xref: /linux/fs/f2fs/node.c (revision 6a27268cdeb035aca092c3bc2a426594fb558cc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		return -EFSCORRUPTED;
40 	}
41 	return 0;
42 }
43 
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 	struct f2fs_nm_info *nm_i = NM_I(sbi);
47 	struct sysinfo val;
48 	unsigned long avail_ram;
49 	unsigned long mem_size = 0;
50 	bool res = false;
51 
52 	si_meminfo(&val);
53 
54 	/* only uses low memory */
55 	avail_ram = val.totalram - val.totalhigh;
56 
57 	/*
58 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 	 */
60 	if (type == FREE_NIDS) {
61 		mem_size = (nm_i->nid_cnt[FREE_NID] *
62 				sizeof(struct free_nid)) >> PAGE_SHIFT;
63 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 	} else if (type == NAT_ENTRIES) {
65 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66 							PAGE_SHIFT;
67 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 		if (excess_cached_nats(sbi))
69 			res = false;
70 	} else if (type == DIRTY_DENTS) {
71 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 			return false;
73 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 	} else if (type == INO_ENTRIES) {
76 		int i;
77 
78 		for (i = 0; i < MAX_INO_ENTRY; i++)
79 			mem_size += sbi->im[i].ino_num *
80 						sizeof(struct ino_entry);
81 		mem_size >>= PAGE_SHIFT;
82 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 	} else if (type == EXTENT_CACHE) {
84 		mem_size = (atomic_read(&sbi->total_ext_tree) *
85 				sizeof(struct extent_tree) +
86 				atomic_read(&sbi->total_ext_node) *
87 				sizeof(struct extent_node)) >> PAGE_SHIFT;
88 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 	} else if (type == INMEM_PAGES) {
90 		/* it allows 20% / total_ram for inmemory pages */
91 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 		res = mem_size < (val.totalram / 5);
93 	} else {
94 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 			return true;
96 	}
97 	return res;
98 }
99 
100 static void clear_node_page_dirty(struct page *page)
101 {
102 	if (PageDirty(page)) {
103 		f2fs_clear_page_cache_dirty_tag(page);
104 		clear_page_dirty_for_io(page);
105 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 	}
107 	ClearPageUptodate(page);
108 }
109 
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 	return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
113 }
114 
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 	struct page *src_page;
118 	struct page *dst_page;
119 	pgoff_t dst_off;
120 	void *src_addr;
121 	void *dst_addr;
122 	struct f2fs_nm_info *nm_i = NM_I(sbi);
123 
124 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125 
126 	/* get current nat block page with lock */
127 	src_page = get_current_nat_page(sbi, nid);
128 	if (IS_ERR(src_page))
129 		return src_page;
130 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 	f2fs_bug_on(sbi, PageDirty(src_page));
132 
133 	src_addr = page_address(src_page);
134 	dst_addr = page_address(dst_page);
135 	memcpy(dst_addr, src_addr, PAGE_SIZE);
136 	set_page_dirty(dst_page);
137 	f2fs_put_page(src_page, 1);
138 
139 	set_to_next_nat(nm_i, nid);
140 
141 	return dst_page;
142 }
143 
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 	struct nat_entry *new;
147 
148 	if (no_fail)
149 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 	else
151 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 	if (new) {
153 		nat_set_nid(new, nid);
154 		nat_reset_flag(new);
155 	}
156 	return new;
157 }
158 
159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 	kmem_cache_free(nat_entry_slab, e);
162 }
163 
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 	if (no_fail)
169 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 		return NULL;
172 
173 	if (raw_ne)
174 		node_info_from_raw_nat(&ne->ni, raw_ne);
175 
176 	spin_lock(&nm_i->nat_list_lock);
177 	list_add_tail(&ne->list, &nm_i->nat_entries);
178 	spin_unlock(&nm_i->nat_list_lock);
179 
180 	nm_i->nat_cnt++;
181 	return ne;
182 }
183 
184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185 {
186 	struct nat_entry *ne;
187 
188 	ne = radix_tree_lookup(&nm_i->nat_root, n);
189 
190 	/* for recent accessed nat entry, move it to tail of lru list */
191 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 		spin_lock(&nm_i->nat_list_lock);
193 		if (!list_empty(&ne->list))
194 			list_move_tail(&ne->list, &nm_i->nat_entries);
195 		spin_unlock(&nm_i->nat_list_lock);
196 	}
197 
198 	return ne;
199 }
200 
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 		nid_t start, unsigned int nr, struct nat_entry **ep)
203 {
204 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205 }
206 
207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208 {
209 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210 	nm_i->nat_cnt--;
211 	__free_nat_entry(e);
212 }
213 
214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215 							struct nat_entry *ne)
216 {
217 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218 	struct nat_entry_set *head;
219 
220 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
221 	if (!head) {
222 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223 
224 		INIT_LIST_HEAD(&head->entry_list);
225 		INIT_LIST_HEAD(&head->set_list);
226 		head->set = set;
227 		head->entry_cnt = 0;
228 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229 	}
230 	return head;
231 }
232 
233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234 						struct nat_entry *ne)
235 {
236 	struct nat_entry_set *head;
237 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238 
239 	if (!new_ne)
240 		head = __grab_nat_entry_set(nm_i, ne);
241 
242 	/*
243 	 * update entry_cnt in below condition:
244 	 * 1. update NEW_ADDR to valid block address;
245 	 * 2. update old block address to new one;
246 	 */
247 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248 				!get_nat_flag(ne, IS_DIRTY)))
249 		head->entry_cnt++;
250 
251 	set_nat_flag(ne, IS_PREALLOC, new_ne);
252 
253 	if (get_nat_flag(ne, IS_DIRTY))
254 		goto refresh_list;
255 
256 	nm_i->dirty_nat_cnt++;
257 	set_nat_flag(ne, IS_DIRTY, true);
258 refresh_list:
259 	spin_lock(&nm_i->nat_list_lock);
260 	if (new_ne)
261 		list_del_init(&ne->list);
262 	else
263 		list_move_tail(&ne->list, &head->entry_list);
264 	spin_unlock(&nm_i->nat_list_lock);
265 }
266 
267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 		struct nat_entry_set *set, struct nat_entry *ne)
269 {
270 	spin_lock(&nm_i->nat_list_lock);
271 	list_move_tail(&ne->list, &nm_i->nat_entries);
272 	spin_unlock(&nm_i->nat_list_lock);
273 
274 	set_nat_flag(ne, IS_DIRTY, false);
275 	set->entry_cnt--;
276 	nm_i->dirty_nat_cnt--;
277 }
278 
279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
281 {
282 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283 							start, nr);
284 }
285 
286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287 {
288 	return NODE_MAPPING(sbi) == page->mapping &&
289 			IS_DNODE(page) && is_cold_node(page);
290 }
291 
292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293 {
294 	spin_lock_init(&sbi->fsync_node_lock);
295 	INIT_LIST_HEAD(&sbi->fsync_node_list);
296 	sbi->fsync_seg_id = 0;
297 	sbi->fsync_node_num = 0;
298 }
299 
300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301 							struct page *page)
302 {
303 	struct fsync_node_entry *fn;
304 	unsigned long flags;
305 	unsigned int seq_id;
306 
307 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308 
309 	get_page(page);
310 	fn->page = page;
311 	INIT_LIST_HEAD(&fn->list);
312 
313 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314 	list_add_tail(&fn->list, &sbi->fsync_node_list);
315 	fn->seq_id = sbi->fsync_seg_id++;
316 	seq_id = fn->seq_id;
317 	sbi->fsync_node_num++;
318 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319 
320 	return seq_id;
321 }
322 
323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324 {
325 	struct fsync_node_entry *fn;
326 	unsigned long flags;
327 
328 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330 		if (fn->page == page) {
331 			list_del(&fn->list);
332 			sbi->fsync_node_num--;
333 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334 			kmem_cache_free(fsync_node_entry_slab, fn);
335 			put_page(page);
336 			return;
337 		}
338 	}
339 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340 	f2fs_bug_on(sbi, 1);
341 }
342 
343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344 {
345 	unsigned long flags;
346 
347 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348 	sbi->fsync_seg_id = 0;
349 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350 }
351 
352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353 {
354 	struct f2fs_nm_info *nm_i = NM_I(sbi);
355 	struct nat_entry *e;
356 	bool need = false;
357 
358 	down_read(&nm_i->nat_tree_lock);
359 	e = __lookup_nat_cache(nm_i, nid);
360 	if (e) {
361 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362 				!get_nat_flag(e, HAS_FSYNCED_INODE))
363 			need = true;
364 	}
365 	up_read(&nm_i->nat_tree_lock);
366 	return need;
367 }
368 
369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370 {
371 	struct f2fs_nm_info *nm_i = NM_I(sbi);
372 	struct nat_entry *e;
373 	bool is_cp = true;
374 
375 	down_read(&nm_i->nat_tree_lock);
376 	e = __lookup_nat_cache(nm_i, nid);
377 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378 		is_cp = false;
379 	up_read(&nm_i->nat_tree_lock);
380 	return is_cp;
381 }
382 
383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384 {
385 	struct f2fs_nm_info *nm_i = NM_I(sbi);
386 	struct nat_entry *e;
387 	bool need_update = true;
388 
389 	down_read(&nm_i->nat_tree_lock);
390 	e = __lookup_nat_cache(nm_i, ino);
391 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392 			(get_nat_flag(e, IS_CHECKPOINTED) ||
393 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
394 		need_update = false;
395 	up_read(&nm_i->nat_tree_lock);
396 	return need_update;
397 }
398 
399 /* must be locked by nat_tree_lock */
400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401 						struct f2fs_nat_entry *ne)
402 {
403 	struct f2fs_nm_info *nm_i = NM_I(sbi);
404 	struct nat_entry *new, *e;
405 
406 	new = __alloc_nat_entry(nid, false);
407 	if (!new)
408 		return;
409 
410 	down_write(&nm_i->nat_tree_lock);
411 	e = __lookup_nat_cache(nm_i, nid);
412 	if (!e)
413 		e = __init_nat_entry(nm_i, new, ne, false);
414 	else
415 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416 				nat_get_blkaddr(e) !=
417 					le32_to_cpu(ne->block_addr) ||
418 				nat_get_version(e) != ne->version);
419 	up_write(&nm_i->nat_tree_lock);
420 	if (e != new)
421 		__free_nat_entry(new);
422 }
423 
424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425 			block_t new_blkaddr, bool fsync_done)
426 {
427 	struct f2fs_nm_info *nm_i = NM_I(sbi);
428 	struct nat_entry *e;
429 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430 
431 	down_write(&nm_i->nat_tree_lock);
432 	e = __lookup_nat_cache(nm_i, ni->nid);
433 	if (!e) {
434 		e = __init_nat_entry(nm_i, new, NULL, true);
435 		copy_node_info(&e->ni, ni);
436 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437 	} else if (new_blkaddr == NEW_ADDR) {
438 		/*
439 		 * when nid is reallocated,
440 		 * previous nat entry can be remained in nat cache.
441 		 * So, reinitialize it with new information.
