1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "trace.h" 23 #include <trace/events/f2fs.h> 24 25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock) 26 27 static struct kmem_cache *nat_entry_slab; 28 static struct kmem_cache *free_nid_slab; 29 static struct kmem_cache *nat_entry_set_slab; 30 31 bool available_free_memory(struct f2fs_sb_info *sbi, int type) 32 { 33 struct f2fs_nm_info *nm_i = NM_I(sbi); 34 struct sysinfo val; 35 unsigned long avail_ram; 36 unsigned long mem_size = 0; 37 bool res = false; 38 39 si_meminfo(&val); 40 41 /* only uses low memory */ 42 avail_ram = val.totalram - val.totalhigh; 43 44 /* 45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 46 */ 47 if (type == FREE_NIDS) { 48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 49 PAGE_CACHE_SHIFT; 50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 51 } else if (type == NAT_ENTRIES) { 52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 53 PAGE_CACHE_SHIFT; 54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 55 } else if (type == DIRTY_DENTS) { 56 if (sbi->sb->s_bdi->dirty_exceeded) 57 return false; 58 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 59 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 60 } else if (type == INO_ENTRIES) { 61 int i; 62 63 for (i = 0; i <= UPDATE_INO; i++) 64 mem_size += (sbi->im[i].ino_num * 65 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT; 66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 67 } else if (type == EXTENT_CACHE) { 68 mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) + 69 atomic_read(&sbi->total_ext_node) * 70 sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT; 71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 72 } else { 73 if (sbi->sb->s_bdi->dirty_exceeded) 74 return false; 75 } 76 return res; 77 } 78 79 static void clear_node_page_dirty(struct page *page) 80 { 81 struct address_space *mapping = page->mapping; 82 unsigned int long flags; 83 84 if (PageDirty(page)) { 85 spin_lock_irqsave(&mapping->tree_lock, flags); 86 radix_tree_tag_clear(&mapping->page_tree, 87 page_index(page), 88 PAGECACHE_TAG_DIRTY); 89 spin_unlock_irqrestore(&mapping->tree_lock, flags); 90 91 clear_page_dirty_for_io(page); 92 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 93 } 94 ClearPageUptodate(page); 95 } 96 97 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 98 { 99 pgoff_t index = current_nat_addr(sbi, nid); 100 return get_meta_page(sbi, index); 101 } 102 103 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 104 { 105 struct page *src_page; 106 struct page *dst_page; 107 pgoff_t src_off; 108 pgoff_t dst_off; 109 void *src_addr; 110 void *dst_addr; 111 struct f2fs_nm_info *nm_i = NM_I(sbi); 112 113 src_off = current_nat_addr(sbi, nid); 114 dst_off = next_nat_addr(sbi, src_off); 115 116 /* get current nat block page with lock */ 117 src_page = get_meta_page(sbi, src_off); 118 dst_page = grab_meta_page(sbi, dst_off); 119 f2fs_bug_on(sbi, PageDirty(src_page)); 120 121 src_addr = page_address(src_page); 122 dst_addr = page_address(dst_page); 123 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 124 set_page_dirty(dst_page); 125 f2fs_put_page(src_page, 1); 126 127 set_to_next_nat(nm_i, nid); 128 129 return dst_page; 130 } 131 132 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 133 { 134 return radix_tree_lookup(&nm_i->nat_root, n); 135 } 136 137 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 138 nid_t start, unsigned int nr, struct nat_entry **ep) 139 { 140 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 141 } 142 143 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 144 { 145 list_del(&e->list); 146 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 147 nm_i->nat_cnt--; 148 kmem_cache_free(nat_entry_slab, e); 149 } 150 151 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 152 struct nat_entry *ne) 153 { 154 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 155 struct nat_entry_set *head; 156 157 if (get_nat_flag(ne, IS_DIRTY)) 158 return; 159 160 head = radix_tree_lookup(&nm_i->nat_set_root, set); 161 if (!head) { 162 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC); 163 164 INIT_LIST_HEAD(&head->entry_list); 165 INIT_LIST_HEAD(&head->set_list); 166 head->set = set; 167 head->entry_cnt = 0; 168 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 169 } 170 list_move_tail(&ne->list, &head->entry_list); 171 nm_i->dirty_nat_cnt++; 172 head->entry_cnt++; 173 set_nat_flag(ne, IS_DIRTY, true); 174 } 175 176 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 177 struct nat_entry *ne) 178 { 179 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 180 struct nat_entry_set *head; 181 182 head = radix_tree_lookup(&nm_i->nat_set_root, set); 183 if (head) { 184 list_move_tail(&ne->list, &nm_i->nat_entries); 185 set_nat_flag(ne, IS_DIRTY, false); 186 head->entry_cnt--; 187 nm_i->dirty_nat_cnt--; 188 } 189 } 190 191 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 192 nid_t start, unsigned int nr, struct nat_entry_set **ep) 193 { 194 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 195 start, nr); 196 } 197 198 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 199 { 200 struct f2fs_nm_info *nm_i = NM_I(sbi); 201 struct nat_entry *e; 202 bool is_cp = true; 203 204 down_read(&nm_i->nat_tree_lock); 205 e = __lookup_nat_cache(nm_i, nid); 206 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 207 is_cp = false; 208 up_read(&nm_i->nat_tree_lock); 209 return is_cp; 210 } 211 212 bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino) 213 { 214 struct f2fs_nm_info *nm_i = NM_I(sbi); 215 struct nat_entry *e; 216 bool fsynced = false; 217 218 down_read(&nm_i->nat_tree_lock); 219 e = __lookup_nat_cache(nm_i, ino); 220 if (e && get_nat_flag(e, HAS_FSYNCED_INODE)) 221 fsynced = true; 222 up_read(&nm_i->nat_tree_lock); 223 return fsynced; 224 } 225 226 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 227 { 228 struct f2fs_nm_info *nm_i = NM_I(sbi); 229 struct nat_entry *e; 230 bool need_update = true; 231 232 down_read(&nm_i->nat_tree_lock); 233 e = __lookup_nat_cache(nm_i, ino); 234 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 235 (get_nat_flag(e, IS_CHECKPOINTED) || 236 get_nat_flag(e, HAS_FSYNCED_INODE))) 237 need_update = false; 238 up_read(&nm_i->nat_tree_lock); 239 return need_update; 240 } 241 242 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 243 { 244 struct nat_entry *new; 245 246 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC); 247 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); 248 memset(new, 0, sizeof(struct nat_entry)); 249 nat_set_nid(new, nid); 250 nat_reset_flag(new); 251 list_add_tail(&new->list, &nm_i->nat_entries); 252 nm_i->nat_cnt++; 253 return new; 254 } 255 256 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid, 257 struct f2fs_nat_entry *ne) 258 { 259 struct nat_entry *e; 260 261 down_write(&nm_i->nat_tree_lock); 262 e = __lookup_nat_cache(nm_i, nid); 263 if (!e) { 264 e = grab_nat_entry(nm_i, nid); 265 node_info_from_raw_nat(&e->ni, ne); 266 } 267 up_write(&nm_i->nat_tree_lock); 268 } 269 270 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 271 block_t new_blkaddr, bool fsync_done) 272 { 273 struct f2fs_nm_info *nm_i = NM_I(sbi); 274 struct nat_entry *e; 275 276 down_write(&nm_i->nat_tree_lock); 277 e = __lookup_nat_cache(nm_i, ni->nid); 278 if (!e) { 279 e = grab_nat_entry(nm_i, ni->nid); 280 copy_node_info(&e->ni, ni); 281 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 282 } else if (new_blkaddr == NEW_ADDR) { 283 /* 284 * when nid is reallocated, 285 * previous nat entry can be remained in nat cache. 