node_folio(struct dnode_of_data *dn, unsigned int ofs) 1327 { 1328 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1329 struct node_info new_ni; 1330 struct folio *folio; 1331 int err; 1332 1333 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1334 return ERR_PTR(-EPERM); 1335 1336 folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), dn->nid, false); 1337 if (IS_ERR(folio)) 1338 return folio; 1339 1340 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1341 goto fail; 1342 1343 #ifdef CONFIG_F2FS_CHECK_FS 1344 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); 1345 if (err) { 1346 dec_valid_node_count(sbi, dn->inode, !ofs); 1347 goto fail; 1348 } 1349 if (unlikely(new_ni.blk_addr != NULL_ADDR)) { 1350 err = -EFSCORRUPTED; 1351 dec_valid_node_count(sbi, dn->inode, !ofs); 1352 set_sbi_flag(sbi, SBI_NEED_FSCK); 1353 f2fs_warn_ratelimited(sbi, 1354 "f2fs_new_node_folio: inconsistent nat entry, " 1355 "ino:%u, nid:%u, blkaddr:%u, ver:%u, flag:%u", 1356 new_ni.ino, new_ni.nid, new_ni.blk_addr, 1357 new_ni.version, new_ni.flag); 1358 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NAT); 1359 goto fail; 1360 } 1361 #endif 1362 new_ni.nid = dn->nid; 1363 new_ni.ino = dn->inode->i_ino; 1364 new_ni.blk_addr = NULL_ADDR; 1365 new_ni.flag = 0; 1366 new_ni.version = 0; 1367 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1368 1369 f2fs_folio_wait_writeback(folio, NODE, true, true); 1370 fill_node_footer(&folio->page, dn->nid, dn->inode->i_ino, ofs, true); 1371 set_cold_node(&folio->page, S_ISDIR(dn->inode->i_mode)); 1372 if (!folio_test_uptodate(folio)) 1373 folio_mark_uptodate(folio); 1374 if (folio_mark_dirty(folio)) 1375 dn->node_changed = true; 1376 1377 if (f2fs_has_xattr_block(ofs)) 1378 f2fs_i_xnid_write(dn->inode, dn->nid); 1379 1380 if (ofs == 0) 1381 inc_valid_inode_count(sbi); 1382 return folio; 1383 fail: 1384 clear_node_folio_dirty(folio); 1385 f2fs_folio_put(folio, true); 1386 return ERR_PTR(err); 1387 } 1388 1389 /* 1390 * Caller should do after getting the following values. 1391 * 0: f2fs_folio_put(folio, false) 1392 * LOCKED_PAGE or error: f2fs_folio_put(folio, true) 1393 */ 1394 static int read_node_folio(struct folio *folio, blk_opf_t op_flags) 1395 { 1396 struct f2fs_sb_info *sbi = F2FS_F_SB(folio); 1397 struct node_info ni; 1398 struct f2fs_io_info fio = { 1399 .sbi = sbi, 1400 .type = NODE, 1401 .op = REQ_OP_READ, 1402 .op_flags = op_flags, 1403 .page = &folio->page, 1404 .encrypted_page = NULL, 1405 }; 1406 int err; 1407 1408 if (folio_test_uptodate(folio)) { 1409 if (!f2fs_inode_chksum_verify(sbi, folio)) { 1410 folio_clear_uptodate(folio); 1411 return -EFSBADCRC; 1412 } 1413 return LOCKED_PAGE; 1414 } 1415 1416 err = f2fs_get_node_info(sbi, folio->index, &ni, false); 1417 if (err) 1418 return err; 1419 1420 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ 1421 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) { 1422 folio_clear_uptodate(folio); 1423 return -ENOENT; 1424 } 1425 1426 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1427 1428 err = f2fs_submit_page_bio(&fio); 1429 1430 if (!err) 1431 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE); 1432 1433 return err; 1434 } 1435 1436 /* 1437 * Readahead a node page 1438 */ 1439 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1440 { 1441 struct folio *afolio; 1442 int err; 1443 1444 if (!nid) 1445 return; 1446 if (f2fs_check_nid_range(sbi, nid)) 1447 return; 1448 1449 afolio = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1450 if (afolio) 1451 return; 1452 1453 afolio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false); 1454 if (IS_ERR(afolio)) 1455 return; 1456 1457 err = read_node_folio(afolio, REQ_RAHEAD); 1458 f2fs_folio_put(afolio, err ? true : false); 1459 } 1460 1461 static int sanity_check_node_footer(struct f2fs_sb_info *sbi, 1462 struct folio *folio, pgoff_t nid, 1463 enum node_type ntype) 1464 { 1465 struct page *page = &folio->page; 1466 1467 if (unlikely(nid != nid_of_node(page) || 1468 (ntype == NODE_TYPE_INODE && !IS_INODE(page)) || 1469 (ntype == NODE_TYPE_XATTR && 1470 !f2fs_has_xattr_block(ofs_of_node(page))) || 1471 time_to_inject(sbi, FAULT_INCONSISTENT_FOOTER))) { 1472 f2fs_warn(sbi, "inconsistent node block, node_type:%d, nid:%lu, " 1473 "node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1474 ntype, nid, nid_of_node(page), ino_of_node(page), 1475 ofs_of_node(page), cpver_of_node(page), 1476 next_blkaddr_of_node(folio)); 1477 set_sbi_flag(sbi, SBI_NEED_FSCK); 1478 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER); 1479 return -EFSCORRUPTED; 1480 } 1481 return 0; 1482 } 1483 1484 static struct folio *__get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid, 1485 struct folio *parent, int start, enum node_type ntype) 1486 { 1487 struct folio *folio; 1488 int err; 1489 1490 if (!nid) 1491 return ERR_PTR(-ENOENT); 1492 if (f2fs_check_nid_range(sbi, nid)) 1493 return ERR_PTR(-EINVAL); 1494 repeat: 1495 folio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), nid, false); 1496 if (IS_ERR(folio)) 1497 return folio; 1498 1499 err = read_node_folio(folio, 0); 1500 if (err < 0) 1501 goto out_put_err; 1502 if (err == LOCKED_PAGE) 1503 goto page_hit; 1504 1505 if (parent) 1506 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1507 1508 folio_lock(folio); 1509 1510 if (unlikely(!is_node_folio(folio))) { 1511 f2fs_folio_put(folio, true); 1512 goto repeat; 1513 } 1514 1515 if (unlikely(!folio_test_uptodate(folio))) { 1516 err = -EIO; 1517 goto out_err; 1518 } 1519 1520 if (!f2fs_inode_chksum_verify(sbi, folio)) { 1521 err = -EFSBADCRC; 1522 goto out_err; 1523 } 1524 page_hit: 1525 err = sanity_check_node_footer(sbi, folio, nid, ntype); 1526 if (!err) 1527 return folio; 1528 out_err: 1529 folio_clear_uptodate(folio); 1530 out_put_err: 1531 /* ENOENT comes from read_node_folio which is not an error. */ 1532 if (err != -ENOENT) 1533 f2fs_handle_page_eio(sbi, folio, NODE); 1534 f2fs_folio_put(folio, true); 1535 return ERR_PTR(err); 1536 } 1537 1538 struct folio *f2fs_get_node_folio(struct f2fs_sb_info *sbi, pgoff_t nid) 1539 { 1540 return __get_node_folio(sbi, nid, NULL, 0, NODE_TYPE_REGULAR); 1541 } 1542 1543 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino) 1544 { 1545 return __get_node_folio(sbi, ino, NULL, 0, NODE_TYPE_INODE); 1546 } 1547 1548 struct folio *f2fs_get_xnode_folio(struct f2fs_sb_info *sbi, pgoff_t xnid) 1549 { 1550 return __get_node_folio(sbi, xnid, NULL, 0, NODE_TYPE_XATTR); 1551 } 1552 1553 static struct folio *f2fs_get_node_folio_ra(struct folio *parent, int start) 1554 { 1555 struct f2fs_sb_info *sbi = F2FS_F_SB(parent); 1556 nid_t nid = get_nid(&parent->page, start, false); 1557 1558 return __get_node_folio(sbi, nid, parent, start, NODE_TYPE_REGULAR); 1559 } 1560 1561 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1562 { 1563 struct inode *inode; 1564 struct folio *folio; 1565 int ret; 1566 1567 /* should flush inline_data before evict_inode */ 1568 inode = ilookup(sbi->sb, ino); 1569 if (!inode) 1570 return; 1571 1572 folio = f2fs_filemap_get_folio(inode->i_mapping, 0, 1573 FGP_LOCK|FGP_NOWAIT, 0); 1574 if (IS_ERR(folio)) 1575 goto iput_out; 1576 1577 if (!folio_test_uptodate(folio)) 1578 goto folio_out; 1579 1580 if (!folio_test_dirty(folio)) 1581 goto folio_out; 1582 1583 if (!folio_clear_dirty_for_io(folio)) 1584 goto folio_out; 1585 