442 		 */
443 		copy_node_info(&e->ni, ni);
444 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445 	}
446 	/* let's free early to reduce memory consumption */
447 	if (e != new)
448 		__free_nat_entry(new);
449 
450 	/* sanity check */
451 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453 			new_blkaddr == NULL_ADDR);
454 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455 			new_blkaddr == NEW_ADDR);
456 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457 			new_blkaddr == NEW_ADDR);
458 
459 	/* increment version no as node is removed */
460 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461 		unsigned char version = nat_get_version(e);
462 		nat_set_version(e, inc_node_version(version));
463 	}
464 
465 	/* change address */
466 	nat_set_blkaddr(e, new_blkaddr);
467 	if (!__is_valid_data_blkaddr(new_blkaddr))
468 		set_nat_flag(e, IS_CHECKPOINTED, false);
469 	__set_nat_cache_dirty(nm_i, e);
470 
471 	/* update fsync_mark if its inode nat entry is still alive */
472 	if (ni->nid != ni->ino)
473 		e = __lookup_nat_cache(nm_i, ni->ino);
474 	if (e) {
475 		if (fsync_done && ni->nid == ni->ino)
476 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
477 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478 	}
479 	up_write(&nm_i->nat_tree_lock);
480 }
481 
482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483 {
484 	struct f2fs_nm_info *nm_i = NM_I(sbi);
485 	int nr = nr_shrink;
486 
487 	if (!down_write_trylock(&nm_i->nat_tree_lock))
488 		return 0;
489 
490 	spin_lock(&nm_i->nat_list_lock);
491 	while (nr_shrink) {
492 		struct nat_entry *ne;
493 
494 		if (list_empty(&nm_i->nat_entries))
495 			break;
496 
497 		ne = list_first_entry(&nm_i->nat_entries,
498 					struct nat_entry, list);
499 		list_del(&ne->list);
500 		spin_unlock(&nm_i->nat_list_lock);
501 
502 		__del_from_nat_cache(nm_i, ne);
503 		nr_shrink--;
504 
505 		spin_lock(&nm_i->nat_list_lock);
506 	}
507 	spin_unlock(&nm_i->nat_list_lock);
508 
509 	up_write(&nm_i->nat_tree_lock);
510 	return nr - nr_shrink;
511 }
512 
513 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
514 						struct node_info *ni)
515 {
516 	struct f2fs_nm_info *nm_i = NM_I(sbi);
517 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
518 	struct f2fs_journal *journal = curseg->journal;
519 	nid_t start_nid = START_NID(nid);
520 	struct f2fs_nat_block *nat_blk;
521 	struct page *page = NULL;
522 	struct f2fs_nat_entry ne;
523 	struct nat_entry *e;
524 	pgoff_t index;
525 	block_t blkaddr;
526 	int i;
527 
528 	ni->nid = nid;
529 
530 	/* Check nat cache */
531 	down_read(&nm_i->nat_tree_lock);
532 	e = __lookup_nat_cache(nm_i, nid);
533 	if (e) {
534 		ni->ino = nat_get_ino(e);
535 		ni->blk_addr = nat_get_blkaddr(e);
536 		ni->version = nat_get_version(e);
537 		up_read(&nm_i->nat_tree_lock);
538 		return 0;
539 	}
540 
541 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
542 
543 	/* Check current segment summary */
544 	down_read(&curseg->journal_rwsem);
545 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
546 	if (i >= 0) {
547 		ne = nat_in_journal(journal, i);
548 		node_info_from_raw_nat(ni, &ne);
549 	}
550 	up_read(&curseg->journal_rwsem);
551 	if (i >= 0) {
552 		up_read(&nm_i->nat_tree_lock);
553 		goto cache;
554 	}
555 
556 	/* Fill node_info from nat page */
557 	index = current_nat_addr(sbi, nid);
558 	up_read(&nm_i->nat_tree_lock);
559 
560 	page = f2fs_get_meta_page(sbi, index);
561 	if (IS_ERR(page))
562 		return PTR_ERR(page);
563 
564 	nat_blk = (struct f2fs_nat_block *)page_address(page);
565 	ne = nat_blk->entries[nid - start_nid];
566 	node_info_from_raw_nat(ni, &ne);
567 	f2fs_put_page(page, 1);
568 cache:
569 	blkaddr = le32_to_cpu(ne.block_addr);
570 	if (__is_valid_data_blkaddr(blkaddr) &&
571 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
572 		return -EFAULT;
573 
574 	/* cache nat entry */
575 	cache_nat_entry(sbi, nid, &ne);
576 	return 0;
577 }
578 
579 /*
580  * readahead MAX_RA_NODE number of node pages.
581  */
582 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
583 {
584 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
585 	struct blk_plug plug;
586 	int i, end;
587 	nid_t nid;
588 
589 	blk_start_plug(&plug);
590 
591 	/* Then, try readahead for siblings of the desired node */
592 	end = start + n;
593 	end = min(end, NIDS_PER_BLOCK);
594 	for (i = start; i < end; i++) {
595 		nid = get_nid(parent, i, false);
596 		f2fs_ra_node_page(sbi, nid);
597 	}
598 
599 	blk_finish_plug(&plug);
600 }
601 
602 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
603 {
604 	const long direct_index = ADDRS_PER_INODE(dn->inode);
605 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
606 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
607 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
608 	int cur_level = dn->cur_level;
609 	int max_level = dn->max_level;
610 	pgoff_t base = 0;
611 
612 	if (!dn->max_level)
613 		return pgofs + 1;
614 
615 	while (max_level-- > cur_level)
616 		skipped_unit *= NIDS_PER_BLOCK;
617 
618 	switch (dn->max_level) {
619 	case 3:
620 		base += 2 * indirect_blks;
621 		/* fall through */
622 	case 2:
623 		base += 2 * direct_blks;
624 		/* fall through */
625 	case 1:
626 		base += direct_index;
627 		break;
628 	default:
629 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
630 	}
631 
632 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
633 }
634 
635 /*
636  * The maximum depth is four.
637  * Offset[0] will have raw inode offset.
638  */
639 static int get_node_path(struct inode *inode, long block,
640 				int offset[4], unsigned int noffset[4])
641 {
642 	const long direct_index = ADDRS_PER_INODE(inode);
643 	const long direct_blks = ADDRS_PER_BLOCK(inode);
644 	const long dptrs_per_blk = NIDS_PER_BLOCK;
645 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
646 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
647 	int n = 0;
648 	int level = 0;
649 
650 	noffset[0] = 0;
651 
652 	if (block < direct_index) {
653 		offset[n] = block;
654 		goto got;
655 	}
656 	block -= direct_index;
657 	if (block < direct_blks) {
658 		offset[n++] = NODE_DIR1_BLOCK;
659 		noffset[n] = 1;
660 		offset[n] = block;
661 		level = 1;
662 		goto got;
663 	}
664 	block -= direct_blks;
665 	if (block < direct_blks) {
666 		offset[n++] = NODE_DIR2_BLOCK;
667 		noffset[n] = 2;
668 		offset[n] = block;
669 		level = 1;
670 		goto got;
671 	}
672 	block -= direct_blks;
673 	if (block < indirect_blks) {
674 		offset[n++] = NODE_IND1_BLOCK;
675 		noffset[n] = 3;
676 		offset[n++] = block / direct_blks;
677 		noffset[n] = 4 + offset[n - 1];
678 		offset[n] = block % direct_blks;
679 		level = 2;
680 		goto got;
681 	}
682 	block -= indirect_blks;
683 	if (block < indirect_blks) {
684 		offset[n++] = NODE_IND2_BLOCK;
685 		noffset[n] = 4 + dptrs_per_blk;
686 		offset[n++] = block / direct_blks;
687 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
688 		offset[n] = block % direct_blks;
689 		level = 2;
690 		goto got;
691 	}
692 	block -= indirect_blks;
693 	if (block < dindirect_blks) {
694 		offset[n++] = NODE_DIND_BLOCK;
695 		noffset[n] = 5 + (dptrs_per_blk * 2);
696 		offset[n++] = block / indirect_blks;
697 		noffset[n] = 6 + (dptrs_per_blk * 2) +
698 			      offset[n - 1] * (dptrs_per_blk + 1);
699 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
700 		noffset[n] = 7 + (dptrs_per_blk * 2) +
701 			      offset[n - 2] * (dptrs_per_blk + 1) +
702 			      offset[n - 1];
703 		offset[n] = block % direct_blks;
704 		level = 3;
705 		goto got;
706 	} else {
707 		return -E2BIG;
708 	}
709 got:
710 	return level;
711 }
712 
713 /*
714  * Caller should call f2fs_put_dnode(dn).
715  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
716  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
717  */
718 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
719 {
720 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
721 	struct page *npage[4];
722 	struct page *parent = NULL;
723 	int offset[4];
724 	unsigned int noffset[4];
725 	nid_t nids[4];
726 	int level, i = 0;
727 	int err = 0;
728 
729 	level = get_node_path(dn->inode, index, offset, noffset);
730 	if (level < 0)
731 		return level;
732 
733 	nids[0] = dn->inode->i_ino;
734 	npage[0] = dn->inode_page;
735 
736 	if (!npage[0]) {
737 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
738 		if (IS_ERR(npage[0]))
739 			return PTR_ERR(npage[0]);
740 	}
741 
742 	/* if inline_data is set, should not report any block indices */
743 	if (f2fs_has_inline_data(dn->inode) && index) {
744 		err = -ENOENT;
745 		f2fs_put_page(npage[0], 1);
746 		goto release_out;
747 	}
748 
749 	parent = npage[0];
750 	if (level != 0)
751 		nids[1] = get_nid(parent, offset[0], true);
752 	dn->inode_page = npage[0];
753 	dn->inode_page_locked = true;
754 
755 	/* get indirect or direct nodes */
756 	for (i = 1; i <= level; i++) {
757 		bool done = false;
758 
759 		if (!nids[i] && mode == ALLOC_NODE) {
760 			/* alloc new node */
761 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
762 				err = -ENOSPC;
763 				goto release_pages;
764 			}
765 
766 			dn->nid = nids[i];
767 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
768 			if (IS_ERR(npage[i])) {
769 				f2fs_alloc_nid_failed(sbi, nids[i]);
770 				err = PTR_ERR(npage[i]);
771 				goto release_pages;
772 			}
773 
774 			set_nid(parent, offset[i - 1], nids[i], i == 1);
775 			f2fs_alloc_nid_done(sbi, nids[i]);
776 			done = true;
777 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
778 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
779 			if (IS_ERR(npage[i])) {
780 				err = PTR_ERR(npage[i]);
781 				goto release_pages;
782 			}
783 			done = true;
784 		}
785 		if (i == 1) {
786 			dn->inode_page_locked = false;
787 			unlock_page(parent);
788 		} else {
789 			f2fs_put_page(parent, 1);
790 		}
791 
792 		if (!done) {
793 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
794 			if (IS_ERR(npage[i])) {
795 				err = PTR_ERR(npage[i]);
796 				f2fs_put_page(npage[0], 0);
797 				goto release_out;
798 			}
799 		}
800 		if (i < level) {
801 			parent = npage[i];
802 			nids[i + 1] = get_nid(parent, offset[i], false);
803 		}
804 	}
805 	dn->nid = nids[level];
806 	dn->ofs_in_node = offset[level];
807 	dn->node_page = npage[level];
808 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
809 	return 0;
810 
811 release_pages:
812 	f2fs_put_page(parent, 1);
813 	if (i > 1)
814 		f2fs_put_page(npage[0], 0);
815 release_out:
816 	dn->inode_page = NULL;
817 	dn->node_page = NULL;
818 	if (err == -ENOENT) {
819 		dn->cur_level = i;
820 		dn->max_level = level;
821 		dn->ofs_in_node = offset[level];
822 	}
823 	return err;
824 }
825 
826 static int truncate_node(struct dnode_of_data *dn)
827 {
828 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
829 	struct node_info ni;
830 	int err;
831 	pgoff_t index;
832 
833 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
834 	if (err)
835 		return err;
836 
837 	/* Deallocate node address */
838 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
839 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
840 	set_node_addr(sbi, &ni, NULL_ADDR, false);
841 
842 	if (dn->nid == dn->inode->i_ino) {
843 		f2fs_remove_orphan_inode(sbi, dn->nid);
844 		dec_valid_inode_count(sbi);
