1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/sched/mm.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "iostat.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 return -EFSCORRUPTED; 40 } 41 return 0; 42 } 43 44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 45 { 46 struct f2fs_nm_info *nm_i = NM_I(sbi); 47 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 48 struct sysinfo val; 49 unsigned long avail_ram; 50 unsigned long mem_size = 0; 51 bool res = false; 52 53 if (!nm_i) 54 return true; 55 56 si_meminfo(&val); 57 58 /* only uses low memory */ 59 avail_ram = val.totalram - val.totalhigh; 60 61 /* 62 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 63 */ 64 if (type == FREE_NIDS) { 65 mem_size = (nm_i->nid_cnt[FREE_NID] * 66 sizeof(struct free_nid)) >> PAGE_SHIFT; 67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 68 } else if (type == NAT_ENTRIES) { 69 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 70 sizeof(struct nat_entry)) >> PAGE_SHIFT; 71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 72 if (excess_cached_nats(sbi)) 73 res = false; 74 } else if (type == DIRTY_DENTS) { 75 if (sbi->sb->s_bdi->wb.dirty_exceeded) 76 return false; 77 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 78 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 79 } else if (type == INO_ENTRIES) { 80 int i; 81 82 for (i = 0; i < MAX_INO_ENTRY; i++) 83 mem_size += sbi->im[i].ino_num * 84 sizeof(struct ino_entry); 85 mem_size >>= PAGE_SHIFT; 86 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 87 } else if (type == EXTENT_CACHE) { 88 mem_size = (atomic_read(&sbi->total_ext_tree) * 89 sizeof(struct extent_tree) + 90 atomic_read(&sbi->total_ext_node) * 91 sizeof(struct extent_node)) >> PAGE_SHIFT; 92 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 93 } else if (type == INMEM_PAGES) { 94 /* it allows 20% / total_ram for inmemory pages */ 95 mem_size = get_pages(sbi, F2FS_INMEM_PAGES); 96 res = mem_size < (val.totalram / 5); 97 } else if (type == DISCARD_CACHE) { 98 mem_size = (atomic_read(&dcc->discard_cmd_cnt) * 99 sizeof(struct discard_cmd)) >> PAGE_SHIFT; 100 res = mem_size < (avail_ram * nm_i->ram_thresh / 100); 101 } else if (type == COMPRESS_PAGE) { 102 #ifdef CONFIG_F2FS_FS_COMPRESSION 103 unsigned long free_ram = val.freeram; 104 105 /* 106 * free memory is lower than watermark or cached page count 107 * exceed threshold, deny caching compress page. 108 */ 109 res = (free_ram > avail_ram * sbi->compress_watermark / 100) && 110 (COMPRESS_MAPPING(sbi)->nrpages < 111 free_ram * sbi->compress_percent / 100); 112 #else 113 res = false; 114 #endif 115 } else { 116 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 117 return true; 118 } 119 return res; 120 } 121 122 static void clear_node_page_dirty(struct page *page) 123 { 124 if (PageDirty(page)) { 125 f2fs_clear_page_cache_dirty_tag(page); 126 clear_page_dirty_for_io(page); 127 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 128 } 129 ClearPageUptodate(page); 130 } 131 132 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 133 { 134 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 135 } 136 137 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 138 { 139 struct page *src_page; 140 struct page *dst_page; 141 pgoff_t dst_off; 142 void *src_addr; 143 void *dst_addr; 144 struct f2fs_nm_info *nm_i = NM_I(sbi); 145 146 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 147 148 /* get current nat block page with lock */ 149 src_page = get_current_nat_page(sbi, nid); 150 if (IS_ERR(src_page)) 151 return src_page; 152 dst_page = f2fs_grab_meta_page(sbi, dst_off); 153 f2fs_bug_on(sbi, PageDirty(src_page)); 154 155 src_addr = page_address(src_page); 156 dst_addr = page_address(dst_page); 157 memcpy(dst_addr, src_addr, PAGE_SIZE); 158 set_page_dirty(dst_page); 159 f2fs_put_page(src_page, 1); 160 161 set_to_next_nat(nm_i, nid); 162 163 return dst_page; 164 } 165 166 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, 167 nid_t nid, bool no_fail) 168 { 169 struct nat_entry *new; 170 171 new = f2fs_kmem_cache_alloc(nat_entry_slab, 172 GFP_F2FS_ZERO, no_fail, sbi); 173 if (new) { 174 nat_set_nid(new, nid); 175 nat_reset_flag(new); 176 } 177 return new; 178 } 179 180 static void __free_nat_entry(struct nat_entry *e) 181 { 182 kmem_cache_free(nat_entry_slab, e); 183 } 184 185 /* must be locked by nat_tree_lock */ 186 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 187 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 188 { 189 if (no_fail) 190 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 191 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 192 return NULL; 193 194 if (raw_ne) 195 node_info_from_raw_nat(&ne->ni, raw_ne); 196 197 spin_lock(&nm_i->nat_list_lock); 198 list_add_tail(&ne->list, &nm_i->nat_entries); 199 spin_unlock(&nm_i->nat_list_lock); 200 201 nm_i->nat_cnt[TOTAL_NAT]++; 202 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 203 return ne; 204 } 205 206 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 207 { 208 struct nat_entry *ne; 209 210 ne = radix_tree_lookup(&nm_i->nat_root, n); 211 212 /* for recent accessed nat entry, move it to tail of lru list */ 213 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 214 spin_lock(&nm_i->nat_list_lock); 215 if (!list_empty(&ne->list)) 216 list_move_tail(&ne->list, &nm_i->nat_entries); 217 spin_unlock(&nm_i->nat_list_lock); 218 } 219 220 return ne; 221 } 222 223 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 224 nid_t start, unsigned int nr, struct nat_entry **ep) 225 { 226 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 227 } 228 229 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 230 { 231 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 232 nm_i->nat_cnt[TOTAL_NAT]--; 233 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 234 __free_nat_entry(e); 235 } 236 237 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 238 struct nat_entry *ne) 239 { 240 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 241 struct nat_entry_set *head; 242 243 head = radix_tree_lookup(&nm_i->nat_set_root, set); 244 if (!head) { 245 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, 246 GFP_NOFS, true, NULL); 247 248 INIT_LIST_HEAD(&head->entry_list); 249 INIT_LIST_HEAD(&head->set_list); 250 head->set = set; 251 head->entry_cnt = 0; 252 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 253 } 254 return head; 255 } 256 257 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 258 struct nat_entry *ne) 259 { 260 struct nat_entry_set *head; 261 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 262 263 if (!new_ne) 264 head = __grab_nat_entry_set(nm_i, ne); 265 266 /* 267 * update entry_cnt in below condition: 268 * 1. update NEW_ADDR to valid block address; 269 * 2. update old block address to new one; 270 */ 271 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 272 !get_nat_flag(ne, IS_DIRTY))) 273 head->entry_cnt++; 274 275 set_nat_flag(ne, IS_PREALLOC, new_ne); 276 277 if (get_nat_flag(ne, IS_DIRTY)) 278 goto refresh_list; 279 280 nm_i->nat_cnt[DIRTY_NAT]++; 281 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 282 set_nat_flag(ne, IS_DIRTY, true); 283 refresh_list: 284 spin_lock(&nm_i->nat_list_lock); 285 if (new_ne) 286 list_del_init(&ne->list); 287 else 288 list_move_tail(&ne->list, &head->entry_list); 289 spin_unlock(&nm_i->nat_list_lock); 290 } 291 292 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 293 struct nat_entry_set *set, struct nat_entry *ne) 294 { 295 spin_lock(&nm_i->nat_list_lock); 296 list_move_tail(&ne->list, &nm_i->nat_entries); 297 spin_unlock(&nm_i->nat_list_lock); 298 299 set_nat_flag(ne, IS_DIRTY, false); 300 set->entry_cnt--; 301 nm_i->nat_cnt[DIRTY_NAT]--; 302 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 303 } 304 305 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 306 nid_t start, unsigned int nr, struct nat_entry_set **ep) 307 { 308 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 309 start, nr); 310 } 311 312 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 313 { 314 return NODE_MAPPING(sbi) == page->mapping && 315 IS_DNODE(page) && is_cold_node(page); 316 } 317 318 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 319 { 320 spin_lock_init(&sbi->fsync_node_lock); 321 INIT_LIST_HEAD(&sbi->fsync_node_list); 322 sbi->fsync_seg_id = 0; 323 sbi->fsync_node_num = 0; 324 } 325 326 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 327 struct page *page) 328 { 329 struct fsync_node_entry *fn; 330 unsigned long flags; 331 unsigned int seq_id; 332 333 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, 334 GFP_NOFS, true, NULL); 335 336 get_page(page); 337 fn->page = page; 338 INIT_LIST_HEAD(&fn->list); 339 340 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 341 list_add_tail(&fn->list, &sbi->fsync_node_list); 342 fn->seq_id = sbi->fsync_seg_id++; 343 seq_id = fn->seq_id; 344 sbi->fsync_node_num++; 345 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 346 347 return seq_id; 348 } 349 350 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 351 { 352 struct fsync_node_entry *fn; 353 unsigned long flags; 354 355 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 356 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 357 if (fn->page == page) { 358 list_del(&fn->list); 359 sbi->fsync_node_num--; 360 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 361 kmem_cache_free(fsync_node_entry_slab, fn); 362 put_page(page); 363 return; 364 } 365 } 366 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 367 f2fs_bug_on(sbi, 1); 368 } 369 370 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 371 { 372 unsigned long flags; 373 374 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 375 sbi->fsync_seg_id = 0; 376 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 377 } 378 379 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 380 { 381 struct f2fs_nm_info *nm_i = NM_I(sbi); 382 struct nat_entry *e; 383 bool need = false; 384 385 f2fs_down_read(&nm_i->nat_tree_lock); 386 e = __lookup_nat_cache(nm_i, nid); 387 if (e) { 388 if (!get_nat_flag(e, IS_CHECKPOINTED) && 389 !get_nat_flag(e, HAS_FSYNCED_INODE)) 390 need = true; 391 } 392 f2fs_up_read(&nm_i->nat_tree_lock); 393 return need; 394 } 395 396 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 397 { 398 struct f2fs_nm_info *nm_i = NM_I(sbi); 399 struct nat_entry *e; 400 bool is_cp = true; 401 402 f2fs_down_read(&nm_i->nat_tree_lock); 403 e = __lookup_nat_cache(nm_i, nid); 404 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 405 is_cp = false; 406 f2fs_up_read(&nm_i->nat_tree_lock); 407 return is_cp; 408 } 409 410 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 411 { 412 struct f2fs_nm_info *nm_i = NM_I(sbi); 413 struct nat_entry *e; 414 bool need_update = true; 415 416 f2fs_down_read(&nm_i->nat_tree_lock); 417 e = __lookup_nat_cache(nm_i, ino); 418 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 419 (get_nat_flag(e, IS_CHECKPOINTED) || 420 get_nat_flag(e, HAS_FSYNCED_INODE))) 421 need_update = false; 422 f2fs_up_read(&nm_i->nat_tree_lock); 423 return need_update; 424 } 425 426 /* must be locked by nat_tree_lock */ 427 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 428 struct f2fs_nat_entry *ne) 429 { 430 struct f2fs_nm_info *nm_i = NM_I(sbi); 431 struct nat_entry *new, *e; 432 433 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ 434 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) 435 return; 436 437 new = __alloc_nat_entry(sbi, nid, false); 438 if (!new) 439 return; 440 441 f2fs_down_write(&nm_i->nat_tree_lock); 442 e = __lookup_nat_cache(nm_i, nid); 443 if (!e) 444 e = __init_nat_entry(nm_i, new, ne, false); 445 else 446 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 447 nat_get_blkaddr(e) != 448 le32_to_cpu(ne->block_addr) || 449 nat_get_version(e) != ne->version); 450 f2fs_up_write(&nm_i->nat_tree_lock); 451 if (e != new) 452 __free_nat_entry(new); 453 } 454 455 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 456 block_t new_blkaddr, bool fsync_done) 457 { 458 struct f2fs_nm_info *nm_i = NM_I(sbi); 459 struct nat_entry *e; 460 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); 461 462 f2fs_down_write(&nm_i->nat_tree_lock); 463 e = __lookup_nat_cache(nm_i, ni->nid); 464 if (!e) { 465 e = __init_nat_entry(nm_i, new, NULL, true); 466 copy_node_info(&e->ni, ni); 467 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 468 } else if (new_blkaddr == NEW_ADDR) { 469 /* 470 * when nid is reallocated, 471 * previous nat entry can be remained in nat cache. 