1586 ret = f2fs_write_inline_data(inode, folio); 1587 inode_dec_dirty_pages(inode); 1588 f2fs_remove_dirty_inode(inode); 1589 if (ret) 1590 folio_mark_dirty(folio); 1591 folio_out: 1592 f2fs_folio_put(folio, true); 1593 iput_out: 1594 iput(inode); 1595 } 1596 1597 static struct folio *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1598 { 1599 pgoff_t index; 1600 struct folio_batch fbatch; 1601 struct folio *last_folio = NULL; 1602 int nr_folios; 1603 1604 folio_batch_init(&fbatch); 1605 index = 0; 1606 1607 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1608 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1609 &fbatch))) { 1610 int i; 1611 1612 for (i = 0; i < nr_folios; i++) { 1613 struct folio *folio = fbatch.folios[i]; 1614 1615 if (unlikely(f2fs_cp_error(sbi))) { 1616 f2fs_folio_put(last_folio, false); 1617 folio_batch_release(&fbatch); 1618 return ERR_PTR(-EIO); 1619 } 1620 1621 if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page)) 1622 continue; 1623 if (ino_of_node(&folio->page) != ino) 1624 continue; 1625 1626 folio_lock(folio); 1627 1628 if (unlikely(!is_node_folio(folio))) { 1629 continue_unlock: 1630 folio_unlock(folio); 1631 continue; 1632 } 1633 if (ino_of_node(&folio->page) != ino) 1634 goto continue_unlock; 1635 1636 if (!folio_test_dirty(folio)) { 1637 /* someone wrote it for us */ 1638 goto continue_unlock; 1639 } 1640 1641 if (last_folio) 1642 f2fs_folio_put(last_folio, false); 1643 1644 folio_get(folio); 1645 last_folio = folio; 1646 folio_unlock(folio); 1647 } 1648 folio_batch_release(&fbatch); 1649 cond_resched(); 1650 } 1651 return last_folio; 1652 } 1653 1654 static bool __write_node_folio(struct folio *folio, bool atomic, bool *submitted, 1655 struct writeback_control *wbc, bool do_balance, 1656 enum iostat_type io_type, unsigned int *seq_id) 1657 { 1658 struct f2fs_sb_info *sbi = F2FS_F_SB(folio); 1659 nid_t nid; 1660 struct node_info ni; 1661 struct f2fs_io_info fio = { 1662 .sbi = sbi, 1663 .ino = ino_of_node(&folio->page), 1664 .type = NODE, 1665 .op = REQ_OP_WRITE, 1666 .op_flags = wbc_to_write_flags(wbc), 1667 .page = &folio->page, 1668 .encrypted_page = NULL, 1669 .submitted = 0, 1670 .io_type = io_type, 1671 .io_wbc = wbc, 1672 }; 1673 unsigned int seq; 1674 1675 trace_f2fs_writepage(folio, NODE); 1676 1677 if (unlikely(f2fs_cp_error(sbi))) { 1678 /* keep node pages in remount-ro mode */ 1679 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 1680 goto redirty_out; 1681 folio_clear_uptodate(folio); 1682 dec_page_count(sbi, F2FS_DIRTY_NODES); 1683 folio_unlock(folio); 1684 return true; 1685 } 1686 1687 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1688 goto redirty_out; 1689 1690 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1691 wbc->sync_mode == WB_SYNC_NONE && 1692 IS_DNODE(&folio->page) && is_cold_node(&folio->page)) 1693 goto redirty_out; 1694 1695 /* get old block addr of this node page */ 1696 nid = nid_of_node(&folio->page); 1697 f2fs_bug_on(sbi, folio->index != nid); 1698 1699 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) 1700 goto redirty_out; 1701 1702 f2fs_down_read(&sbi->node_write); 1703 1704 /* This page is already truncated */ 1705 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1706 folio_clear_uptodate(folio); 1707 dec_page_count(sbi, F2FS_DIRTY_NODES); 1708 f2fs_up_read(&sbi->node_write); 1709 folio_unlock(folio); 1710 return true; 1711 } 1712 1713 if (__is_valid_data_blkaddr(ni.blk_addr) && 1714 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1715 DATA_GENERIC_ENHANCE)) { 1716 f2fs_up_read(&sbi->node_write); 1717 goto redirty_out; 1718 } 1719 1720 if (atomic && !test_opt(sbi, NOBARRIER)) 1721 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1722 1723 /* should add to global list before clearing PAGECACHE status */ 1724 if (f2fs_in_warm_node_list(sbi, folio)) { 1725 seq = f2fs_add_fsync_node_entry(sbi, folio); 1726 if (seq_id) 1727 *seq_id = seq; 1728 } 1729 1730 folio_start_writeback(folio); 1731 1732 fio.old_blkaddr = ni.blk_addr; 1733 f2fs_do_write_node_page(nid, &fio); 1734 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(&folio->page)); 1735 dec_page_count(sbi, F2FS_DIRTY_NODES); 1736 f2fs_up_read(&sbi->node_write); 1737 1738 folio_unlock(folio); 1739 1740 if (unlikely(f2fs_cp_error(sbi))) { 1741 f2fs_submit_merged_write(sbi, NODE); 1742 submitted = NULL; 1743 } 1744 if (submitted) 1745 *submitted = fio.submitted; 1746 1747 if (do_balance) 1748 f2fs_balance_fs(sbi, false); 1749 return true; 1750 1751 redirty_out: 1752 folio_redirty_for_writepage(wbc, folio); 1753 folio_unlock(folio); 1754 return false; 1755 } 1756 1757 int f2fs_move_node_folio(struct folio *node_folio, int gc_type) 1758 { 1759 int err = 0; 1760 1761 if (gc_type == FG_GC) { 1762 struct writeback_control wbc = { 1763 .sync_mode = WB_SYNC_ALL, 1764 .nr_to_write = 1, 1765 }; 1766 1767 f2fs_folio_wait_writeback(node_folio, NODE, true, true); 1768 1769 folio_mark_dirty(node_folio); 1770 1771 if (!folio_clear_dirty_for_io(node_folio)) { 1772 err = -EAGAIN; 1773 goto out_page; 1774 } 1775 1776 if (!__write_node_folio(node_folio, false, NULL, 1777 &wbc, false, FS_GC_NODE_IO, NULL)) 1778 err = -EAGAIN; 1779 goto release_page; 1780 } else { 1781 /* set page dirty and write it */ 1782 if (!folio_test_writeback(node_folio)) 1783 folio_mark_dirty(node_folio); 1784 } 1785 out_page: 1786 folio_unlock(node_folio); 1787 release_page: 1788 f2fs_folio_put(node_folio, false); 1789 return err; 1790 } 1791 1792 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1793 struct writeback_control *wbc, bool atomic, 1794 unsigned int *seq_id) 1795 { 1796 pgoff_t index; 1797 struct folio_batch fbatch; 1798 int ret = 0; 1799 struct folio *last_folio = NULL; 1800 bool marked = false; 1801 nid_t ino = inode->i_ino; 1802 int nr_folios; 1803 int nwritten = 0; 1804 1805 if (atomic) { 1806 last_folio = last_fsync_dnode(sbi, ino); 1807 if (IS_ERR_OR_NULL(last_folio)) 1808 return PTR_ERR_OR_ZERO(last_folio); 1809 } 1810 retry: 1811 folio_batch_init(&fbatch); 1812 index = 0; 1813 1814 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1815 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1816 &fbatch))) { 1817 int i; 1818 1819 for (i = 0; i < nr_folios; i++) { 1820 struct folio *folio = fbatch.folios[i]; 1821 bool submitted = false; 1822 1823 if (unlikely(f2fs_cp_error(sbi))) { 1824 f2fs_folio_put(last_folio, false); 1825 folio_batch_release(&fbatch); 1826 ret = -EIO; 1827 goto out; 1828 } 1829 1830 if (!IS_DNODE(&folio->page) || !is_cold_node(&folio->page)) 1831 continue; 1832 if (ino_of_node(&folio->page) != ino) 1833 continue; 1834 1835 folio_lock(folio); 1836 1837 if (unlikely(!is_node_folio(folio))) { 1838 continue_unlock: 1839 folio_unlock(folio); 1840 continue; 1841 } 1842 if (ino_of_node(&folio->page) != ino) 1843 goto continue_unlock; 1844 1845 if (!folio_test_dirty(folio) && folio != last_folio) { 1846 /* someone wrote it for us */ 1847 goto continue_unlock; 1848 } 1849 1850 f2fs_folio_wait_writeback(folio, NODE, true, true); 1851 1852 set_fsync_mark(&folio->page, 0); 1853 set_dentry_mark(&folio->page, 0); 1854 1855 if (!atomic || folio == last_folio) { 1856 set_fsync_mark(&folio->page, 1); 1857 percpu_counter_inc(&sbi->rf_node_block_count); 1858 if (IS_INODE(&folio->page)) { 1859 if (is_inode_flag_set(inode, 1860 FI_DIRTY_INODE)) 1861 f2fs_update_inode(inode, folio); 1862 set_dentry_mark(&folio->page, 1863 f2fs_need_dentry_mark(sbi, ino)); 1864 } 1865 /* may be written by other thread */ 1866 if (!folio_test_dirty(folio)) 1867 folio_mark_dirty(folio); 1868 } 1869 1870 if (!folio_clear_dirty_for_io(folio)) 1871 goto continue_unlock; 1872 1873 if (!