1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/sched/mm.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "iostat.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); 40 return -EFSCORRUPTED; 41 } 42 return 0; 43 } 44 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 46 { 47 struct f2fs_nm_info *nm_i = NM_I(sbi); 48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 49 struct sysinfo val; 50 unsigned long avail_ram; 51 unsigned long mem_size = 0; 52 bool res = false; 53 54 if (!nm_i) 55 return true; 56 57 si_meminfo(&val); 58 59 /* only uses low memory */ 60 avail_ram = val.totalram - val.totalhigh; 61 62 /* 63 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 64 */ 65 if (type == FREE_NIDS) { 66 mem_size = (nm_i->nid_cnt[FREE_NID] * 67 sizeof(struct free_nid)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 69 } else if (type == NAT_ENTRIES) { 70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 71 sizeof(struct nat_entry)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 73 if (excess_cached_nats(sbi)) 74 res = false; 75 } else if (type == DIRTY_DENTS) { 76 if (sbi->sb->s_bdi->wb.dirty_exceeded) 77 return false; 78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 80 } else if (type == INO_ENTRIES) { 81 int i; 82 83 for (i = 0; i < MAX_INO_ENTRY; i++) 84 mem_size += sbi->im[i].ino_num * 85 sizeof(struct ino_entry); 86 mem_size >>= PAGE_SHIFT; 87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 88 } else if (type == EXTENT_CACHE) { 89 mem_size = (atomic_read(&sbi->total_ext_tree) * 90 sizeof(struct extent_tree) + 91 atomic_read(&sbi->total_ext_node) * 92 sizeof(struct extent_node)) >> PAGE_SHIFT; 93 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 94 } else if (type == DISCARD_CACHE) { 95 mem_size = (atomic_read(&dcc->discard_cmd_cnt) * 96 sizeof(struct discard_cmd)) >> PAGE_SHIFT; 97 res = mem_size < (avail_ram * nm_i->ram_thresh / 100); 98 } else if (type == COMPRESS_PAGE) { 99 #ifdef CONFIG_F2FS_FS_COMPRESSION 100 unsigned long free_ram = val.freeram; 101 102 /* 103 * free memory is lower than watermark or cached page count 104 * exceed threshold, deny caching compress page. 105 */ 106 res = (free_ram > avail_ram * sbi->compress_watermark / 100) && 107 (COMPRESS_MAPPING(sbi)->nrpages < 108 free_ram * sbi->compress_percent / 100); 109 #else 110 res = false; 111 #endif 112 } else { 113 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 114 return true; 115 } 116 return res; 117 } 118 119 static void clear_node_page_dirty(struct page *page) 120 { 121 if (PageDirty(page)) { 122 f2fs_clear_page_cache_dirty_tag(page); 123 clear_page_dirty_for_io(page); 124 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 125 } 126 ClearPageUptodate(page); 127 } 128 129 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 130 { 131 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 132 } 133 134 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 135 { 136 struct page *src_page; 137 struct page *dst_page; 138 pgoff_t dst_off; 139 void *src_addr; 140 void *dst_addr; 141 struct f2fs_nm_info *nm_i = NM_I(sbi); 142 143 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 144 145 /* get current nat block page with lock */ 146 src_page = get_current_nat_page(sbi, nid); 147 if (IS_ERR(src_page)) 148 return src_page; 149 dst_page = f2fs_grab_meta_page(sbi, dst_off); 150 f2fs_bug_on(sbi, PageDirty(src_page)); 151 152 src_addr = page_address(src_page); 153 dst_addr = page_address(dst_page); 154 memcpy(dst_addr, src_addr, PAGE_SIZE); 155 set_page_dirty(dst_page); 156 f2fs_put_page(src_page, 1); 157 158 set_to_next_nat(nm_i, nid); 159 160 return dst_page; 161 } 162 163 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, 164 nid_t nid, bool no_fail) 165 { 166 struct nat_entry *new; 167 168 new = f2fs_kmem_cache_alloc(nat_entry_slab, 169 GFP_F2FS_ZERO, no_fail, sbi); 170 if (new) { 171 nat_set_nid(new, nid); 172 nat_reset_flag(new); 173 } 174 return new; 175 } 176 177 static void __free_nat_entry(struct nat_entry *e) 178 { 179 kmem_cache_free(nat_entry_slab, e); 180 } 181 182 /* must be locked by nat_tree_lock */ 183 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 184 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 185 { 186 if (no_fail) 187 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 188 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 189 return NULL; 190 191 if (raw_ne) 192 node_info_from_raw_nat(&ne->ni, raw_ne); 