472 * So, reinitialize it with new information. 473 */ 474 copy_node_info(&e->ni, ni); 475 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 476 } 477 /* let's free early to reduce memory consumption */ 478 if (e != new) 479 __free_nat_entry(new); 480 481 /* sanity check */ 482 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 483 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 484 new_blkaddr == NULL_ADDR); 485 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 486 new_blkaddr == NEW_ADDR); 487 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 488 new_blkaddr == NEW_ADDR); 489 490 /* increment version no as node is removed */ 491 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 492 unsigned char version = nat_get_version(e); 493 494 nat_set_version(e, inc_node_version(version)); 495 } 496 497 /* change address */ 498 nat_set_blkaddr(e, new_blkaddr); 499 if (!__is_valid_data_blkaddr(new_blkaddr)) 500 set_nat_flag(e, IS_CHECKPOINTED, false); 501 __set_nat_cache_dirty(nm_i, e); 502 503 /* update fsync_mark if its inode nat entry is still alive */ 504 if (ni->nid != ni->ino) 505 e = __lookup_nat_cache(nm_i, ni->ino); 506 if (e) { 507 if (fsync_done && ni->nid == ni->ino) 508 set_nat_flag(e, HAS_FSYNCED_INODE, true); 509 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 510 } 511 f2fs_up_write(&nm_i->nat_tree_lock); 512 } 513 514 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 515 { 516 struct f2fs_nm_info *nm_i = NM_I(sbi); 517 int nr = nr_shrink; 518 519 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) 520 return 0; 521 522 spin_lock(&nm_i->nat_list_lock); 523 while (nr_shrink) { 524 struct nat_entry *ne; 525 526 if (list_empty(&nm_i->nat_entries)) 527 break; 528 529 ne = list_first_entry(&nm_i->nat_entries, 530 struct nat_entry, list); 531 list_del(&ne->list); 532 spin_unlock(&nm_i->nat_list_lock); 533 534 __del_from_nat_cache(nm_i, ne); 535 nr_shrink--; 536 537 spin_lock(&nm_i->nat_list_lock); 538 } 539 spin_unlock(&nm_i->nat_list_lock); 540 541 f2fs_up_write(&nm_i->nat_tree_lock); 542 return nr - nr_shrink; 543 } 544 545 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 546 struct node_info *ni, bool checkpoint_context) 547 { 548 struct f2fs_nm_info *nm_i = NM_I(sbi); 549 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 550 struct f2fs_journal *journal = curseg->journal; 551 nid_t start_nid = START_NID(nid); 552 struct f2fs_nat_block *nat_blk; 553 struct page *page = NULL; 554 struct f2fs_nat_entry ne; 555 struct nat_entry *e; 556 pgoff_t index; 557 block_t blkaddr; 558 int i; 559 560 ni->nid = nid; 561 retry: 562 /* Check nat cache */ 563 f2fs_down_read(&nm_i->nat_tree_lock); 564 e = __lookup_nat_cache(nm_i, nid); 565 if (e) { 566 ni->ino = nat_get_ino(e); 567 ni->blk_addr = nat_get_blkaddr(e); 568 ni->version = nat_get_version(e); 569 f2fs_up_read(&nm_i->nat_tree_lock); 570 return 0; 571 } 572 573 /* 574 * Check current segment summary by trying to grab journal_rwsem first. 575 * This sem is on the critical path on the checkpoint requiring the above 576 * nat_tree_lock. Therefore, we should retry, if we failed to grab here 577 * while not bothering checkpoint. 578 */ 579 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { 580 down_read(&curseg->journal_rwsem); 581 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || 582 !down_read_trylock(&curseg->journal_rwsem)) { 583 f2fs_up_read(&nm_i->nat_tree_lock); 584 goto retry; 585 } 586 587 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 588 if (i >= 0) { 589 ne = nat_in_journal(journal, i); 590 node_info_from_raw_nat(ni, &ne); 591 } 592 up_read(&curseg->journal_rwsem); 593 if (i >= 0) { 594 f2fs_up_read(&nm_i->nat_tree_lock); 595 goto cache; 596 } 597 598 /* Fill node_info from nat page */ 599 index = current_nat_addr(sbi, nid); 600 f2fs_up_read(&nm_i->nat_tree_lock); 601 602 page = f2fs_get_meta_page(sbi, index); 603 if (IS_ERR(page)) 604 return PTR_ERR(page); 605 606 nat_blk = (struct f2fs_nat_block *)page_address(page); 607 ne = nat_blk->entries[nid - start_nid]; 608 node_info_from_raw_nat(ni, &ne); 609 f2fs_put_page(page, 1); 610 cache: 611 blkaddr = le32_to_cpu(ne.block_addr); 612 if (__is_valid_data_blkaddr(blkaddr) && 613 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 614 return -EFAULT; 615 616 /* cache nat entry */ 617 cache_nat_entry(sbi, nid, &ne); 618 return 0; 619 } 620 621 /* 622 * readahead MAX_RA_NODE number of node pages. 623 */ 624 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 625 { 626 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 627 struct blk_plug plug; 628 int i, end; 629 nid_t nid; 630 631 blk_start_plug(&plug); 632 633 /* Then, try readahead for siblings of the desired node */ 634 end = start + n; 635 end = min(end, NIDS_PER_BLOCK); 636 for (i = start; i < end; i++) { 637 nid = get_nid(parent, i, false); 638 f2fs_ra_node_page(sbi, nid); 639 } 640 641 blk_finish_plug(&plug); 642 } 643 644 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 645 { 646 const long direct_index = ADDRS_PER_INODE(dn->inode); 647 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 648 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 649 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 650 int cur_level = dn->cur_level; 651 int max_level = dn->max_level; 652 pgoff_t base = 0; 653 654 if (!dn->max_level) 655 return pgofs + 1; 656 657 while (max_level-- > cur_level) 658 skipped_unit *= NIDS_PER_BLOCK; 659 660 switch (dn->max_level) { 661 case 3: 662 base += 2 * indirect_blks; 663 fallthrough; 664 case 2: 665 base += 2 * direct_blks; 666 fallthrough; 667 case 1: 668 base += direct_index; 669 break; 670 default: 671 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 672 } 673 674 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 675 } 676 677 /* 678 * The maximum depth is four. 679 * Offset[0] will have raw inode offset. 680 */ 681 static int get_node_path(struct inode *inode, long block, 682 int offset[4], unsigned int noffset[4]) 683 { 684 const long direct_index = ADDRS_PER_INODE(inode); 685 const long direct_blks = ADDRS_PER_BLOCK(inode); 686 const long dptrs_per_blk = NIDS_PER_BLOCK; 687 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 688 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 689 int n = 0; 690 int level = 0; 691 692 noffset[0] = 0; 693 694 if (block < direct_index) { 695 offset[n] = block; 696 goto got; 697 } 698 block -= direct_index; 699 if (block < direct_blks) { 700 offset[n++] = NODE_DIR1_BLOCK; 701 noffset[n] = 1; 702 offset[n] = block; 703 level = 1; 704 goto got; 705 } 706 block -= direct_blks; 707 if (block < direct_blks) { 708 offset[n++] = NODE_DIR2_BLOCK; 709 noffset[n] = 2; 710 offset[n] = block; 711 level = 1; 712 goto got; 713 } 714 block -= direct_blks; 715 if (block < indirect_blks) { 716 offset[n++] = NODE_IND1_BLOCK; 717 noffset[n] = 3; 718 offset[n++] = block / direct_blks; 719 noffset[n] = 4 + offset[n - 1]; 720 offset[n] = block % direct_blks; 721 level = 2; 722 goto got; 723 } 724 block -= indirect_blks; 725 if (block < indirect_blks) { 726 offset[n++] = NODE_IND2_BLOCK; 727 noffset[n] = 4 + dptrs_per_blk; 728 offset[n++] = block / direct_blks; 729 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 730 offset[n] = block % direct_blks; 731 level = 2; 732 goto got; 733 } 734 block -= indirect_blks; 735 if (block < dindirect_blks) { 736 offset[n++] = NODE_DIND_BLOCK; 737 noffset[n] = 5 + (dptrs_per_blk * 2); 738 offset[n++] = block / indirect_blks; 739 noffset[n] = 6 + (dptrs_per_blk * 2) + 740 offset[n - 1] * (dptrs_per_blk + 1); 741 offset[n++] = (block / direct_blks) % dptrs_per_blk; 742 noffset[n] = 7 + (dptrs_per_blk * 2) + 743 offset[n - 2] * (dptrs_per_blk + 1) + 744 offset[n - 1]; 745 offset[n] = block % direct_blks; 746 level = 3; 747 goto got; 748 } else { 749 return -E2BIG; 750 } 751 got: 752 return level; 753 } 754 755 /* 756 * Caller should call f2fs_put_dnode(dn). 757 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 758 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 759 */ 760 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 761 { 762 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 763 struct page *npage[4]; 764 struct page *parent = NULL; 765 int offset[4]; 766 unsigned int noffset[4]; 767 nid_t nids[4]; 768 int level, i = 0; 769 int err = 0; 770 771 level = get_node_path(dn->inode, index, offset, noffset); 772 if (level < 0) 773 return level; 774 775 nids[0] = dn->inode->i_ino; 776 npage[0] = dn->inode_page; 777 778 if (!npage[0]) { 779 npage[0] = f2fs_get_node_page(sbi, nids[0]); 780 if (IS_ERR(npage[0])) 781 return PTR_ERR(npage[0]); 782 } 783 784 /* if inline_data is set, should not report any block indices */ 785 if (f2fs_has_inline_data(dn->inode) && index) { 786 err = -ENOENT; 787 f2fs_put_page(npage[0], 1); 788 goto release_out; 789 } 790 791 parent = npage[0]; 792 if (level != 0) 793 nids[1] = get_nid(parent, offset[0], true); 794 dn->inode_page = npage[0]; 795 dn->inode_page_locked = true; 796 797 /* get indirect or direct nodes */ 798 for (i = 1; i <= level; i++) { 799 bool done = false; 800 801 if (!nids[i] && mode == ALLOC_NODE) { 802 /* alloc new node */ 803 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 804 err = -ENOSPC; 805 goto release_pages; 806 } 807 808 dn->nid = nids[i]; 809 npage[i] = f2fs_new_node_page(dn, noffset[i]); 810 if (IS_ERR(npage[i])) { 811 f2fs_alloc_nid_failed(sbi, nids[i]); 812 err = PTR_ERR(npage[i]); 813 goto release_pages; 814 } 815 816 set_nid(parent, offset[i - 1], nids[i], i == 1); 817 f2fs_alloc_nid_done(sbi, nids[i]); 818 done = true; 819 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 820 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 821 if (IS_ERR(npage[i])) { 822 err = PTR_ERR(npage[i]); 823 goto release_pages; 824 } 825 done = true; 826 } 827 if (i == 1) { 828 dn->inode_page_locked = false; 829 unlock_page(parent); 830 } else { 831 f2fs_put_page(parent, 1); 832 } 833 834 if (!done) { 835 npage[i] = f2fs_get_node_page(sbi, nids[i]); 836 if (IS_ERR(npage[i])) { 837 err = PTR_ERR(npage[i]); 838 f2fs_put_page(npage[0], 0); 839 goto release_out; 840 } 841 } 842 if (i < level) { 843 parent = npage[i]; 844 nids[i + 1] = get_nid(parent, offset[i], false); 845 } 846 } 847 dn->nid = nids[level]; 848 dn->ofs_in_node = offset[level]; 849 dn->node_page = npage[level]; 850 dn->data_blkaddr = f2fs_data_blkaddr(dn); 851 852 