__write_node_folio(folio, atomic && 1874 folio == last_folio, 1875 &submitted, wbc, true, 1876 FS_NODE_IO, seq_id)) { 1877 f2fs_folio_put(last_folio, false); 1878 folio_batch_release(&fbatch); 1879 ret = -EIO; 1880 goto out; 1881 } 1882 if (submitted) 1883 nwritten++; 1884 1885 if (folio == last_folio) { 1886 f2fs_folio_put(folio, false); 1887 folio_batch_release(&fbatch); 1888 marked = true; 1889 goto out; 1890 } 1891 } 1892 folio_batch_release(&fbatch); 1893 cond_resched(); 1894 } 1895 if (atomic && !marked) { 1896 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1897 ino, last_folio->index); 1898 folio_lock(last_folio); 1899 f2fs_folio_wait_writeback(last_folio, NODE, true, true); 1900 folio_mark_dirty(last_folio); 1901 folio_unlock(last_folio); 1902 goto retry; 1903 } 1904 out: 1905 if (nwritten) 1906 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1907 return ret; 1908 } 1909 1910 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1911 { 1912 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1913 bool clean; 1914 1915 if (inode->i_ino != ino) 1916 return 0; 1917 1918 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1919 return 0; 1920 1921 spin_lock(&sbi->inode_lock[DIRTY_META]); 1922 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1923 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1924 1925 if (clean) 1926 return 0; 1927 1928 inode = igrab(inode); 1929 if (!inode) 1930 return 0; 1931 return 1; 1932 } 1933 1934 static bool flush_dirty_inode(struct folio *folio) 1935 { 1936 struct f2fs_sb_info *sbi = F2FS_F_SB(folio); 1937 struct inode *inode; 1938 nid_t ino = ino_of_node(&folio->page); 1939 1940 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1941 if (!inode) 1942 return false; 1943 1944 f2fs_update_inode(inode, folio); 1945 folio_unlock(folio); 1946 1947 iput(inode); 1948 return true; 1949 } 1950 1951 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1952 { 1953 pgoff_t index = 0; 1954 struct folio_batch fbatch; 1955 int nr_folios; 1956 1957 folio_batch_init(&fbatch); 1958 1959 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1960 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1961 &fbatch))) { 1962 int i; 1963 1964 for (i = 0; i < nr_folios; i++) { 1965 struct folio *folio = fbatch.folios[i]; 1966 1967 if (!IS_INODE(&folio->page)) 1968 continue; 1969 1970 folio_lock(folio); 1971 1972 if (unlikely(!is_node_folio(folio))) 1973 goto unlock; 1974 if (!folio_test_dirty(folio)) 1975 goto unlock; 1976 1977 /* flush inline_data, if it's async context. */ 1978 if (page_private_inline(&folio->page)) { 1979 clear_page_private_inline(&folio->page); 1980 folio_unlock(folio); 1981 flush_inline_data(sbi, ino_of_node(&folio->page)); 1982 continue; 1983 } 1984 unlock: 1985 folio_unlock(folio); 1986 } 1987 folio_batch_release(&fbatch); 1988 cond_resched(); 1989 } 1990 } 1991 1992 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1993 struct writeback_control *wbc, 1994 bool do_balance, enum iostat_type io_type) 1995 { 1996 pgoff_t index; 1997 struct folio_batch fbatch; 1998 int step = 0; 1999 int nwritten = 0; 2000 int ret = 0; 2001 int nr_folios, done = 0; 2002 2003 folio_batch_init(&fbatch); 2004 2005 next_step: 2006 index = 0; 2007 2008 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), 2009 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 2010 &fbatch))) { 2011 int i; 2012 2013 for (i = 0; i < nr_folios; i++) { 2014 struct folio *folio = fbatch.folios[i]; 2015 bool submitted = false; 2016 2017 /* give a priority to WB_SYNC threads */ 2018 if (atomic_read(&sbi->wb_sync_req[NODE]) && 2019 wbc->sync_mode == WB_SYNC_NONE) { 2020 done = 1; 2021 break; 2022 } 2023 2024 /* 2025 * flushing sequence with step: 2026 * 0. indirect nodes 2027 * 1. dentry dnodes 2028 * 2. file dnodes 2029 */ 2030 if (step == 0 && IS_DNODE(&folio->page)) 2031 continue; 2032 if (step == 1 && (!IS_DNODE(&folio->page) || 2033 is_cold_node(&folio->page))) 2034 continue; 2035 if (step == 2 && (!IS_DNODE(&folio->page) || 2036 !is_cold_node(&folio->page))) 2037 continue; 2038 lock_node: 2039 if (wbc->sync_mode == WB_SYNC_ALL) 2040 folio_lock(folio); 2041 else if (!folio_trylock(folio)) 2042 continue; 2043 2044 if (unlikely(!is_node_folio(folio))) { 2045 continue_unlock: 2046 folio_unlock(folio); 2047 continue; 2048 } 2049 2050 if (!folio_test_dirty(folio)) { 2051 /* someone wrote it for us */ 2052 goto continue_unlock; 2053 } 2054 2055 /* flush inline_data/inode, if it's async context. */ 2056 if (!do_balance) 2057 goto write_node; 2058 2059 /* flush inline_data */ 2060 if (page_private_inline(&folio->page)) { 2061 clear_page_private_inline(&folio->page); 2062 folio_unlock(folio); 2063 flush_inline_data(sbi, ino_of_node(&folio->page)); 2064 goto lock_node; 2065 } 2066 2067 /* flush dirty inode */ 2068 if (IS_INODE(&folio->page) && flush_dirty_inode(folio)) 2069 goto lock_node; 2070 write_node: 2071 f2fs_folio_wait_writeback(folio, NODE, true, true); 2072 2073 if (!folio_clear_dirty_for_io(folio)) 2074 goto continue_unlock; 2075 2076 set_fsync_mark(&folio->page, 0); 2077 set_dentry_mark(&folio->page, 0); 2078 2079 if (!__write_node_folio(folio, false, &submitted, 2080 wbc, do_balance, io_type, NULL)) { 2081 folio_batch_release(&fbatch); 2082 ret = -EIO; 2083 goto out; 2084 } 2085 if (submitted) 2086 nwritten++; 2087 2088 if (--wbc->nr_to_write == 0) 2089 break; 2090 } 2091 folio_batch_release(&fbatch); 2092 cond_resched(); 2093 2094 if (wbc->nr_to_write == 0) { 2095 step = 2; 2096 break; 2097 } 2098 } 2099 2100 if (step < 2) { 2101 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2102 wbc->sync_mode == WB_SYNC_NONE && step == 1) 2103 goto out; 2104 step++; 2105 goto next_step; 2106 } 2107 out: 2108 if (nwritten) 2109 f2fs_submit_merged_write(sbi, NODE); 2110 2111 if (unlikely(f2fs_cp_error(sbi))) 2112 return -EIO; 2113 return ret; 2114 } 2115 2116 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2117 unsigned int seq_id) 2118 { 2119 struct fsync_node_entry *fn; 2120 struct list_head *head = &sbi->fsync_node_list; 2121 unsigned long flags; 2122 unsigned int cur_seq_id = 0; 2123 2124 while (seq_id && cur_seq_id < seq_id) { 2125 struct folio *folio; 2126 2127 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2128 if (list_empty(head)) { 2129 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2130 break; 2131 } 2132 fn = list_first_entry(head, struct fsync_node_entry, list); 2133 if (fn->seq_id > seq_id) { 2134 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2135 break; 2136 } 2137 cur_seq_id = fn->seq_id; 2138 folio = fn->folio; 2139 folio_get(folio); 2140 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2141 2142 f2fs_folio_wait_writeback(folio, NODE, true, false); 2143 2144 folio_put(folio); 2145 } 2146 2147 return filemap_check_errors(NODE_MAPPING(sbi)); 2148 } 2149 2150 static int f2fs_write_node_pages(struct address_space *mapping, 2151 struct writeback_control *wbc) 2152 { 2153 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2154 struct blk_plug plug; 2155 long diff; 2156 2157 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2158 