286 * So, reinitialize it with new information. 287 */ 288 copy_node_info(&e->ni, ni); 289 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 290 } 291 292 /* sanity check */ 293 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 294 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 295 new_blkaddr == NULL_ADDR); 296 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 297 new_blkaddr == NEW_ADDR); 298 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && 299 nat_get_blkaddr(e) != NULL_ADDR && 300 new_blkaddr == NEW_ADDR); 301 302 /* increment version no as node is removed */ 303 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 304 unsigned char version = nat_get_version(e); 305 nat_set_version(e, inc_node_version(version)); 306 } 307 308 /* change address */ 309 nat_set_blkaddr(e, new_blkaddr); 310 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 311 set_nat_flag(e, IS_CHECKPOINTED, false); 312 __set_nat_cache_dirty(nm_i, e); 313 314 /* update fsync_mark if its inode nat entry is still alive */ 315 e = __lookup_nat_cache(nm_i, ni->ino); 316 if (e) { 317 if (fsync_done && ni->nid == ni->ino) 318 set_nat_flag(e, HAS_FSYNCED_INODE, true); 319 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 320 } 321 up_write(&nm_i->nat_tree_lock); 322 } 323 324 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 325 { 326 struct f2fs_nm_info *nm_i = NM_I(sbi); 327 328 if (available_free_memory(sbi, NAT_ENTRIES)) 329 return 0; 330 331 down_write(&nm_i->nat_tree_lock); 332 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 333 struct nat_entry *ne; 334 ne = list_first_entry(&nm_i->nat_entries, 335 struct nat_entry, list); 336 __del_from_nat_cache(nm_i, ne); 337 nr_shrink--; 338 } 339 up_write(&nm_i->nat_tree_lock); 340 return nr_shrink; 341 } 342 343 /* 344 * This function always returns success 345 */ 346 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 347 { 348 struct f2fs_nm_info *nm_i = NM_I(sbi); 349 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 350 struct f2fs_summary_block *sum = curseg->sum_blk; 351 nid_t start_nid = START_NID(nid); 352 struct f2fs_nat_block *nat_blk; 353 struct page *page = NULL; 354 struct f2fs_nat_entry ne; 355 struct nat_entry *e; 356 int i; 357 358 ni->nid = nid; 359 360 /* Check nat cache */ 361 down_read(&nm_i->nat_tree_lock); 362 e = __lookup_nat_cache(nm_i, nid); 363 if (e) { 364 ni->ino = nat_get_ino(e); 365 ni->blk_addr = nat_get_blkaddr(e); 366 ni->version = nat_get_version(e); 367 } 368 up_read(&nm_i->nat_tree_lock); 369 if (e) 370 return; 371 372 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 373 374 /* Check current segment summary */ 375 mutex_lock(&curseg->curseg_mutex); 376 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0); 377 if (i >= 0) { 378 ne = nat_in_journal(sum, i); 379 node_info_from_raw_nat(ni, &ne); 380 } 381 mutex_unlock(&curseg->curseg_mutex); 382 if (i >= 0) 383 goto cache; 384 385 /* Fill node_info from nat page */ 386 page = get_current_nat_page(sbi, start_nid); 387 nat_blk = (struct f2fs_nat_block *)page_address(page); 388 ne = nat_blk->entries[nid - start_nid]; 389 node_info_from_raw_nat(ni, &ne); 390 f2fs_put_page(page, 1); 391 cache: 392 /* cache nat entry */ 393 cache_nat_entry(NM_I(sbi), nid, &ne); 394 } 395 396 /* 397 * The maximum depth is four. 398 * Offset[0] will have raw inode offset. 399 */ 400 static int get_node_path(struct f2fs_inode_info *fi, long block, 401 int offset[4], unsigned int noffset[4]) 402 { 403 const long direct_index = ADDRS_PER_INODE(fi); 404 const long direct_blks = ADDRS_PER_BLOCK; 405 const long dptrs_per_blk = NIDS_PER_BLOCK; 406 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 407 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 408 int n = 0; 409 int level = 0; 410 411 noffset[0] = 0; 412 413 if (block < direct_index) { 414 offset[n] = block; 415 goto got; 416 } 417 block -= direct_index; 418 if (block < direct_blks) { 419 offset[n++] = NODE_DIR1_BLOCK; 420 noffset[n] = 1; 421 offset[n] = block; 422 level = 1; 423 goto got; 424 } 425 block -= direct_blks; 426 if (block < direct_blks) { 427 offset[n++] = NODE_DIR2_BLOCK; 428 noffset[n] = 2; 429 offset[n] = block; 430 level = 1; 431 goto got; 432 } 433 block -= direct_blks; 434 if (block < indirect_blks) { 435 offset[n++] = NODE_IND1_BLOCK; 436 noffset[n] = 3; 437 offset[n++] = block / direct_blks; 438 noffset[n] = 4 + offset[n - 1]; 439 offset[n] = block % direct_blks; 440 level = 2; 441 goto got; 442 } 443 block -= indirect_blks; 444 if (block < indirect_blks) { 445 offset[n++] = NODE_IND2_BLOCK; 446 noffset[n] = 4 + dptrs_per_blk; 447 offset[n++] = block / direct_blks; 448 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 449 offset[n] = block % direct_blks; 450 level = 2; 451 goto got; 452 } 453 block -= indirect_blks; 454 if (block < dindirect_blks) { 455 offset[n++] = NODE_DIND_BLOCK; 456 noffset[n] = 5 + (dptrs_per_blk * 2); 457 offset[n++] = block / indirect_blks; 458 noffset[n] = 6 + (dptrs_per_blk * 2) + 459 offset[n - 1] * (dptrs_per_blk + 1); 460 offset[n++] = (block / direct_blks) % dptrs_per_blk; 461 noffset[n] = 7 + (dptrs_per_blk * 2) + 462 offset[n - 2] * (dptrs_per_blk + 1) + 463 offset[n - 1]; 464 offset[n] = block % direct_blks; 465 level = 3; 466 goto got; 467 } else { 468 BUG(); 469 } 470 got: 471 return level; 472 } 473 474 /* 475 * Caller should call f2fs_put_dnode(dn). 476 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 477 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 478 * In the case of RDONLY_NODE, we don't need to care about mutex. 