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && 853 f2fs_sb_has_readonly(sbi)) { 854 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn); 855 block_t blkaddr; 856 857 if (!c_len) 858 goto out; 859 860 blkaddr = f2fs_data_blkaddr(dn); 861 if (blkaddr == COMPRESS_ADDR) 862 blkaddr = data_blkaddr(dn->inode, dn->node_page, 863 dn->ofs_in_node + 1); 864 865 f2fs_update_extent_tree_range_compressed(dn->inode, 866 index, blkaddr, 867 F2FS_I(dn->inode)->i_cluster_size, 868 c_len); 869 } 870 out: 871 return 0; 872 873 release_pages: 874 f2fs_put_page(parent, 1); 875 if (i > 1) 876 f2fs_put_page(npage[0], 0); 877 release_out: 878 dn->inode_page = NULL; 879 dn->node_page = NULL; 880 if (err == -ENOENT) { 881 dn->cur_level = i; 882 dn->max_level = level; 883 dn->ofs_in_node = offset[level]; 884 } 885 return err; 886 } 887 888 static int truncate_node(struct dnode_of_data *dn) 889 { 890 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 891 struct node_info ni; 892 int err; 893 pgoff_t index; 894 895 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 896 if (err) 897 return err; 898 899 /* Deallocate node address */ 900 f2fs_invalidate_blocks(sbi, ni.blk_addr); 901 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 902 set_node_addr(sbi, &ni, NULL_ADDR, false); 903 904 if (dn->nid == dn->inode->i_ino) { 905 f2fs_remove_orphan_inode(sbi, dn->nid); 906 dec_valid_inode_count(sbi); 907 f2fs_inode_synced(dn->inode); 908 } 909 910 clear_node_page_dirty(dn->node_page); 911 set_sbi_flag(sbi, SBI_IS_DIRTY); 912 913 index = dn->node_page->index; 914 f2fs_put_page(dn->node_page, 1); 915 916 invalidate_mapping_pages(NODE_MAPPING(sbi), 917 index, index); 918 919 dn->node_page = NULL; 920 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 921 922 return 0; 923 } 924 925 static int truncate_dnode(struct dnode_of_data *dn) 926 { 927 struct page *page; 928 int err; 929 930 if (dn->nid == 0) 931 return 1; 932 933 /* get direct node */ 934 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 935 if (PTR_ERR(page) == -ENOENT) 936 return 1; 937 else if (IS_ERR(page)) 938 return PTR_ERR(page); 939 940 /* Make dnode_of_data for parameter */ 941 dn->node_page = page; 942 dn->ofs_in_node = 0; 943 f2fs_truncate_data_blocks(dn); 944 err = truncate_node(dn); 945 if (err) 946 return err; 947 948 return 1; 949 } 950 951 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 952 int ofs, int depth) 953 { 954 struct dnode_of_data rdn = *dn; 955 struct page *page; 956 struct f2fs_node *rn; 957 nid_t child_nid; 958 unsigned int child_nofs; 959 int freed = 0; 960 int i, ret; 961 962 if (dn->nid == 0) 963 return NIDS_PER_BLOCK + 1; 964 965 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 966 967 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 968 if (IS_ERR(page)) { 969 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 970 return PTR_ERR(page); 971 } 972 973 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 974 975 rn = F2FS_NODE(page); 976 if (depth < 3) { 977 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 978 child_nid = le32_to_cpu(rn->in.nid[i]); 979 if (child_nid == 0) 980 continue; 981 rdn.nid = child_nid; 982 ret = truncate_dnode(&rdn); 983 if (ret < 0) 984 goto out_err; 985 if (set_nid(page, i, 0, false)) 986 dn->node_changed = true; 987 } 988 } else { 989 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 990 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 991 child_nid = le32_to_cpu(rn->in.nid[i]); 992 if (child_nid == 0) { 993 child_nofs += NIDS_PER_BLOCK + 1; 994 continue; 995 } 996 rdn.nid = child_nid; 997 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 998 if (ret == (NIDS_PER_BLOCK + 1)) { 999 if (set_nid(page, i, 0, false)) 1000 dn->node_changed = true; 1001 child_nofs += ret; 1002 } else if (ret < 0 && ret != -ENOENT) { 1003 goto out_err; 1004 } 1005 } 1006 freed = child_nofs; 1007 } 1008 1009 if (!ofs) { 1010 /* remove current indirect node */ 1011 dn->node_page = page; 1012 ret = truncate_node(dn); 1013 if (ret) 1014 goto out_err; 1015 freed++; 1016 } else { 1017 f2fs_put_page(page, 1); 1018 } 1019 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 1020 return freed; 1021 1022 out_err: 1023 f2fs_put_page(page, 1); 1024 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 1025 return ret; 1026 } 1027 1028 static int truncate_partial_nodes(struct dnode_of_data *dn, 1029 struct f2fs_inode *ri, int *offset, int depth) 1030 { 1031 struct page *pages[2]; 1032 nid_t nid[3]; 1033 nid_t child_nid; 1034 int err = 0; 1035 int i; 1036 int idx = depth - 2; 1037 1038 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1039 if (!nid[0]) 1040 return 0; 1041 1042 /* get indirect nodes in the path */ 1043 for (i = 0; i < idx + 1; i++) { 1044 /* reference count'll be increased */ 1045 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 1046 if (IS_ERR(pages[i])) { 1047 err = PTR_ERR(pages[i]); 1048 idx = i - 1; 1049 goto fail; 1050 } 1051 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 1052 } 1053 1054 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 1055 1056 /* free direct nodes linked to a partial indirect node */ 1057 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1058 child_nid = get_nid(pages[idx], i, false); 1059 if (!child_nid) 1060 continue; 1061 dn->nid = child_nid; 1062 err = truncate_dnode(dn); 1063 if (err < 0) 1064 goto fail; 1065 if (set_nid(pages[idx], i, 0, false)) 1066 dn->node_changed = true; 1067 } 1068 1069 if (offset[idx + 1] == 0) { 1070 dn->node_page = pages[idx]; 1071 dn->nid = nid[idx]; 1072 err = truncate_node(dn); 1073 if (err) 1074 goto fail; 1075 } else { 1076 f2fs_put_page(pages[idx], 1); 1077 } 1078 offset[idx]++; 1079 offset[idx + 1] = 0; 1080 idx--; 1081 fail: 1082 for (i = idx; i >= 0; i--) 1083 f2fs_put_page(pages[i], 1); 1084 1085 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1086 1087 return err; 1088 } 1089 1090 /* 1091 * All the block addresses of data and nodes should be nullified. 1092 */ 1093 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1094 { 1095 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1096 int err = 0, cont = 1; 1097 int level, offset[4], noffset[4]; 1098 unsigned int nofs = 0; 1099 struct f2fs_inode *ri; 1100 struct dnode_of_data dn; 1101 struct page *page; 1102 1103 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1104 1105 level = get_node_path(inode, from, offset, noffset); 1106 if (level < 0) { 1107 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1108 return level; 1109 } 1110 1111 page = f2fs_get_node_page(sbi, inode->i_ino); 1112 if (IS_ERR(page)) { 1113 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1114 return PTR_ERR(page); 1115 } 1116 1117 set_new_dnode(&dn, inode, page, NULL, 0); 1118 unlock_page(page); 1119 1120 ri = F2FS_INODE(page); 1121 switch (level) { 1122 case 0: 1123 case 1: 1124 nofs = noffset[1]; 1125 break; 1126 case 2: 1127 nofs = noffset[1]; 1128 if (!offset[level - 1]) 1129 goto skip_partial; 1130 err = truncate_partial_nodes(&dn, ri, offset, level); 1131 if (err < 0 && err != -ENOENT) 1132 goto fail; 1133 nofs += 1 + NIDS_PER_BLOCK; 1134 break; 1135 case 3: 1136 nofs = 5 + 2 * NIDS_PER_BLOCK; 1137 if (!offset[level - 1]) 1138 goto skip_partial; 1139 err = truncate_partial_nodes(&dn, ri, offset, level); 1140 if (err < 0 && err != -ENOENT) 1141 goto fail; 1142 break; 1143 default: 1144 BUG(); 1145 } 1146 1147 skip_partial: 1148 while (cont) { 1149 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1150 switch (offset[0]) { 1151 case NODE_DIR1_BLOCK: 1152 case NODE_DIR2_BLOCK: 1153 err = truncate_dnode(&dn); 1154 break; 1155 1156 case NODE_IND1_BLOCK: 1157 case NODE_IND2_BLOCK: 1158 err = truncate_nodes(&dn, nofs, offset[1], 2); 1159 break; 1160 1161 case NODE_DIND_BLOCK: 1162 err = truncate_nodes(&dn, nofs, offset[1], 3); 1163 cont = 0; 1164 break; 1165 1166 default: 1167 BUG(); 1168 } 1169 if (err < 0 && err != -ENOENT) 1170 goto fail; 1171 if (offset[1] == 0 && 1172 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1173 lock_page(page); 1174 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1175 f2fs_wait_on_page_writeback(page, NODE, true, true); 1176 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1177 set_page_dirty(page); 1178 unlock_page(page); 1179 } 1180 offset[1] = 0; 1181 offset[0]++; 1182 nofs += err; 1183 } 1184 fail: 1185 f2fs_put_page(page, 0); 1186 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1187 return err > 0 ? 0 : err; 1188 } 1189 1190 /* caller must lock inode page */ 1191 int f2fs_truncate_xattr_node(struct inode *inode) 1192 { 1193 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1194 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1195 struct dnode_of_data dn; 1196 struct page *npage; 1197 int err; 1198 1199 if (!nid) 1200 return 0; 1201 1202 npage = f2fs_get_node_page(sbi, nid); 1203 if (IS_ERR(npage)) 1204 return PTR_ERR(npage); 1205 1206 set_new_dnode(&dn, inode, NULL, npage, nid); 1207 err = truncate_node(&dn); 1208 if (err) { 1209 f2fs_put_page(npage, 1); 1210 return err; 1211 } 1212 1213 f2fs_i_xnid_write(inode, 0); 1214 1215 return 0; 1216 } 1217 1218 /* 1219 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1220 * f2fs_unlock_op(). 1221 */ 1222 int f2fs_remove_inode_page(struct inode *inode) 1223 { 1224 struct dnode_of_data dn; 1225 int err; 1226 1227 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1228 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1229 if (err) 1230 return err; 1231 1232 err = f2fs_truncate_xattr_node(inode); 1233 if (err) { 1234 f2fs_put_dnode(&dn); 1235 return err; 1236 } 1237 1238 /* remove potential inline_data blocks */ 1239 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1240 S_ISLNK(inode->i_mode)) 1241 f2fs_truncate_data_blocks_range(&dn, 1); 1242 1243 /* 0 is possible, after f2fs_new_inode() has failed */ 1244 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1245 f2fs_put_dnode(&dn); 1246 return -EIO; 1247 } 1248 1249 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1250 f2fs_warn(F2FS_I_SB(inode), 1251 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1252 inode->i_ino, (unsigned long long)inode->i_blocks); 1253 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1254 } 1255 1256 /* will put inode & node pages */ 1257 err = truncate_node(&dn); 1258 if (err) { 1259 f2fs_put_dnode(&dn); 1260 return err; 1261 } 1262 return 0; 1263 } 1264 1265 struct page *f2fs_new_inode_page(struct inode *inode) 1266 { 1267 struct dnode_of_data dn; 1268 1269 /* allocate inode page for new inode */ 1270 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1271 1272 /* caller should f2fs_put_page(page, 1); */ 1273 return f2fs_new_node_page(&dn, 0); 1274 } 1275 1276 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1277 { 1278 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1279 struct node_info new_ni; 1280 struct page *page; 1281 int err; 1282 1283 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1284 return ERR_PTR(-EPERM); 1285 1286 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1287 if (!page) 1288 return ERR_PTR(-ENOMEM); 1289 1290 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1291 goto fail; 1292 1293 #ifdef CONFIG_F2FS_CHECK_FS 1294 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); 1295 if (err) { 1296 dec_valid_node_count(sbi, dn->inode, !ofs); 1297 goto fail; 1298 } 1299 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); 1300 #endif 1301 new_ni.nid = dn->nid; 1302 new_ni.ino = dn->inode->i_ino; 1303 new_ni.blk_addr = NULL_ADDR; 1304 new_ni.flag = 0; 1305 new_ni.version = 0; 1306 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1307 1308 f2fs_wait_on_page_writeback(page, NODE, true, true); 1309 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1310 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1311 if (!PageUptodate(page)) 1312 SetPageUptodate(page); 1313 if (set_page_dirty(page)) 1314 dn->node_changed = true; 1315 1316 if (f2fs_has_xattr_block(ofs)) 1317 f2fs_i_xnid_write(dn->inode, dn->nid); 1318 1319 if (ofs == 0) 1320 inc_valid_inode_count(sbi); 1321 return page; 1322 1323 fail: 1324 clear_node_page_dirty(page); 1325 f2fs_put_page(page, 1); 1326 return ERR_PTR(err); 1327 } 1328 1329 /* 1330 * Caller should do after getting the following values. 