goto skip_write; 2159 2160 /* balancing f2fs's metadata in background */ 2161 f2fs_balance_fs_bg(sbi, true); 2162 2163 /* collect a number of dirty node pages and write together */ 2164 if (wbc->sync_mode != WB_SYNC_ALL && 2165 get_pages(sbi, F2FS_DIRTY_NODES) < 2166 nr_pages_to_skip(sbi, NODE)) 2167 goto skip_write; 2168 2169 if (wbc->sync_mode == WB_SYNC_ALL) 2170 atomic_inc(&sbi->wb_sync_req[NODE]); 2171 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2172 /* to avoid potential deadlock */ 2173 if (current->plug) 2174 blk_finish_plug(current->plug); 2175 goto skip_write; 2176 } 2177 2178 trace_f2fs_writepages(mapping->host, wbc, NODE); 2179 2180 diff = nr_pages_to_write(sbi, NODE, wbc); 2181 blk_start_plug(&plug); 2182 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2183 blk_finish_plug(&plug); 2184 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2185 2186 if (wbc->sync_mode == WB_SYNC_ALL) 2187 atomic_dec(&sbi->wb_sync_req[NODE]); 2188 return 0; 2189 2190 skip_write: 2191 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2192 trace_f2fs_writepages(mapping->host, wbc, NODE); 2193 return 0; 2194 } 2195 2196 static bool f2fs_dirty_node_folio(struct address_space *mapping, 2197 struct folio *folio) 2198 { 2199 trace_f2fs_set_page_dirty(folio, NODE); 2200 2201 if (!folio_test_uptodate(folio)) 2202 folio_mark_uptodate(folio); 2203 #ifdef CONFIG_F2FS_CHECK_FS 2204 if (IS_INODE(&folio->page)) 2205 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); 2206 #endif 2207 if (filemap_dirty_folio(mapping, folio)) { 2208 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 2209 set_page_private_reference(&folio->page); 2210 return true; 2211 } 2212 return false; 2213 } 2214 2215 /* 2216 * Structure of the f2fs node operations 2217 */ 2218 const struct address_space_operations f2fs_node_aops = { 2219 .writepages = f2fs_write_node_pages, 2220 .dirty_folio = f2fs_dirty_node_folio, 2221 .invalidate_folio = f2fs_invalidate_folio, 2222 .release_folio = f2fs_release_folio, 2223 .migrate_folio = filemap_migrate_folio, 2224 }; 2225 2226 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2227 nid_t n) 2228 { 2229 return radix_tree_lookup(&nm_i->free_nid_root, n); 2230 } 2231 2232 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2233 struct free_nid *i) 2234 { 2235 struct f2fs_nm_info *nm_i = NM_I(sbi); 2236 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2237 2238 if (err) 2239 return err; 2240 2241 nm_i->nid_cnt[FREE_NID]++; 2242 list_add_tail(&i->list, &nm_i->free_nid_list); 2243 return 0; 2244 } 2245 2246 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2247 struct free_nid *i, enum nid_state state) 2248 { 2249 struct f2fs_nm_info *nm_i = NM_I(sbi); 2250 2251 f2fs_bug_on(sbi, state != i->state); 2252 nm_i->nid_cnt[state]--; 2253 if (state == FREE_NID) 2254 list_del(&i->list); 2255 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2256 } 2257 2258 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2259 enum nid_state org_state, enum nid_state dst_state) 2260 { 2261 struct f2fs_nm_info *nm_i = NM_I(sbi); 2262 2263 f2fs_bug_on(sbi, org_state != i->state); 2264 i->state = dst_state; 2265 nm_i->nid_cnt[org_state]--; 2266 nm_i->nid_cnt[dst_state]++; 2267 2268 switch (dst_state) { 2269 case PREALLOC_NID: 2270 list_del(&i->list); 2271 break; 2272 case FREE_NID: 2273 list_add_tail(&i->list, &nm_i->free_nid_list); 2274 break; 2275 default: 2276 BUG_ON(1); 2277 } 2278 } 2279 2280 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2281 bool set, bool build) 2282 { 2283 struct f2fs_nm_info *nm_i = NM_I(sbi); 2284 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2285 unsigned int nid_ofs = nid - START_NID(nid); 2286 2287 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2288 return; 2289 2290 if (set) { 2291 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2292 return; 2293 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2294 nm_i->free_nid_count[nat_ofs]++; 2295 } else { 2296 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2297 return; 2298 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2299 if (!build) 2300 nm_i->free_nid_count[nat_ofs]--; 2301 } 2302 } 2303 2304 /* return if the nid is recognized as free */ 2305 static bool add_free_nid(struct f2fs_sb_info *sbi, 2306 nid_t nid, bool build, bool update) 2307 { 2308 struct f2fs_nm_info *nm_i = NM_I(sbi); 2309 struct free_nid *i, *e; 2310 struct nat_entry *ne; 2311 int err; 2312 bool ret = false; 2313 2314 /* 0 nid should not be used */ 2315 if (unlikely(nid == 0)) 2316 return false; 2317 2318 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2319 return false; 2320 2321 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); 2322 i->nid = nid; 2323 i->state = FREE_NID; 2324 2325 err = radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2326 f2fs_bug_on(sbi, err); 2327 2328 err = -EINVAL; 2329 2330 spin_lock(&nm_i->nid_list_lock); 2331 2332 if (build) { 2333 /* 2334 * Thread A Thread B 2335 * - f2fs_create 2336 * - f2fs_new_inode 2337 * - f2fs_alloc_nid 2338 * - __insert_nid_to_list(PREALLOC_NID) 2339 * - f2fs_balance_fs_bg 2340 * - f2fs_build_free_nids 2341 * - __f2fs_build_free_nids 2342 * - scan_nat_page 2343 * - add_free_nid 2344 * - __lookup_nat_cache 2345 * - f2fs_add_link 2346 * - f2fs_init_inode_metadata 2347 * - f2fs_new_inode_folio 2348 * - f2fs_new_node_folio 2349 * - set_node_addr 2350 * - f2fs_alloc_nid_done 2351 * - __remove_nid_from_list(PREALLOC_NID) 2352 * - __insert_nid_to_list(FREE_NID) 2353 */ 2354 ne = __lookup_nat_cache(nm_i, nid); 2355 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2356 nat_get_blkaddr(ne) != NULL_ADDR)) 2357 goto err_out; 2358 2359 e = __lookup_free_nid_list(nm_i, nid); 2360 if (e) { 2361 if (e->state == FREE_NID) 2362 ret = true; 2363 goto err_out; 2364 } 2365 } 2366 ret = true; 2367 err = __insert_free_nid(sbi, i); 2368 err_out: 2369 if (update) { 2370 update_free_nid_bitmap(sbi, nid, ret, build); 2371 if (!build) 2372 nm_i->available_nids++; 2373 } 2374 spin_unlock(&nm_i->nid_list_lock); 2375 radix_tree_preload_end(); 2376 2377 if (err) 2378 kmem_cache_free(free_nid_slab, i); 2379 return ret; 2380 } 2381 2382 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2383 { 2384 struct f2fs_nm_info *nm_i = NM_I(sbi); 2385 struct free_nid *i; 2386 bool need_free = false; 2387 2388 spin_lock(&nm_i->nid_list_lock); 2389 i = __lookup_free_nid_list(nm_i, nid); 2390 if (i && i->state == FREE_NID) { 2391 __remove_free_nid(sbi, i, FREE_NID); 2392 need_free = true; 2393 } 2394 spin_unlock(&nm_i->nid_list_lock); 2395 2396 if (need_free) 2397 kmem_cache_free(free_nid_slab, i); 2398 } 2399 2400 static int scan_nat_page(struct f2fs_sb_info *sbi, 2401 struct f2fs_nat_block *nat_blk, nid_t start_nid) 2402 { 2403 struct f2fs_nm_info *nm_i = NM_I(sbi); 2404 block_t blk_addr; 2405 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2406 int i; 2407 2408 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2409 2410 i = start_nid % NAT_ENTRY_PER_BLOCK; 2411 2412 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2413 if (unlikely(start_nid >= nm_i->max_nid)) 2414 break; 2415 2416 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2417 2418 if (blk_addr == NEW_ADDR) 2419 return -EFSCORRUPTED; 2420 2421 if (blk_addr == NULL_ADDR) { 2422 add_free_nid(sbi, start_nid, true, true); 2423 } else { 2424 spin_lock(&NM_I(sbi)->nid_list_lock); 2425 update_free_nid_bitmap(sbi, start_nid, false, true); 2426 spin_unlock(&NM_I(sbi)->nid_list_lock); 2427 } 2428 } 2429 2430 return 0; 2431 } 2432 2433 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2434 { 2435 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2436 struct f2fs_journal *journal = curseg->journal; 2437 int i; 2438 2439 down_read(&curseg->journal_rwsem); 2440 for (i = 0; i < nats_in_cursum(journal); i++) { 2441 block_t addr; 2442 nid_t nid; 2443 2444 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2445 nid = le32_to_cpu(nid_in_journal(journal, i)); 2446 if (addr == NULL_ADDR) 2447 add_free_nid(sbi, nid, true, false); 2448 else 2449 remove_free_nid(sbi, nid); 2450 } 2451 up_read(&curseg->journal_rwsem); 2452 } 2453 2454 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2455 { 2456 struct f2fs_nm_info *nm_i = NM_I(sbi); 2457 unsigned int i, idx; 2458 nid_t nid; 2459 2460 f2fs_down_read(&nm_i->nat_tree_lock); 2461 2462 for (i = 0; i < nm_i->nat_blocks; i++) { 2463 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2464 continue; 2465 if (!nm_i->free_nid_count[i]) 2466 continue; 2467 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2468 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2469 NAT_ENTRY_PER_BLOCK, idx); 2470 if (idx >= NAT_ENTRY_PER_BLOCK) 2471 break; 2472 2473 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2474 add_free_nid(sbi, nid, true, false); 2475 2476 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2477 goto out; 2478 } 2479 } 2480 out: 2481 scan_curseg_cache(sbi); 2482 2483 f2fs_up_read(&nm_i->nat_tree_lock); 2484 } 2485 2486 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2487 bool sync, bool mount) 2488 { 2489 struct f2fs_nm_info *nm_i = NM_I(sbi); 2490 int i = 0, ret; 2491 nid_t nid = nm_i->next_scan_nid; 2492 2493 if (unlikely(nid >= nm_i->max_nid)) 2494 nid = 0; 2495 2496 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2497 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2498 2499 /* Enough entries */ 2500 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2501 return 0; 2502 2503 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2504 return 0; 2505 2506 if (!mount) { 2507 /* try to find free nids in free_nid_bitmap */ 2508 scan_free_nid_bits(sbi); 2509 2510 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2511 return 0; 2512 } 2513 2514 /* readahead nat pages to be scanned */ 2515 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2516 META_NAT, true); 2517 2518 f2fs_down_read(&nm_i->nat_tree_lock); 2519 2520 while (1) { 2521 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2522 nm_i->nat_block_bitmap)) { 2523 struct folio *folio = get_current_nat_folio(sbi, nid); 2524 2525 if (IS_ERR(folio)) { 2526 ret = PTR_ERR(folio); 2527 } else { 2528 ret = scan_nat_page(sbi, folio_address(folio), 2529 nid); 2530 f2fs_folio_put(folio, true); 2531 } 2532 2533 if (ret) { 2534 f2fs_up_read(&nm_i->nat_tree_lock); 2535 2536 if (ret == -EFSCORRUPTED) { 2537 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2538 set_sbi_flag(sbi, SBI_NEED_FSCK); 2539 f2fs_handle_error(sbi, 2540 ERROR_INCONSISTENT_NAT); 2541 } 2542 2543 return ret; 2544 } 2545 } 2546 2547 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2548 if (unlikely(nid >= nm_i->max_nid)) 2549 nid = 0; 2550 2551 if (++i >= FREE_NID_PAGES) 2552 break; 2553 } 2554 2555 /* go to the next free nat pages to find free nids abundantly */ 2556 nm_i->next_scan_nid = nid; 2557 2558 /* find free nids from current sum_pages */ 2559 scan_curseg_cache(sbi); 2560 2561 f2fs_up_read(&nm_i->nat_tree_lock); 2562 2563 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2564 nm_i->ra_nid_pages, META_NAT, false); 2565 2566 return 0; 2567 } 2568 2569 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2570 { 2571 int ret; 2572 2573 mutex_lock(&NM_I(sbi)->build_lock); 2574 ret = __f2fs_build_free_nids(sbi, sync, mount); 2575 mutex_unlock(&NM_I(sbi)->build_lock); 2576 2577 return ret; 2578 } 2579 2580 /* 2581 * If this function returns success, caller can obtain a new nid 2582 * from second parameter of this function. 2583 * The returned nid could be used ino as well as nid when inode is created. 2584 */ 2585 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2586 { 2587 struct f2fs_nm_info *nm_i = NM_I(sbi); 2588 struct free_nid *i = NULL; 2589 retry: 2590 if (time_to_inject(sbi, FAULT_ALLOC_NID)) 2591 return false; 2592 2593 spin_lock(&nm_i->nid_list_lock); 2594 2595 if (unlikely(nm_i->available_nids == 0)) { 2596 spin_unlock(&nm_i->nid_list_lock); 2597 return false; 2598 } 2599 2600 /* We should not use stale free nids created by f2fs_build_free_nids */ 2601 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2602 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2603 i = list_first_entry(&nm_i->free_nid_list, 2604 struct free_nid, list); 2605 *nid = i->nid; 2606 2607 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2608 nm_i->available_nids--; 2609 2610 update_free_nid_bitmap(sbi, *nid, false, false); 2611 2612 spin_unlock(&nm_i->nid_list_lock); 2613 return true; 2614 } 2615 spin_unlock(&nm_i->nid_list_lock); 2616 2617 /* Let's scan nat pages and its caches to get free nids */ 2618 if (!f2fs_build_free_nids(sbi, true, false)) 2619 goto retry; 2620 return false; 2621 } 2622 2623 /* 2624 * f2fs_alloc_nid() should be called prior to this function. 2625 */ 2626 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2627 { 2628 struct f2fs_nm_info *nm_i = NM_I(sbi); 2629 struct free_nid *i; 2630 2631 spin_lock(&nm_i->nid_list_lock); 2632 i = __lookup_free_nid_list(nm_i, nid); 2633 f2fs_bug_on(sbi, !i); 2634 __remove_free_nid(sbi, i, PREALLOC_NID); 2635 spin_unlock(&nm_i->nid_list_lock); 2636 2637 kmem_cache_free(free_nid_slab, i); 2638 } 2639 2640 /* 2641 * f2fs_alloc_nid() should be called prior to this function. 2642 */ 2643 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2644 { 2645 struct f2fs_nm_info *nm_i = NM_I(sbi); 2646 struct free_nid *i; 2647 bool need_free = false; 2648 2649 if (!nid) 2650 return; 2651 2652 spin_lock(&nm_i->nid_list_lock); 2653 i = __lookup_free_nid_list(nm_i, nid); 2654 f2fs_bug_on(sbi, !i); 2655 2656 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2657 __remove_free_nid(sbi, i, PREALLOC_NID); 2658 need_free = true; 2659 } else { 2660 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2661 } 2662 2663 nm_i->available_nids++; 2664 2665 update_free_nid_bitmap(sbi, nid, true, false); 2666 2667 spin_unlock(&nm_i->nid_list_lock); 2668 2669 if (need_free) 2670 kmem_cache_free(free_nid_slab, i); 2671 } 2672 2673 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2674 { 2675 struct f2fs_nm_info *nm_i = NM_I(sbi); 2676 int nr = nr_shrink; 2677 2678 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2679 return 0; 2680 2681 if (!mutex_trylock(&nm_i->build_lock)) 2682 return 0; 2683 2684 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2685 struct free_nid *i, *next; 2686 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2687 2688 spin_lock(&nm_i->nid_list_lock); 2689 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2690 if (!nr_shrink || !batch || 2691 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2692 break; 2693 __remove_free_nid(sbi, i, FREE_NID); 2694 kmem_cache_free(free_nid_slab, i); 2695 