479 */ 480 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 481 { 482 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 483 struct page *npage[4]; 484 struct page *parent = NULL; 485 int offset[4]; 486 unsigned int noffset[4]; 487 nid_t nids[4]; 488 int level, i; 489 int err = 0; 490 491 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset); 492 493 nids[0] = dn->inode->i_ino; 494 npage[0] = dn->inode_page; 495 496 if (!npage[0]) { 497 npage[0] = get_node_page(sbi, nids[0]); 498 if (IS_ERR(npage[0])) 499 return PTR_ERR(npage[0]); 500 } 501 502 /* if inline_data is set, should not report any block indices */ 503 if (f2fs_has_inline_data(dn->inode) && index) { 504 err = -ENOENT; 505 f2fs_put_page(npage[0], 1); 506 goto release_out; 507 } 508 509 parent = npage[0]; 510 if (level != 0) 511 nids[1] = get_nid(parent, offset[0], true); 512 dn->inode_page = npage[0]; 513 dn->inode_page_locked = true; 514 515 /* get indirect or direct nodes */ 516 for (i = 1; i <= level; i++) { 517 bool done = false; 518 519 if (!nids[i] && mode == ALLOC_NODE) { 520 /* alloc new node */ 521 if (!alloc_nid(sbi, &(nids[i]))) { 522 err = -ENOSPC; 523 goto release_pages; 524 } 525 526 dn->nid = nids[i]; 527 npage[i] = new_node_page(dn, noffset[i], NULL); 528 if (IS_ERR(npage[i])) { 529 alloc_nid_failed(sbi, nids[i]); 530 err = PTR_ERR(npage[i]); 531 goto release_pages; 532 } 533 534 set_nid(parent, offset[i - 1], nids[i], i == 1); 535 alloc_nid_done(sbi, nids[i]); 536 done = true; 537 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 538 npage[i] = get_node_page_ra(parent, offset[i - 1]); 539 if (IS_ERR(npage[i])) { 540 err = PTR_ERR(npage[i]); 541 goto release_pages; 542 } 543 done = true; 544 } 545 if (i == 1) { 546 dn->inode_page_locked = false; 547 unlock_page(parent); 548 } else { 549 f2fs_put_page(parent, 1); 550 } 551 552 if (!done) { 553 npage[i] = get_node_page(sbi, nids[i]); 554 if (IS_ERR(npage[i])) { 555 err = PTR_ERR(npage[i]); 556 f2fs_put_page(npage[0], 0); 557 goto release_out; 558 } 559 } 560 if (i < level) { 561 parent = npage[i]; 562 nids[i + 1] = get_nid(parent, offset[i], false); 563 } 564 } 565 dn->nid = nids[level]; 566 dn->ofs_in_node = offset[level]; 567 dn->node_page = npage[level]; 568 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 569 return 0; 570 571 release_pages: 572 f2fs_put_page(parent, 1); 573 if (i > 1) 574 f2fs_put_page(npage[0], 0); 575 release_out: 576 dn->inode_page = NULL; 577 dn->node_page = NULL; 578 return err; 579 } 580 581 static void truncate_node(struct dnode_of_data *dn) 582 { 583 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 584 struct node_info ni; 585 586 get_node_info(sbi, dn->nid, &ni); 587 if (dn->inode->i_blocks == 0) { 588 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); 589 goto invalidate; 590 } 591 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 592 593 /* Deallocate node address */ 594 invalidate_blocks(sbi, ni.blk_addr); 595 dec_valid_node_count(sbi, dn->inode); 596 set_node_addr(sbi, &ni, NULL_ADDR, false); 597 598 if (dn->nid == dn->inode->i_ino) { 599 remove_orphan_inode(sbi, dn->nid); 600 dec_valid_inode_count(sbi); 601 } else { 602 sync_inode_page(dn); 603 } 604 invalidate: 605 clear_node_page_dirty(dn->node_page); 606 set_sbi_flag(sbi, SBI_IS_DIRTY); 607 608 f2fs_put_page(dn->node_page, 1); 609 610 invalidate_mapping_pages(NODE_MAPPING(sbi), 611 dn->node_page->index, dn->node_page->index); 612 613 dn->node_page = NULL; 614 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 615 } 616 617 static int truncate_dnode(struct dnode_of_data *dn) 618 { 619 struct page *page; 620 621 if (dn->nid == 0) 622 return 1; 623 624 /* get direct node */ 625 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 626 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 627 return 1; 628 else if (IS_ERR(page)) 629 return PTR_ERR(page); 630 631 /* Make dnode_of_data for parameter */ 632 dn->node_page = page; 633 dn->ofs_in_node = 0; 634 truncate_data_blocks(dn); 635 truncate_node(dn); 636 return 1; 637 } 638 639 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 640 int ofs, int depth) 641 { 642 struct dnode_of_data rdn = *dn; 643 struct page *page; 644 struct f2fs_node *rn; 645 nid_t child_nid; 646 unsigned int child_nofs; 647 int freed = 0; 648 int i, ret; 649 650 if (dn->nid == 0) 651 return NIDS_PER_BLOCK + 1; 652 653 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 654 655 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 656 if (IS_ERR(page)) { 657 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 658 return PTR_ERR(page); 659 } 660 661 rn = F2FS_NODE(page); 662 if (depth < 3) { 663 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 664 child_nid = le32_to_cpu(rn->in.nid[i]); 665 if (child_nid == 0) 666 continue; 667 rdn.nid = child_nid; 668 ret = truncate_dnode(&rdn); 669 if (ret < 0) 670 goto out_err; 671 set_nid(page, i, 0, false); 672 } 673 } else { 674 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 675 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 676 child_nid = le32_to_cpu(rn->in.nid[i]); 677 if (child_nid == 0) { 678 child_nofs += NIDS_PER_BLOCK + 1; 679 continue; 680 } 681 rdn.nid = child_nid; 682 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 683 if (ret == (NIDS_PER_BLOCK + 1)) { 684 set_nid(page, i, 0, false); 685 child_nofs += ret; 686 } else if (ret < 0 && ret != -ENOENT) { 687 goto out_err; 688 } 689 } 690 freed = child_nofs; 691 } 692 693 if (!ofs) { 694 /* remove current indirect node */ 695 dn->node_page = page; 696 truncate_node(dn); 697 freed++; 698 } else { 699 f2fs_put_page(page, 1); 700 } 701 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 702 return freed; 703 704 out_err: 705 f2fs_put_page(page, 1); 706 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 707 return ret; 708 } 709 710 static int truncate_partial_nodes(struct dnode_of_data *dn, 711 struct f2fs_inode *ri, int *offset, int depth) 712 { 713 struct page *pages[2]; 714 nid_t nid[3]; 715 nid_t child_nid; 716 int err = 0; 717 int i; 718 int idx = depth - 2; 719 720 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 721 if (!nid[0]) 722 return 0; 723 724 /* get indirect nodes in the path */ 725 for (i = 0; i < idx + 1; i++) { 726 /* reference count'll be increased */ 727 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); 728 if (IS_ERR(pages[i])) { 729 err = PTR_ERR(pages[i]); 730 idx = i - 1; 731 goto fail; 732 } 733 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 734 } 735 736 /* free direct nodes linked to a partial indirect node */ 737 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 738 child_nid = get_nid(pages[idx], i, false); 739 if (!child_nid) 740 continue; 741 dn->nid = child_nid; 742 err = truncate_dnode(dn); 743 if (err < 0) 744 goto fail; 745 set_nid(pages[idx], i, 0, false); 746 } 747 748 if (offset[idx + 1] == 0) { 749 dn->node_page = pages[idx]; 750 dn->nid = nid[idx]; 751 truncate_node(dn); 752 } else { 753 f2fs_put_page(pages[idx], 1); 754 } 755 offset[idx]++; 756 offset[idx + 1] = 0; 757 idx--; 758 fail: 759 for (i = idx; i >= 0; i--) 760 f2fs_put_page(pages[i], 1); 761 762 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 763 764 return err; 765 } 766 767 /* 768 * All the block addresses of data and nodes should be nullified. 