193 194 spin_lock(&nm_i->nat_list_lock); 195 list_add_tail(&ne->list, &nm_i->nat_entries); 196 spin_unlock(&nm_i->nat_list_lock); 197 198 nm_i->nat_cnt[TOTAL_NAT]++; 199 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 200 return ne; 201 } 202 203 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 204 { 205 struct nat_entry *ne; 206 207 ne = radix_tree_lookup(&nm_i->nat_root, n); 208 209 /* for recent accessed nat entry, move it to tail of lru list */ 210 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 211 spin_lock(&nm_i->nat_list_lock); 212 if (!list_empty(&ne->list)) 213 list_move_tail(&ne->list, &nm_i->nat_entries); 214 spin_unlock(&nm_i->nat_list_lock); 215 } 216 217 return ne; 218 } 219 220 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 221 nid_t start, unsigned int nr, struct nat_entry **ep) 222 { 223 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 224 } 225 226 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 227 { 228 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 229 nm_i->nat_cnt[TOTAL_NAT]--; 230 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 231 __free_nat_entry(e); 232 } 233 234 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 235 struct nat_entry *ne) 236 { 237 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 238 struct nat_entry_set *head; 239 240 head = radix_tree_lookup(&nm_i->nat_set_root, set); 241 if (!head) { 242 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, 243 GFP_NOFS, true, NULL); 244 245 INIT_LIST_HEAD(&head->entry_list); 246 INIT_LIST_HEAD(&head->set_list); 247 head->set = set; 248 head->entry_cnt = 0; 249 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 250 } 251 return head; 252 } 253 254 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 255 struct nat_entry *ne) 256 { 257 struct nat_entry_set *head; 258 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 259 260 if (!new_ne) 261 head = __grab_nat_entry_set(nm_i, ne); 262 263 /* 264 * update entry_cnt in below condition: 265 * 1. update NEW_ADDR to valid block address; 266 * 2. update old block address to new one; 267 */ 268 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 269 !get_nat_flag(ne, IS_DIRTY))) 270 head->entry_cnt++; 271 272 set_nat_flag(ne, IS_PREALLOC, new_ne); 273 274 if (get_nat_flag(ne, IS_DIRTY)) 275 goto refresh_list; 276 277 nm_i->nat_cnt[DIRTY_NAT]++; 278 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 279 set_nat_flag(ne, IS_DIRTY, true); 280 refresh_list: 281 spin_lock(&nm_i->nat_list_lock); 282 if (new_ne) 283 list_del_init(&ne->list); 284 else 285 list_move_tail(&ne->list, &head->entry_list); 286 spin_unlock(&nm_i->nat_list_lock); 287 } 288 289 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 290 struct nat_entry_set *set, struct nat_entry *ne) 291 { 292 spin_lock(&nm_i->nat_list_lock); 293 list_move_tail(&ne->list, &nm_i->nat_entries); 294 spin_unlock(&nm_i->nat_list_lock); 295 296 set_nat_flag(ne, IS_DIRTY, false); 297 set->entry_cnt--; 298 nm_i->nat_cnt[DIRTY_NAT]--; 299 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 300 } 301 302 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 303 nid_t start, unsigned int nr, struct nat_entry_set **ep) 304 { 305 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 306 start, nr); 307 } 308 309 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 310 { 311 return NODE_MAPPING(sbi) == page->mapping && 312 IS_DNODE(page) && is_cold_node(page); 313 } 314 315 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 316 { 317 spin_lock_init(&sbi->fsync_node_lock); 318 INIT_LIST_HEAD(&sbi->fsync_node_list); 319 sbi->fsync_seg_id = 0; 320 sbi->fsync_node_num = 0; 321 } 322 323 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 324 struct page *page) 325 { 326 struct fsync_node_entry *fn; 327 unsigned long flags; 328 unsigned int seq_id; 329 330 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, 331 GFP_NOFS, true, NULL); 332 333 get_page(page); 334 fn->page = page; 335 INIT_LIST_HEAD(&fn->list); 336 337 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 338 list_add_tail(&fn->list, &sbi->fsync_node_list); 339 fn->seq_id = sbi->fsync_seg_id++; 340 seq_id = fn->seq_id; 341 sbi->fsync_node_num++; 342 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 343 344 return seq_id; 345 } 346 347 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 348 { 349 struct fsync_node_entry *fn; 350 unsigned long flags; 