nr_shrink--; 2696 batch--; 2697 } 2698 spin_unlock(&nm_i->nid_list_lock); 2699 } 2700 2701 mutex_unlock(&nm_i->build_lock); 2702 2703 return nr - nr_shrink; 2704 } 2705 2706 int f2fs_recover_inline_xattr(struct inode *inode, struct folio *folio) 2707 { 2708 void *src_addr, *dst_addr; 2709 size_t inline_size; 2710 struct folio *ifolio; 2711 struct f2fs_inode *ri; 2712 2713 ifolio = f2fs_get_inode_folio(F2FS_I_SB(inode), inode->i_ino); 2714 if (IS_ERR(ifolio)) 2715 return PTR_ERR(ifolio); 2716 2717 ri = F2FS_INODE(&folio->page); 2718 if (ri->i_inline & F2FS_INLINE_XATTR) { 2719 if (!f2fs_has_inline_xattr(inode)) { 2720 set_inode_flag(inode, FI_INLINE_XATTR); 2721 stat_inc_inline_xattr(inode); 2722 } 2723 } else { 2724 if (f2fs_has_inline_xattr(inode)) { 2725 stat_dec_inline_xattr(inode); 2726 clear_inode_flag(inode, FI_INLINE_XATTR); 2727 } 2728 goto update_inode; 2729 } 2730 2731 dst_addr = inline_xattr_addr(inode, ifolio); 2732 src_addr = inline_xattr_addr(inode, folio); 2733 inline_size = inline_xattr_size(inode); 2734 2735 f2fs_folio_wait_writeback(ifolio, NODE, true, true); 2736 memcpy(dst_addr, src_addr, inline_size); 2737 update_inode: 2738 f2fs_update_inode(inode, ifolio); 2739 f2fs_folio_put(ifolio, true); 2740 return 0; 2741 } 2742 2743 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2744 { 2745 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2746 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2747 nid_t new_xnid; 2748 struct dnode_of_data dn; 2749 struct node_info ni; 2750 struct folio *xfolio; 2751 int err; 2752 2753 if (!prev_xnid) 2754 goto recover_xnid; 2755 2756 /* 1: invalidate the previous xattr nid */ 2757 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); 2758 if (err) 2759 return err; 2760 2761 f2fs_invalidate_blocks(sbi, ni.blk_addr, 1); 2762 dec_valid_node_count(sbi, inode, false); 2763 set_node_addr(sbi, &ni, NULL_ADDR, false); 2764 2765 recover_xnid: 2766 /* 2: update xattr nid in inode */ 2767 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2768 return -ENOSPC; 2769 2770 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2771 xfolio = f2fs_new_node_folio(&dn, XATTR_NODE_OFFSET); 2772 if (IS_ERR(xfolio)) { 2773 f2fs_alloc_nid_failed(sbi, new_xnid); 2774 return PTR_ERR(xfolio); 2775 } 2776 2777 f2fs_alloc_nid_done(sbi, new_xnid); 2778 f2fs_update_inode_page(inode); 2779 2780 /* 3: update and set xattr node page dirty */ 2781 if (page) { 2782 memcpy(F2FS_NODE(&xfolio->page), F2FS_NODE(page), 2783 VALID_XATTR_BLOCK_SIZE); 2784 folio_mark_dirty(xfolio); 2785 } 2786 f2fs_folio_put(xfolio, true); 2787 2788 return 0; 2789 } 2790 2791 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2792 { 2793 struct f2fs_inode *src, *dst; 2794 nid_t ino = ino_of_node(page); 2795 struct node_info old_ni, new_ni; 2796 struct folio *ifolio; 2797 int err; 2798 2799 err = f2fs_get_node_info(sbi, ino, &old_ni, false); 2800 if (err) 2801 return err; 2802 2803 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2804 return -EINVAL; 2805 retry: 2806 ifolio = f2fs_grab_cache_folio(NODE_MAPPING(sbi), ino, false); 2807 if (IS_ERR(ifolio)) { 2808 memalloc_retry_wait(GFP_NOFS); 2809 goto retry; 2810 } 2811 2812 /* Should not use this inode from free nid list */ 2813 remove_free_nid(sbi, ino); 2814 2815 if (!folio_test_uptodate(ifolio)) 2816 folio_mark_uptodate(ifolio); 2817 fill_node_footer(&ifolio->page, ino, ino, 0, true); 2818 set_cold_node(&ifolio->page, false); 2819 2820 src = F2FS_INODE(page); 2821 dst = F2FS_INODE(&ifolio->page); 2822 2823 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2824 dst->i_size = 0; 2825 dst->i_blocks = cpu_to_le64(1); 2826 dst->i_links = cpu_to_le32(1); 2827 dst->i_xattr_nid = 0; 2828 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2829 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2830 dst->i_extra_isize = src->i_extra_isize; 2831 2832 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2833 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2834 i_inline_xattr_size)) 2835 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2836 2837 if (f2fs_sb_has_project_quota(sbi) && 2838 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2839 i_projid)) 2840 dst->i_projid = src->i_projid; 2841 2842 if (f2fs_sb_has_inode_crtime(sbi) && 2843 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2844 i_crtime_nsec)) { 2845 dst->i_crtime = src->i_crtime; 2846 dst->i_crtime_nsec = src->i_crtime_nsec; 2847 } 2848 } 2849 2850 new_ni = old_ni; 2851 new_ni.ino = ino; 2852 2853 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2854 WARN_ON(1); 2855 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2856 inc_valid_inode_count(sbi); 2857 folio_mark_dirty(ifolio); 2858 f2fs_folio_put(ifolio, true); 2859 return 0; 2860 } 2861 2862 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2863 unsigned int segno, struct f2fs_summary_block *sum) 2864 { 2865 struct f2fs_node *rn; 2866 struct f2fs_summary *sum_entry; 2867 block_t addr; 2868 int i, idx, last_offset, nrpages; 2869 2870 /* scan the node segment */ 2871 last_offset = BLKS_PER_SEG(sbi); 2872 addr = START_BLOCK(sbi, segno); 2873 sum_entry = &sum->entries[0]; 2874 2875 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2876 nrpages = bio_max_segs(last_offset - i); 2877 2878 /* readahead node pages */ 2879 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2880 2881 for (idx = addr; idx < addr + nrpages; idx++) { 2882 struct folio *folio = f2fs_get_tmp_folio(sbi, idx); 2883 2884 if (IS_ERR(folio)) 2885 return PTR_ERR(folio); 2886 2887 rn = F2FS_NODE(&folio->page); 2888 sum_entry->nid = rn->footer.nid; 2889 sum_entry->version = 0; 2890 sum_entry->ofs_in_node = 0; 2891 sum_entry++; 2892 f2fs_folio_put(folio, true); 2893 } 2894 2895 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2896 addr + nrpages); 2897 } 2898 return 0; 2899 } 2900 2901 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2902 { 2903 struct f2fs_nm_info *nm_i = NM_I(sbi); 2904 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2905 struct f2fs_journal *journal = curseg->journal; 2906 int i; 2907 2908 down_write(&curseg->journal_rwsem); 2909 for (i = 0; i < nats_in_cursum(journal); i++) { 2910 struct nat_entry *ne; 2911 struct f2fs_nat_entry raw_ne; 2912 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2913 2914 if (f2fs_check_nid_range(sbi, nid)) 2915 continue; 2916 2917 raw_ne = nat_in_journal(journal, i); 2918 2919 ne = __lookup_nat_cache(nm_i, nid); 2920 if (!ne) { 2921 ne = __alloc_nat_entry(sbi, nid, true); 2922 __init_nat_entry(nm_i, ne, &raw_ne, true); 2923 } 2924 2925 /* 2926 * if a free nat in journal has not been used after last 2927 * checkpoint, we should remove it from available nids, 2928 * since later we will add it again. 