845 		f2fs_inode_synced(dn->inode);
846 	}
847 
848 	clear_node_page_dirty(dn->node_page);
849 	set_sbi_flag(sbi, SBI_IS_DIRTY);
850 
851 	index = dn->node_page->index;
852 	f2fs_put_page(dn->node_page, 1);
853 
854 	invalidate_mapping_pages(NODE_MAPPING(sbi),
855 			index, index);
856 
857 	dn->node_page = NULL;
858 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
859 
860 	return 0;
861 }
862 
863 static int truncate_dnode(struct dnode_of_data *dn)
864 {
865 	struct page *page;
866 	int err;
867 
868 	if (dn->nid == 0)
869 		return 1;
870 
871 	/* get direct node */
872 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
873 	if (PTR_ERR(page) == -ENOENT)
874 		return 1;
875 	else if (IS_ERR(page))
876 		return PTR_ERR(page);
877 
878 	/* Make dnode_of_data for parameter */
879 	dn->node_page = page;
880 	dn->ofs_in_node = 0;
881 	f2fs_truncate_data_blocks(dn);
882 	err = truncate_node(dn);
883 	if (err)
884 		return err;
885 
886 	return 1;
887 }
888 
889 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
890 						int ofs, int depth)
891 {
892 	struct dnode_of_data rdn = *dn;
893 	struct page *page;
894 	struct f2fs_node *rn;
895 	nid_t child_nid;
896 	unsigned int child_nofs;
897 	int freed = 0;
898 	int i, ret;
899 
900 	if (dn->nid == 0)
901 		return NIDS_PER_BLOCK + 1;
902 
903 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
904 
905 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
906 	if (IS_ERR(page)) {
907 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
908 		return PTR_ERR(page);
909 	}
910 
911 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
912 
913 	rn = F2FS_NODE(page);
914 	if (depth < 3) {
915 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
916 			child_nid = le32_to_cpu(rn->in.nid[i]);
917 			if (child_nid == 0)
918 				continue;
919 			rdn.nid = child_nid;
920 			ret = truncate_dnode(&rdn);
921 			if (ret < 0)
922 				goto out_err;
923 			if (set_nid(page, i, 0, false))
924 				dn->node_changed = true;
925 		}
926 	} else {
927 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
928 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
929 			child_nid = le32_to_cpu(rn->in.nid[i]);
930 			if (child_nid == 0) {
931 				child_nofs += NIDS_PER_BLOCK + 1;
932 				continue;
933 			}
934 			rdn.nid = child_nid;
935 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
936 			if (ret == (NIDS_PER_BLOCK + 1)) {
937 				if (set_nid(page, i, 0, false))
938 					dn->node_changed = true;
939 				child_nofs += ret;
940 			} else if (ret < 0 && ret != -ENOENT) {
941 				goto out_err;
942 			}
943 		}
944 		freed = child_nofs;
945 	}
946 
947 	if (!ofs) {
948 		/* remove current indirect node */
949 		dn->node_page = page;
950 		ret = truncate_node(dn);
951 		if (ret)
952 			goto out_err;
953 		freed++;
954 	} else {
955 		f2fs_put_page(page, 1);
956 	}
957 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
958 	return freed;
959 
960 out_err:
961 	f2fs_put_page(page, 1);
962 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
963 	return ret;
964 }
965 
966 static int truncate_partial_nodes(struct dnode_of_data *dn,
967 			struct f2fs_inode *ri, int *offset, int depth)
968 {
969 	struct page *pages[2];
970 	nid_t nid[3];
971 	nid_t child_nid;
972 	int err = 0;
973 	int i;
974 	int idx = depth - 2;
975 
976 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
977 	if (!nid[0])
978 		return 0;
979 
980 	/* get indirect nodes in the path */
981 	for (i = 0; i < idx + 1; i++) {
982 		/* reference count'll be increased */
983 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
984 		if (IS_ERR(pages[i])) {
985 			err = PTR_ERR(pages[i]);
986 			idx = i - 1;
987 			goto fail;
988 		}
989 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
990 	}
991 
992 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
993 
994 	/* free direct nodes linked to a partial indirect node */
995 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
996 		child_nid = get_nid(pages[idx], i, false);
997 		if (!child_nid)
998 			continue;
999 		dn->nid = child_nid;
1000 		err = truncate_dnode(dn);
1001 		if (err < 0)
1002 			goto fail;
1003 		if (set_nid(pages[idx], i, 0, false))
1004 			dn->node_changed = true;
1005 	}
1006 
1007 	if (offset[idx + 1] == 0) {
1008 		dn->node_page = pages[idx];
1009 		dn->nid = nid[idx];
1010 		err = truncate_node(dn);
1011 		if (err)
1012 			goto fail;
1013 	} else {
1014 		f2fs_put_page(pages[idx], 1);
1015 	}
1016 	offset[idx]++;
1017 	offset[idx + 1] = 0;
1018 	idx--;
1019 fail:
1020 	for (i = idx; i >= 0; i--)
1021 		f2fs_put_page(pages[i], 1);
1022 
1023 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1024 
1025 	return err;
1026 }
1027 
1028 /*
1029  * All the block addresses of data and nodes should be nullified.
1030  */
1031 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1032 {
1033 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034 	int err = 0, cont = 1;
1035 	int level, offset[4], noffset[4];
1036 	unsigned int nofs = 0;
1037 	struct f2fs_inode *ri;
1038 	struct dnode_of_data dn;
1039 	struct page *page;
1040 
1041 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1042 
1043 	level = get_node_path(inode, from, offset, noffset);
1044 	if (level < 0)
1045 		return level;
1046 
1047 	page = f2fs_get_node_page(sbi, inode->i_ino);
1048 	if (IS_ERR(page)) {
1049 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1050 		return PTR_ERR(page);
1051 	}
1052 
1053 	set_new_dnode(&dn, inode, page, NULL, 0);
1054 	unlock_page(page);
1055 
1056 	ri = F2FS_INODE(page);
1057 	switch (level) {
1058 	case 0:
1059 	case 1:
1060 		nofs = noffset[1];
1061 		break;
1062 	case 2:
1063 		nofs = noffset[1];
1064 		if (!offset[level - 1])
1065 			goto skip_partial;
1066 		err = truncate_partial_nodes(&dn, ri, offset, level);
1067 		if (err < 0 && err != -ENOENT)
1068 			goto fail;
1069 		nofs += 1 + NIDS_PER_BLOCK;
1070 		break;
1071 	case 3:
1072 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1073 		if (!offset[level - 1])
1074 			goto skip_partial;
1075 		err = truncate_partial_nodes(&dn, ri, offset, level);
1076 		if (err < 0 && err != -ENOENT)
1077 			goto fail;
1078 		break;
1079 	default:
1080 		BUG();
1081 	}
1082 
1083 skip_partial:
1084 	while (cont) {
1085 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1086 		switch (offset[0]) {
1087 		case NODE_DIR1_BLOCK:
1088 		case NODE_DIR2_BLOCK:
1089 			err = truncate_dnode(&dn);
1090 			break;
1091 
1092 		case NODE_IND1_BLOCK:
1093 		case NODE_IND2_BLOCK:
1094 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1095 			break;
1096 
1097 		case NODE_DIND_BLOCK:
1098 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1099 			cont = 0;
1100 			break;
1101 
1102 		default:
1103 			BUG();
1104 		}
1105 		if (err < 0 && err != -ENOENT)
1106 			goto fail;
1107 		if (offset[1] == 0 &&
1108 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1109 			lock_page(page);
1110 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1111 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1112 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1113 			set_page_dirty(page);
1114 			unlock_page(page);
1115 		}
1116 		offset[1] = 0;
1117 		offset[0]++;
1118 		nofs += err;
1119 	}
1120 fail:
1121 	f2fs_put_page(page, 0);
1122 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1123 	return err > 0 ? 0 : err;
1124 }
1125 
1126 /* caller must lock inode page */
1127 int f2fs_truncate_xattr_node(struct inode *inode)
1128 {
1129 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1130 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1131 	struct dnode_of_data dn;
1132 	struct page *npage;
1133 	int err;
1134 
1135 	if (!nid)
1136 		return 0;
1137 
1138 	npage = f2fs_get_node_page(sbi, nid);
1139 	if (IS_ERR(npage))
1140 		return PTR_ERR(npage);
1141 
1142 	set_new_dnode(&dn, inode, NULL, npage, nid);
1143 	err = truncate_node(&dn);
1144 	if (err) {
1145 		f2fs_put_page(npage, 1);
1146 		return err;
1147 	}
1148 
1149 	f2fs_i_xnid_write(inode, 0);
1150 
1151 	return 0;
1152 }
1153 
1154 /*
1155  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1156  * f2fs_unlock_op().
1157  */
1158 int f2fs_remove_inode_page(struct inode *inode)
1159 {
1160 	struct dnode_of_data dn;
1161 	int err;
1162 
1163 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1164 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1165 	if (err)
1166 		return err;
1167 
1168 	err = f2fs_truncate_xattr_node(inode);
1169 	if (err) {
1170 		f2fs_put_dnode(&dn);
1171 		return err;
1172 	}
1173 
1174 	/* remove potential inline_data blocks */
1175 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1176 				S_ISLNK(inode->i_mode))
1177 		f2fs_truncate_data_blocks_range(&dn, 1);
1178 
1179 	/* 0 is possible, after f2fs_new_inode() has failed */
1180 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1181 		f2fs_put_dnode(&dn);
1182 		return -EIO;
1183 	}
1184 
1185 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1186 		f2fs_warn(F2FS_I_SB(inode),
1187 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1188 			inode->i_ino, (unsigned long long)inode->i_blocks);
1189 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1190 	}
1191 
1192 	/* will put inode & node pages */
1193 	err = truncate_node(&dn);
1194 	if (err) {
1195 		f2fs_put_dnode(&dn);
1196 		return err;
1197 	}
1198 	return 0;
1199 }
1200 
1201 struct page *f2fs_new_inode_page(struct inode *inode)
1202 {
1203 	struct dnode_of_data dn;
1204 
1205 	/* allocate inode page for new inode */
1206 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1207 
1208 	/* caller should f2fs_put_page(page, 1); */
1209 	return f2fs_new_node_page(&dn, 0);
1210 }
1211 
1212 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1213 {
1214 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1215 	struct node_info new_ni;
1216 	struct page *page;
1217 	int err;
1218 
1219 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1220 		return ERR_PTR(-EPERM);
1221 
1222 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1223 	if (!page)
1224 		return ERR_PTR(-ENOMEM);
1225 
1226 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1227 		goto fail;
1228 
1229 #ifdef CONFIG_F2FS_CHECK_FS
1230 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1231 	if (err) {
1232 		dec_valid_node_count(sbi, dn->inode, !ofs);
1233 		goto fail;
1234 	}
1235 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1236 #endif
1237 	new_ni.nid = dn->nid;
1238 	new_ni.ino = dn->inode->i_ino;
1239 	new_ni.blk_addr = NULL_ADDR;
1240 	new_ni.flag = 0;
1241 	new_ni.version = 0;
1242 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1243 
1244 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1245 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1246 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1247 	if (!PageUptodate(page))
1248 		SetPageUptodate(page);
1249 	if (set_page_dirty(page))
1250 		dn->node_changed = true;
1251 
1252 	if (f2fs_has_xattr_block(ofs))
1253 		f2fs_i_xnid_write(dn->inode, dn->nid);
1254 
1255 	if (ofs == 0)
1256 		inc_valid_inode_count(sbi);
1257 	return page;
1258 
1259 fail:
1260 	clear_node_page_dirty(page);
1261 	f2fs_put_page(page, 1);
1262 	return ERR_PTR(err);
1263 }
1264 
1265 /*
1266  * Caller should do after getting the following values.