351 352 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 353 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 354 if (fn->page == page) { 355 list_del(&fn->list); 356 sbi->fsync_node_num--; 357 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 358 kmem_cache_free(fsync_node_entry_slab, fn); 359 put_page(page); 360 return; 361 } 362 } 363 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 364 f2fs_bug_on(sbi, 1); 365 } 366 367 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 368 { 369 unsigned long flags; 370 371 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 372 sbi->fsync_seg_id = 0; 373 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 374 } 375 376 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 377 { 378 struct f2fs_nm_info *nm_i = NM_I(sbi); 379 struct nat_entry *e; 380 bool need = false; 381 382 f2fs_down_read(&nm_i->nat_tree_lock); 383 e = __lookup_nat_cache(nm_i, nid); 384 if (e) { 385 if (!get_nat_flag(e, IS_CHECKPOINTED) && 386 !get_nat_flag(e, HAS_FSYNCED_INODE)) 387 need = true; 388 } 389 f2fs_up_read(&nm_i->nat_tree_lock); 390 return need; 391 } 392 393 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 394 { 395 struct f2fs_nm_info *nm_i = NM_I(sbi); 396 struct nat_entry *e; 397 bool is_cp = true; 398 399 f2fs_down_read(&nm_i->nat_tree_lock); 400 e = __lookup_nat_cache(nm_i, nid); 401 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 402 is_cp = false; 403 f2fs_up_read(&nm_i->nat_tree_lock); 404 return is_cp; 405 } 406 407 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 408 { 409 struct f2fs_nm_info *nm_i = NM_I(sbi); 410 struct nat_entry *e; 411 bool need_update = true; 412 413 f2fs_down_read(&nm_i->nat_tree_lock); 414 e = __lookup_nat_cache(nm_i, ino); 415 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 416 (get_nat_flag(e, IS_CHECKPOINTED) || 417 get_nat_flag(e, HAS_FSYNCED_INODE))) 418 need_update = false; 419 f2fs_up_read(&nm_i->nat_tree_lock); 420 return need_update; 421 } 422 423 /* must be locked by nat_tree_lock */ 424 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 425 struct f2fs_nat_entry *ne) 426 { 427 struct f2fs_nm_info *nm_i = NM_I(sbi); 428 struct nat_entry *new, *e; 429 430 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ 431 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) 432 return; 433 434 new = __alloc_nat_entry(sbi, nid, false); 435 if (!new) 436 return; 437 438 f2fs_down_write(&nm_i->nat_tree_lock); 439 e = __lookup_nat_cache(nm_i, nid); 440 if (!e) 441 e = __init_nat_entry(nm_i, new, ne, false); 442 else 443 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 444 nat_get_blkaddr(e) != 445 le32_to_cpu(ne->block_addr) || 446 nat_get_version(e) != ne->version); 447 f2fs_up_write(&nm_i->nat_tree_lock); 448 if (e != new) 449 __free_nat_entry(new); 450 } 451 452 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 453 block_t new_blkaddr, bool fsync_done) 454 { 455 struct f2fs_nm_info *nm_i = NM_I(sbi); 456 struct nat_entry *e; 457 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); 458 459 f2fs_down_write(&nm_i->nat_tree_lock); 460 e = __lookup_nat_cache(nm_i, ni->nid); 461 if (!e) { 462 e = __init_nat_entry(nm_i, new, NULL, true); 463 copy_node_info(&e->ni, ni); 464 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 465 } else if (new_blkaddr == NEW_ADDR) { 466 /* 467 * when nid is reallocated, 468 * previous nat entry can be remained in nat cache. 469 * So, reinitialize it with new information. 470 */ 471 copy_node_info(&e->ni, ni); 472 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 473 } 474 /* let's free early to reduce memory consumption */ 475 if (e != new) 476 __free_nat_entry(new); 477 478 /* sanity check */ 479 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 480 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 481 new_blkaddr == NULL_ADDR); 482 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 483 new_blkaddr == NEW_ADDR); 484 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 485 new_blkaddr == NEW_ADDR); 486 487 /* increment version no as node is removed */ 488 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 489 unsigned char version = nat_get_version(e); 490 491 nat_set_version(e, inc_node_version(version)); 492 } 493 494 /* change address */ 495 nat_set_blkaddr(e, new_blkaddr); 496 if (!