2929 */ 2930 if (!get_nat_flag(ne, IS_DIRTY) && 2931 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2932 spin_lock(&nm_i->nid_list_lock); 2933 nm_i->available_nids--; 2934 spin_unlock(&nm_i->nid_list_lock); 2935 } 2936 2937 __set_nat_cache_dirty(nm_i, ne); 2938 } 2939 update_nats_in_cursum(journal, -i); 2940 up_write(&curseg->journal_rwsem); 2941 } 2942 2943 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2944 struct list_head *head, int max) 2945 { 2946 struct nat_entry_set *cur; 2947 2948 if (nes->entry_cnt >= max) 2949 goto add_out; 2950 2951 list_for_each_entry(cur, head, set_list) { 2952 if (cur->entry_cnt >= nes->entry_cnt) { 2953 list_add(&nes->set_list, cur->set_list.prev); 2954 return; 2955 } 2956 } 2957 add_out: 2958 list_add_tail(&nes->set_list, head); 2959 } 2960 2961 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2962 struct page *page) 2963 { 2964 struct f2fs_nm_info *nm_i = NM_I(sbi); 2965 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2966 struct f2fs_nat_block *nat_blk = page_address(page); 2967 int valid = 0; 2968 int i = 0; 2969 2970 if (!enabled_nat_bits(sbi, NULL)) 2971 return; 2972 2973 if (nat_index == 0) { 2974 valid = 1; 2975 i = 1; 2976 } 2977 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2978 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2979 valid++; 2980 } 2981 if (valid == 0) { 2982 __set_bit_le(nat_index, nm_i->empty_nat_bits); 2983 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2984 return; 2985 } 2986 2987 __clear_bit_le(nat_index, nm_i->empty_nat_bits); 2988 if (valid == NAT_ENTRY_PER_BLOCK) 2989 __set_bit_le(nat_index, nm_i->full_nat_bits); 2990 else 2991 __clear_bit_le(nat_index, nm_i->full_nat_bits); 2992 } 2993 2994 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2995 struct nat_entry_set *set, struct cp_control *cpc) 2996 { 2997 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2998 struct f2fs_journal *journal = curseg->journal; 2999 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 3000 bool to_journal = true; 3001 struct f2fs_nat_block *nat_blk; 3002 struct nat_entry *ne, *cur; 3003 struct page *page = NULL; 3004 3005 /* 3006 * there are two steps to flush nat entries: 3007 * #1, flush nat entries to journal in current hot data summary block. 3008 * #2, flush nat entries to nat page. 3009 */ 3010 if (enabled_nat_bits(sbi, cpc) || 3011 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 3012 to_journal = false; 3013 3014 if (to_journal) { 3015 down_write(&curseg->journal_rwsem); 3016 } else { 3017 page = get_next_nat_page(sbi, start_nid); 3018 if (IS_ERR(page)) 3019 return PTR_ERR(page); 3020 3021 nat_blk = page_address(page); 3022 f2fs_bug_on(sbi, !nat_blk); 3023 } 3024 3025 /* flush dirty nats in nat entry set */ 3026 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 3027 struct f2fs_nat_entry *raw_ne; 3028 nid_t nid = nat_get_nid(ne); 3029 int offset; 3030 3031 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 3032 3033 if (to_journal) { 3034 offset = f2fs_lookup_journal_in_cursum(journal, 3035 NAT_JOURNAL, nid, 1); 3036 f2fs_bug_on(sbi, offset < 0); 3037 raw_ne = &nat_in_journal(journal, offset); 3038 nid_in_journal(journal, offset) = cpu_to_le32(nid); 3039 } else { 3040 raw_ne = &nat_blk->entries[nid - start_nid]; 3041 } 3042 raw_nat_from_node_info(raw_ne, &ne->ni); 3043 nat_reset_flag(ne); 3044 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 3045 if (nat_get_blkaddr(ne) == NULL_ADDR) { 3046 add_free_nid(sbi, nid, false, true); 3047 } else { 3048 spin_lock(&NM_I(sbi)->nid_list_lock); 3049 update_free_nid_bitmap(sbi, nid, false, false); 3050 spin_unlock(&NM_I(sbi)->nid_list_lock); 3051 } 3052 } 3053 3054 if (to_journal) { 3055 up_write(&curseg->journal_rwsem); 3056 } else { 3057 __update_nat_bits(sbi, start_nid, page); 3058 f2fs_put_page(page, 1); 3059 } 3060 3061 /* Allow dirty nats by node block allocation in write_begin */ 3062 if (!set->entry_cnt) { 3063 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 3064 kmem_cache_free(nat_entry_set_slab, set); 3065 } 3066 return 0; 3067 } 3068 3069 /* 3070 * This function is called during the checkpointing process. 3071 */ 3072 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3073 { 3074 struct f2fs_nm_info *nm_i = NM_I(sbi); 3075 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3076 struct f2fs_journal *journal = curseg->journal; 3077 struct nat_entry_set *setvec[NAT_VEC_SIZE]; 3078 struct nat_entry_set *set, *tmp; 3079 unsigned int found; 3080 nid_t set_idx = 0; 3081 LIST_HEAD(sets); 3082 int err = 0; 3083 3084 /* 3085 * during unmount, let's flush nat_bits before checking 3086 * nat_cnt[DIRTY_NAT]. 3087 */ 3088 if (enabled_nat_bits(sbi, cpc)) { 3089 f2fs_down_write(&nm_i->nat_tree_lock); 3090 remove_nats_in_journal(sbi); 3091 f2fs_up_write(&nm_i->nat_tree_lock); 3092 } 3093 3094 if (!nm_i->nat_cnt[DIRTY_NAT]) 3095 return 0; 3096 3097 f2fs_down_write(&nm_i->nat_tree_lock); 3098 3099 /* 3100 * if there are no enough space in journal to store dirty nat 3101 * entries, remove all entries from journal and merge them 3102 * into nat entry set. 3103 */ 3104 if (enabled_nat_bits(sbi, cpc) || 3105 !__has_cursum_space(journal, 3106 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 3107 remove_nats_in_journal(sbi); 3108 3109 while ((found = __gang_lookup_nat_set(nm_i, 3110 set_idx, NAT_VEC_SIZE, setvec))) { 3111 unsigned idx; 3112 3113 set_idx = setvec[found - 1]->set + 1; 3114 for (idx = 0; idx < found; idx++) 3115 __adjust_nat_entry_set(setvec[idx], &sets, 3116 MAX_NAT_JENTRIES(journal)); 3117 } 3118 3119 /* flush dirty nats in nat entry set */ 3120 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3121 err = __flush_nat_entry_set(sbi, set, cpc); 3122 if (err) 3123 break; 3124 } 3125 3126 f2fs_up_write(&nm_i->nat_tree_lock); 3127 /* Allow dirty nats by node block allocation in write_begin */ 3128 3129 return err; 3130 } 3131 3132 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3133 { 3134 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3135 struct f2fs_nm_info *nm_i = NM_I(sbi); 3136 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3137 unsigned int i; 3138 __u64 cp_ver = cur_cp_version(ckpt); 3139 block_t nat_bits_addr; 3140 3141 if (!enabled_nat_bits(sbi, NULL)) 3142 return 0; 3143 3144 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3145 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3146 F2FS_BLK_TO_BYTES(nm_i->nat_bits_blocks), GFP_KERNEL); 3147 if (!nm_i->nat_bits) 3148 return -ENOMEM; 3149 3150 nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) - 3151 nm_i->nat_bits_blocks; 3152 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3153 struct folio *folio; 3154 3155 folio = f2fs_get_meta_folio(sbi, nat_bits_addr++); 3156 if (IS_ERR(folio)) 3157 return PTR_ERR(folio); 3158 3159 memcpy(nm_i->nat_bits + F2FS_BLK_TO_BYTES(i), 3160 folio_address(folio), F2FS_BLKSIZE); 3161 f2fs_folio_put(folio, true); 3162 } 3163 3164 cp_ver |= (cur_cp_crc(ckpt) << 32); 3165 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3166 disable_nat_bits(sbi, true); 3167 return 0; 3168 } 3169 3170 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3171 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3172 3173 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3174 return 0; 3175 } 3176 3177 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3178 { 3179 struct f2fs_nm_info *nm_i = NM_I(sbi); 3180 unsigned int i = 0; 3181 nid_t nid, last_nid; 3182 3183 if (!enabled_nat_bits(sbi, NULL)) 3184 return; 3185 3186 for (i = 0; i < nm_i->nat_blocks; i++) { 3187 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3188 if (i >= nm_i->nat_blocks) 3189 break; 3190 3191 __set_bit_le(i, nm_i->nat_block_bitmap); 3192 3193 nid = i * NAT_ENTRY_PER_BLOCK; 3194 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3195 3196 spin_lock(&NM_I(sbi)->nid_list_lock); 3197 for (; nid < last_nid; nid++) 3198 update_free_nid_bitmap(sbi, nid, true, true); 3199 spin_unlock(&NM_I(sbi)->nid_list_lock); 