1331 * 0: f2fs_put_page(page, 0) 1332 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1333 */ 1334 static int read_node_page(struct page *page, int op_flags) 1335 { 1336 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1337 struct node_info ni; 1338 struct f2fs_io_info fio = { 1339 .sbi = sbi, 1340 .type = NODE, 1341 .op = REQ_OP_READ, 1342 .op_flags = op_flags, 1343 .page = page, 1344 .encrypted_page = NULL, 1345 }; 1346 int err; 1347 1348 if (PageUptodate(page)) { 1349 if (!f2fs_inode_chksum_verify(sbi, page)) { 1350 ClearPageUptodate(page); 1351 return -EFSBADCRC; 1352 } 1353 return LOCKED_PAGE; 1354 } 1355 1356 err = f2fs_get_node_info(sbi, page->index, &ni, false); 1357 if (err) 1358 return err; 1359 1360 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ 1361 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) || 1362 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) { 1363 ClearPageUptodate(page); 1364 return -ENOENT; 1365 } 1366 1367 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1368 1369 err = f2fs_submit_page_bio(&fio); 1370 1371 if (!err) 1372 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE); 1373 1374 return err; 1375 } 1376 1377 /* 1378 * Readahead a node page 1379 */ 1380 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1381 { 1382 struct page *apage; 1383 int err; 1384 1385 if (!nid) 1386 return; 1387 if (f2fs_check_nid_range(sbi, nid)) 1388 return; 1389 1390 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1391 if (apage) 1392 return; 1393 1394 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1395 if (!apage) 1396 return; 1397 1398 err = read_node_page(apage, REQ_RAHEAD); 1399 f2fs_put_page(apage, err ? 1 : 0); 1400 } 1401 1402 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1403 struct page *parent, int start) 1404 { 1405 struct page *page; 1406 int err; 1407 1408 if (!nid) 1409 return ERR_PTR(-ENOENT); 1410 if (f2fs_check_nid_range(sbi, nid)) 1411 return ERR_PTR(-EINVAL); 1412 repeat: 1413 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1414 if (!page) 1415 return ERR_PTR(-ENOMEM); 1416 1417 err = read_node_page(page, 0); 1418 if (err < 0) { 1419 f2fs_put_page(page, 1); 1420 return ERR_PTR(err); 1421 } else if (err == LOCKED_PAGE) { 1422 err = 0; 1423 goto page_hit; 1424 } 1425 1426 if (parent) 1427 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1428 1429 lock_page(page); 1430 1431 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1432 f2fs_put_page(page, 1); 1433 goto repeat; 1434 } 1435 1436 if (unlikely(!PageUptodate(page))) { 1437 err = -EIO; 1438 goto out_err; 1439 } 1440 1441 if (!f2fs_inode_chksum_verify(sbi, page)) { 1442 err = -EFSBADCRC; 1443 goto out_err; 1444 } 1445 page_hit: 1446 if (unlikely(nid != nid_of_node(page))) { 1447 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1448 nid, nid_of_node(page), ino_of_node(page), 1449 ofs_of_node(page), cpver_of_node(page), 1450 next_blkaddr_of_node(page)); 1451 set_sbi_flag(sbi, SBI_NEED_FSCK); 1452 err = -EINVAL; 1453 out_err: 1454 ClearPageUptodate(page); 1455 f2fs_put_page(page, 1); 1456 return ERR_PTR(err); 1457 } 1458 return page; 1459 } 1460 1461 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1462 { 1463 return __get_node_page(sbi, nid, NULL, 0); 1464 } 1465 1466 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1467 { 1468 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1469 nid_t nid = get_nid(parent, start, false); 1470 1471 return __get_node_page(sbi, nid, parent, start); 1472 } 1473 1474 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1475 { 1476 struct inode *inode; 1477 struct page *page; 1478 int ret; 1479 1480 /* should flush inline_data before evict_inode */ 1481 inode = ilookup(sbi->sb, ino); 1482 if (!inode) 1483 return; 1484 1485 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1486 FGP_LOCK|FGP_NOWAIT, 0); 1487 if (!page) 1488 goto iput_out; 1489 1490 if (!PageUptodate(page)) 1491 goto page_out; 1492 1493 if (!PageDirty(page)) 1494 goto page_out; 1495 1496 if (!clear_page_dirty_for_io(page)) 1497 goto page_out; 1498 1499 ret = f2fs_write_inline_data(inode, page); 1500 inode_dec_dirty_pages(inode); 1501 f2fs_remove_dirty_inode(inode); 1502 if (ret) 1503 set_page_dirty(page); 1504 page_out: 1505 f2fs_put_page(page, 1); 1506 iput_out: 1507 iput(inode); 1508 } 1509 1510 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1511 { 1512 pgoff_t index; 1513 struct pagevec pvec; 1514 struct page *last_page = NULL; 1515 int nr_pages; 1516 1517 pagevec_init(&pvec); 1518 index = 0; 1519 1520 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1521 PAGECACHE_TAG_DIRTY))) { 1522 int i; 1523 1524 for (i = 0; i < nr_pages; i++) { 1525 struct page *page = pvec.pages[i]; 1526 1527 if (unlikely(f2fs_cp_error(sbi))) { 1528 f2fs_put_page(last_page, 0); 1529 pagevec_release(&pvec); 1530 return ERR_PTR(-EIO); 1531 } 1532 1533 if (!IS_DNODE(page) || !is_cold_node(page)) 1534 continue; 1535 if (ino_of_node(page) != ino) 1536 continue; 1537 1538 lock_page(page); 1539 1540 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1541 continue_unlock: 1542 unlock_page(page); 1543 continue; 1544 } 1545 if (ino_of_node(page) != ino) 1546 goto continue_unlock; 1547 1548 if (!PageDirty(page)) { 1549 /* someone wrote it for us */ 1550 goto continue_unlock; 1551 } 1552 1553 if (last_page) 1554 f2fs_put_page(last_page, 0); 1555 1556 get_page(page); 1557 last_page = page; 1558 unlock_page(page); 1559 } 1560 pagevec_release(&pvec); 1561 cond_resched(); 1562 } 1563 return last_page; 1564 } 1565 1566 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1567 struct writeback_control *wbc, bool do_balance, 1568 enum iostat_type io_type, unsigned int *seq_id) 1569 { 1570 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1571 nid_t nid; 1572 struct node_info ni; 1573 struct f2fs_io_info fio = { 1574 .sbi = sbi, 1575 .ino = ino_of_node(page), 1576 .type = NODE, 1577 .op = REQ_OP_WRITE, 1578 .op_flags = wbc_to_write_flags(wbc), 1579 .page = page, 1580 .encrypted_page = NULL, 1581 .submitted = false, 1582 .io_type = io_type, 1583 .io_wbc = wbc, 1584 }; 1585 unsigned int seq; 1586 1587 trace_f2fs_writepage(page, NODE); 1588 1589 if (unlikely(f2fs_cp_error(sbi))) { 1590 ClearPageUptodate(page); 1591 dec_page_count(sbi, F2FS_DIRTY_NODES); 1592 unlock_page(page); 1593 return 0; 1594 } 1595 1596 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1597 goto redirty_out; 1598 1599 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1600 wbc->sync_mode == WB_SYNC_NONE && 1601 IS_DNODE(page) && is_cold_node(page)) 1602 goto redirty_out; 1603 1604 /* get old block addr of this node page */ 1605 nid = nid_of_node(page); 1606 f2fs_bug_on(sbi, page->index != nid); 1607 1608 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) 1609 goto redirty_out; 1610 1611 if (wbc->for_reclaim) { 1612 if (!f2fs_down_read_trylock(&sbi->node_write)) 1613 goto redirty_out; 1614 } else { 1615 f2fs_down_read(&sbi->node_write); 1616 } 1617 1618 /* This page is already truncated */ 1619 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1620 ClearPageUptodate(page); 1621 dec_page_count(sbi, F2FS_DIRTY_NODES); 1622 f2fs_up_read(&sbi->node_write); 1623 unlock_page(page); 1624 return 0; 1625 } 1626 1627 if (__is_valid_data_blkaddr(ni.blk_addr) && 1628 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1629 DATA_GENERIC_ENHANCE)) { 1630 f2fs_up_read(&sbi->node_write); 1631 goto redirty_out; 1632 } 1633 1634 if (atomic && !test_opt(sbi, NOBARRIER)) 1635 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1636 1637 /* should add to global list before clearing PAGECACHE status */ 1638 if (f2fs_in_warm_node_list(sbi, page)) { 1639 seq = f2fs_add_fsync_node_entry(sbi, page); 1640 if (seq_id) 1641 *seq_id = seq; 1642 } 1643 1644 set_page_writeback(page); 1645 ClearPageError(page); 1646 1647 fio.old_blkaddr = ni.blk_addr; 1648 f2fs_do_write_node_page(nid, &fio); 1649 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1650 dec_page_count(sbi, F2FS_DIRTY_NODES); 1651 f2fs_up_read(&sbi->node_write); 1652 1653 if (wbc->for_reclaim) { 1654 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1655 submitted = NULL; 1656 } 1657 1658 unlock_page(page); 1659 1660 if (unlikely(f2fs_cp_error(sbi))) { 1661 f2fs_submit_merged_write(sbi, NODE); 1662 submitted = NULL; 1663 } 1664 if (submitted) 1665 *submitted = fio.submitted; 1666 1667 if (do_balance) 1668 f2fs_balance_fs(sbi, false); 1669 return 0; 1670 1671 redirty_out: 1672 redirty_page_for_writepage(wbc, page); 1673 return AOP_WRITEPAGE_ACTIVATE; 1674 } 1675 1676 int f2fs_move_node_page(struct page *node_page, int gc_type) 1677 { 1678 int err = 0; 1679 1680 if (gc_type == FG_GC) { 1681 struct writeback_control wbc = { 1682 .sync_mode = WB_SYNC_ALL, 1683 .nr_to_write = 1, 1684 .for_reclaim = 0, 1685 }; 1686 1687 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1688 1689 set_page_dirty(node_page); 1690 1691 if (!clear_page_dirty_for_io(node_page)) { 1692 err = -EAGAIN; 1693 goto out_page; 1694 } 1695 1696 if (__write_node_page(node_page, false, NULL, 1697 &wbc, false, FS_GC_NODE_IO, NULL)) { 1698 err = -EAGAIN; 1699 unlock_page(node_page); 1700 } 1701 goto release_page; 1702 } else { 1703 /* set page dirty and write it */ 1704 if (!PageWriteback(node_page)) 1705 set_page_dirty(node_page); 1706 } 1707 out_page: 1708 unlock_page(node_page); 1709 release_page: 1710 f2fs_put_page(node_page, 0); 1711 return err; 1712 } 1713 1714 static int f2fs_write_node_page(struct page *page, 1715 struct writeback_control *wbc) 1716 { 1717 return __write_node_page(page, false, NULL, wbc, false, 1718 FS_NODE_IO, NULL); 1719 } 1720 1721 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1722 struct writeback_control *wbc, bool atomic, 1723 unsigned int *seq_id) 1724 { 1725 pgoff_t index; 1726 struct pagevec pvec; 1727 int ret = 0; 1728 struct page *last_page = NULL; 1729 bool marked = false; 1730 nid_t ino = inode->i_ino; 1731 int nr_pages; 1732 int nwritten = 0; 1733 1734 if (atomic) { 1735 last_page = last_fsync_dnode(sbi, ino); 1736 if (IS_ERR_OR_NULL(last_page)) 1737 return PTR_ERR_OR_ZERO(last_page); 1738 } 1739 retry: 1740 pagevec_init(&pvec); 1741 index = 0; 1742 1743 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1744 PAGECACHE_TAG_DIRTY))) { 1745 int i; 1746 1747 for (i = 0; i < nr_pages; i++) { 1748 struct page *page = pvec.pages[i]; 1749 bool submitted = false; 1750 1751 if (unlikely(f2fs_cp_error(sbi))) { 1752 f2fs_put_page(last_page, 0); 1753 pagevec_release(&pvec); 1754 ret = -EIO; 1755 goto out; 1756 } 1757 1758 if (!IS_DNODE(page) || !is_cold_node(page)) 1759 continue; 1760 if (ino_of_node(page) != ino) 1761 continue; 1762 1763 lock_page(page); 1764 1765 