__is_valid_data_blkaddr(new_blkaddr)) 497 set_nat_flag(e, IS_CHECKPOINTED, false); 498 __set_nat_cache_dirty(nm_i, e); 499 500 /* update fsync_mark if its inode nat entry is still alive */ 501 if (ni->nid != ni->ino) 502 e = __lookup_nat_cache(nm_i, ni->ino); 503 if (e) { 504 if (fsync_done && ni->nid == ni->ino) 505 set_nat_flag(e, HAS_FSYNCED_INODE, true); 506 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 507 } 508 f2fs_up_write(&nm_i->nat_tree_lock); 509 } 510 511 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 512 { 513 struct f2fs_nm_info *nm_i = NM_I(sbi); 514 int nr = nr_shrink; 515 516 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) 517 return 0; 518 519 spin_lock(&nm_i->nat_list_lock); 520 while (nr_shrink) { 521 struct nat_entry *ne; 522 523 if (list_empty(&nm_i->nat_entries)) 524 break; 525 526 ne = list_first_entry(&nm_i->nat_entries, 527 struct nat_entry, list); 528 list_del(&ne->list); 529 spin_unlock(&nm_i->nat_list_lock); 530 531 __del_from_nat_cache(nm_i, ne); 532 nr_shrink--; 533 534 spin_lock(&nm_i->nat_list_lock); 535 } 536 spin_unlock(&nm_i->nat_list_lock); 537 538 f2fs_up_write(&nm_i->nat_tree_lock); 539 return nr - nr_shrink; 540 } 541 542 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 543 struct node_info *ni, bool checkpoint_context) 544 { 545 struct f2fs_nm_info *nm_i = NM_I(sbi); 546 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 547 struct f2fs_journal *journal = curseg->journal; 548 nid_t start_nid = START_NID(nid); 549 struct f2fs_nat_block *nat_blk; 550 struct page *page = NULL; 551 struct f2fs_nat_entry ne; 552 struct nat_entry *e; 553 pgoff_t index; 554 block_t blkaddr; 555 int i; 556 557 ni->nid = nid; 558 retry: 559 /* Check nat cache */ 560 f2fs_down_read(&nm_i->nat_tree_lock); 561 e = __lookup_nat_cache(nm_i, nid); 562 if (e) { 563 ni->ino = nat_get_ino(e); 564 ni->blk_addr = nat_get_blkaddr(e); 565 ni->version = nat_get_version(e); 566 f2fs_up_read(&nm_i->nat_tree_lock); 567 return 0; 568 } 569 570 /* 571 * Check current segment summary by trying to grab journal_rwsem first. 572 * This sem is on the critical path on the checkpoint requiring the above 573 * nat_tree_lock. Therefore, we should retry, if we failed to grab here 574 * while not bothering checkpoint. 575 */ 576 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { 577 down_read(&curseg->journal_rwsem); 578 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || 579 !down_read_trylock(&curseg->journal_rwsem)) { 580 f2fs_up_read(&nm_i->nat_tree_lock); 581 goto retry; 582 } 583 584 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 585 if (i >= 0) { 586 ne = nat_in_journal(journal, i); 587 node_info_from_raw_nat(ni, &ne); 588 } 589 up_read(&curseg->journal_rwsem); 590 if (i >= 0) { 591 f2fs_up_read(&nm_i->nat_tree_lock); 592 goto cache; 593 } 594 595 /* Fill node_info from nat page */ 596 index = current_nat_addr(sbi, nid); 597 f2fs_up_read(&nm_i->nat_tree_lock); 598 599 page = f2fs_get_meta_page(sbi, index); 600 if (IS_ERR(page)) 601 return PTR_ERR(page); 602 603 nat_blk = (struct f2fs_nat_block *)page_address(page); 604 ne = nat_blk->entries[nid - start_nid]; 605 node_info_from_raw_nat(ni, &ne); 606 f2fs_put_page(page, 1); 607 cache: 608 blkaddr = le32_to_cpu(ne.block_addr); 609 if (__is_valid_data_blkaddr(blkaddr) && 610 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 611 return -EFAULT; 612 613 /* cache nat entry */ 614 cache_nat_entry(sbi, nid, &ne); 615 return 0; 616 } 617 618 /* 619 * readahead MAX_RA_NODE number of node pages. 620 */ 621 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 622 { 623 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 624 struct blk_plug plug; 625 int i, end; 626 nid_t nid; 627 628 blk_start_plug(&plug); 629 630 /* Then, try readahead for siblings of the desired node */ 631 end = start + n; 632 end = min(end, NIDS_PER_BLOCK); 633 for (i = start; i < end; i++) { 634 nid = get_nid(parent, i, false); 635 f2fs_ra_node_page(sbi, nid); 636 } 637 638 blk_finish_plug(&plug); 639 } 640 641 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 642 { 643 const long direct_index = ADDRS_PER_INODE(dn->inode); 644 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 645 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 646 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 647 int cur_level = dn->cur_level; 648 int max_level = dn->max_level; 649 pgoff_t base = 0; 650 651 if (!dn->max_level) 652 return pgofs + 1; 653 654 while (max_level-- > cur_level) 655 skipped_unit *= NIDS_PER_BLOCK; 656 657 switch (dn->max_level) { 658 case 3: 659 base += 2 * indirect_blks; 660 fallthrough; 661 case 2: 662 base += 2 * direct_blks; 663 fallthrough; 664 case 1: 665 base += direct_index; 666 break; 667 default: 668 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 669 } 670 671 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 672 } 673 674 /* 675 * The maximum depth is four. 676 * Offset[0] will have raw inode offset. 