769 */ 770 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 771 { 772 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 773 int err = 0, cont = 1; 774 int level, offset[4], noffset[4]; 775 unsigned int nofs = 0; 776 struct f2fs_inode *ri; 777 struct dnode_of_data dn; 778 struct page *page; 779 780 trace_f2fs_truncate_inode_blocks_enter(inode, from); 781 782 level = get_node_path(F2FS_I(inode), from, offset, noffset); 783 restart: 784 page = get_node_page(sbi, inode->i_ino); 785 if (IS_ERR(page)) { 786 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 787 return PTR_ERR(page); 788 } 789 790 set_new_dnode(&dn, inode, page, NULL, 0); 791 unlock_page(page); 792 793 ri = F2FS_INODE(page); 794 switch (level) { 795 case 0: 796 case 1: 797 nofs = noffset[1]; 798 break; 799 case 2: 800 nofs = noffset[1]; 801 if (!offset[level - 1]) 802 goto skip_partial; 803 err = truncate_partial_nodes(&dn, ri, offset, level); 804 if (err < 0 && err != -ENOENT) 805 goto fail; 806 nofs += 1 + NIDS_PER_BLOCK; 807 break; 808 case 3: 809 nofs = 5 + 2 * NIDS_PER_BLOCK; 810 if (!offset[level - 1]) 811 goto skip_partial; 812 err = truncate_partial_nodes(&dn, ri, offset, level); 813 if (err < 0 && err != -ENOENT) 814 goto fail; 815 break; 816 default: 817 BUG(); 818 } 819 820 skip_partial: 821 while (cont) { 822 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 823 switch (offset[0]) { 824 case NODE_DIR1_BLOCK: 825 case NODE_DIR2_BLOCK: 826 err = truncate_dnode(&dn); 827 break; 828 829 case NODE_IND1_BLOCK: 830 case NODE_IND2_BLOCK: 831 err = truncate_nodes(&dn, nofs, offset[1], 2); 832 break; 833 834 case NODE_DIND_BLOCK: 835 err = truncate_nodes(&dn, nofs, offset[1], 3); 836 cont = 0; 837 break; 838 839 default: 840 BUG(); 841 } 842 if (err < 0 && err != -ENOENT) 843 goto fail; 844 if (offset[1] == 0 && 845 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 846 lock_page(page); 847 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 848 f2fs_put_page(page, 1); 849 goto restart; 850 } 851 f2fs_wait_on_page_writeback(page, NODE); 852 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 853 set_page_dirty(page); 854 unlock_page(page); 855 } 856 offset[1] = 0; 857 offset[0]++; 858 nofs += err; 859 } 860 fail: 861 f2fs_put_page(page, 0); 862 trace_f2fs_truncate_inode_blocks_exit(inode, err); 863 return err > 0 ? 0 : err; 864 } 865 866 int truncate_xattr_node(struct inode *inode, struct page *page) 867 { 868 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 869 nid_t nid = F2FS_I(inode)->i_xattr_nid; 870 struct dnode_of_data dn; 871 struct page *npage; 872 873 if (!nid) 874 return 0; 875 876 npage = get_node_page(sbi, nid); 877 if (IS_ERR(npage)) 878 return PTR_ERR(npage); 879 880 F2FS_I(inode)->i_xattr_nid = 0; 881 882 /* need to do checkpoint during fsync */ 883 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); 884 885 set_new_dnode(&dn, inode, page, npage, nid); 886 887 if (page) 888 dn.inode_page_locked = true; 889 truncate_node(&dn); 890 return 0; 891 } 892 893 /* 894 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 895 * f2fs_unlock_op(). 896 */ 897 void remove_inode_page(struct inode *inode) 898 { 899 struct dnode_of_data dn; 900 901 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 902 if (get_dnode_of_data(&dn, 0, LOOKUP_NODE)) 903 return; 904 905 if (truncate_xattr_node(inode, dn.inode_page)) { 906 f2fs_put_dnode(&dn); 907 return; 908 } 909 910 /* remove potential inline_data blocks */ 911 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 912 S_ISLNK(inode->i_mode)) 913 truncate_data_blocks_range(&dn, 1); 914 915 /* 0 is possible, after f2fs_new_inode() has failed */ 916 f2fs_bug_on(F2FS_I_SB(inode), 917 inode->i_blocks != 0 && inode->i_blocks != 1); 918 919 /* will put inode & node pages */ 920 truncate_node(&dn); 921 } 922 923 struct page *new_inode_page(struct inode *inode) 924 { 925 struct dnode_of_data dn; 926 927 /* allocate inode page for new inode */ 928 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 929 930 /* caller should f2fs_put_page(page, 1); */ 931 return new_node_page(&dn, 0, NULL); 932 } 933 934 struct page *new_node_page(struct dnode_of_data *dn, 935 unsigned int ofs, struct page *ipage) 936 { 937 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 938 struct node_info old_ni, new_ni; 939 struct page *page; 940 int err; 941 942 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) 943 return ERR_PTR(-EPERM); 944 945 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid); 946 if (!page) 947 return ERR_PTR(-ENOMEM); 948 949 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { 950 err = -ENOSPC; 951 goto fail; 952 } 953 954 get_node_info(sbi, dn->nid, &old_ni); 955 956 /* Reinitialize old_ni with new node page */ 957 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR); 958 new_ni = old_ni; 959 new_ni.ino = dn->inode->i_ino; 960 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 961 962 f2fs_wait_on_page_writeback(page, NODE); 963 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 964 set_cold_node(dn->inode, page); 965 SetPageUptodate(page); 966 set_page_dirty(page); 967 968 if (f2fs_has_xattr_block(ofs)) 969 F2FS_I(dn->inode)->i_xattr_nid = dn->nid; 970 971 dn->node_page = page; 972 if (ipage) 973 update_inode(dn->inode, ipage); 974 else 975 sync_inode_page(dn); 976 if (ofs == 0) 977 inc_valid_inode_count(sbi); 978 979 return page; 980 981 fail: 982 clear_node_page_dirty(page); 983 f2fs_put_page(page, 1); 984 return ERR_PTR(err); 985 } 986 987 /* 988 * Caller should do after getting the following values. 989 * 0: f2fs_put_page(page, 0) 990 * LOCKED_PAGE: f2fs_put_page(page, 1) 991 * error: nothing 992 */ 993 static int read_node_page(struct page *page, int rw) 994 { 995 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 996 struct node_info ni; 997 struct f2fs_io_info fio = { 998 .type = NODE, 999 .rw = rw, 1000 }; 1001 1002 get_node_info(sbi, page->index, &ni); 1003 1004 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1005 ClearPageUptodate(page); 1006 f2fs_put_page(page, 1); 1007 return -ENOENT; 1008 } 1009 1010 if (PageUptodate(page)) 1011 return LOCKED_PAGE; 1012 1013 fio.blk_addr = ni.blk_addr; 1014 return f2fs_submit_page_bio(sbi, page, &fio); 1015 } 1016 1017 /* 1018 * Readahead a node page 1019 */ 1020 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1021 { 1022 struct page *apage; 1023 int err; 1024 1025 apage = find_get_page(NODE_MAPPING(sbi), nid); 1026 if (apage && PageUptodate(apage)) { 1027 f2fs_put_page(apage, 0); 1028 return; 1029 } 1030 f2fs_put_page(apage, 0); 1031 1032 apage = grab_cache_page(NODE_MAPPING(sbi), nid); 1033 if (!apage) 1034 return; 1035 1036 err = read_node_page(apage, READA); 1037 if (err == 0) 1038 f2fs_put_page(apage, 0); 1039 else if (err == LOCKED_PAGE) 1040 f2fs_put_page(apage, 1); 1041 } 1042 1043 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1044 { 1045 struct page *page; 1046 int err; 1047 repeat: 1048 page = grab_cache_page(NODE_MAPPING(sbi), nid); 1049 if (!page) 1050 return ERR_PTR(-ENOMEM); 1051 1052 err = read_node_page(page, READ_SYNC); 1053 if (err < 0) 1054 return ERR_PTR(err); 1055 else if (err != LOCKED_PAGE) 1056 lock_page(page); 1057 1058 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) { 1059 ClearPageUptodate(page); 1060 f2fs_put_page(page, 1); 1061 return ERR_PTR(-EIO); 1062 } 1063 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1064 f2fs_put_page(page, 1); 1065 goto repeat; 1066 } 1067 return page; 1068 } 1069 1070 /* 1071 * Return a locked page for the desired node page. 1072 * And, readahead MAX_RA_NODE number of node pages. 