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1766 continue_unlock: 1767 unlock_page(page); 1768 continue; 1769 } 1770 if (ino_of_node(page) != ino) 1771 goto continue_unlock; 1772 1773 if (!PageDirty(page) && page != last_page) { 1774 /* someone wrote it for us */ 1775 goto continue_unlock; 1776 } 1777 1778 f2fs_wait_on_page_writeback(page, NODE, true, true); 1779 1780 set_fsync_mark(page, 0); 1781 set_dentry_mark(page, 0); 1782 1783 if (!atomic || page == last_page) { 1784 set_fsync_mark(page, 1); 1785 percpu_counter_inc(&sbi->rf_node_block_count); 1786 if (IS_INODE(page)) { 1787 if (is_inode_flag_set(inode, 1788 FI_DIRTY_INODE)) 1789 f2fs_update_inode(inode, page); 1790 set_dentry_mark(page, 1791 f2fs_need_dentry_mark(sbi, ino)); 1792 } 1793 /* may be written by other thread */ 1794 if (!PageDirty(page)) 1795 set_page_dirty(page); 1796 } 1797 1798 if (!clear_page_dirty_for_io(page)) 1799 goto continue_unlock; 1800 1801 ret = __write_node_page(page, atomic && 1802 page == last_page, 1803 &submitted, wbc, true, 1804 FS_NODE_IO, seq_id); 1805 if (ret) { 1806 unlock_page(page); 1807 f2fs_put_page(last_page, 0); 1808 break; 1809 } else if (submitted) { 1810 nwritten++; 1811 } 1812 1813 if (page == last_page) { 1814 f2fs_put_page(page, 0); 1815 marked = true; 1816 break; 1817 } 1818 } 1819 pagevec_release(&pvec); 1820 cond_resched(); 1821 1822 if (ret || marked) 1823 break; 1824 } 1825 if (!ret && atomic && !marked) { 1826 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1827 ino, last_page->index); 1828 lock_page(last_page); 1829 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1830 set_page_dirty(last_page); 1831 unlock_page(last_page); 1832 goto retry; 1833 } 1834 out: 1835 if (nwritten) 1836 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1837 return ret ? -EIO : 0; 1838 } 1839 1840 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1841 { 1842 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1843 bool clean; 1844 1845 if (inode->i_ino != ino) 1846 return 0; 1847 1848 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1849 return 0; 1850 1851 spin_lock(&sbi->inode_lock[DIRTY_META]); 1852 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1853 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1854 1855 if (clean) 1856 return 0; 1857 1858 inode = igrab(inode); 1859 if (!inode) 1860 return 0; 1861 return 1; 1862 } 1863 1864 static bool flush_dirty_inode(struct page *page) 1865 { 1866 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1867 struct inode *inode; 1868 nid_t ino = ino_of_node(page); 1869 1870 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1871 if (!inode) 1872 return false; 1873 1874 f2fs_update_inode(inode, page); 1875 unlock_page(page); 1876 1877 iput(inode); 1878 return true; 1879 } 1880 1881 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1882 { 1883 pgoff_t index = 0; 1884 struct pagevec pvec; 1885 int nr_pages; 1886 1887 pagevec_init(&pvec); 1888 1889 while ((nr_pages = pagevec_lookup_tag(&pvec, 1890 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1891 int i; 1892 1893 for (i = 0; i < nr_pages; i++) { 1894 struct page *page = pvec.pages[i]; 1895 1896 if (!IS_DNODE(page)) 1897 continue; 1898 1899 lock_page(page); 1900 1901 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1902 continue_unlock: 1903 unlock_page(page); 1904 continue; 1905 } 1906 1907 if (!PageDirty(page)) { 1908 /* someone wrote it for us */ 1909 goto continue_unlock; 1910 } 1911 1912 /* flush inline_data, if it's async context. */ 1913 if (page_private_inline(page)) { 1914 clear_page_private_inline(page); 1915 unlock_page(page); 1916 flush_inline_data(sbi, ino_of_node(page)); 1917 continue; 1918 } 1919 unlock_page(page); 1920 } 1921 pagevec_release(&pvec); 1922 cond_resched(); 1923 } 1924 } 1925 1926 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1927 struct writeback_control *wbc, 1928 bool do_balance, enum iostat_type io_type) 1929 { 1930 pgoff_t index; 1931 struct pagevec pvec; 1932 int step = 0; 1933 int nwritten = 0; 1934 int ret = 0; 1935 int nr_pages, done = 0; 1936 1937 pagevec_init(&pvec); 1938 1939 next_step: 1940 index = 0; 1941 1942 while (!done && (nr_pages = pagevec_lookup_tag(&pvec, 1943 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1944 int i; 1945 1946 for (i = 0; i < nr_pages; i++) { 1947 struct page *page = pvec.pages[i]; 1948 bool submitted = false; 1949 bool may_dirty = true; 1950 1951 /* give a priority to WB_SYNC threads */ 1952 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1953 wbc->sync_mode == WB_SYNC_NONE) { 1954 done = 1; 1955 break; 1956 } 1957 1958 /* 1959 * flushing sequence with step: 1960 * 0. indirect nodes 1961 * 1. dentry dnodes 1962 * 2. file dnodes 1963 */ 1964 if (step == 0 && IS_DNODE(page)) 1965 continue; 1966 if (step == 1 && (!IS_DNODE(page) || 1967 is_cold_node(page))) 1968 continue; 1969 if (step == 2 && (!IS_DNODE(page) || 1970 !is_cold_node(page))) 1971 continue; 1972 lock_node: 1973 if (wbc->sync_mode == WB_SYNC_ALL) 1974 lock_page(page); 1975 else if (!trylock_page(page)) 1976 continue; 1977 1978 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1979 continue_unlock: 1980 unlock_page(page); 1981 continue; 1982 } 1983 1984 if (!PageDirty(page)) { 1985 /* someone wrote it for us */ 1986 goto continue_unlock; 1987 } 1988 1989 /* flush inline_data/inode, if it's async context. */ 1990 if (!do_balance) 1991 goto write_node; 1992 1993 /* flush inline_data */ 1994 if (page_private_inline(page)) { 1995 clear_page_private_inline(page); 1996 unlock_page(page); 1997 flush_inline_data(sbi, ino_of_node(page)); 1998 goto lock_node; 1999 } 2000 2001 /* flush dirty inode */ 2002 if (IS_INODE(page) && may_dirty) { 2003 may_dirty = false; 2004 if (flush_dirty_inode(page)) 2005 goto lock_node; 2006 } 2007 write_node: 2008 f2fs_wait_on_page_writeback(page, NODE, true, true); 2009 2010 if (!clear_page_dirty_for_io(page)) 2011 goto continue_unlock; 2012 2013 set_fsync_mark(page, 0); 2014 set_dentry_mark(page, 0); 2015 2016 ret = __write_node_page(page, false, &submitted, 2017 wbc, do_balance, io_type, NULL); 2018 if (ret) 2019 unlock_page(page); 2020 else if (submitted) 2021 nwritten++; 2022 2023 if (--wbc->nr_to_write == 0) 2024 break; 2025 } 2026 pagevec_release(&pvec); 2027 cond_resched(); 2028 2029 if (wbc->nr_to_write == 0) { 2030 step = 2; 2031 break; 2032 } 2033 } 2034 2035 if (step < 2) { 2036 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2037 wbc->sync_mode == WB_SYNC_NONE && step == 1) 2038 goto out; 2039 step++; 2040 goto next_step; 2041 } 2042 out: 2043 if (nwritten) 2044 f2fs_submit_merged_write(sbi, NODE); 2045 2046 if (unlikely(f2fs_cp_error(sbi))) 2047 return -EIO; 2048 return ret; 2049 } 2050 2051 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2052 unsigned int seq_id) 2053 { 2054 struct fsync_node_entry *fn; 2055 struct page *page; 2056 struct list_head *head = &sbi->fsync_node_list; 2057 unsigned long flags; 2058 unsigned int cur_seq_id = 0; 2059 int ret2, ret = 0; 2060 2061 while (seq_id && cur_seq_id < seq_id) { 2062 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2063 if (list_empty(head)) { 2064 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2065 break; 2066 } 2067 fn = list_first_entry(head, struct fsync_node_entry, list); 2068 if (fn->seq_id > seq_id) { 2069 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2070 break; 2071 } 2072 cur_seq_id = fn->seq_id; 2073 page = fn->page; 2074 get_page(page); 2075 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2076 2077 f2fs_wait_on_page_writeback(page, NODE, true, false); 2078 if (TestClearPageError(page)) 2079 ret = -EIO; 2080 2081 put_page(page); 2082 2083 if (ret) 2084 break; 2085 } 2086 2087 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 2088 if (!ret) 2089 ret = ret2; 2090 2091 return ret; 2092 } 2093 2094 static int f2fs_write_node_pages(struct address_space *mapping, 2095 struct writeback_control *wbc) 2096 { 2097 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2098 struct blk_plug plug; 2099 long diff; 2100 2101 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2102 goto skip_write; 2103 2104 /* balancing f2fs's metadata in background */ 2105 f2fs_balance_fs_bg(sbi, true); 2106 2107 /* collect a number of dirty node pages and write together */ 2108 if (wbc->sync_mode != WB_SYNC_ALL && 2109 get_pages(sbi, F2FS_DIRTY_NODES) < 2110 nr_pages_to_skip(sbi, NODE)) 2111 goto skip_write; 2112 2113 if (wbc->sync_mode == WB_SYNC_ALL) 2114 atomic_inc(&sbi->wb_sync_req[NODE]); 2115 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2116 /* to avoid potential deadlock */ 2117 if (current->plug) 2118 blk_finish_plug(current->plug); 2119 goto skip_write; 2120 } 2121 2122 trace_f2fs_writepages(mapping->host, wbc, NODE); 2123 2124 diff = nr_pages_to_write(sbi, NODE, wbc); 2125 blk_start_plug(&plug); 2126 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2127 blk_finish_plug(&plug); 2128 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2129 2130 if (wbc->sync_mode == WB_SYNC_ALL) 2131 atomic_dec(&sbi->wb_sync_req[NODE]); 2132 return 0; 2133 2134 skip_write: 2135 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2136 trace_f2fs_writepages(mapping->host, wbc, NODE); 2137 return 0; 2138 } 2139 2140 static bool f2fs_dirty_node_folio(struct address_space *mapping, 2141 struct folio *folio) 2142 { 2143 trace_f2fs_set_page_dirty(&folio->page, NODE); 2144 2145 if (!folio_test_uptodate(folio)) 2146 folio_mark_uptodate(folio); 2147 #ifdef CONFIG_F2FS_CHECK_FS 2148 if (IS_INODE(&folio->page)) 2149 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); 2150 #endif 2151 if (!folio_test_dirty(folio)) { 2152 filemap_dirty_folio(mapping, folio); 2153 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 2154 set_page_private_reference(&folio->page); 2155 return true; 2156 } 2157 return false; 2158 } 2159 2160 /* 2161 * Structure of the f2fs node operations 2162 */ 2163 const struct address_space_operations f2fs_node_aops = { 2164 .writepage = f2fs_write_node_page, 2165 .writepages = f2fs_write_node_pages, 2166 .dirty_folio = f2fs_dirty_node_folio, 2167 .invalidate_folio = f2fs_invalidate_folio, 2168 .releasepage = f2fs_release_page, 2169 #ifdef CONFIG_MIGRATION 2170 .migratepage = f2fs_migrate_page, 2171 #endif 2172 }; 2173 2174 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2175 nid_t n) 2176 { 2177 return radix_tree_lookup(&nm_i->free_nid_root, n); 2178 } 2179 2180 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2181 struct free_nid *i) 2182 { 2183 struct f2fs_nm_info *nm_i = NM_I(sbi); 2184 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2185 2186 if (err) 2187 return err; 2188 2189 nm_i->nid_cnt[FREE_NID]++; 2190 list_add_tail(&i->list, &nm_i->free_nid_list); 2191 return 0; 2192 } 2193 2194 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2195 struct free_nid *i, enum nid_state state) 2196 { 2197 struct f2fs_nm_info *nm_i = NM_I(sbi); 2198 2199 f2fs_bug_on(sbi, state != i->state); 2200 nm_i->nid_cnt[state]--; 2201 if (state == FREE_NID) 2202 list_del(&i->list); 2203 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2204 } 2205 2206 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2207 enum nid_state org_state, enum nid_state dst_state) 2208 { 2209 struct f2fs_nm_info *nm_i = NM_I(sbi); 2210 2211 f2fs_bug_on(sbi, org_state != i->state); 2212 i->state = dst_state; 2213 nm_i->nid_cnt[org_state]--; 2214 nm_i->nid_cnt[dst_state]++; 2215 2216 switch (dst_state) { 2217 case PREALLOC_NID: 2218 list_del(&i->list); 