677 */ 678 static int get_node_path(struct inode *inode, long block, 679 int offset[4], unsigned int noffset[4]) 680 { 681 const long direct_index = ADDRS_PER_INODE(inode); 682 const long direct_blks = ADDRS_PER_BLOCK(inode); 683 const long dptrs_per_blk = NIDS_PER_BLOCK; 684 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 685 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 686 int n = 0; 687 int level = 0; 688 689 noffset[0] = 0; 690 691 if (block < direct_index) { 692 offset[n] = block; 693 goto got; 694 } 695 block -= direct_index; 696 if (block < direct_blks) { 697 offset[n++] = NODE_DIR1_BLOCK; 698 noffset[n] = 1; 699 offset[n] = block; 700 level = 1; 701 goto got; 702 } 703 block -= direct_blks; 704 if (block < direct_blks) { 705 offset[n++] = NODE_DIR2_BLOCK; 706 noffset[n] = 2; 707 offset[n] = block; 708 level = 1; 709 goto got; 710 } 711 block -= direct_blks; 712 if (block < indirect_blks) { 713 offset[n++] = NODE_IND1_BLOCK; 714 noffset[n] = 3; 715 offset[n++] = block / direct_blks; 716 noffset[n] = 4 + offset[n - 1]; 717 offset[n] = block % direct_blks; 718 level = 2; 719 goto got; 720 } 721 block -= indirect_blks; 722 if (block < indirect_blks) { 723 offset[n++] = NODE_IND2_BLOCK; 724 noffset[n] = 4 + dptrs_per_blk; 725 offset[n++] = block / direct_blks; 726 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 727 offset[n] = block % direct_blks; 728 level = 2; 729 goto got; 730 } 731 block -= indirect_blks; 732 if (block < dindirect_blks) { 733 offset[n++] = NODE_DIND_BLOCK; 734 noffset[n] = 5 + (dptrs_per_blk * 2); 735 offset[n++] = block / indirect_blks; 736 noffset[n] = 6 + (dptrs_per_blk * 2) + 737 offset[n - 1] * (dptrs_per_blk + 1); 738 offset[n++] = (block / direct_blks) % dptrs_per_blk; 739 noffset[n] = 7 + (dptrs_per_blk * 2) + 740 offset[n - 2] * (dptrs_per_blk + 1) + 741 offset[n - 1]; 742 offset[n] = block % direct_blks; 743 level = 3; 744 goto got; 745 } else { 746 return -E2BIG; 747 } 748 got: 749 return level; 750 } 751 752 /* 753 * Caller should call f2fs_put_dnode(dn). 754 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 755 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 756 */ 757 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 758 { 759 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 760 struct page *npage[4]; 761 struct page *parent = NULL; 762 int offset[4]; 763 unsigned int noffset[4]; 764 nid_t nids[4]; 765 int level, i = 0; 766 int err = 0; 767 768 level = get_node_path(dn->inode, index, offset, noffset); 769 if (level < 0) 770 return level; 771 772 nids[0] = dn->inode->i_ino; 773 npage[0] = dn->inode_page; 774 775 if (!npage[0]) { 776 npage[0] = f2fs_get_node_page(sbi, nids[0]); 777 if (IS_ERR(npage[0])) 778 return PTR_ERR(npage[0]); 779 } 780 781 /* if inline_data is set, should not report any block indices */ 782 if (f2fs_has_inline_data(dn->inode) && index) { 783 err = -ENOENT; 784 f2fs_put_page(npage[0], 1); 785 goto release_out; 786 } 787 788 parent = npage[0]; 789 if (level != 0) 790 nids[1] = get_nid(parent, offset[0], true); 791 dn->inode_page = npage[0]; 792 dn->inode_page_locked = true; 793 794 /* get indirect or direct nodes */ 795 for (i = 1; i <= level; i++) { 796 bool done = false; 797 798 if (!nids[i] && mode == ALLOC_NODE) { 799 /* alloc new node */ 800 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 801 err = -ENOSPC; 802 goto release_pages; 803 } 804 805 dn->nid = nids[i]; 806 npage[i] = f2fs_new_node_page(dn, noffset[i]); 807 if (IS_ERR(npage[i])) { 808 f2fs_alloc_nid_failed(sbi, nids[i]); 809 err = PTR_ERR(npage[i]); 810 goto release_pages; 811 } 812 813 set_nid(parent, offset[i - 1], nids[i], i == 1); 814 f2fs_alloc_nid_done(sbi, nids[i]); 815 done = true; 816 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 817 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 818 if (IS_ERR(npage[i])) { 819 err = PTR_ERR(npage[i]); 820 goto release_pages; 821 } 822 done = true; 823 } 824 if (i == 1) { 825 dn->inode_page_locked = false; 826 unlock_page(parent); 