1267  * 0: f2fs_put_page(page, 0)
1268  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1269  */
1270 static int read_node_page(struct page *page, int op_flags)
1271 {
1272 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1273 	struct node_info ni;
1274 	struct f2fs_io_info fio = {
1275 		.sbi = sbi,
1276 		.type = NODE,
1277 		.op = REQ_OP_READ,
1278 		.op_flags = op_flags,
1279 		.page = page,
1280 		.encrypted_page = NULL,
1281 	};
1282 	int err;
1283 
1284 	if (PageUptodate(page)) {
1285 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1286 			ClearPageUptodate(page);
1287 			return -EFSBADCRC;
1288 		}
1289 		return LOCKED_PAGE;
1290 	}
1291 
1292 	err = f2fs_get_node_info(sbi, page->index, &ni);
1293 	if (err)
1294 		return err;
1295 
1296 	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1297 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1298 		ClearPageUptodate(page);
1299 		return -ENOENT;
1300 	}
1301 
1302 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1303 	return f2fs_submit_page_bio(&fio);
1304 }
1305 
1306 /*
1307  * Readahead a node page
1308  */
1309 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1310 {
1311 	struct page *apage;
1312 	int err;
1313 
1314 	if (!nid)
1315 		return;
1316 	if (f2fs_check_nid_range(sbi, nid))
1317 		return;
1318 
1319 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1320 	if (apage)
1321 		return;
1322 
1323 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1324 	if (!apage)
1325 		return;
1326 
1327 	err = read_node_page(apage, REQ_RAHEAD);
1328 	f2fs_put_page(apage, err ? 1 : 0);
1329 }
1330 
1331 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1332 					struct page *parent, int start)
1333 {
1334 	struct page *page;
1335 	int err;
1336 
1337 	if (!nid)
1338 		return ERR_PTR(-ENOENT);
1339 	if (f2fs_check_nid_range(sbi, nid))
1340 		return ERR_PTR(-EINVAL);
1341 repeat:
1342 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1343 	if (!page)
1344 		return ERR_PTR(-ENOMEM);
1345 
1346 	err = read_node_page(page, 0);
1347 	if (err < 0) {
1348 		f2fs_put_page(page, 1);
1349 		return ERR_PTR(err);
1350 	} else if (err == LOCKED_PAGE) {
1351 		err = 0;
1352 		goto page_hit;
1353 	}
1354 
1355 	if (parent)
1356 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1357 
1358 	lock_page(page);
1359 
1360 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1361 		f2fs_put_page(page, 1);
1362 		goto repeat;
1363 	}
1364 
1365 	if (unlikely(!PageUptodate(page))) {
1366 		err = -EIO;
1367 		goto out_err;
1368 	}
1369 
1370 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1371 		err = -EFSBADCRC;
1372 		goto out_err;
1373 	}
1374 page_hit:
1375 	if(unlikely(nid != nid_of_node(page))) {
1376 		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1377 			  nid, nid_of_node(page), ino_of_node(page),
1378 			  ofs_of_node(page), cpver_of_node(page),
1379 			  next_blkaddr_of_node(page));
1380 		err = -EINVAL;
1381 out_err:
1382 		ClearPageUptodate(page);
1383 		f2fs_put_page(page, 1);
1384 		return ERR_PTR(err);
1385 	}
1386 	return page;
1387 }
1388 
1389 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1390 {
1391 	return __get_node_page(sbi, nid, NULL, 0);
1392 }
1393 
1394 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1395 {
1396 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1397 	nid_t nid = get_nid(parent, start, false);
1398 
1399 	return __get_node_page(sbi, nid, parent, start);
1400 }
1401 
1402 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1403 {
1404 	struct inode *inode;
1405 	struct page *page;
1406 	int ret;
1407 
1408 	/* should flush inline_data before evict_inode */
1409 	inode = ilookup(sbi->sb, ino);
1410 	if (!inode)
1411 		return;
1412 
1413 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1414 					FGP_LOCK|FGP_NOWAIT, 0);
1415 	if (!page)
1416 		goto iput_out;
1417 
1418 	if (!PageUptodate(page))
1419 		goto page_out;
1420 
1421 	if (!PageDirty(page))
1422 		goto page_out;
1423 
1424 	if (!clear_page_dirty_for_io(page))
1425 		goto page_out;
1426 
1427 	ret = f2fs_write_inline_data(inode, page);
1428 	inode_dec_dirty_pages(inode);
1429 	f2fs_remove_dirty_inode(inode);
1430 	if (ret)
1431 		set_page_dirty(page);
1432 page_out:
1433 	f2fs_put_page(page, 1);
1434 iput_out:
1435 	iput(inode);
1436 }
1437 
1438 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1439 {
1440 	pgoff_t index;
1441 	struct pagevec pvec;
1442 	struct page *last_page = NULL;
1443 	int nr_pages;
1444 
1445 	pagevec_init(&pvec);
1446 	index = 0;
1447 
1448 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1449 				PAGECACHE_TAG_DIRTY))) {
1450 		int i;
1451 
1452 		for (i = 0; i < nr_pages; i++) {
1453 			struct page *page = pvec.pages[i];
1454 
1455 			if (unlikely(f2fs_cp_error(sbi))) {
1456 				f2fs_put_page(last_page, 0);
1457 				pagevec_release(&pvec);
1458 				return ERR_PTR(-EIO);
1459 			}
1460 
1461 			if (!IS_DNODE(page) || !is_cold_node(page))
1462 				continue;
1463 			if (ino_of_node(page) != ino)
1464 				continue;
1465 
1466 			lock_page(page);
1467 
1468 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1469 continue_unlock:
1470 				unlock_page(page);
1471 				continue;
1472 			}
1473 			if (ino_of_node(page) != ino)
1474 				goto continue_unlock;
1475 
1476 			if (!PageDirty(page)) {
1477 				/* someone wrote it for us */
1478 				goto continue_unlock;
1479 			}
1480 
1481 			if (last_page)
1482 				f2fs_put_page(last_page, 0);
1483 
1484 			get_page(page);
1485 			last_page = page;
1486 			unlock_page(page);
1487 		}
1488 		pagevec_release(&pvec);
1489 		cond_resched();
1490 	}
1491 	return last_page;
1492 }
1493 
1494 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1495 				struct writeback_control *wbc, bool do_balance,
1496 				enum iostat_type io_type, unsigned int *seq_id)
1497 {
1498 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1499 	nid_t nid;
1500 	struct node_info ni;
1501 	struct f2fs_io_info fio = {
1502 		.sbi = sbi,
1503 		.ino = ino_of_node(page),
1504 		.type = NODE,
1505 		.op = REQ_OP_WRITE,
1506 		.op_flags = wbc_to_write_flags(wbc),
1507 		.page = page,
1508 		.encrypted_page = NULL,
1509 		.submitted = false,
1510 		.io_type = io_type,
1511 		.io_wbc = wbc,
1512 	};
1513 	unsigned int seq;
1514 
1515 	trace_f2fs_writepage(page, NODE);
1516 
1517 	if (unlikely(f2fs_cp_error(sbi)))
1518 		goto redirty_out;
1519 
1520 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1521 		goto redirty_out;
1522 
1523 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1524 			wbc->sync_mode == WB_SYNC_NONE &&
1525 			IS_DNODE(page) && is_cold_node(page))
1526 		goto redirty_out;
1527 
1528 	/* get old block addr of this node page */
1529 	nid = nid_of_node(page);
1530 	f2fs_bug_on(sbi, page->index != nid);
1531 
1532 	if (f2fs_get_node_info(sbi, nid, &ni))
1533 		goto redirty_out;
1534 
1535 	if (wbc->for_reclaim) {
1536 		if (!down_read_trylock(&sbi->node_write))
1537 			goto redirty_out;
1538 	} else {
1539 		down_read(&sbi->node_write);
1540 	}
1541 
1542 	/* This page is already truncated */
1543 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1544 		ClearPageUptodate(page);
1545 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1546 		up_read(&sbi->node_write);
1547 		unlock_page(page);
1548 		return 0;
1549 	}
1550 
1551 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1552 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1553 					DATA_GENERIC_ENHANCE)) {
1554 		up_read(&sbi->node_write);
1555 		goto redirty_out;
1556 	}
1557 
1558 	if (atomic && !test_opt(sbi, NOBARRIER))
1559 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1560 
1561 	/* should add to global list before clearing PAGECACHE status */
1562 	if (f2fs_in_warm_node_list(sbi, page)) {
1563 		seq = f2fs_add_fsync_node_entry(sbi, page);
1564 		if (seq_id)
1565 			*seq_id = seq;
1566 	}
1567 
1568 	set_page_writeback(page);
1569 	ClearPageError(page);
1570 
1571 	fio.old_blkaddr = ni.blk_addr;
1572 	f2fs_do_write_node_page(nid, &fio);
1573 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1574 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1575 	up_read(&sbi->node_write);
1576 
1577 	if (wbc->for_reclaim) {
1578 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1579 		submitted = NULL;
1580 	}
1581 
1582 	unlock_page(page);
1583 
1584 	if (unlikely(f2fs_cp_error(sbi))) {
1585 		f2fs_submit_merged_write(sbi, NODE);
1586 		submitted = NULL;
1587 	}
1588 	if (submitted)
1589 		*submitted = fio.submitted;
1590 
1591 	if (do_balance)
1592 		f2fs_balance_fs(sbi, false);
1593 	return 0;
1594 
1595 redirty_out:
1596 	redirty_page_for_writepage(wbc, page);
1597 	return AOP_WRITEPAGE_ACTIVATE;
1598 }
1599 
1600 int f2fs_move_node_page(struct page *node_page, int gc_type)
1601 {
1602 	int err = 0;
1603 
1604 	if (gc_type == FG_GC) {
1605 		struct writeback_control wbc = {
1606 			.sync_mode = WB_SYNC_ALL,
1607 			.nr_to_write = 1,
1608 			.for_reclaim = 0,
1609 		};
1610 
1611 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1612 
1613 		set_page_dirty(node_page);
1614 
1615 		if (!clear_page_dirty_for_io(node_page)) {
1616 			err = -EAGAIN;
1617 			goto out_page;
1618 		}
1619 
1620 		if (__write_node_page(node_page, false, NULL,
1621 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1622 			err = -EAGAIN;
1623 			unlock_page(node_page);
1624 		}
1625 		goto release_page;
1626 	} else {
1627 		/* set page dirty and write it */
1628 		if (!PageWriteback(node_page))
1629 			set_page_dirty(node_page);
1630 	}
1631 out_page:
1632 	unlock_page(node_page);
1633 release_page:
1634 	f2fs_put_page(node_page, 0);
1635 	return err;
1636 }
1637 
1638 static int f2fs_write_node_page(struct page *page,
1639 				struct writeback_control *wbc)
1640 {
1641 	return __write_node_page(page, false, NULL, wbc, false,
1642 						FS_NODE_IO, NULL);
1643 }
1644 
1645 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1646 			struct writeback_control *wbc, bool atomic,
1647 			unsigned int *seq_id)
1648 {
1649 	pgoff_t index;
1650 	struct pagevec pvec;
1651 	int ret = 0;
1652 	struct page *last_page = NULL;
1653 	bool marked = false;
1654 	nid_t ino = inode->i_ino;
1655 	int nr_pages;
1656 	int nwritten = 0;
1657 
1658 	if (atomic) {
1659 		last_page = last_fsync_dnode(sbi, ino);
1660 		if (IS_ERR_OR_NULL(last_page))
1661 			return PTR_ERR_OR_ZERO(last_page);
1662 	}
1663 retry:
1664 	pagevec_init(&pvec);
1665 	index = 0;
1666 
1667 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1668 				PAGECACHE_TAG_DIRTY))) {
1669 		int i;
1670 
1671 		for (i = 0; i < nr_pages; i++) {
1672 			struct page *page = pvec.pages[i];
1673 			bool submitted = false;
1674 
1675 			if (unlikely(f2fs_cp_error(sbi))) {
1676 				f2fs_put_page(last_page, 0);
1677 				pagevec_release(&pvec);
1678 				ret = -EIO;
1679 				goto out;
1680 			}
1681 