1073 */ 1074 struct page *get_node_page_ra(struct page *parent, int start) 1075 { 1076 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1077 struct blk_plug plug; 1078 struct page *page; 1079 int err, i, end; 1080 nid_t nid; 1081 1082 /* First, try getting the desired direct node. */ 1083 nid = get_nid(parent, start, false); 1084 if (!nid) 1085 return ERR_PTR(-ENOENT); 1086 repeat: 1087 page = grab_cache_page(NODE_MAPPING(sbi), nid); 1088 if (!page) 1089 return ERR_PTR(-ENOMEM); 1090 1091 err = read_node_page(page, READ_SYNC); 1092 if (err < 0) 1093 return ERR_PTR(err); 1094 else if (err == LOCKED_PAGE) 1095 goto page_hit; 1096 1097 blk_start_plug(&plug); 1098 1099 /* Then, try readahead for siblings of the desired node */ 1100 end = start + MAX_RA_NODE; 1101 end = min(end, NIDS_PER_BLOCK); 1102 for (i = start + 1; i < end; i++) { 1103 nid = get_nid(parent, i, false); 1104 if (!nid) 1105 continue; 1106 ra_node_page(sbi, nid); 1107 } 1108 1109 blk_finish_plug(&plug); 1110 1111 lock_page(page); 1112 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1113 f2fs_put_page(page, 1); 1114 goto repeat; 1115 } 1116 page_hit: 1117 if (unlikely(!PageUptodate(page))) { 1118 f2fs_put_page(page, 1); 1119 return ERR_PTR(-EIO); 1120 } 1121 return page; 1122 } 1123 1124 void sync_inode_page(struct dnode_of_data *dn) 1125 { 1126 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { 1127 update_inode(dn->inode, dn->node_page); 1128 } else if (dn->inode_page) { 1129 if (!dn->inode_page_locked) 1130 lock_page(dn->inode_page); 1131 update_inode(dn->inode, dn->inode_page); 1132 if (!dn->inode_page_locked) 1133 unlock_page(dn->inode_page); 1134 } else { 1135 update_inode_page(dn->inode); 1136 } 1137 } 1138 1139 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, 1140 struct writeback_control *wbc) 1141 { 1142 pgoff_t index, end; 1143 struct pagevec pvec; 1144 int step = ino ? 2 : 0; 1145 int nwritten = 0, wrote = 0; 1146 1147 pagevec_init(&pvec, 0); 1148 1149 next_step: 1150 index = 0; 1151 end = LONG_MAX; 1152 1153 while (index <= end) { 1154 int i, nr_pages; 1155 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1156 PAGECACHE_TAG_DIRTY, 1157 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1158 if (nr_pages == 0) 1159 break; 1160 1161 for (i = 0; i < nr_pages; i++) { 1162 struct page *page = pvec.pages[i]; 1163 1164 /* 1165 * flushing sequence with step: 1166 * 0. indirect nodes 1167 * 1. dentry dnodes 1168 * 2. file dnodes 1169 */ 1170 if (step == 0 && IS_DNODE(page)) 1171 continue; 1172 if (step == 1 && (!IS_DNODE(page) || 1173 is_cold_node(page))) 1174 continue; 1175 if (step == 2 && (!IS_DNODE(page) || 1176 !is_cold_node(page))) 1177 continue; 1178 1179 /* 1180 * If an fsync mode, 1181 * we should not skip writing node pages. 1182 */ 1183 if (ino && ino_of_node(page) == ino) 1184 lock_page(page); 1185 else if (!trylock_page(page)) 1186 continue; 1187 1188 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1189 continue_unlock: 1190 unlock_page(page); 1191 continue; 1192 } 1193 if (ino && ino_of_node(page) != ino) 1194 goto continue_unlock; 1195 1196 if (!PageDirty(page)) { 1197 /* someone wrote it for us */ 1198 goto continue_unlock; 1199 } 1200 1201 if (!clear_page_dirty_for_io(page)) 1202 goto continue_unlock; 1203 1204 /* called by fsync() */ 1205 if (ino && IS_DNODE(page)) { 1206 set_fsync_mark(page, 1); 1207 if (IS_INODE(page)) { 1208 if (!is_checkpointed_node(sbi, ino) && 1209 !has_fsynced_inode(sbi, ino)) 1210 set_dentry_mark(page, 1); 1211 else 1212 set_dentry_mark(page, 0); 1213 } 1214 nwritten++; 1215 } else { 1216 set_fsync_mark(page, 0); 1217 set_dentry_mark(page, 0); 1218 } 1219 1220 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc)) 1221 unlock_page(page); 1222 else 1223 wrote++; 1224 1225 if (--wbc->nr_to_write == 0) 1226 break; 1227 } 1228 pagevec_release(&pvec); 1229 cond_resched(); 1230 1231 if (wbc->nr_to_write == 0) { 1232 step = 2; 1233 break; 1234 } 1235 } 1236 1237 if (step < 2) { 1238 step++; 1239 goto next_step; 1240 } 1241 1242 if (wrote) 1243 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1244 return nwritten; 1245 } 1246 1247 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1248 { 1249 pgoff_t index = 0, end = LONG_MAX; 1250 struct pagevec pvec; 1251 int ret2 = 0, ret = 0; 1252 1253 pagevec_init(&pvec, 0); 1254 1255 while (index <= end) { 1256 int i, nr_pages; 1257 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1258 PAGECACHE_TAG_WRITEBACK, 1259 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1260 if (nr_pages == 0) 1261 break; 1262 1263 for (i = 0; i < nr_pages; i++) { 1264 struct page *page = pvec.pages[i]; 1265 1266 /* until radix tree lookup accepts end_index */ 1267 if (unlikely(page->index > end)) 1268 continue; 1269 1270 if (ino && ino_of_node(page) == ino) { 1271 f2fs_wait_on_page_writeback(page, NODE); 1272 if (TestClearPageError(page)) 1273 ret = -EIO; 1274 } 1275 } 1276 pagevec_release(&pvec); 1277 cond_resched(); 1278 } 1279 1280 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags))) 1281 ret2 = -ENOSPC; 1282 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags))) 1283 ret2 = -EIO; 1284 if (!ret) 1285 ret = ret2; 1286 return ret; 1287 } 1288 1289 static int f2fs_write_node_page(struct page *page, 1290 struct writeback_control *wbc) 1291 { 1292 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1293 nid_t nid; 1294 struct node_info ni; 1295 struct f2fs_io_info fio = { 1296 .type = NODE, 1297 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, 1298 }; 1299 1300 trace_f2fs_writepage(page, NODE); 1301 1302 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1303 goto redirty_out; 1304 if (unlikely(f2fs_cp_error(sbi))) 1305 goto redirty_out; 1306 1307 f2fs_wait_on_page_writeback(page, NODE); 1308 1309 /* get old block addr of this node page */ 1310 nid = nid_of_node(page); 1311 f2fs_bug_on(sbi, page->index != nid); 1312 1313 get_node_info(sbi, nid, &ni); 1314 1315 /* This page is already truncated */ 1316 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1317 ClearPageUptodate(page); 1318 dec_page_count(sbi, F2FS_DIRTY_NODES); 1319 unlock_page(page); 1320 return 0; 1321 } 1322 1323 if (wbc->for_reclaim) { 1324 if (!down_read_trylock(&sbi->node_write)) 1325 goto redirty_out; 1326 } else { 1327 down_read(&sbi->node_write); 1328 } 1329 1330 set_page_writeback(page); 1331 fio.blk_addr = ni.blk_addr; 1332 write_node_page(sbi, page, nid, &fio); 1333 set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page)); 1334 dec_page_count(sbi, F2FS_DIRTY_NODES); 1335 up_read(&sbi->node_write); 1336 unlock_page(page); 1337 1338 if (wbc->for_reclaim) 1339 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1340 1341 return 0; 1342 1343 redirty_out: 1344 redirty_page_for_writepage(wbc, page); 1345 return AOP_WRITEPAGE_ACTIVATE; 1346 } 1347 1348 static int f2fs_write_node_pages(struct address_space *mapping, 1349 struct writeback_control *wbc) 1350 { 1351 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1352 long diff; 1353 1354 trace_f2fs_writepages(mapping->host, wbc, NODE); 1355 1356 /* balancing f2fs's metadata in background */ 1357 f2fs_balance_fs_bg(sbi); 1358 1359 /* collect a number of dirty node pages and