827 } else { 828 f2fs_put_page(parent, 1); 829 } 830 831 if (!done) { 832 npage[i] = f2fs_get_node_page(sbi, nids[i]); 833 if (IS_ERR(npage[i])) { 834 err = PTR_ERR(npage[i]); 835 f2fs_put_page(npage[0], 0); 836 goto release_out; 837 } 838 } 839 if (i < level) { 840 parent = npage[i]; 841 nids[i + 1] = get_nid(parent, offset[i], false); 842 } 843 } 844 dn->nid = nids[level]; 845 dn->ofs_in_node = offset[level]; 846 dn->node_page = npage[level]; 847 dn->data_blkaddr = f2fs_data_blkaddr(dn); 848 849 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && 850 f2fs_sb_has_readonly(sbi)) { 851 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn); 852 block_t blkaddr; 853 854 if (!c_len) 855 goto out; 856 857 blkaddr = f2fs_data_blkaddr(dn); 858 if (blkaddr == COMPRESS_ADDR) 859 blkaddr = data_blkaddr(dn->inode, dn->node_page, 860 dn->ofs_in_node + 1); 861 862 f2fs_update_extent_tree_range_compressed(dn->inode, 863 index, blkaddr, 864 F2FS_I(dn->inode)->i_cluster_size, 865 c_len); 866 } 867 out: 868 return 0; 869 870 release_pages: 871 f2fs_put_page(parent, 1); 872 if (i > 1) 873 f2fs_put_page(npage[0], 0); 874 release_out: 875 dn->inode_page = NULL; 876 dn->node_page = NULL; 877 if (err == -ENOENT) { 878 dn->cur_level = i; 879 dn->max_level = level; 880 dn->ofs_in_node = offset[level]; 881 } 882 return err; 883 } 884 885 static int truncate_node(struct dnode_of_data *dn) 886 { 887 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 888 struct node_info ni; 889 int err; 890 pgoff_t index; 891 892 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 893 if (err) 894 return err; 895 896 /* Deallocate node address */ 897 f2fs_invalidate_blocks(sbi, ni.blk_addr); 898 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 899 set_node_addr(sbi, &ni, NULL_ADDR, false); 900 901 if (dn->nid == dn->inode->i_ino) { 902 f2fs_remove_orphan_inode(sbi, dn->nid); 903 dec_valid_inode_count(sbi); 904 f2fs_inode_synced(dn->inode); 905 } 906 907 clear_node_page_dirty(dn->node_page); 908 set_sbi_flag(sbi, SBI_IS_DIRTY); 909 910 index = dn->node_page->index; 911 f2fs_put_page(dn->node_page, 1); 912 913 invalidate_mapping_pages(NODE_MAPPING(sbi), 914 index, index); 915 916 dn->node_page = NULL; 917 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 918 919 return 0; 920 } 921 922 static int truncate_dnode(struct dnode_of_data *dn) 923 { 924 struct page *page; 925 int err; 926 927 if (dn->nid == 0) 928 return 1; 929 930 /* get direct node */ 931 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 932 if (PTR_ERR(page) == -ENOENT) 933 return 1; 934 else if (IS_ERR(page)) 935 return PTR_ERR(page); 936 937 /* Make dnode_of_data for parameter */ 938 dn->node_page = page; 939 dn->ofs_in_node = 0; 940 f2fs_truncate_data_blocks(dn); 941 err = truncate_node(dn); 942 if (err) 943 return err; 944 945 return 1; 946 } 947 948 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 949 int ofs, int depth) 950 { 951 struct dnode_of_data rdn = *dn; 952 struct page *page; 953 struct f2fs_node *rn; 954 nid_t child_nid; 955 unsigned int child_nofs; 956 int freed = 0; 957 int i, ret; 958 959 if (dn->nid == 0) 960 return NIDS_PER_BLOCK + 1; 961 962 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 963 964 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 965 if (IS_ERR(page)) { 966 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 967 return PTR_ERR(page); 968 } 969 970 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 971 972 rn = F2FS_NODE(page); 973 if (depth < 3) { 974 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 975 child_nid = le32_to_cpu(rn->in.nid[i]); 976 if (child_nid == 0) 977 continue; 978 rdn.nid = child_nid; 979 ret = truncate_dnode(&rdn); 980 if (ret < 0) 981 goto out_err; 982 if (set_nid(page, i, 0, false)) 983 dn->node_changed = true; 984 } 985 } else { 986 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 987 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 988 child_nid = le32_to_cpu(rn->in.nid[i]); 989 if (child_nid == 0) { 990 child_nofs += NIDS_PER_BLOCK + 1; 991 continue; 992 } 993 rdn.nid = child_nid; 994 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 995 if (ret == (NIDS_PER_BLOCK + 1)) { 996 if (set_nid(page, i, 0, false)) 997 dn->node_changed = true; 998 child_nofs += ret; 999 } else if (ret < 0 && ret != -ENOENT) { 1000 goto out_err; 1001 } 1002 } 1003 freed = child_nofs; 1004 } 1005 1006 if (!ofs) { 1007 /* remove current