1682 			if (!IS_DNODE(page) || !is_cold_node(page))
1683 				continue;
1684 			if (ino_of_node(page) != ino)
1685 				continue;
1686 
1687 			lock_page(page);
1688 
1689 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1690 continue_unlock:
1691 				unlock_page(page);
1692 				continue;
1693 			}
1694 			if (ino_of_node(page) != ino)
1695 				goto continue_unlock;
1696 
1697 			if (!PageDirty(page) && page != last_page) {
1698 				/* someone wrote it for us */
1699 				goto continue_unlock;
1700 			}
1701 
1702 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1703 
1704 			set_fsync_mark(page, 0);
1705 			set_dentry_mark(page, 0);
1706 
1707 			if (!atomic || page == last_page) {
1708 				set_fsync_mark(page, 1);
1709 				if (IS_INODE(page)) {
1710 					if (is_inode_flag_set(inode,
1711 								FI_DIRTY_INODE))
1712 						f2fs_update_inode(inode, page);
1713 					set_dentry_mark(page,
1714 						f2fs_need_dentry_mark(sbi, ino));
1715 				}
1716 				/*  may be written by other thread */
1717 				if (!PageDirty(page))
1718 					set_page_dirty(page);
1719 			}
1720 
1721 			if (!clear_page_dirty_for_io(page))
1722 				goto continue_unlock;
1723 
1724 			ret = __write_node_page(page, atomic &&
1725 						page == last_page,
1726 						&submitted, wbc, true,
1727 						FS_NODE_IO, seq_id);
1728 			if (ret) {
1729 				unlock_page(page);
1730 				f2fs_put_page(last_page, 0);
1731 				break;
1732 			} else if (submitted) {
1733 				nwritten++;
1734 			}
1735 
1736 			if (page == last_page) {
1737 				f2fs_put_page(page, 0);
1738 				marked = true;
1739 				break;
1740 			}
1741 		}
1742 		pagevec_release(&pvec);
1743 		cond_resched();
1744 
1745 		if (ret || marked)
1746 			break;
1747 	}
1748 	if (!ret && atomic && !marked) {
1749 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1750 			   ino, last_page->index);
1751 		lock_page(last_page);
1752 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1753 		set_page_dirty(last_page);
1754 		unlock_page(last_page);
1755 		goto retry;
1756 	}
1757 out:
1758 	if (nwritten)
1759 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1760 	return ret ? -EIO: 0;
1761 }
1762 
1763 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1764 {
1765 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1766 	bool clean;
1767 
1768 	if (inode->i_ino != ino)
1769 		return 0;
1770 
1771 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1772 		return 0;
1773 
1774 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1775 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1776 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1777 
1778 	if (clean)
1779 		return 0;
1780 
1781 	inode = igrab(inode);
1782 	if (!inode)
1783 		return 0;
1784 	return 1;
1785 }
1786 
1787 static bool flush_dirty_inode(struct page *page)
1788 {
1789 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1790 	struct inode *inode;
1791 	nid_t ino = ino_of_node(page);
1792 
1793 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1794 	if (!inode)
1795 		return false;
1796 
1797 	f2fs_update_inode(inode, page);
1798 	unlock_page(page);
1799 
1800 	iput(inode);
1801 	return true;
1802 }
1803 
1804 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1805 				struct writeback_control *wbc,
1806 				bool do_balance, enum iostat_type io_type)
1807 {
1808 	pgoff_t index;
1809 	struct pagevec pvec;
1810 	int step = 0;
1811 	int nwritten = 0;
1812 	int ret = 0;
1813 	int nr_pages, done = 0;
1814 
1815 	pagevec_init(&pvec);
1816 
1817 next_step:
1818 	index = 0;
1819 
1820 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1821 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1822 		int i;
1823 
1824 		for (i = 0; i < nr_pages; i++) {
1825 			struct page *page = pvec.pages[i];
1826 			bool submitted = false;
1827 			bool may_dirty = true;
1828 
1829 			/* give a priority to WB_SYNC threads */
1830 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1831 					wbc->sync_mode == WB_SYNC_NONE) {
1832 				done = 1;
1833 				break;
1834 			}
1835 
1836 			/*
1837 			 * flushing sequence with step:
1838 			 * 0. indirect nodes
1839 			 * 1. dentry dnodes
1840 			 * 2. file dnodes
1841 			 */
1842 			if (step == 0 && IS_DNODE(page))
1843 				continue;
1844 			if (step == 1 && (!IS_DNODE(page) ||
1845 						is_cold_node(page)))
1846 				continue;
1847 			if (step == 2 && (!IS_DNODE(page) ||
1848 						!is_cold_node(page)))
1849 				continue;
1850 lock_node:
1851 			if (wbc->sync_mode == WB_SYNC_ALL)
1852 				lock_page(page);
1853 			else if (!trylock_page(page))
1854 				continue;
1855 
1856 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1857 continue_unlock:
1858 				unlock_page(page);
1859 				continue;
1860 			}
1861 
1862 			if (!PageDirty(page)) {
1863 				/* someone wrote it for us */
1864 				goto continue_unlock;
1865 			}
1866 
1867 			/* flush inline_data */
1868 			if (is_inline_node(page)) {
1869 				clear_inline_node(page);
1870 				unlock_page(page);
1871 				flush_inline_data(sbi, ino_of_node(page));
1872 				goto lock_node;
1873 			}
1874 
1875 			/* flush dirty inode */
1876 			if (IS_INODE(page) && may_dirty) {
1877 				may_dirty = false;
1878 				if (flush_dirty_inode(page))
1879 					goto lock_node;
1880 			}
1881 
1882 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1883 
1884 			if (!clear_page_dirty_for_io(page))
1885 				goto continue_unlock;
1886 
1887 			set_fsync_mark(page, 0);
1888 			set_dentry_mark(page, 0);
1889 
1890 			ret = __write_node_page(page, false, &submitted,
1891 						wbc, do_balance, io_type, NULL);
1892 			if (ret)
1893 				unlock_page(page);
1894 			else if (submitted)
1895 				nwritten++;
1896 
1897 			if (--wbc->nr_to_write == 0)
1898 				break;
1899 		}
1900 		pagevec_release(&pvec);
1901 		cond_resched();
1902 
1903 		if (wbc->nr_to_write == 0) {
1904 			step = 2;
1905 			break;
1906 		}
1907 	}
1908 
1909 	if (step < 2) {
1910 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1911 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
1912 			goto out;
1913 		step++;
1914 		goto next_step;
1915 	}
1916 out:
1917 	if (nwritten)
1918 		f2fs_submit_merged_write(sbi, NODE);
1919 
1920 	if (unlikely(f2fs_cp_error(sbi)))
1921 		return -EIO;
1922 	return ret;
1923 }
1924 
1925 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1926 						unsigned int seq_id)
1927 {
1928 	struct fsync_node_entry *fn;
1929 	struct page *page;
1930 	struct list_head *head = &sbi->fsync_node_list;
1931 	unsigned long flags;
1932 	unsigned int cur_seq_id = 0;
1933 	int ret2, ret = 0;
1934 
1935 	while (seq_id && cur_seq_id < seq_id) {
1936 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1937 		if (list_empty(head)) {
1938 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1939 			break;
1940 		}
1941 		fn = list_first_entry(head, struct fsync_node_entry, list);
1942 		if (fn->seq_id > seq_id) {
1943 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1944 			break;
1945 		}
1946 		cur_seq_id = fn->seq_id;
1947 		page = fn->page;
1948 		get_page(page);
1949 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1950 
1951 		f2fs_wait_on_page_writeback(page, NODE, true, false);
1952 		if (TestClearPageError(page))
1953 			ret = -EIO;
1954 
1955 		put_page(page);
1956 
1957 		if (ret)
1958 			break;
1959 	}
1960 
1961 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1962 	if (!ret)
1963 		ret = ret2;
1964 
1965 	return ret;
1966 }
1967 
1968 static int f2fs_write_node_pages(struct address_space *mapping,
1969 			    struct writeback_control *wbc)
1970 {
1971 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1972 	struct blk_plug plug;
1973 	long diff;
1974 
1975 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1976 		goto skip_write;
1977 
1978 	/* balancing f2fs's metadata in background */
1979 	f2fs_balance_fs_bg(sbi, true);
1980 
1981 	/* collect a number of dirty node pages and write together */
1982 	if (wbc->sync_mode != WB_SYNC_ALL &&
1983 			get_pages(sbi, F2FS_DIRTY_NODES) <
1984 					nr_pages_to_skip(sbi, NODE))
1985 		goto skip_write;
1986 
1987 	if (wbc->sync_mode == WB_SYNC_ALL)
1988 		atomic_inc(&sbi->wb_sync_req[NODE]);
1989 	else if (atomic_read(&sbi->wb_sync_req[NODE]))
1990 		goto skip_write;
1991 
1992 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1993 
1994 	diff = nr_pages_to_write(sbi, NODE, wbc);
1995 	blk_start_plug(&plug);
1996 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1997 	blk_finish_plug(&plug);
1998 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1999 
2000 	if (wbc->sync_mode == WB_SYNC_ALL)
2001 		atomic_dec(&sbi->wb_sync_req[NODE]);
2002 	return 0;
2003 
2004 skip_write:
2005 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2006 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2007 	return 0;
2008 }
2009 
2010 static int f2fs_set_node_page_dirty(struct page *page)
2011 {
2012 	trace_f2fs_set_page_dirty(page, NODE);
2013 
2014 	if (!PageUptodate(page))
2015 		SetPageUptodate(page);
2016 #ifdef CONFIG_F2FS_CHECK_FS
2017 	if (IS_INODE(page))
2018 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2019 #endif
2020 	if (!PageDirty(page)) {
2021 		__set_page_dirty_nobuffers(page);
2022 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2023 		f2fs_set_page_private(page, 0);
2024 		f2fs_trace_pid(page);
2025 		return 1;
2026 	}
2027 	return 0;
2028 }
2029 
2030 /*
2031  * Structure of the f2fs node operations
2032  */
2033 const struct address_space_operations f2fs_node_aops = {
2034 	.writepage	= f2fs_write_node_page,
2035 	.writepages	= f2fs_write_node_pages,
2036 	.set_page_dirty	= f2fs_set_node_page_dirty,
2037 	.invalidatepage	= f2fs_invalidate_page,
2038 	.releasepage	= f2fs_release_page,
2039 #ifdef CONFIG_MIGRATION
2040 	.migratepage    = f2fs_migrate_page,
2041 #endif
2042 };
2043 
2044 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2045 						nid_t n)
2046 {
2047 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2048 }
2049 
2050 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2051 			struct free_nid *i, enum nid_state state)
2052 {
2053 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2054 
2055 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2056 	if (err)
2057 		return err;
2058 
2059 	f2fs_bug_on(sbi, state != i->state);
2060 	nm_i->nid_cnt[state]++;
2061 	if (state == FREE_NID)
2062 		list_add_tail(&i->list, &nm_i->free_nid_list);
2063 	return 0;
2064 }
2065 
2066 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2067 			struct free_nid *i, enum nid_state state)
2068 {
2069 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2070 
2071 	f2fs_bug_on(sbi, state != i->state);
2072 	nm_i->nid_cnt[state]--;
2073 	if (state == FREE_NID)
2074 		list_del(&i->list);
2075 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2076 }
2077 
2078 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2079 			enum nid_state org_state, enum nid_state dst_state)