write together */ 1360 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1361 goto skip_write; 1362 1363 diff = nr_pages_to_write(sbi, NODE, wbc); 1364 wbc->sync_mode = WB_SYNC_NONE; 1365 sync_node_pages(sbi, 0, wbc); 1366 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1367 return 0; 1368 1369 skip_write: 1370 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1371 return 0; 1372 } 1373 1374 static int f2fs_set_node_page_dirty(struct page *page) 1375 { 1376 trace_f2fs_set_page_dirty(page, NODE); 1377 1378 SetPageUptodate(page); 1379 if (!PageDirty(page)) { 1380 __set_page_dirty_nobuffers(page); 1381 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1382 SetPagePrivate(page); 1383 f2fs_trace_pid(page); 1384 return 1; 1385 } 1386 return 0; 1387 } 1388 1389 /* 1390 * Structure of the f2fs node operations 1391 */ 1392 const struct address_space_operations f2fs_node_aops = { 1393 .writepage = f2fs_write_node_page, 1394 .writepages = f2fs_write_node_pages, 1395 .set_page_dirty = f2fs_set_node_page_dirty, 1396 .invalidatepage = f2fs_invalidate_page, 1397 .releasepage = f2fs_release_page, 1398 }; 1399 1400 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1401 nid_t n) 1402 { 1403 return radix_tree_lookup(&nm_i->free_nid_root, n); 1404 } 1405 1406 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i, 1407 struct free_nid *i) 1408 { 1409 list_del(&i->list); 1410 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1411 } 1412 1413 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) 1414 { 1415 struct f2fs_nm_info *nm_i = NM_I(sbi); 1416 struct free_nid *i; 1417 struct nat_entry *ne; 1418 bool allocated = false; 1419 1420 if (!available_free_memory(sbi, FREE_NIDS)) 1421 return -1; 1422 1423 /* 0 nid should not be used */ 1424 if (unlikely(nid == 0)) 1425 return 0; 1426 1427 if (build) { 1428 /* do not add allocated nids */ 1429 down_read(&nm_i->nat_tree_lock); 1430 ne = __lookup_nat_cache(nm_i, nid); 1431 if (ne && 1432 (!get_nat_flag(ne, IS_CHECKPOINTED) || 1433 nat_get_blkaddr(ne) != NULL_ADDR)) 1434 allocated = true; 1435 up_read(&nm_i->nat_tree_lock); 1436 if (allocated) 1437 return 0; 1438 } 1439 1440 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1441 i->nid = nid; 1442 i->state = NID_NEW; 1443 1444 if (radix_tree_preload(GFP_NOFS)) { 1445 kmem_cache_free(free_nid_slab, i); 1446 return 0; 1447 } 1448 1449 spin_lock(&nm_i->free_nid_list_lock); 1450 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) { 1451 spin_unlock(&nm_i->free_nid_list_lock); 1452 radix_tree_preload_end(); 1453 kmem_cache_free(free_nid_slab, i); 1454 return 0; 1455 } 1456 list_add_tail(&i->list, &nm_i->free_nid_list); 1457 nm_i->fcnt++; 1458 spin_unlock(&nm_i->free_nid_list_lock); 1459 radix_tree_preload_end(); 1460 return 1; 1461 } 1462 1463 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1464 { 1465 struct free_nid *i; 1466 bool need_free = false; 1467 1468 spin_lock(&nm_i->free_nid_list_lock); 1469 i = __lookup_free_nid_list(nm_i, nid); 1470 if (i && i->state == NID_NEW) { 1471 __del_from_free_nid_list(nm_i, i); 1472 nm_i->fcnt--; 1473 need_free = true; 1474 } 1475 spin_unlock(&nm_i->free_nid_list_lock); 1476 1477 if (need_free) 1478 kmem_cache_free(free_nid_slab, i); 1479 } 1480 1481 static void scan_nat_page(struct f2fs_sb_info *sbi, 1482 struct page *nat_page, nid_t start_nid) 1483 { 1484 struct f2fs_nm_info *nm_i = NM_I(sbi); 1485 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1486 block_t blk_addr; 1487 int i; 1488 1489 i = start_nid % NAT_ENTRY_PER_BLOCK; 1490 1491 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1492 1493 if (unlikely(start_nid >= nm_i->max_nid)) 1494 break; 1495 1496 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1497 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1498 if (blk_addr == NULL_ADDR) { 1499 if (add_free_nid(sbi, start_nid, true) < 0) 1500 break; 1501 } 1502 } 1503 } 1504 1505 static void build_free_nids(struct f2fs_sb_info *sbi) 1506 { 1507 struct f2fs_nm_info *nm_i = NM_I(sbi); 1508 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1509 struct f2fs_summary_block *sum = curseg->sum_blk; 1510 int i = 0; 1511 nid_t nid = nm_i->next_scan_nid; 1512 1513 /* Enough entries */ 1514 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) 1515 return; 1516 1517 /* readahead nat pages to be scanned */ 1518 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT); 1519 1520 while (1) { 1521 struct page *page = get_current_nat_page(sbi, nid); 1522 1523 scan_nat_page(sbi, page, nid); 1524 f2fs_put_page(page, 1); 1525 1526 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1527 if (unlikely(nid >= nm_i->max_nid)) 1528 nid = 0; 1529 1530 if (i++ == FREE_NID_PAGES) 1531 break; 1532 } 1533 1534 /* go to the next free nat pages to find free nids abundantly */ 1535 nm_i->next_scan_nid = nid; 1536 1537 /* find free nids from current sum_pages */ 1538 mutex_lock(&curseg->curseg_mutex); 1539 for (i = 0; i < nats_in_cursum(sum); i++) { 1540 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr); 1541 nid = le32_to_cpu(nid_in_journal(sum, i)); 1542 if (addr == NULL_ADDR) 1543 add_free_nid(sbi, nid, true); 1544 else 1545 remove_free_nid(nm_i, nid); 1546 } 1547 mutex_unlock(&curseg->curseg_mutex); 1548 } 1549 1550 /* 1551 * If this function returns success, caller can obtain a new nid 1552 * from second parameter of this function. 1553 * The returned nid could be used ino as well as nid when inode is created. 1554 */ 1555 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1556 { 1557 struct f2fs_nm_info *nm_i = NM_I(sbi); 1558 struct free_nid *i = NULL; 1559 retry: 1560 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids)) 1561 return false; 1562 1563 spin_lock(&nm_i->free_nid_list_lock); 1564 1565 /* We should not use stale free nids created by build_free_nids */ 1566 if (nm_i->fcnt && !on_build_free_nids(nm_i)) { 1567 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 1568 list_for_each_entry(i, &nm_i->free_nid_list, list) 1569 if (i->state == NID_NEW) 1570 break; 1571 1572 f2fs_bug_on(sbi, i->state != NID_NEW); 1573 *nid = i->nid; 1574 i->state = NID_ALLOC; 1575 nm_i->fcnt--; 1576 spin_unlock(&nm_i->free_nid_list_lock); 1577 return true; 1578 } 1579 spin_unlock(&nm_i->free_nid_list_lock); 1580 1581 /* Let's scan nat pages and its caches to get free nids */ 1582 mutex_lock(&nm_i->build_lock); 1583 build_free_nids(sbi); 1584 mutex_unlock(&nm_i->build_lock); 1585 goto retry; 1586 } 1587 1588 /* 1589 * alloc_nid() should be called prior to this function. 1590 */ 1591 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1592 { 1593 struct f2fs_nm_info *nm_i = NM_I(sbi); 1594 struct free_nid *i; 1595 1596 spin_lock(&nm_i->free_nid_list_lock); 1597 i = __lookup_free_nid_list(nm_i, nid); 1598 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); 1599 __del_from_free_nid_list(nm_i, i); 1600 spin_unlock(&nm_i->free_nid_list_lock); 1601 1602 kmem_cache_free(free_nid_slab, i); 1603 } 1604 1605 /* 1606 * alloc_nid() should be called prior to this function. 