indirect node */ 1008 dn->node_page = page; 1009 ret = truncate_node(dn); 1010 if (ret) 1011 goto out_err; 1012 freed++; 1013 } else { 1014 f2fs_put_page(page, 1); 1015 } 1016 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 1017 return freed; 1018 1019 out_err: 1020 f2fs_put_page(page, 1); 1021 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 1022 return ret; 1023 } 1024 1025 static int truncate_partial_nodes(struct dnode_of_data *dn, 1026 struct f2fs_inode *ri, int *offset, int depth) 1027 { 1028 struct page *pages[2]; 1029 nid_t nid[3]; 1030 nid_t child_nid; 1031 int err = 0; 1032 int i; 1033 int idx = depth - 2; 1034 1035 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1036 if (!nid[0]) 1037 return 0; 1038 1039 /* get indirect nodes in the path */ 1040 for (i = 0; i < idx + 1; i++) { 1041 /* reference count'll be increased */ 1042 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 1043 if (IS_ERR(pages[i])) { 1044 err = PTR_ERR(pages[i]); 1045 idx = i - 1; 1046 goto fail; 1047 } 1048 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 1049 } 1050 1051 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 1052 1053 /* free direct nodes linked to a partial indirect node */ 1054 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1055 child_nid = get_nid(pages[idx], i, false); 1056 if (!child_nid) 1057 continue; 1058 dn->nid = child_nid; 1059 err = truncate_dnode(dn); 1060 if (err < 0) 1061 goto fail; 1062 if (set_nid(pages[idx], i, 0, false)) 1063 dn->node_changed = true; 1064 } 1065 1066 if (offset[idx + 1] == 0) { 1067 dn->node_page = pages[idx]; 1068 dn->nid = nid[idx]; 1069 err = truncate_node(dn); 1070 if (err) 1071 goto fail; 1072 } else { 1073 f2fs_put_page(pages[idx], 1); 1074 } 1075 offset[idx]++; 1076 offset[idx + 1] = 0; 1077 idx--; 1078 fail: 1079 for (i = idx; i >= 0; i--) 1080 f2fs_put_page(pages[i], 1); 1081 1082 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1083 1084 return err; 1085 } 1086 1087 /* 1088 * All the block addresses of data and nodes should be nullified. 1089 */ 1090 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1091 { 1092 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1093 int err = 0, cont = 1; 1094 int level, offset[4], noffset[4]; 1095 unsigned int nofs = 0; 1096 struct f2fs_inode *ri; 1097 struct dnode_of_data dn; 1098 struct page *page; 1099 1100 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1101 1102 level = get_node_path(inode, from, offset, noffset); 1103 if (level < 0) { 1104 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1105 return level; 1106 } 1107 1108 page = f2fs_get_node_page(sbi, inode->i_ino); 1109 if (IS_ERR(page)) { 1110 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1111 return PTR_ERR(page); 1112 } 1113 1114 set_new_dnode(&dn, inode, page, NULL, 0); 1115 unlock_page(page); 1116 1117 ri = F2FS_INODE(page); 1118 switch (level) { 1119 case 0: 1120 case 1: 1121 nofs = noffset[1]; 1122 break; 1123 case 2: 1124 nofs = noffset[1]; 1125 if (!offset[level - 1]) 1126 goto skip_partial; 1127 err = truncate_partial_nodes(&dn, ri, offset, level); 1128 if (err < 0 && err != -ENOENT) 1129 goto fail; 1130 nofs += 1 + NIDS_PER_BLOCK; 1131 break; 1132 case 3: 1133 nofs = 5 + 2 * NIDS_PER_BLOCK; 1134 if (!offset[level - 1]) 1135 goto skip_partial; 1136 err = truncate_partial_nodes(&dn, ri, offset, level); 1137 if (err < 0 && err != -ENOENT) 1138 goto fail; 1139 break; 1140 default: 1141 BUG(); 1142 } 1143 1144 skip_partial: 1145 while (cont) { 1146 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1147 switch (offset[0]) { 1148 case NODE_DIR1_BLOCK: 1149 case NODE_DIR2_BLOCK: 1150 err = truncate_dnode(&dn); 1151 break; 1152 1153 case NODE_IND1_BLOCK: 1154 case NODE_IND2_BLOCK: 1155 err = truncate_nodes(&dn, nofs, offset[1], 2); 1156 break; 1157 1158 case NODE_DIND_BLOCK: 1159 err = truncate_nodes(&dn, nofs, offset[1], 3); 1160 cont = 0; 1161 break; 1162 1163 default: 1164 BUG(); 1165 } 1166 if (err < 0 && err != -ENOENT) 1167 goto fail; 1168 if (offset[1] == 0 && 1169 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1170 lock_page(page); 1171 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1172 f2fs_wait_on_page_writeback(page, NODE, true, true); 1173 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1174 set_page_dirty(page); 1175 unlock_page(page); 1176 } 1177 offset[1] = 0; 1178 offset[0]++; 1179 nofs += err; 1180 } 1181 fail: 1182 f2fs_put_page(page, 0); 1183 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1184 return err > 0 ? 