2080 {
2081 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2082 
2083 	f2fs_bug_on(sbi, org_state != i->state);
2084 	i->state = dst_state;
2085 	nm_i->nid_cnt[org_state]--;
2086 	nm_i->nid_cnt[dst_state]++;
2087 
2088 	switch (dst_state) {
2089 	case PREALLOC_NID:
2090 		list_del(&i->list);
2091 		break;
2092 	case FREE_NID:
2093 		list_add_tail(&i->list, &nm_i->free_nid_list);
2094 		break;
2095 	default:
2096 		BUG_ON(1);
2097 	}
2098 }
2099 
2100 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2101 							bool set, bool build)
2102 {
2103 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2104 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2105 	unsigned int nid_ofs = nid - START_NID(nid);
2106 
2107 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2108 		return;
2109 
2110 	if (set) {
2111 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2112 			return;
2113 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2114 		nm_i->free_nid_count[nat_ofs]++;
2115 	} else {
2116 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2117 			return;
2118 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2119 		if (!build)
2120 			nm_i->free_nid_count[nat_ofs]--;
2121 	}
2122 }
2123 
2124 /* return if the nid is recognized as free */
2125 static bool add_free_nid(struct f2fs_sb_info *sbi,
2126 				nid_t nid, bool build, bool update)
2127 {
2128 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2129 	struct free_nid *i, *e;
2130 	struct nat_entry *ne;
2131 	int err = -EINVAL;
2132 	bool ret = false;
2133 
2134 	/* 0 nid should not be used */
2135 	if (unlikely(nid == 0))
2136 		return false;
2137 
2138 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2139 		return false;
2140 
2141 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2142 	i->nid = nid;
2143 	i->state = FREE_NID;
2144 
2145 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2146 
2147 	spin_lock(&nm_i->nid_list_lock);
2148 
2149 	if (build) {
2150 		/*
2151 		 *   Thread A             Thread B
2152 		 *  - f2fs_create
2153 		 *   - f2fs_new_inode
2154 		 *    - f2fs_alloc_nid
2155 		 *     - __insert_nid_to_list(PREALLOC_NID)
2156 		 *                     - f2fs_balance_fs_bg
2157 		 *                      - f2fs_build_free_nids
2158 		 *                       - __f2fs_build_free_nids
2159 		 *                        - scan_nat_page
2160 		 *                         - add_free_nid
2161 		 *                          - __lookup_nat_cache
2162 		 *  - f2fs_add_link
2163 		 *   - f2fs_init_inode_metadata
2164 		 *    - f2fs_new_inode_page
2165 		 *     - f2fs_new_node_page
2166 		 *      - set_node_addr
2167 		 *  - f2fs_alloc_nid_done
2168 		 *   - __remove_nid_from_list(PREALLOC_NID)
2169 		 *                         - __insert_nid_to_list(FREE_NID)
2170 		 */
2171 		ne = __lookup_nat_cache(nm_i, nid);
2172 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2173 				nat_get_blkaddr(ne) != NULL_ADDR))
2174 			goto err_out;
2175 
2176 		e = __lookup_free_nid_list(nm_i, nid);
2177 		if (e) {
2178 			if (e->state == FREE_NID)
2179 				ret = true;
2180 			goto err_out;
2181 		}
2182 	}
2183 	ret = true;
2184 	err = __insert_free_nid(sbi, i, FREE_NID);
2185 err_out:
2186 	if (update) {
2187 		update_free_nid_bitmap(sbi, nid, ret, build);
2188 		if (!build)
2189 			nm_i->available_nids++;
2190 	}
2191 	spin_unlock(&nm_i->nid_list_lock);
2192 	radix_tree_preload_end();
2193 
2194 	if (err)
2195 		kmem_cache_free(free_nid_slab, i);
2196 	return ret;
2197 }
2198 
2199 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2200 {
2201 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2202 	struct free_nid *i;
2203 	bool need_free = false;
2204 
2205 	spin_lock(&nm_i->nid_list_lock);
2206 	i = __lookup_free_nid_list(nm_i, nid);
2207 	if (i && i->state == FREE_NID) {
2208 		__remove_free_nid(sbi, i, FREE_NID);
2209 		need_free = true;
2210 	}
2211 	spin_unlock(&nm_i->nid_list_lock);
2212 
2213 	if (need_free)
2214 		kmem_cache_free(free_nid_slab, i);
2215 }
2216 
2217 static int scan_nat_page(struct f2fs_sb_info *sbi,
2218 			struct page *nat_page, nid_t start_nid)
2219 {
2220 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2221 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2222 	block_t blk_addr;
2223 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2224 	int i;
2225 
2226 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2227 
2228 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2229 
2230 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2231 		if (unlikely(start_nid >= nm_i->max_nid))
2232 			break;
2233 
2234 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2235 
2236 		if (blk_addr == NEW_ADDR)
2237 			return -EINVAL;
2238 
2239 		if (blk_addr == NULL_ADDR) {
2240 			add_free_nid(sbi, start_nid, true, true);
2241 		} else {
2242 			spin_lock(&NM_I(sbi)->nid_list_lock);
2243 			update_free_nid_bitmap(sbi, start_nid, false, true);
2244 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2245 		}
2246 	}
2247 
2248 	return 0;
2249 }
2250 
2251 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2252 {
2253 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2254 	struct f2fs_journal *journal = curseg->journal;
2255 	int i;
2256 
2257 	down_read(&curseg->journal_rwsem);
2258 	for (i = 0; i < nats_in_cursum(journal); i++) {
2259 		block_t addr;
2260 		nid_t nid;
2261 
2262 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2263 		nid = le32_to_cpu(nid_in_journal(journal, i));
2264 		if (addr == NULL_ADDR)
2265 			add_free_nid(sbi, nid, true, false);
2266 		else
2267 			remove_free_nid(sbi, nid);
2268 	}
2269 	up_read(&curseg->journal_rwsem);
2270 }
2271 
2272 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2273 {
2274 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2275 	unsigned int i, idx;
2276 	nid_t nid;
2277 
2278 	down_read(&nm_i->nat_tree_lock);
2279 
2280 	for (i = 0; i < nm_i->nat_blocks; i++) {
2281 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2282 			continue;
2283 		if (!nm_i->free_nid_count[i])
2284 			continue;
2285 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2286 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2287 						NAT_ENTRY_PER_BLOCK, idx);
2288 			if (idx >= NAT_ENTRY_PER_BLOCK)
2289 				break;
2290 
2291 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2292 			add_free_nid(sbi, nid, true, false);
2293 
2294 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2295 				goto out;
2296 		}
2297 	}
2298 out:
2299 	scan_curseg_cache(sbi);
2300 
2301 	up_read(&nm_i->nat_tree_lock);
2302 }
2303 
2304 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2305 						bool sync, bool mount)
2306 {
2307 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2308 	int i = 0, ret;
2309 	nid_t nid = nm_i->next_scan_nid;
2310 
2311 	if (unlikely(nid >= nm_i->max_nid))
2312 		nid = 0;
2313 
2314 	/* Enough entries */
2315 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2316 		return 0;
2317 
2318 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2319 		return 0;
2320 
2321 	if (!mount) {
2322 		/* try to find free nids in free_nid_bitmap */
2323 		scan_free_nid_bits(sbi);
2324 
2325 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2326 			return 0;
2327 	}
2328 
2329 	/* readahead nat pages to be scanned */
2330 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2331 							META_NAT, true);
2332 
2333 	down_read(&nm_i->nat_tree_lock);
2334 
2335 	while (1) {
2336 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2337 						nm_i->nat_block_bitmap)) {
2338 			struct page *page = get_current_nat_page(sbi, nid);
2339 
2340 			if (IS_ERR(page)) {
2341 				ret = PTR_ERR(page);
2342 			} else {
2343 				ret = scan_nat_page(sbi, page, nid);
2344 				f2fs_put_page(page, 1);
2345 			}
2346 
2347 			if (ret) {
2348 				up_read(&nm_i->nat_tree_lock);
2349 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2350 				return ret;
2351 			}
2352 		}
2353 
2354 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2355 		if (unlikely(nid >= nm_i->max_nid))
2356 			nid = 0;
2357 
2358 		if (++i >= FREE_NID_PAGES)
2359 			break;
2360 	}
2361 
2362 	/* go to the next free nat pages to find free nids abundantly */
2363 	nm_i->next_scan_nid = nid;
2364 
2365 	/* find free nids from current sum_pages */
2366 	scan_curseg_cache(sbi);
2367 
2368 	up_read(&nm_i->nat_tree_lock);
2369 
2370 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2371 					nm_i->ra_nid_pages, META_NAT, false);
2372 
2373 	return 0;
2374 }
2375 
2376 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2377 {
2378 	int ret;
2379 
2380 	mutex_lock(&NM_I(sbi)->build_lock);
2381 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2382 	mutex_unlock(&NM_I(sbi)->build_lock);
2383 
2384 	return ret;
2385 }
2386 
2387 /*
2388  * If this function returns success, caller can obtain a new nid
2389  * from second parameter of this function.
2390  * The returned nid could be used ino as well as nid when inode is created.
2391  */
2392 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2393 {
2394 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2395 	struct free_nid *i = NULL;
2396 retry:
2397 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2398 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2399 		return false;
2400 	}
2401 
2402 	spin_lock(&nm_i->nid_list_lock);
2403 
2404 	if (unlikely(nm_i->available_nids == 0)) {
2405 		spin_unlock(&nm_i->nid_list_lock);
2406 		return false;
2407 	}
2408 
2409 	/* We should not use stale free nids created by f2fs_build_free_nids */
2410 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2411 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2412 		i = list_first_entry(&nm_i->free_nid_list,
2413 					struct free_nid, list);
2414 		*nid = i->nid;
2415 
2416 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2417 		nm_i->available_nids--;
2418 
2419 		update_free_nid_bitmap(sbi, *nid, false, false);
2420 
2421 		spin_unlock(&nm_i->nid_list_lock);
2422 		return true;
2423 	}
2424 	spin_unlock(&nm_i->nid_list_lock);
2425 
2426 	/* Let's scan nat pages and its caches to get free nids */
2427 	if (!f2fs_build_free_nids(sbi, true, false))
2428 		goto retry;
2429 	return false;
2430 }
2431 
2432 /*
2433  * f2fs_alloc_nid() should be called prior to this function.
2434  */
2435 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2436 {
2437 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2438 	struct free_nid *i;
2439 
2440 	spin_lock(&nm_i->nid_list_lock);
2441 	i = __lookup_free_nid_list(nm_i, nid);
2442 	f2fs_bug_on(sbi, !i);
2443 	__remove_free_nid(sbi, i, PREALLOC_NID);
2444 	spin_unlock(&nm_i->nid_list_lock);
2445 
2446 	kmem_cache_free(free_nid_slab, i);
2447 }
2448 
2449 /*
2450  * f2fs_alloc_nid() should be called prior to this function.