2219 break; 2220 case FREE_NID: 2221 list_add_tail(&i->list, &nm_i->free_nid_list); 2222 break; 2223 default: 2224 BUG_ON(1); 2225 } 2226 } 2227 2228 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi) 2229 { 2230 struct f2fs_nm_info *nm_i = NM_I(sbi); 2231 unsigned int i; 2232 bool ret = true; 2233 2234 f2fs_down_read(&nm_i->nat_tree_lock); 2235 for (i = 0; i < nm_i->nat_blocks; i++) { 2236 if (!test_bit_le(i, nm_i->nat_block_bitmap)) { 2237 ret = false; 2238 break; 2239 } 2240 } 2241 f2fs_up_read(&nm_i->nat_tree_lock); 2242 2243 return ret; 2244 } 2245 2246 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2247 bool set, bool build) 2248 { 2249 struct f2fs_nm_info *nm_i = NM_I(sbi); 2250 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2251 unsigned int nid_ofs = nid - START_NID(nid); 2252 2253 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2254 return; 2255 2256 if (set) { 2257 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2258 return; 2259 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2260 nm_i->free_nid_count[nat_ofs]++; 2261 } else { 2262 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2263 return; 2264 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2265 if (!build) 2266 nm_i->free_nid_count[nat_ofs]--; 2267 } 2268 } 2269 2270 /* return if the nid is recognized as free */ 2271 static bool add_free_nid(struct f2fs_sb_info *sbi, 2272 nid_t nid, bool build, bool update) 2273 { 2274 struct f2fs_nm_info *nm_i = NM_I(sbi); 2275 struct free_nid *i, *e; 2276 struct nat_entry *ne; 2277 int err = -EINVAL; 2278 bool ret = false; 2279 2280 /* 0 nid should not be used */ 2281 if (unlikely(nid == 0)) 2282 return false; 2283 2284 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2285 return false; 2286 2287 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); 2288 i->nid = nid; 2289 i->state = FREE_NID; 2290 2291 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2292 2293 spin_lock(&nm_i->nid_list_lock); 2294 2295 if (build) { 2296 /* 2297 * Thread A Thread B 2298 * - f2fs_create 2299 * - f2fs_new_inode 2300 * - f2fs_alloc_nid 2301 * - __insert_nid_to_list(PREALLOC_NID) 2302 * - f2fs_balance_fs_bg 2303 * - f2fs_build_free_nids 2304 * - __f2fs_build_free_nids 2305 * - scan_nat_page 2306 * - add_free_nid 2307 * - __lookup_nat_cache 2308 * - f2fs_add_link 2309 * - f2fs_init_inode_metadata 2310 * - f2fs_new_inode_page 2311 * - f2fs_new_node_page 2312 * - set_node_addr 2313 * - f2fs_alloc_nid_done 2314 * - __remove_nid_from_list(PREALLOC_NID) 2315 * - __insert_nid_to_list(FREE_NID) 2316 */ 2317 ne = __lookup_nat_cache(nm_i, nid); 2318 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2319 nat_get_blkaddr(ne) != NULL_ADDR)) 2320 goto err_out; 2321 2322 e = __lookup_free_nid_list(nm_i, nid); 2323 if (e) { 2324 if (e->state == FREE_NID) 2325 ret = true; 2326 goto err_out; 2327 } 2328 } 2329 ret = true; 2330 err = __insert_free_nid(sbi, i); 2331 err_out: 2332 if (update) { 2333 update_free_nid_bitmap(sbi, nid, ret, build); 2334 if (!build) 2335 nm_i->available_nids++; 2336 } 2337 spin_unlock(&nm_i->nid_list_lock); 2338 radix_tree_preload_end(); 2339 2340 if (err) 2341 kmem_cache_free(free_nid_slab, i); 2342 return ret; 2343 } 2344 2345 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2346 { 2347 struct f2fs_nm_info *nm_i = NM_I(sbi); 2348 struct free_nid *i; 2349 bool need_free = false; 2350 2351 spin_lock(&nm_i->nid_list_lock); 2352 i = __lookup_free_nid_list(nm_i, nid); 2353 if (i && i->state == FREE_NID) { 2354 __remove_free_nid(sbi, i, FREE_NID); 2355 need_free = true; 2356 } 2357 spin_unlock(&nm_i->nid_list_lock); 2358 2359 if (need_free) 2360 kmem_cache_free(free_nid_slab, i); 2361 } 2362 2363 static int scan_nat_page(struct f2fs_sb_info *sbi, 2364 struct page *nat_page, nid_t start_nid) 2365 { 2366 struct f2fs_nm_info *nm_i = NM_I(sbi); 2367 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2368 block_t blk_addr; 2369 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2370 int i; 2371 2372 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2373 2374 i = start_nid % NAT_ENTRY_PER_BLOCK; 2375 2376 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2377 if (unlikely(start_nid >= nm_i->max_nid)) 2378 break; 2379 2380 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2381 2382 if (blk_addr == NEW_ADDR) 2383 return -EINVAL; 2384 2385 if (blk_addr == NULL_ADDR) { 2386 add_free_nid(sbi, start_nid, true, true); 2387 } else { 2388 spin_lock(&NM_I(sbi)->nid_list_lock); 2389 update_free_nid_bitmap(sbi, start_nid, false, true); 2390 spin_unlock(&NM_I(sbi)->nid_list_lock); 2391 } 2392 } 2393 2394 return 0; 2395 } 2396 2397 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2398 { 2399 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2400 struct f2fs_journal *journal = curseg->journal; 2401 int i; 2402 2403 down_read(&curseg->journal_rwsem); 2404 for (i = 0; i < nats_in_cursum(journal); i++) { 2405 block_t addr; 2406 nid_t nid; 2407 2408 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2409 nid = le32_to_cpu(nid_in_journal(journal, i)); 2410 if (addr == NULL_ADDR) 2411 add_free_nid(sbi, nid, true, false); 2412 else 2413 remove_free_nid(sbi, nid); 2414 } 2415 up_read(&curseg->journal_rwsem); 2416 } 2417 2418 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2419 { 2420 struct f2fs_nm_info *nm_i = NM_I(sbi); 2421 unsigned int i, idx; 2422 nid_t nid; 2423 2424 f2fs_down_read(&nm_i->nat_tree_lock); 2425 2426 for (i = 0; i < nm_i->nat_blocks; i++) { 2427 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2428 continue; 2429 if (!nm_i->free_nid_count[i]) 2430 continue; 2431 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2432 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2433 NAT_ENTRY_PER_BLOCK, idx); 2434 if (idx >= NAT_ENTRY_PER_BLOCK) 2435 break; 2436 2437 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2438 add_free_nid(sbi, nid, true, false); 2439 2440 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2441 goto out; 2442 } 2443 } 2444 out: 2445 scan_curseg_cache(sbi); 2446 2447 f2fs_up_read(&nm_i->nat_tree_lock); 2448 } 2449 2450 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2451 bool sync, bool mount) 2452 { 2453 struct f2fs_nm_info *nm_i = NM_I(sbi); 2454 int i = 0, ret; 2455 nid_t nid = nm_i->next_scan_nid; 2456 2457 if (unlikely(nid >= nm_i->max_nid)) 2458 nid = 0; 2459 2460 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2461 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2462 2463 /* Enough entries */ 2464 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2465 return 0; 2466 2467 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2468 return 0; 2469 2470 if (!mount) { 2471 /* try to find free nids in free_nid_bitmap */ 2472 scan_free_nid_bits(sbi); 2473 2474 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2475 return 0; 2476 } 2477 2478 /* readahead nat pages to be scanned */ 2479 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2480 META_NAT, true); 2481 2482 f2fs_down_read(&nm_i->nat_tree_lock); 2483 2484 while (1) { 2485 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2486 nm_i->nat_block_bitmap)) { 2487 struct page *page = get_current_nat_page(sbi, nid); 2488 2489 if (IS_ERR(page)) { 2490 ret = PTR_ERR(page); 2491 } else { 2492 ret = scan_nat_page(sbi, page, nid); 2493 f2fs_put_page(page, 1); 2494 } 2495 2496 if (ret) { 2497 f2fs_up_read(&nm_i->nat_tree_lock); 2498 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2499 return ret; 2500 } 2501 } 2502 2503 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2504 if (unlikely(nid >= nm_i->max_nid)) 2505 nid = 0; 2506 2507 if (++i >= FREE_NID_PAGES) 2508 break; 2509 } 2510 2511 /* go to the next free nat pages to find free nids abundantly */ 2512 nm_i->next_scan_nid = nid; 2513 2514 /* find free nids from current sum_pages */ 2515 scan_curseg_cache(sbi); 2516 2517 f2fs_up_read(&nm_i->nat_tree_lock); 2518 2519 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2520 nm_i->ra_nid_pages, META_NAT, false); 2521 2522 return 0; 2523 } 2524 2525 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2526 { 2527 int ret; 2528 2529 mutex_lock(&NM_I(sbi)->build_lock); 2530 ret = __f2fs_build_free_nids(sbi, sync, mount); 2531 mutex_unlock(&NM_I(sbi)->build_lock); 2532 2533 return ret; 2534 } 2535 2536 /* 2537 * If this function returns success, caller can obtain a new nid 2538 * from second parameter of this function. 2539 * The returned nid could be used ino as well as nid when inode is created. 2540 */ 2541 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2542 { 2543 struct f2fs_nm_info *nm_i = NM_I(sbi); 2544 struct free_nid *i = NULL; 2545 retry: 2546 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2547 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID); 2548 return false; 2549 } 2550 2551 spin_lock(&nm_i->nid_list_lock); 2552 2553 if (unlikely(nm_i->available_nids == 0)) { 2554 spin_unlock(&nm_i->nid_list_lock); 2555 return false; 2556 } 2557 2558 /* We should not use stale free nids created by f2fs_build_free_nids */ 2559 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2560 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2561 i = list_first_entry(&nm_i->free_nid_list, 2562 struct free_nid, list); 2563 *nid = i->nid; 2564 2565 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2566 nm_i->available_nids--; 2567 2568 update_free_nid_bitmap(sbi, *nid, false, false); 2569 2570 spin_unlock(&nm_i->nid_list_lock); 2571 return true; 2572 } 2573 spin_unlock(&nm_i->nid_list_lock); 2574 2575 /* Let's scan nat pages and its caches to get free nids */ 2576 if (!f2fs_build_free_nids(sbi, true, false)) 2577 goto retry; 2578 return false; 2579 } 2580 2581 /* 2582 * f2fs_alloc_nid() should be called prior to this function. 2583 */ 2584 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2585 { 2586 struct f2fs_nm_info *nm_i = NM_I(sbi); 2587 struct free_nid *i; 2588 2589 spin_lock(&nm_i->nid_list_lock); 2590 i = __lookup_free_nid_list(nm_i, nid); 2591 f2fs_bug_on(sbi, !i); 2592 __remove_free_nid(sbi, i, PREALLOC_NID); 2593 spin_unlock(&nm_i->nid_list_lock); 2594 2595 kmem_cache_free(free_nid_slab, i); 2596 } 2597 2598 /* 2599 * f2fs_alloc_nid() should be called prior to this function. 