3200 } 3201 3202 for (i = 0; i < nm_i->nat_blocks; i++) { 3203 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3204 if (i >= nm_i->nat_blocks) 3205 break; 3206 3207 __set_bit_le(i, nm_i->nat_block_bitmap); 3208 } 3209 } 3210 3211 static int init_node_manager(struct f2fs_sb_info *sbi) 3212 { 3213 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3214 struct f2fs_nm_info *nm_i = NM_I(sbi); 3215 unsigned char *version_bitmap; 3216 unsigned int nat_segs; 3217 int err; 3218 3219 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3220 3221 /* segment_count_nat includes pair segment so divide to 2. */ 3222 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3223 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3224 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3225 3226 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3227 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3228 F2FS_RESERVED_NODE_NUM; 3229 nm_i->nid_cnt[FREE_NID] = 0; 3230 nm_i->nid_cnt[PREALLOC_NID] = 0; 3231 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3232 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3233 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3234 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; 3235 3236 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3237 INIT_LIST_HEAD(&nm_i->free_nid_list); 3238 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3239 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3240 INIT_LIST_HEAD(&nm_i->nat_entries); 3241 spin_lock_init(&nm_i->nat_list_lock); 3242 3243 mutex_init(&nm_i->build_lock); 3244 spin_lock_init(&nm_i->nid_list_lock); 3245 init_f2fs_rwsem(&nm_i->nat_tree_lock); 3246 3247 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3248 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3249 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3250 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3251 GFP_KERNEL); 3252 if (!nm_i->nat_bitmap) 3253 return -ENOMEM; 3254 3255 if (!test_opt(sbi, NAT_BITS)) 3256 disable_nat_bits(sbi, true); 3257 3258 err = __get_nat_bitmaps(sbi); 3259 if (err) 3260 return err; 3261 3262 #ifdef CONFIG_F2FS_CHECK_FS 3263 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3264 GFP_KERNEL); 3265 if (!nm_i->nat_bitmap_mir) 3266 return -ENOMEM; 3267 #endif 3268 3269 return 0; 3270 } 3271 3272 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3273 { 3274 struct f2fs_nm_info *nm_i = NM_I(sbi); 3275 int i; 3276 3277 nm_i->free_nid_bitmap = 3278 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3279 nm_i->nat_blocks), 3280 GFP_KERNEL); 3281 if (!nm_i->free_nid_bitmap) 3282 return -ENOMEM; 3283 3284 for (i = 0; i < nm_i->nat_blocks; i++) { 3285 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3286 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3287 if (!nm_i->free_nid_bitmap[i]) 3288 return -ENOMEM; 3289 } 3290 3291 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3292 GFP_KERNEL); 3293 if (!nm_i->nat_block_bitmap) 3294 return -ENOMEM; 3295 3296 nm_i->free_nid_count = 3297 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3298 nm_i->nat_blocks), 3299 GFP_KERNEL); 3300 if (!nm_i->free_nid_count) 3301 return -ENOMEM; 3302 return 0; 3303 } 3304 3305 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3306 { 3307 int err; 3308 3309 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3310 GFP_KERNEL); 3311 if (!sbi->nm_info) 3312 return -ENOMEM; 3313 3314 err = init_node_manager(sbi); 3315 if (err) 3316 return err; 3317 3318 err = init_free_nid_cache(sbi); 3319 if (err) 3320 return err; 3321 3322 /* load free nid status from nat_bits table */ 3323 load_free_nid_bitmap(sbi); 3324 3325 return f2fs_build_free_nids(sbi, true, true); 3326 } 3327 3328 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3329 { 3330 struct f2fs_nm_info *nm_i = NM_I(sbi); 3331 struct free_nid *i, *next_i; 3332 void *vec[NAT_VEC_SIZE]; 3333 struct nat_entry **natvec = (struct nat_entry **)vec; 3334 struct nat_entry_set **setvec = (struct nat_entry_set **)vec; 3335 nid_t nid = 0; 3336 unsigned int found; 3337 3338 if (!nm_i) 3339 return; 3340 3341 /* destroy free nid list */ 3342 spin_lock(&nm_i->nid_list_lock); 3343 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3344 __remove_free_nid(sbi, i, FREE_NID); 3345 spin_unlock(&nm_i->nid_list_lock); 3346 kmem_cache_free(free_nid_slab, i); 3347 spin_lock(&nm_i->nid_list_lock); 3348 } 3349 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3350 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3351 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3352 spin_unlock(&nm_i->nid_list_lock); 3353 3354 /* destroy nat cache */ 3355 f2fs_down_write(&nm_i->nat_tree_lock); 3356 while ((found = __gang_lookup_nat_cache(nm_i, 3357 nid, NAT_VEC_SIZE, natvec))) { 3358 unsigned idx; 3359 3360 nid = nat_get_nid(natvec[found - 1]) + 1; 3361 for (idx = 0; idx < found; idx++) { 3362 spin_lock(&nm_i->nat_list_lock); 3363 list_del(&natvec[idx]->list); 3364 spin_unlock(&nm_i->nat_list_lock); 3365 3366 __del_from_nat_cache(nm_i, natvec[idx]); 3367 } 3368 } 3369 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3370 3371 /* destroy nat set cache */ 3372 nid = 0; 3373 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE); 3374 while ((found = __gang_lookup_nat_set(nm_i, 3375 nid, NAT_VEC_SIZE, setvec))) { 3376 unsigned idx; 3377 3378 nid = setvec[found - 1]->set + 1; 3379 for (idx = 0; idx < found; idx++) { 3380 /* entry_cnt is not zero, when cp_error was occurred */ 3381 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3382 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3383 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3384 } 3385 } 3386 f2fs_up_write(&nm_i->nat_tree_lock); 3387 3388 kvfree(nm_i->nat_block_bitmap); 3389 if (nm_i->free_nid_bitmap) { 3390 int i; 3391 3392 for (i = 0; i < nm_i->nat_blocks; i++) 3393 kvfree(nm_i->free_nid_bitmap[i]); 3394 kvfree(nm_i->free_nid_bitmap); 3395 } 3396 kvfree(nm_i->free_nid_count); 3397 3398 kvfree(nm_i->nat_bitmap); 3399 kvfree(nm_i->nat_bits); 3400 #ifdef CONFIG_F2FS_CHECK_FS 3401 kvfree(nm_i->nat_bitmap_mir); 3402 #endif 3403 sbi->nm_info = NULL; 3404 kfree(nm_i); 3405 } 3406 3407 int __init f2fs_create_node_manager_caches(void) 3408 { 3409 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3410 sizeof(struct nat_entry)); 3411 if (!nat_entry_slab) 3412 goto fail; 3413 3414 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3415 sizeof(struct free_nid)); 3416 if (!free_nid_slab) 3417 goto destroy_nat_entry; 3418 3419 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3420 sizeof(struct nat_entry_set)); 3421 if (!nat_entry_set_slab) 3422 goto destroy_free_nid; 3423 3424 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3425 sizeof(struct fsync_node_entry)); 3426 if (!fsync_node_entry_slab) 3427 goto destroy_nat_entry_set; 3428 return 0; 3429 3430 destroy_nat_entry_set: 3431 kmem_cache_destroy(nat_entry_set_slab); 3432 destroy_free_nid: 3433 kmem_cache_destroy(free_nid_slab); 3434 destroy_nat_entry: 3435 kmem_cache_destroy(nat_entry_slab); 3436 fail: 3437 return -ENOMEM; 3438 } 3439 3440 void f2fs_destroy_node_manager_caches(void) 3441 { 3442 kmem_cache_destroy(fsync_node_entry_slab); 3443 kmem_cache_destroy(nat_entry_set_slab); 3444 kmem_cache_destroy(free_nid_slab); 3445 kmem_cache_destroy(nat_entry_slab); 3446 } 3447