2451  */
2452 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2453 {
2454 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2455 	struct free_nid *i;
2456 	bool need_free = false;
2457 
2458 	if (!nid)
2459 		return;
2460 
2461 	spin_lock(&nm_i->nid_list_lock);
2462 	i = __lookup_free_nid_list(nm_i, nid);
2463 	f2fs_bug_on(sbi, !i);
2464 
2465 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2466 		__remove_free_nid(sbi, i, PREALLOC_NID);
2467 		need_free = true;
2468 	} else {
2469 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2470 	}
2471 
2472 	nm_i->available_nids++;
2473 
2474 	update_free_nid_bitmap(sbi, nid, true, false);
2475 
2476 	spin_unlock(&nm_i->nid_list_lock);
2477 
2478 	if (need_free)
2479 		kmem_cache_free(free_nid_slab, i);
2480 }
2481 
2482 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2483 {
2484 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2485 	struct free_nid *i, *next;
2486 	int nr = nr_shrink;
2487 
2488 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2489 		return 0;
2490 
2491 	if (!mutex_trylock(&nm_i->build_lock))
2492 		return 0;
2493 
2494 	spin_lock(&nm_i->nid_list_lock);
2495 	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2496 		if (nr_shrink <= 0 ||
2497 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2498 			break;
2499 
2500 		__remove_free_nid(sbi, i, FREE_NID);
2501 		kmem_cache_free(free_nid_slab, i);
2502 		nr_shrink--;
2503 	}
2504 	spin_unlock(&nm_i->nid_list_lock);
2505 	mutex_unlock(&nm_i->build_lock);
2506 
2507 	return nr - nr_shrink;
2508 }
2509 
2510 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2511 {
2512 	void *src_addr, *dst_addr;
2513 	size_t inline_size;
2514 	struct page *ipage;
2515 	struct f2fs_inode *ri;
2516 
2517 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2518 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2519 
2520 	ri = F2FS_INODE(page);
2521 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2522 		set_inode_flag(inode, FI_INLINE_XATTR);
2523 	} else {
2524 		clear_inode_flag(inode, FI_INLINE_XATTR);
2525 		goto update_inode;
2526 	}
2527 
2528 	dst_addr = inline_xattr_addr(inode, ipage);
2529 	src_addr = inline_xattr_addr(inode, page);
2530 	inline_size = inline_xattr_size(inode);
2531 
2532 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2533 	memcpy(dst_addr, src_addr, inline_size);
2534 update_inode:
2535 	f2fs_update_inode(inode, ipage);
2536 	f2fs_put_page(ipage, 1);
2537 }
2538 
2539 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2540 {
2541 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2542 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2543 	nid_t new_xnid;
2544 	struct dnode_of_data dn;
2545 	struct node_info ni;
2546 	struct page *xpage;
2547 	int err;
2548 
2549 	if (!prev_xnid)
2550 		goto recover_xnid;
2551 
2552 	/* 1: invalidate the previous xattr nid */
2553 	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2554 	if (err)
2555 		return err;
2556 
2557 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2558 	dec_valid_node_count(sbi, inode, false);
2559 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2560 
2561 recover_xnid:
2562 	/* 2: update xattr nid in inode */
2563 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2564 		return -ENOSPC;
2565 
2566 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2567 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2568 	if (IS_ERR(xpage)) {
2569 		f2fs_alloc_nid_failed(sbi, new_xnid);
2570 		return PTR_ERR(xpage);
2571 	}
2572 
2573 	f2fs_alloc_nid_done(sbi, new_xnid);
2574 	f2fs_update_inode_page(inode);
2575 
2576 	/* 3: update and set xattr node page dirty */
2577 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2578 
2579 	set_page_dirty(xpage);
2580 	f2fs_put_page(xpage, 1);
2581 
2582 	return 0;
2583 }
2584 
2585 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2586 {
2587 	struct f2fs_inode *src, *dst;
2588 	nid_t ino = ino_of_node(page);
2589 	struct node_info old_ni, new_ni;
2590 	struct page *ipage;
2591 	int err;
2592 
2593 	err = f2fs_get_node_info(sbi, ino, &old_ni);
2594 	if (err)
2595 		return err;
2596 
2597 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2598 		return -EINVAL;
2599 retry:
2600 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2601 	if (!ipage) {
2602 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2603 		goto retry;
2604 	}
2605 
2606 	/* Should not use this inode from free nid list */
2607 	remove_free_nid(sbi, ino);
2608 
2609 	if (!PageUptodate(ipage))
2610 		SetPageUptodate(ipage);
2611 	fill_node_footer(ipage, ino, ino, 0, true);
2612 	set_cold_node(ipage, false);
2613 
2614 	src = F2FS_INODE(page);
2615 	dst = F2FS_INODE(ipage);
2616 
2617 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2618 	dst->i_size = 0;
2619 	dst->i_blocks = cpu_to_le64(1);
2620 	dst->i_links = cpu_to_le32(1);
2621 	dst->i_xattr_nid = 0;
2622 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2623 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2624 		dst->i_extra_isize = src->i_extra_isize;
2625 
2626 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2627 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2628 							i_inline_xattr_size))
2629 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2630 
2631 		if (f2fs_sb_has_project_quota(sbi) &&
2632 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2633 								i_projid))
2634 			dst->i_projid = src->i_projid;
2635 
2636 		if (f2fs_sb_has_inode_crtime(sbi) &&
2637 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2638 							i_crtime_nsec)) {
2639 			dst->i_crtime = src->i_crtime;
2640 			dst->i_crtime_nsec = src->i_crtime_nsec;
2641 		}
2642 	}
2643 
2644 	new_ni = old_ni;
2645 	new_ni.ino = ino;
2646 
2647 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2648 		WARN_ON(1);
2649 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2650 	inc_valid_inode_count(sbi);
2651 	set_page_dirty(ipage);
2652 	f2fs_put_page(ipage, 1);
2653 	return 0;
2654 }
2655 
2656 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2657 			unsigned int segno, struct f2fs_summary_block *sum)
2658 {
2659 	struct f2fs_node *rn;
2660 	struct f2fs_summary *sum_entry;
2661 	block_t addr;
2662 	int i, idx, last_offset, nrpages;
2663 
2664 	/* scan the node segment */
2665 	last_offset = sbi->blocks_per_seg;
2666 	addr = START_BLOCK(sbi, segno);
2667 	sum_entry = &sum->entries[0];
2668 
2669 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2670 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2671 
2672 		/* readahead node pages */
2673 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2674 
2675 		for (idx = addr; idx < addr + nrpages; idx++) {
2676 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2677 
2678 			if (IS_ERR(page))
2679 				return PTR_ERR(page);
2680 
2681 			rn = F2FS_NODE(page);
2682 			sum_entry->nid = rn->footer.nid;
2683 			sum_entry->version = 0;
2684 			sum_entry->ofs_in_node = 0;
2685 			sum_entry++;
2686 			f2fs_put_page(page, 1);
2687 		}
2688 
2689 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2690 							addr + nrpages);
2691 	}
2692 	return 0;
2693 }
2694 
2695 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2696 {
2697 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2698 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2699 	struct f2fs_journal *journal = curseg->journal;
2700 	int i;
2701 
2702 	down_write(&curseg->journal_rwsem);
2703 	for (i = 0; i < nats_in_cursum(journal); i++) {
2704 		struct nat_entry *ne;
2705 		struct f2fs_nat_entry raw_ne;
2706 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2707 
2708 		raw_ne = nat_in_journal(journal, i);
2709 
2710 		ne = __lookup_nat_cache(nm_i, nid);
2711 		if (!ne) {
2712 			ne = __alloc_nat_entry(nid, true);
2713 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2714 		}
2715 
2716 		/*
2717 		 * if a free nat in journal has not been used after last
2718 		 * checkpoint, we should remove it from available nids,
2719 		 * since later we will add it again.
2720 		 */
2721 		if (!get_nat_flag(ne, IS_DIRTY) &&
2722 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2723 			spin_lock(&nm_i->nid_list_lock);
2724 			nm_i->available_nids--;
2725 			spin_unlock(&nm_i->nid_list_lock);
2726 		}
2727 
2728 		__set_nat_cache_dirty(nm_i, ne);
2729 	}
2730 	update_nats_in_cursum(journal, -i);
2731 	up_write(&curseg->journal_rwsem);
2732 }
2733 
2734 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2735 						struct list_head *head, int max)
2736 {
2737 	struct nat_entry_set *cur;
2738 
2739 	if (nes->entry_cnt >= max)
2740 		goto add_out;
2741 
2742 	list_for_each_entry(cur, head, set_list) {
2743 		if (cur->entry_cnt >= nes->entry_cnt) {
2744 			list_add(&nes->set_list, cur->set_list.prev);
2745 			return;
2746 		}
2747 	}
2748 add_out:
2749 	list_add_tail(&nes->set_list, head);
2750 }
2751 
2752 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2753 						struct page *page)
2754 {
2755 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2756 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2757 	struct f2fs_nat_block *nat_blk = page_address(page);
2758 	int valid = 0;
2759 	int i = 0;
2760 
2761 	if (!enabled_nat_bits(sbi, NULL))
2762 		return;
2763 
2764 	if (nat_index == 0) {
2765 		valid = 1;
2766 		i = 1;
2767 	}
2768 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2769 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2770 			valid++;
2771 	}
2772 	if (valid == 0) {
2773 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2774 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2775 		return;
2776 	}
2777 
2778 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2779 	if (valid == NAT_ENTRY_PER_BLOCK)
2780 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2781 	else
2782 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2783 }
2784 
2785 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2786 		struct nat_entry_set *set, struct cp_control *cpc)
2787 {
2788 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2789 	struct f2fs_journal *journal = curseg->journal;
2790 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2791 	bool to_journal = true;
2792 	struct f2fs_nat_block *nat_blk;
2793 	struct nat_entry *ne, *cur;
2794 	struct page *page = NULL;
2795 
2796 	/*
2797 	 * there are two steps to flush nat entries:
2798 	 * #1, flush nat entries to journal in current hot data summary block.
2799 	 * #2, flush nat entries to nat page.
2800 	 */
2801 	if (enabled_nat_bits(sbi, cpc) ||
2802 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2803 		to_journal = false;
2804 
2805 	if (to_journal) {
2806 		down_write(&curseg->journal_rwsem);
2807 	} else {
2808 		page = get_next_nat_page(sbi, start_nid);
2809 		if (IS_ERR(page))
2810 			return PTR_ERR(page);
2811 
2812 		nat_blk = page_address(page);
2813 		f2fs_bug_on(sbi, !nat_blk);
2814 	}
2815 
2816 	/* flush dirty nats in nat entry set */
2817 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2818 		struct f2fs_nat_entry *raw_ne;
2819 		nid_t nid = nat_get_nid(ne);
2820 		int offset;
2821 
2822 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2823 
2824 		if (to_journal) {
2825 			offset = f2fs_lookup_journal_in_cursum(journal,
2826 							NAT_JOURNAL, nid, 1);
2827 			f2fs_bug_on(sbi, offset < 0);
2828 			raw_ne = &nat_in_journal(journal, offset);
2829 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2830 		} else {
2831 			raw_ne = &nat_blk->entries[nid - start_nid];
2832 		}
2833 		raw_nat_from_node_info(raw_ne, &ne->ni);
2834 		nat_reset_flag(ne);
2835 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2836 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2837 			add_free_nid(sbi, nid, false, true);
2838 		} else {
2839 			spin_lock(&NM_I(sbi)->nid_list_lock);
2840 			update_free_nid_bitmap(sbi, nid, false, false);
2841 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2842 		}
2843 	}
2844 
2845 	if (to_journal) {
2846 		up_write(&curseg->journal_rwsem);
2847 	} else {
2848 		__update_nat_bits(sbi, start_nid, page);
2849 		f2fs_put_page(page, 1);
2850 	}
2851 
2852 	/* Allow dirty nats by node block allocation in write_begin */
2853 	if (!set->entry_cnt) {
2854 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2855 		kmem_cache_free(nat_entry_set_slab, set);
2856 	}
2857 	return 0;
2858 }
2859 
2860 /*
2861  * This function is called during the checkpointing process.