2600 */ 2601 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2602 { 2603 struct f2fs_nm_info *nm_i = NM_I(sbi); 2604 struct free_nid *i; 2605 bool need_free = false; 2606 2607 if (!nid) 2608 return; 2609 2610 spin_lock(&nm_i->nid_list_lock); 2611 i = __lookup_free_nid_list(nm_i, nid); 2612 f2fs_bug_on(sbi, !i); 2613 2614 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2615 __remove_free_nid(sbi, i, PREALLOC_NID); 2616 need_free = true; 2617 } else { 2618 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2619 } 2620 2621 nm_i->available_nids++; 2622 2623 update_free_nid_bitmap(sbi, nid, true, false); 2624 2625 spin_unlock(&nm_i->nid_list_lock); 2626 2627 if (need_free) 2628 kmem_cache_free(free_nid_slab, i); 2629 } 2630 2631 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2632 { 2633 struct f2fs_nm_info *nm_i = NM_I(sbi); 2634 int nr = nr_shrink; 2635 2636 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2637 return 0; 2638 2639 if (!mutex_trylock(&nm_i->build_lock)) 2640 return 0; 2641 2642 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2643 struct free_nid *i, *next; 2644 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2645 2646 spin_lock(&nm_i->nid_list_lock); 2647 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2648 if (!nr_shrink || !batch || 2649 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2650 break; 2651 __remove_free_nid(sbi, i, FREE_NID); 2652 kmem_cache_free(free_nid_slab, i); 2653 nr_shrink--; 2654 batch--; 2655 } 2656 spin_unlock(&nm_i->nid_list_lock); 2657 } 2658 2659 mutex_unlock(&nm_i->build_lock); 2660 2661 return nr - nr_shrink; 2662 } 2663 2664 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2665 { 2666 void *src_addr, *dst_addr; 2667 size_t inline_size; 2668 struct page *ipage; 2669 struct f2fs_inode *ri; 2670 2671 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2672 if (IS_ERR(ipage)) 2673 return PTR_ERR(ipage); 2674 2675 ri = F2FS_INODE(page); 2676 if (ri->i_inline & F2FS_INLINE_XATTR) { 2677 if (!f2fs_has_inline_xattr(inode)) { 2678 set_inode_flag(inode, FI_INLINE_XATTR); 2679 stat_inc_inline_xattr(inode); 2680 } 2681 } else { 2682 if (f2fs_has_inline_xattr(inode)) { 2683 stat_dec_inline_xattr(inode); 2684 clear_inode_flag(inode, FI_INLINE_XATTR); 2685 } 2686 goto update_inode; 2687 } 2688 2689 dst_addr = inline_xattr_addr(inode, ipage); 2690 src_addr = inline_xattr_addr(inode, page); 2691 inline_size = inline_xattr_size(inode); 2692 2693 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2694 memcpy(dst_addr, src_addr, inline_size); 2695 update_inode: 2696 f2fs_update_inode(inode, ipage); 2697 f2fs_put_page(ipage, 1); 2698 return 0; 2699 } 2700 2701 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2702 { 2703 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2704 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2705 nid_t new_xnid; 2706 struct dnode_of_data dn; 2707 struct node_info ni; 2708 struct page *xpage; 2709 int err; 2710 2711 if (!prev_xnid) 2712 goto recover_xnid; 2713 2714 /* 1: invalidate the previous xattr nid */ 2715 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); 2716 if (err) 2717 return err; 2718 2719 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2720 dec_valid_node_count(sbi, inode, false); 2721 set_node_addr(sbi, &ni, NULL_ADDR, false); 2722 2723 recover_xnid: 2724 /* 2: update xattr nid in inode */ 2725 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2726 return -ENOSPC; 2727 2728 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2729 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2730 if (IS_ERR(xpage)) { 2731 f2fs_alloc_nid_failed(sbi, new_xnid); 2732 return PTR_ERR(xpage); 2733 } 2734 2735 f2fs_alloc_nid_done(sbi, new_xnid); 2736 f2fs_update_inode_page(inode); 2737 2738 /* 3: update and set xattr node page dirty */ 2739 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2740 2741 set_page_dirty(xpage); 2742 f2fs_put_page(xpage, 1); 2743 2744 return 0; 2745 } 2746 2747 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2748 { 2749 struct f2fs_inode *src, *dst; 2750 nid_t ino = ino_of_node(page); 2751 struct node_info old_ni, new_ni; 2752 struct page *ipage; 2753 int err; 2754 2755 err = f2fs_get_node_info(sbi, ino, &old_ni, false); 2756 if (err) 2757 return err; 2758 2759 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2760 return -EINVAL; 2761 retry: 2762 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2763 if (!ipage) { 2764 memalloc_retry_wait(GFP_NOFS); 2765 goto retry; 2766 } 2767 2768 /* Should not use this inode from free nid list */ 2769 remove_free_nid(sbi, ino); 2770 2771 if (!PageUptodate(ipage)) 2772 SetPageUptodate(ipage); 2773 fill_node_footer(ipage, ino, ino, 0, true); 2774 set_cold_node(ipage, false); 2775 2776 src = F2FS_INODE(page); 2777 dst = F2FS_INODE(ipage); 2778 2779 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2780 dst->i_size = 0; 2781 dst->i_blocks = cpu_to_le64(1); 2782 dst->i_links = cpu_to_le32(1); 2783 dst->i_xattr_nid = 0; 2784 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2785 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2786 dst->i_extra_isize = src->i_extra_isize; 2787 2788 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2789 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2790 i_inline_xattr_size)) 2791 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2792 2793 if (f2fs_sb_has_project_quota(sbi) && 2794 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2795 i_projid)) 2796 dst->i_projid = src->i_projid; 2797 2798 if (f2fs_sb_has_inode_crtime(sbi) && 2799 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2800 i_crtime_nsec)) { 2801 dst->i_crtime = src->i_crtime; 2802 dst->i_crtime_nsec = src->i_crtime_nsec; 2803 } 2804 } 2805 2806 new_ni = old_ni; 2807 new_ni.ino = ino; 2808 2809 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2810 WARN_ON(1); 2811 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2812 inc_valid_inode_count(sbi); 2813 set_page_dirty(ipage); 2814 f2fs_put_page(ipage, 1); 2815 return 0; 2816 } 2817 2818 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2819 unsigned int segno, struct f2fs_summary_block *sum) 2820 { 2821 struct f2fs_node *rn; 2822 struct f2fs_summary *sum_entry; 2823 block_t addr; 2824 int i, idx, last_offset, nrpages; 2825 2826 /* scan the node segment */ 2827 last_offset = sbi->blocks_per_seg; 2828 addr = START_BLOCK(sbi, segno); 2829 sum_entry = &sum->entries[0]; 2830 2831 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2832 nrpages = bio_max_segs(last_offset - i); 2833 2834 /* readahead node pages */ 2835 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2836 2837 for (idx = addr; idx < addr + nrpages; idx++) { 2838 struct page *page = f2fs_get_tmp_page(sbi, idx); 2839 2840 if (IS_ERR(page)) 2841 return PTR_ERR(page); 2842 2843 rn = F2FS_NODE(page); 2844 sum_entry->nid = rn->footer.nid; 2845 sum_entry->version = 0; 2846 sum_entry->ofs_in_node = 0; 2847 sum_entry++; 2848 f2fs_put_page(page, 1); 2849 } 2850 2851 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2852 addr + nrpages); 2853 } 2854 return 0; 2855 } 2856 2857 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2858 { 2859 struct f2fs_nm_info *nm_i = NM_I(sbi); 2860 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2861 struct f2fs_journal *journal = curseg->journal; 2862 int i; 2863 2864 down_write(&curseg->journal_rwsem); 2865 for (i = 0; i < nats_in_cursum(journal); i++) { 2866 struct nat_entry *ne; 2867 struct f2fs_nat_entry raw_ne; 2868 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2869 2870 if (f2fs_check_nid_range(sbi, nid)) 2871 continue; 2872 2873 raw_ne = nat_in_journal(journal, i); 2874 2875 ne = __lookup_nat_cache(nm_i, nid); 2876 if (!ne) { 2877 ne = __alloc_nat_entry(sbi, nid, true); 2878 __init_nat_entry(nm_i, ne, &raw_ne, true); 2879 } 2880 2881 /* 2882 * if a free nat in journal has not been used after last 2883 * checkpoint, we should remove it from available nids, 2884 * since later we will add it again. 2885 */ 2886 if (!get_nat_flag(ne, IS_DIRTY) && 2887 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2888 spin_lock(&nm_i->nid_list_lock); 2889 nm_i->available_nids--; 2890 spin_unlock(&nm_i->nid_list_lock); 2891 } 2892 2893 __set_nat_cache_dirty(nm_i, ne); 2894 } 2895 update_nats_in_cursum(journal, -i); 2896 up_write(&curseg->journal_rwsem); 2897 } 2898 2899 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2900 struct list_head *head, int max) 2901 { 2902 struct nat_entry_set *cur; 2903 2904 if (nes->entry_cnt >= max) 2905 goto add_out; 2906 2907 list_for_each_entry(cur, head, set_list) { 2908 if (cur->entry_cnt >= nes->entry_cnt) { 2909 list_add(&nes->set_list, cur->set_list.prev); 2910 return; 2911 } 2912 } 2913 add_out: 2914 list_add_tail(&nes->set_list, head); 2915 } 2916 2917 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs, 2918 unsigned int valid) 2919 { 2920 if (valid == 0) { 2921 __set_bit_le(nat_ofs, nm_i->empty_nat_bits); 2922 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2923 return; 2924 } 2925 2926 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits); 2927 if (valid == NAT_ENTRY_PER_BLOCK) 2928 __set_bit_le(nat_ofs, nm_i->full_nat_bits); 2929 else 2930 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2931 } 2932 2933 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2934 struct page *page) 2935 { 2936 struct f2fs_nm_info *nm_i = NM_I(sbi); 2937 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2938 struct f2fs_nat_block *nat_blk = page_address(page); 2939 int valid = 0; 2940 int i = 0; 2941 2942 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 2943 return; 2944 2945 if (nat_index == 0) { 2946 valid = 1; 2947 i = 1; 2948 } 2949 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2950 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2951 valid++; 2952 } 2953 2954 __update_nat_bits(nm_i, nat_index, valid); 2955 } 2956 2957 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi) 2958 { 2959 struct f2fs_nm_info *nm_i = NM_I(sbi); 2960 unsigned int nat_ofs; 2961 2962 f2fs_down_read(&nm_i->nat_tree_lock); 2963 2964 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) { 2965 unsigned int valid = 0, nid_ofs = 0; 2966 2967 /* handle nid zero due to it should never be used */ 2968 if (unlikely(nat_ofs == 0)) { 2969 valid = 1; 2970 nid_ofs = 1; 2971 } 2972 2973 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) { 2974 if (!test_bit_le(nid_ofs, 2975 nm_i->free_nid_bitmap[nat_ofs])) 2976 valid++; 2977 } 2978 2979 __update_nat_bits(nm_i, nat_ofs, valid); 2980 } 2981 2982 f2fs_up_read(&nm_i->nat_tree_lock); 2983 } 2984 2985 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2986 struct nat_entry_set *set, struct cp_control *cpc) 2987 { 2988 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2989 struct f2fs_journal *journal = curseg->journal; 2990 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2991 bool to_journal = true; 2992 struct f2fs_nat_block *nat_blk; 2993 struct nat_entry *ne, *cur; 2994 struct page *page = NULL; 2995 2996 /* 2997 * there are two steps to flush nat entries: 2998 * #1, flush nat entries to journal in current hot data summary block. 2999 * #2, flush nat entries to nat page. 3000 */ 3001 if ((cpc->reason & CP_UMOUNT) || 3002 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 3003 to_journal = false; 3004 3005 if (to_journal) { 3006 down_write(&curseg->journal_rwsem); 3007 } else { 3008 page = get_next_nat_page(sbi, start_nid); 3009 if (IS_ERR(page)) 3010 return PTR_ERR(page); 3011 3012 nat_blk = page_address(page); 3013 f2fs_bug_on(sbi, !nat_blk); 3014 } 3015 3016 /* flush dirty nats in nat entry set */ 3017 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 3018 struct f2fs_nat_entry *raw_ne; 3019 nid_t nid = nat_get_nid(ne); 3020 int offset; 3021 3022 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 3023 3024 if (to_journal) { 3025 offset = f2fs_lookup_journal_in_cursum(journal, 3026 NAT_JOURNAL, nid, 1); 3027 f2fs_bug_on(sbi, offset < 0); 3028 raw_ne = &nat_in_journal(journal, offset); 3029 nid_in_journal(journal, offset) = cpu_to_le32(nid); 3030 } else { 3031 raw_ne = &nat_blk->entries[nid - start_nid]; 3032 } 3033 raw_nat_from_node_info(raw_ne, &ne->ni); 3034 nat_reset_flag(ne); 3035 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 3036 if (nat_get_blkaddr(ne) == NULL_ADDR) { 3037 add_free_nid(sbi, nid, false, true); 3038 } else { 3039 spin_lock(&NM_I(sbi)->nid_list_lock); 3040 update_free_nid_bitmap(sbi, nid, false, false); 3041 spin_unlock(&NM_I(sbi)->nid_list_lock); 3042 } 3043 } 3044 3045 if (to_journal) { 3046 up_write(&curseg->journal_rwsem); 3047 } else { 3048 update_nat_bits(sbi, start_nid, page); 3049 f2fs_put_page(page, 1); 3050 } 3051 3052 /* Allow dirty nats by node block allocation in write_begin */ 3053 if (!set->entry_cnt) { 3054 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 3055 kmem_cache_free(nat_entry_set_slab, set); 3056 } 3057 return 0; 3058 } 3059 3060 /* 3061 * This function is called during the checkpointing process. 