1607 */ 1608 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1609 { 1610 struct f2fs_nm_info *nm_i = NM_I(sbi); 1611 struct free_nid *i; 1612 bool need_free = false; 1613 1614 if (!nid) 1615 return; 1616 1617 spin_lock(&nm_i->free_nid_list_lock); 1618 i = __lookup_free_nid_list(nm_i, nid); 1619 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); 1620 if (!available_free_memory(sbi, FREE_NIDS)) { 1621 __del_from_free_nid_list(nm_i, i); 1622 need_free = true; 1623 } else { 1624 i->state = NID_NEW; 1625 nm_i->fcnt++; 1626 } 1627 spin_unlock(&nm_i->free_nid_list_lock); 1628 1629 if (need_free) 1630 kmem_cache_free(free_nid_slab, i); 1631 } 1632 1633 void recover_inline_xattr(struct inode *inode, struct page *page) 1634 { 1635 void *src_addr, *dst_addr; 1636 size_t inline_size; 1637 struct page *ipage; 1638 struct f2fs_inode *ri; 1639 1640 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 1641 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 1642 1643 ri = F2FS_INODE(page); 1644 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 1645 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR); 1646 goto update_inode; 1647 } 1648 1649 dst_addr = inline_xattr_addr(ipage); 1650 src_addr = inline_xattr_addr(page); 1651 inline_size = inline_xattr_size(inode); 1652 1653 f2fs_wait_on_page_writeback(ipage, NODE); 1654 memcpy(dst_addr, src_addr, inline_size); 1655 update_inode: 1656 update_inode(inode, ipage); 1657 f2fs_put_page(ipage, 1); 1658 } 1659 1660 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 1661 { 1662 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1663 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 1664 nid_t new_xnid = nid_of_node(page); 1665 struct node_info ni; 1666 1667 /* 1: invalidate the previous xattr nid */ 1668 if (!prev_xnid) 1669 goto recover_xnid; 1670 1671 /* Deallocate node address */ 1672 get_node_info(sbi, prev_xnid, &ni); 1673 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 1674 invalidate_blocks(sbi, ni.blk_addr); 1675 dec_valid_node_count(sbi, inode); 1676 set_node_addr(sbi, &ni, NULL_ADDR, false); 1677 1678 recover_xnid: 1679 /* 2: allocate new xattr nid */ 1680 if (unlikely(!inc_valid_node_count(sbi, inode))) 1681 f2fs_bug_on(sbi, 1); 1682 1683 remove_free_nid(NM_I(sbi), new_xnid); 1684 get_node_info(sbi, new_xnid, &ni); 1685 ni.ino = inode->i_ino; 1686 set_node_addr(sbi, &ni, NEW_ADDR, false); 1687 F2FS_I(inode)->i_xattr_nid = new_xnid; 1688 1689 /* 3: update xattr blkaddr */ 1690 refresh_sit_entry(sbi, NEW_ADDR, blkaddr); 1691 set_node_addr(sbi, &ni, blkaddr, false); 1692 1693 update_inode_page(inode); 1694 } 1695 1696 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 1697 { 1698 struct f2fs_inode *src, *dst; 1699 nid_t ino = ino_of_node(page); 1700 struct node_info old_ni, new_ni; 1701 struct page *ipage; 1702 1703 get_node_info(sbi, ino, &old_ni); 1704 1705 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 1706 return -EINVAL; 1707 1708 ipage = grab_cache_page(NODE_MAPPING(sbi), ino); 1709 if (!ipage) 1710 return -ENOMEM; 1711 1712 /* Should not use this inode from free nid list */ 1713 remove_free_nid(NM_I(sbi), ino); 1714 1715 SetPageUptodate(ipage); 1716 fill_node_footer(ipage, ino, ino, 0, true); 1717 1718 src = F2FS_INODE(page); 1719 dst = F2FS_INODE(ipage); 1720 1721 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 1722 dst->i_size = 0; 1723 dst->i_blocks = cpu_to_le64(1); 1724 dst->i_links = cpu_to_le32(1); 1725 dst->i_xattr_nid = 0; 1726 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; 1727 1728 new_ni = old_ni; 1729 new_ni.ino = ino; 1730 1731 if (unlikely(!inc_valid_node_count(sbi, NULL))) 1732 WARN_ON(1); 1733 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1734 inc_valid_inode_count(sbi); 1735 set_page_dirty(ipage); 1736 f2fs_put_page(ipage, 1); 1737 return 0; 1738 } 1739 1740 int restore_node_summary(struct f2fs_sb_info *sbi, 1741 unsigned int segno, struct f2fs_summary_block *sum) 1742 { 1743 struct f2fs_node *rn; 1744 struct f2fs_summary *sum_entry; 1745 block_t addr; 1746 int bio_blocks = MAX_BIO_BLOCKS(sbi); 1747 int i, idx, last_offset, nrpages; 1748 1749 /* scan the node segment */ 1750 last_offset = sbi->blocks_per_seg; 1751 addr = START_BLOCK(sbi, segno); 1752 sum_entry = &sum->entries[0]; 1753 1754 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 1755 nrpages = min(last_offset - i, bio_blocks); 1756 1757 /* readahead node pages */ 1758 ra_meta_pages(sbi, addr, nrpages, META_POR); 1759 1760 for (idx = addr; idx < addr + nrpages; idx++) { 1761 struct page *page = get_meta_page(sbi, idx); 1762 1763 rn = F2FS_NODE(page); 1764 sum_entry->nid = rn->footer.nid; 1765 sum_entry->version = 0; 1766 sum_entry->ofs_in_node = 0; 1767 sum_entry++; 1768 f2fs_put_page(page, 1); 1769 } 1770 1771 invalidate_mapping_pages(META_MAPPING(sbi), addr, 1772 addr + nrpages); 1773 } 1774 return 0; 1775 } 1776 1777 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 1778 { 1779 struct f2fs_nm_info *nm_i = NM_I(sbi); 1780 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1781 struct f2fs_summary_block *sum = curseg->sum_blk; 1782 int i; 1783 1784 mutex_lock(&curseg->curseg_mutex); 1785 for (i = 0; i < nats_in_cursum(sum); i++) { 1786 struct nat_entry *ne; 1787 struct f2fs_nat_entry raw_ne; 1788 nid_t nid = le32_to_cpu(nid_in_journal(sum, i)); 1789 1790 raw_ne = nat_in_journal(sum, i); 1791 1792 down_write(&nm_i->nat_tree_lock); 1793 ne = __lookup_nat_cache(nm_i, nid); 1794 if (!ne) { 1795 ne = grab_nat_entry(nm_i, nid); 1796 node_info_from_raw_nat(&ne->ni, &raw_ne); 1797 } 1798 __set_nat_cache_dirty(nm_i, ne); 1799 up_write(&nm_i->nat_tree_lock); 1800 } 1801 update_nats_in_cursum(sum, -i); 1802 mutex_unlock(&curseg->curseg_mutex); 1803 } 1804 1805 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 1806 struct list_head *head, int max) 1807 { 1808 struct nat_entry_set *cur; 1809 1810 if (nes->entry_cnt >= max) 1811 goto add_out; 1812 1813 list_for_each_entry(cur, head, set_list) { 1814 if (cur->entry_cnt >= nes->entry_cnt) { 1815 list_add(&nes->set_list, cur->set_list.prev); 1816 return; 1817 } 1818 } 1819 add_out: 1820 list_add_tail(&nes->set_list, head); 1821 } 1822 1823 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 1824 struct nat_entry_set *set) 1825 { 1826 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1827 struct f2fs_summary_block *sum = curseg->sum_blk; 1828 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 1829 bool to_journal = true; 1830 struct f2fs_nat_block *nat_blk; 1831 struct nat_entry *ne, *cur; 1832 struct page *page = NULL; 1833 struct f2fs_nm_info *nm_i = NM_I(sbi); 1834 1835 /* 1836 * there are two steps to flush nat entries: 1837 * #1, flush nat entries to journal in current hot data summary block. 