2862  */
2863 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2864 {
2865 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2866 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2867 	struct f2fs_journal *journal = curseg->journal;
2868 	struct nat_entry_set *setvec[SETVEC_SIZE];
2869 	struct nat_entry_set *set, *tmp;
2870 	unsigned int found;
2871 	nid_t set_idx = 0;
2872 	LIST_HEAD(sets);
2873 	int err = 0;
2874 
2875 	/* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2876 	if (enabled_nat_bits(sbi, cpc)) {
2877 		down_write(&nm_i->nat_tree_lock);
2878 		remove_nats_in_journal(sbi);
2879 		up_write(&nm_i->nat_tree_lock);
2880 	}
2881 
2882 	if (!nm_i->dirty_nat_cnt)
2883 		return 0;
2884 
2885 	down_write(&nm_i->nat_tree_lock);
2886 
2887 	/*
2888 	 * if there are no enough space in journal to store dirty nat
2889 	 * entries, remove all entries from journal and merge them
2890 	 * into nat entry set.
2891 	 */
2892 	if (enabled_nat_bits(sbi, cpc) ||
2893 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2894 		remove_nats_in_journal(sbi);
2895 
2896 	while ((found = __gang_lookup_nat_set(nm_i,
2897 					set_idx, SETVEC_SIZE, setvec))) {
2898 		unsigned idx;
2899 		set_idx = setvec[found - 1]->set + 1;
2900 		for (idx = 0; idx < found; idx++)
2901 			__adjust_nat_entry_set(setvec[idx], &sets,
2902 						MAX_NAT_JENTRIES(journal));
2903 	}
2904 
2905 	/* flush dirty nats in nat entry set */
2906 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
2907 		err = __flush_nat_entry_set(sbi, set, cpc);
2908 		if (err)
2909 			break;
2910 	}
2911 
2912 	up_write(&nm_i->nat_tree_lock);
2913 	/* Allow dirty nats by node block allocation in write_begin */
2914 
2915 	return err;
2916 }
2917 
2918 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2919 {
2920 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2921 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2922 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2923 	unsigned int i;
2924 	__u64 cp_ver = cur_cp_version(ckpt);
2925 	block_t nat_bits_addr;
2926 
2927 	if (!enabled_nat_bits(sbi, NULL))
2928 		return 0;
2929 
2930 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2931 	nm_i->nat_bits = f2fs_kzalloc(sbi,
2932 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2933 	if (!nm_i->nat_bits)
2934 		return -ENOMEM;
2935 
2936 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2937 						nm_i->nat_bits_blocks;
2938 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2939 		struct page *page;
2940 
2941 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2942 		if (IS_ERR(page))
2943 			return PTR_ERR(page);
2944 
2945 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2946 					page_address(page), F2FS_BLKSIZE);
2947 		f2fs_put_page(page, 1);
2948 	}
2949 
2950 	cp_ver |= (cur_cp_crc(ckpt) << 32);
2951 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2952 		disable_nat_bits(sbi, true);
2953 		return 0;
2954 	}
2955 
2956 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2957 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2958 
2959 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
2960 	return 0;
2961 }
2962 
2963 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2964 {
2965 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2966 	unsigned int i = 0;
2967 	nid_t nid, last_nid;
2968 
2969 	if (!enabled_nat_bits(sbi, NULL))
2970 		return;
2971 
2972 	for (i = 0; i < nm_i->nat_blocks; i++) {
2973 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2974 		if (i >= nm_i->nat_blocks)
2975 			break;
2976 
2977 		__set_bit_le(i, nm_i->nat_block_bitmap);
2978 
2979 		nid = i * NAT_ENTRY_PER_BLOCK;
2980 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2981 
2982 		spin_lock(&NM_I(sbi)->nid_list_lock);
2983 		for (; nid < last_nid; nid++)
2984 			update_free_nid_bitmap(sbi, nid, true, true);
2985 		spin_unlock(&NM_I(sbi)->nid_list_lock);
2986 	}
2987 
2988 	for (i = 0; i < nm_i->nat_blocks; i++) {
2989 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2990 		if (i >= nm_i->nat_blocks)
2991 			break;
2992 
2993 		__set_bit_le(i, nm_i->nat_block_bitmap);
2994 	}
2995 }
2996 
2997 static int init_node_manager(struct f2fs_sb_info *sbi)
2998 {
2999 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3000 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3001 	unsigned char *version_bitmap;
3002 	unsigned int nat_segs;
3003 	int err;
3004 
3005 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3006 
3007 	/* segment_count_nat includes pair segment so divide to 2. */
3008 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3009 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3010 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3011 
3012 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3013 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3014 						F2FS_RESERVED_NODE_NUM;
3015 	nm_i->nid_cnt[FREE_NID] = 0;
3016 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3017 	nm_i->nat_cnt = 0;
3018 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3019 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3020 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3021 
3022 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3023 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3024 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3025 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3026 	INIT_LIST_HEAD(&nm_i->nat_entries);
3027 	spin_lock_init(&nm_i->nat_list_lock);
3028 
3029 	mutex_init(&nm_i->build_lock);
3030 	spin_lock_init(&nm_i->nid_list_lock);
3031 	init_rwsem(&nm_i->nat_tree_lock);
3032 
3033 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3034 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3035 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3036 	if (!version_bitmap)
3037 		return -EFAULT;
3038 
3039 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3040 					GFP_KERNEL);
3041 	if (!nm_i->nat_bitmap)
3042 		return -ENOMEM;
3043 
3044 	err = __get_nat_bitmaps(sbi);
3045 	if (err)
3046 		return err;
3047 
3048 #ifdef CONFIG_F2FS_CHECK_FS
3049 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3050 					GFP_KERNEL);
3051 	if (!nm_i->nat_bitmap_mir)
3052 		return -ENOMEM;
3053 #endif
3054 
3055 	return 0;
3056 }
3057 
3058 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3059 {
3060 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3061 	int i;
3062 
3063 	nm_i->free_nid_bitmap =
3064 		f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3065 					     nm_i->nat_blocks),
3066 			     GFP_KERNEL);
3067 	if (!nm_i->free_nid_bitmap)
3068 		return -ENOMEM;
3069 
3070 	for (i = 0; i < nm_i->nat_blocks; i++) {
3071 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3072 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3073 		if (!nm_i->free_nid_bitmap[i])
3074 			return -ENOMEM;
3075 	}
3076 
3077 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3078 								GFP_KERNEL);
3079 	if (!nm_i->nat_block_bitmap)
3080 		return -ENOMEM;
3081 
3082 	nm_i->free_nid_count =
3083 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3084 					      nm_i->nat_blocks),
3085 			      GFP_KERNEL);
3086 	if (!nm_i->free_nid_count)
3087 		return -ENOMEM;
3088 	return 0;
3089 }
3090 
3091 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3092 {
3093 	int err;
3094 
3095 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3096 							GFP_KERNEL);
3097 	if (!sbi->nm_info)
3098 		return -ENOMEM;
3099 
3100 	err = init_node_manager(sbi);
3101 	if (err)
3102 		return err;
3103 
3104 	err = init_free_nid_cache(sbi);
3105 	if (err)
3106 		return err;
3107 
3108 	/* load free nid status from nat_bits table */
3109 	load_free_nid_bitmap(sbi);
3110 
3111 	return f2fs_build_free_nids(sbi, true, true);
3112 }
3113 
3114 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3115 {
3116 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3117 	struct free_nid *i, *next_i;
3118 	struct nat_entry *natvec[NATVEC_SIZE];
3119 	struct nat_entry_set *setvec[SETVEC_SIZE];
3120 	nid_t nid = 0;
3121 	unsigned int found;
3122 
3123 	if (!nm_i)
3124 		return;
3125 
3126 	/* destroy free nid list */
3127 	spin_lock(&nm_i->nid_list_lock);
3128 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3129 		__remove_free_nid(sbi, i, FREE_NID);
3130 		spin_unlock(&nm_i->nid_list_lock);
3131 		kmem_cache_free(free_nid_slab, i);
3132 		spin_lock(&nm_i->nid_list_lock);
3133 	}
3134 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3135 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3136 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3137 	spin_unlock(&nm_i->nid_list_lock);
3138 
3139 	/* destroy nat cache */
3140 	down_write(&nm_i->nat_tree_lock);
3141 	while ((found = __gang_lookup_nat_cache(nm_i,
3142 					nid, NATVEC_SIZE, natvec))) {
3143 		unsigned idx;
3144 
3145 		nid = nat_get_nid(natvec[found - 1]) + 1;
3146 		for (idx = 0; idx < found; idx++) {
3147 			spin_lock(&nm_i->nat_list_lock);
3148 			list_del(&natvec[idx]->list);
3149 			spin_unlock(&nm_i->nat_list_lock);
3150 
3151 			__del_from_nat_cache(nm_i, natvec[idx]);
3152 		}
3153 	}
3154 	f2fs_bug_on(sbi, nm_i->nat_cnt);
3155 
3156 	/* destroy nat set cache */
3157 	nid = 0;
3158 	while ((found = __gang_lookup_nat_set(nm_i,
3159 					nid, SETVEC_SIZE, setvec))) {
3160 		unsigned idx;
3161 
3162 		nid = setvec[found - 1]->set + 1;
3163 		for (idx = 0; idx < found; idx++) {
3164 			/* entry_cnt is not zero, when cp_error was occurred */
3165 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3166 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3167 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3168 		}
3169 	}
3170 	up_write(&nm_i->nat_tree_lock);
3171 
3172 	kvfree(nm_i->nat_block_bitmap);
3173 	if (nm_i->free_nid_bitmap) {
3174 		int i;
3175 
3176 		for (i = 0; i < nm_i->nat_blocks; i++)
3177 			kvfree(nm_i->free_nid_bitmap[i]);
3178 		kvfree(nm_i->free_nid_bitmap);
3179 	}
3180 	kvfree(nm_i->free_nid_count);
3181 
3182 	kvfree(nm_i->nat_bitmap);
3183 	kvfree(nm_i->nat_bits);
3184 #ifdef CONFIG_F2FS_CHECK_FS
3185 	kvfree(nm_i->nat_bitmap_mir);
3186 #endif
3187 	sbi->nm_info = NULL;
3188 	kvfree(nm_i);
3189 }
3190 
3191 int __init f2fs_create_node_manager_caches(void)
3192 {
3193 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3194 			sizeof(struct nat_entry));
3195 	if (!nat_entry_slab)
3196 		goto fail;
3197 
3198 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3199 			sizeof(struct free_nid));
3200 	if (!free_nid_slab)
3201 		goto destroy_nat_entry;
3202 
3203 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3204 			sizeof(struct nat_entry_set));
3205 	if (!nat_entry_set_slab)
3206 		goto destroy_free_nid;
3207 
3208 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3209 			sizeof(struct fsync_node_entry));
3210 	if (!fsync_node_entry_slab)
3211 		goto destroy_nat_entry_set;
3212 	return 0;
3213 
3214 destroy_nat_entry_set:
3215 	kmem_cache_destroy(nat_entry_set_slab);
3216 destroy_free_nid:
3217 	kmem_cache_destroy(free_nid_slab);
3218 destroy_nat_entry:
3219 	kmem_cache_destroy(nat_entry_slab);
3220 fail:
3221 	return -ENOMEM;
3222 }
3223 
3224 void f2fs_destroy_node_manager_caches(void)
3225 {
3226 	kmem_cache_destroy(fsync_node_entry_slab);
3227 	kmem_cache_destroy(nat_entry_set_slab);
3228 	kmem_cache_destroy(free_nid_slab);
3229 	kmem_cache_destroy(nat_entry_slab);
3230 }
3231