3062 */ 3063 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3064 { 3065 struct f2fs_nm_info *nm_i = NM_I(sbi); 3066 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3067 struct f2fs_journal *journal = curseg->journal; 3068 struct nat_entry_set *setvec[SETVEC_SIZE]; 3069 struct nat_entry_set *set, *tmp; 3070 unsigned int found; 3071 nid_t set_idx = 0; 3072 LIST_HEAD(sets); 3073 int err = 0; 3074 3075 /* 3076 * during unmount, let's flush nat_bits before checking 3077 * nat_cnt[DIRTY_NAT]. 3078 */ 3079 if (cpc->reason & CP_UMOUNT) { 3080 f2fs_down_write(&nm_i->nat_tree_lock); 3081 remove_nats_in_journal(sbi); 3082 f2fs_up_write(&nm_i->nat_tree_lock); 3083 } 3084 3085 if (!nm_i->nat_cnt[DIRTY_NAT]) 3086 return 0; 3087 3088 f2fs_down_write(&nm_i->nat_tree_lock); 3089 3090 /* 3091 * if there are no enough space in journal to store dirty nat 3092 * entries, remove all entries from journal and merge them 3093 * into nat entry set. 3094 */ 3095 if (cpc->reason & CP_UMOUNT || 3096 !__has_cursum_space(journal, 3097 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 3098 remove_nats_in_journal(sbi); 3099 3100 while ((found = __gang_lookup_nat_set(nm_i, 3101 set_idx, SETVEC_SIZE, setvec))) { 3102 unsigned idx; 3103 3104 set_idx = setvec[found - 1]->set + 1; 3105 for (idx = 0; idx < found; idx++) 3106 __adjust_nat_entry_set(setvec[idx], &sets, 3107 MAX_NAT_JENTRIES(journal)); 3108 } 3109 3110 /* flush dirty nats in nat entry set */ 3111 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3112 err = __flush_nat_entry_set(sbi, set, cpc); 3113 if (err) 3114 break; 3115 } 3116 3117 f2fs_up_write(&nm_i->nat_tree_lock); 3118 /* Allow dirty nats by node block allocation in write_begin */ 3119 3120 return err; 3121 } 3122 3123 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3124 { 3125 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3126 struct f2fs_nm_info *nm_i = NM_I(sbi); 3127 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3128 unsigned int i; 3129 __u64 cp_ver = cur_cp_version(ckpt); 3130 block_t nat_bits_addr; 3131 3132 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3133 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3134 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3135 if (!nm_i->nat_bits) 3136 return -ENOMEM; 3137 3138 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3139 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3140 3141 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3142 return 0; 3143 3144 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 3145 nm_i->nat_bits_blocks; 3146 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3147 struct page *page; 3148 3149 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3150 if (IS_ERR(page)) 3151 return PTR_ERR(page); 3152 3153 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3154 page_address(page), F2FS_BLKSIZE); 3155 f2fs_put_page(page, 1); 3156 } 3157 3158 cp_ver |= (cur_cp_crc(ckpt) << 32); 3159 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3160 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 3161 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)", 3162 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits)); 3163 return 0; 3164 } 3165 3166 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3167 return 0; 3168 } 3169 3170 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3171 { 3172 struct f2fs_nm_info *nm_i = NM_I(sbi); 3173 unsigned int i = 0; 3174 nid_t nid, last_nid; 3175 3176 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3177 return; 3178 3179 for (i = 0; i < nm_i->nat_blocks; i++) { 3180 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3181 if (i >= nm_i->nat_blocks) 3182 break; 3183 3184 __set_bit_le(i, nm_i->nat_block_bitmap); 3185 3186 nid = i * NAT_ENTRY_PER_BLOCK; 3187 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3188 3189 spin_lock(&NM_I(sbi)->nid_list_lock); 3190 for (; nid < last_nid; nid++) 3191 update_free_nid_bitmap(sbi, nid, true, true); 3192 spin_unlock(&NM_I(sbi)->nid_list_lock); 3193 } 3194 3195 for (i = 0; i < nm_i->nat_blocks; i++) { 3196 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3197 if (i >= nm_i->nat_blocks) 3198 break; 3199 3200 __set_bit_le(i, nm_i->nat_block_bitmap); 3201 } 3202 } 3203 3204 static int init_node_manager(struct f2fs_sb_info *sbi) 3205 { 3206 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3207 struct f2fs_nm_info *nm_i = NM_I(sbi); 3208 unsigned char *version_bitmap; 3209 unsigned int nat_segs; 3210 int err; 3211 3212 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3213 3214 /* segment_count_nat includes pair segment so divide to 2. */ 3215 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3216 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3217 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3218 3219 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3220 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3221 F2FS_RESERVED_NODE_NUM; 3222 nm_i->nid_cnt[FREE_NID] = 0; 3223 nm_i->nid_cnt[PREALLOC_NID] = 0; 3224 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3225 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3226 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3227 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; 3228 3229 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3230 INIT_LIST_HEAD(&nm_i->free_nid_list); 3231 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3232 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3233 INIT_LIST_HEAD(&nm_i->nat_entries); 3234 spin_lock_init(&nm_i->nat_list_lock); 3235 3236 mutex_init(&nm_i->build_lock); 3237 spin_lock_init(&nm_i->nid_list_lock); 3238 init_f2fs_rwsem(&nm_i->nat_tree_lock); 3239 3240 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3241 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3242 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3243 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3244 GFP_KERNEL); 3245 if (!nm_i->nat_bitmap) 3246 return -ENOMEM; 3247 3248 err = __get_nat_bitmaps(sbi); 3249 if (err) 3250 return err; 3251 3252 #ifdef CONFIG_F2FS_CHECK_FS 3253 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3254 GFP_KERNEL); 3255 if (!nm_i->nat_bitmap_mir) 3256 return -ENOMEM; 3257 #endif 3258 3259 return 0; 3260 } 3261 3262 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3263 { 3264 struct f2fs_nm_info *nm_i = NM_I(sbi); 3265 int i; 3266 3267 nm_i->free_nid_bitmap = 3268 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3269 nm_i->nat_blocks), 3270 GFP_KERNEL); 3271 if (!nm_i->free_nid_bitmap) 3272 return -ENOMEM; 3273 3274 for (i = 0; i < nm_i->nat_blocks; i++) { 3275 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3276 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3277 if (!nm_i->free_nid_bitmap[i]) 3278 return -ENOMEM; 3279 } 3280 3281 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3282 GFP_KERNEL); 3283 if (!nm_i->nat_block_bitmap) 3284 return -ENOMEM; 3285 3286 nm_i->free_nid_count = 3287 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3288 nm_i->nat_blocks), 3289 GFP_KERNEL); 3290 if (!nm_i->free_nid_count) 3291 return -ENOMEM; 3292 return 0; 3293 } 3294 3295 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3296 { 3297 int err; 3298 3299 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3300 GFP_KERNEL); 3301 if (!sbi->nm_info) 3302 return -ENOMEM; 3303 3304 err = init_node_manager(sbi); 3305 if (err) 3306 return err; 3307 3308 err = init_free_nid_cache(sbi); 3309 if (err) 3310 return err; 3311 3312 /* load free nid status from nat_bits table */ 3313 load_free_nid_bitmap(sbi); 3314 3315 return f2fs_build_free_nids(sbi, true, true); 3316 } 3317 3318 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3319 { 3320 struct f2fs_nm_info *nm_i = NM_I(sbi); 3321 struct free_nid *i, *next_i; 3322 struct nat_entry *natvec[NATVEC_SIZE]; 3323 struct nat_entry_set *setvec[SETVEC_SIZE]; 3324 nid_t nid = 0; 3325 unsigned int found; 3326 3327 if (!nm_i) 3328 return; 3329 3330 /* destroy free nid list */ 3331 spin_lock(&nm_i->nid_list_lock); 3332 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3333 __remove_free_nid(sbi, i, FREE_NID); 3334 spin_unlock(&nm_i->nid_list_lock); 3335 kmem_cache_free(free_nid_slab, i); 3336 spin_lock(&nm_i->nid_list_lock); 3337 } 3338 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3339 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3340 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3341 spin_unlock(&nm_i->nid_list_lock); 3342 3343 /* destroy nat cache */ 3344 f2fs_down_write(&nm_i->nat_tree_lock); 3345 while ((found = __gang_lookup_nat_cache(nm_i, 3346 nid, NATVEC_SIZE, natvec))) { 3347 unsigned idx; 3348 3349 nid = nat_get_nid(natvec[found - 1]) + 1; 3350 for (idx = 0; idx < found; idx++) { 3351 spin_lock(&nm_i->nat_list_lock); 3352 list_del(&natvec[idx]->list); 3353 spin_unlock(&nm_i->nat_list_lock); 3354 3355 __del_from_nat_cache(nm_i, natvec[idx]); 3356 } 3357 } 3358 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3359 3360 /* destroy nat set cache */ 3361 nid = 0; 3362 while ((found = __gang_lookup_nat_set(nm_i, 3363 nid, SETVEC_SIZE, setvec))) { 3364 unsigned idx; 3365 3366 nid = setvec[found - 1]->set + 1; 3367 for (idx = 0; idx < found; idx++) { 3368 /* entry_cnt is not zero, when cp_error was occurred */ 3369 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3370 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3371 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3372 } 3373 } 3374 f2fs_up_write(&nm_i->nat_tree_lock); 3375 3376 kvfree(nm_i->nat_block_bitmap); 3377 if (nm_i->free_nid_bitmap) { 3378 int i; 3379 3380 for (i = 0; i < nm_i->nat_blocks; i++) 3381 kvfree(nm_i->free_nid_bitmap[i]); 3382 kvfree(nm_i->free_nid_bitmap); 3383 } 3384 kvfree(nm_i->free_nid_count); 3385 3386 kvfree(nm_i->nat_bitmap); 3387 kvfree(nm_i->nat_bits); 3388 #ifdef CONFIG_F2FS_CHECK_FS 3389 kvfree(nm_i->nat_bitmap_mir); 3390 #endif 3391 sbi->nm_info = NULL; 3392 kfree(nm_i); 3393 } 3394 3395 int __init f2fs_create_node_manager_caches(void) 3396 { 3397 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3398 sizeof(struct nat_entry)); 3399 if (!nat_entry_slab) 3400 goto fail; 3401 3402 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3403 sizeof(struct free_nid)); 3404 if (!free_nid_slab) 3405 goto destroy_nat_entry; 3406 3407 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3408 sizeof(struct nat_entry_set)); 3409 if (!nat_entry_set_slab) 3410 goto destroy_free_nid; 3411 3412 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3413 sizeof(struct fsync_node_entry)); 3414 if (!fsync_node_entry_slab) 3415 goto destroy_nat_entry_set; 3416 return 0; 3417 3418 destroy_nat_entry_set: 3419 kmem_cache_destroy(nat_entry_set_slab); 3420 destroy_free_nid: 3421 kmem_cache_destroy(free_nid_slab); 3422 destroy_nat_entry: 3423 kmem_cache_destroy(nat_entry_slab); 3424 fail: 3425 return -ENOMEM; 3426 } 3427 3428 void f2fs_destroy_node_manager_caches(void) 3429 { 3430 kmem_cache_destroy(fsync_node_entry_slab); 3431 kmem_cache_destroy(nat_entry_set_slab); 3432 kmem_cache_destroy(free_nid_slab); 3433 kmem_cache_destroy(nat_entry_slab); 3434 } 3435