1838 * #2, flush nat entries to nat page. 1839 */ 1840 if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL)) 1841 to_journal = false; 1842 1843 if (to_journal) { 1844 mutex_lock(&curseg->curseg_mutex); 1845 } else { 1846 page = get_next_nat_page(sbi, start_nid); 1847 nat_blk = page_address(page); 1848 f2fs_bug_on(sbi, !nat_blk); 1849 } 1850 1851 /* flush dirty nats in nat entry set */ 1852 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 1853 struct f2fs_nat_entry *raw_ne; 1854 nid_t nid = nat_get_nid(ne); 1855 int offset; 1856 1857 if (nat_get_blkaddr(ne) == NEW_ADDR) 1858 continue; 1859 1860 if (to_journal) { 1861 offset = lookup_journal_in_cursum(sum, 1862 NAT_JOURNAL, nid, 1); 1863 f2fs_bug_on(sbi, offset < 0); 1864 raw_ne = &nat_in_journal(sum, offset); 1865 nid_in_journal(sum, offset) = cpu_to_le32(nid); 1866 } else { 1867 raw_ne = &nat_blk->entries[nid - start_nid]; 1868 } 1869 raw_nat_from_node_info(raw_ne, &ne->ni); 1870 1871 down_write(&NM_I(sbi)->nat_tree_lock); 1872 nat_reset_flag(ne); 1873 __clear_nat_cache_dirty(NM_I(sbi), ne); 1874 up_write(&NM_I(sbi)->nat_tree_lock); 1875 1876 if (nat_get_blkaddr(ne) == NULL_ADDR) 1877 add_free_nid(sbi, nid, false); 1878 } 1879 1880 if (to_journal) 1881 mutex_unlock(&curseg->curseg_mutex); 1882 else 1883 f2fs_put_page(page, 1); 1884 1885 f2fs_bug_on(sbi, set->entry_cnt); 1886 1887 down_write(&nm_i->nat_tree_lock); 1888 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 1889 up_write(&nm_i->nat_tree_lock); 1890 kmem_cache_free(nat_entry_set_slab, set); 1891 } 1892 1893 /* 1894 * This function is called during the checkpointing process. 1895 */ 1896 void flush_nat_entries(struct f2fs_sb_info *sbi) 1897 { 1898 struct f2fs_nm_info *nm_i = NM_I(sbi); 1899 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1900 struct f2fs_summary_block *sum = curseg->sum_blk; 1901 struct nat_entry_set *setvec[SETVEC_SIZE]; 1902 struct nat_entry_set *set, *tmp; 1903 unsigned int found; 1904 nid_t set_idx = 0; 1905 LIST_HEAD(sets); 1906 1907 if (!nm_i->dirty_nat_cnt) 1908 return; 1909 /* 1910 * if there are no enough space in journal to store dirty nat 1911 * entries, remove all entries from journal and merge them 1912 * into nat entry set. 1913 */ 1914 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 1915 remove_nats_in_journal(sbi); 1916 1917 down_write(&nm_i->nat_tree_lock); 1918 while ((found = __gang_lookup_nat_set(nm_i, 1919 set_idx, SETVEC_SIZE, setvec))) { 1920 unsigned idx; 1921 set_idx = setvec[found - 1]->set + 1; 1922 for (idx = 0; idx < found; idx++) 1923 __adjust_nat_entry_set(setvec[idx], &sets, 1924 MAX_NAT_JENTRIES(sum)); 1925 } 1926 up_write(&nm_i->nat_tree_lock); 1927 1928 /* flush dirty nats in nat entry set */ 1929 list_for_each_entry_safe(set, tmp, &sets, set_list) 1930 __flush_nat_entry_set(sbi, set); 1931 1932 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt); 1933 } 1934 1935 static int init_node_manager(struct f2fs_sb_info *sbi) 1936 { 1937 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 1938 struct f2fs_nm_info *nm_i = NM_I(sbi); 1939 unsigned char *version_bitmap; 1940 unsigned int nat_segs, nat_blocks; 1941 1942 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 1943 1944 /* segment_count_nat includes pair segment so divide to 2. */ 1945 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 1946 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 1947 1948 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 1949 1950 /* not used nids: 0, node, meta, (and root counted as valid node) */ 1951 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM; 1952 nm_i->fcnt = 0; 1953 nm_i->nat_cnt = 0; 1954 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 1955 1956 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 1957 INIT_LIST_HEAD(&nm_i->free_nid_list); 1958 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 1959 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 1960 INIT_LIST_HEAD(&nm_i->nat_entries); 1961 1962 mutex_init(&nm_i->build_lock); 1963 spin_lock_init(&nm_i->free_nid_list_lock); 1964 init_rwsem(&nm_i->nat_tree_lock); 1965 1966 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 1967 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 1968 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 1969 if (!version_bitmap) 1970 return -EFAULT; 1971 1972 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 1973 GFP_KERNEL); 1974 if (!nm_i->nat_bitmap) 1975 return -ENOMEM; 1976 return 0; 1977 } 1978 1979 int build_node_manager(struct f2fs_sb_info *sbi) 1980 { 1981 int err; 1982 1983 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 1984 if (!sbi->nm_info) 1985 return -ENOMEM; 1986 1987 err = init_node_manager(sbi); 1988 if (err) 1989 return err; 1990 1991 build_free_nids(sbi); 1992 return 0; 1993 } 1994 1995 void destroy_node_manager(struct f2fs_sb_info *sbi) 1996 { 1997 struct f2fs_nm_info *nm_i = NM_I(sbi); 1998 struct free_nid *i, *next_i; 1999 struct nat_entry *natvec[NATVEC_SIZE]; 2000 struct nat_entry_set *setvec[SETVEC_SIZE]; 2001 nid_t nid = 0; 2002 unsigned int found; 2003 2004 if (!nm_i) 2005 return; 2006 2007 /* destroy free nid list */ 2008 spin_lock(&nm_i->free_nid_list_lock); 2009 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 2010 f2fs_bug_on(sbi, i->state == NID_ALLOC); 2011 __del_from_free_nid_list(nm_i, i); 2012 nm_i->fcnt--; 2013 spin_unlock(&nm_i->free_nid_list_lock); 2014 kmem_cache_free(free_nid_slab, i); 2015 spin_lock(&nm_i->free_nid_list_lock); 2016 } 2017 f2fs_bug_on(sbi, nm_i->fcnt); 2018 spin_unlock(&nm_i->free_nid_list_lock); 2019 2020 /* destroy nat cache */ 2021 down_write(&nm_i->nat_tree_lock); 2022 while ((found = __gang_lookup_nat_cache(nm_i, 2023 nid, NATVEC_SIZE, natvec))) { 2024 unsigned idx; 2025 2026 nid = nat_get_nid(natvec[found - 1]) + 1; 2027 for (idx = 0; idx < found; idx++) 2028 __del_from_nat_cache(nm_i, natvec[idx]); 2029 } 2030 f2fs_bug_on(sbi, nm_i->nat_cnt); 2031 2032 /* destroy nat set cache */ 2033 nid = 0; 2034 while ((found = __gang_lookup_nat_set(nm_i, 2035 nid, SETVEC_SIZE, setvec))) { 2036 unsigned idx; 2037 2038 nid = setvec[found - 1]->set + 1; 2039 for (idx = 0; idx < found; idx++) { 2040 /* entry_cnt is not zero, when cp_error was occurred */ 2041 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2042 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2043 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2044 } 2045 } 2046 up_write(&nm_i->nat_tree_lock); 2047 2048 kfree(nm_i->nat_bitmap); 2049 sbi->nm_info = NULL; 2050 kfree(nm_i); 2051 } 2052 2053 int __init create_node_manager_caches(void) 2054 { 2055 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2056 sizeof(struct nat_entry)); 2057 if (!nat_entry_slab) 2058 goto fail; 2059 2060 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2061 sizeof(struct free_nid)); 2062 if (!free_nid_slab) 2063 goto destroy_nat_entry; 2064 2065 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2066 sizeof(struct nat_entry_set)); 2067 if (!nat_entry_set_slab) 2068 goto destroy_free_nid; 2069 return 0; 2070 2071 destroy_free_nid: 2072 kmem_cache_destroy(free_nid_slab); 2073 destroy_nat_entry: 2074 kmem_cache_destroy(nat_entry_slab); 2075 fail: 2076 return -ENOMEM; 2077 } 2078 2079 void destroy_node_manager_caches(void) 2080 { 2081 kmem_cache_destroy(nat_entry_set_slab); 2082 kmem_cache_destroy(free_nid_slab); 2083 kmem_cache_destroy(nat_entry_slab); 2084 } 2085