0 : err; 1185 } 1186 1187 /* caller must lock inode page */ 1188 int f2fs_truncate_xattr_node(struct inode *inode) 1189 { 1190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1191 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1192 struct dnode_of_data dn; 1193 struct page *npage; 1194 int err; 1195 1196 if (!nid) 1197 return 0; 1198 1199 npage = f2fs_get_node_page(sbi, nid); 1200 if (IS_ERR(npage)) 1201 return PTR_ERR(npage); 1202 1203 set_new_dnode(&dn, inode, NULL, npage, nid); 1204 err = truncate_node(&dn); 1205 if (err) { 1206 f2fs_put_page(npage, 1); 1207 return err; 1208 } 1209 1210 f2fs_i_xnid_write(inode, 0); 1211 1212 return 0; 1213 } 1214 1215 /* 1216 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1217 * f2fs_unlock_op(). 1218 */ 1219 int f2fs_remove_inode_page(struct inode *inode) 1220 { 1221 struct dnode_of_data dn; 1222 int err; 1223 1224 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1225 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1226 if (err) 1227 return err; 1228 1229 err = f2fs_truncate_xattr_node(inode); 1230 if (err) { 1231 f2fs_put_dnode(&dn); 1232 return err; 1233 } 1234 1235 /* remove potential inline_data blocks */ 1236 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1237 S_ISLNK(inode->i_mode)) 1238 f2fs_truncate_data_blocks_range(&dn, 1); 1239 1240 /* 0 is possible, after f2fs_new_inode() has failed */ 1241 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1242 f2fs_put_dnode(&dn); 1243 return -EIO; 1244 } 1245 1246 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1247 f2fs_warn(F2FS_I_SB(inode), 1248 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1249 inode->i_ino, (unsigned long long)inode->i_blocks); 1250 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1251 } 1252 1253 /* will put inode & node pages */ 1254 err = truncate_node(&dn); 1255 if (err) { 1256 f2fs_put_dnode(&dn); 1257 return err; 1258 } 1259 return 0; 1260 } 1261 1262 struct page *f2fs_new_inode_page(struct inode *inode) 1263 { 1264 struct dnode_of_data dn; 1265 1266 /* allocate inode page for new inode */ 1267 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1268 1269 /* caller should f2fs_put_page(page, 1); */ 1270 return f2fs_new_node_page(&dn, 0); 1271 } 1272 1273 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1274 { 1275 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1276 struct node_info new_ni; 1277 struct page *page; 1278 int err; 1279 1280 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1281 return ERR_PTR(-EPERM); 1282 1283 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1284 if (!page) 1285 return ERR_PTR(-ENOMEM); 1286 1287 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1288 goto fail; 1289 1290 #ifdef CONFIG_F2FS_CHECK_FS 1291 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); 1292 if (err) { 1293 dec_valid_node_count(sbi, dn->inode, !ofs); 1294 goto fail; 1295 } 1296 if (unlikely(new_ni.blk_addr != NULL_ADDR)) { 1297 err = -EFSCORRUPTED; 1298 set_sbi_flag(sbi, SBI_NEED_FSCK); 1299 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1300 goto fail; 1301 } 1302 #endif 1303 new_ni.nid = dn->nid; 1304 new_ni.ino = dn->inode->i_ino; 1305 new_ni.blk_addr = NULL_ADDR; 1306 new_ni.flag = 0; 1307 new_ni.version = 0; 1308 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1309 1310 f2fs_wait_on_page_writeback(page, NODE, true, true); 1311 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1312 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1313 if (!PageUptodate(page)) 1314 SetPageUptodate(page); 1315 if (set_page_dirty(page)) 1316 dn->node_changed = true; 1317 1318 if (f2fs_has_xattr_block(ofs)) 1319 f2fs_i_xnid_write(dn->inode, dn->nid); 1320 1321 if (ofs == 0) 1322 inc_valid_inode_count(sbi); 1323 return page; 1324 1325 fail: 1326 clear_node_page_dirty(page); 1327 f2fs_put_page(page, 1); 1328 return ERR_PTR(err); 1329 } 1330 1331 /* 1332 * Caller should do after getting the following values. 1333 * 0: f2fs_put_page(page, 0) 1334 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1335 */ 1336 static int read_node_page(struct page *page, blk_opf_t op_flags) 1337 { 1338 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1339 struct node_info ni; 1340 struct f2fs_io_info fio = { 1341 .sbi = sbi, 1342 .type = NODE, 1343 .op = REQ_OP_READ, 1344 .op_flags = op_flags, 1345 .page = page, 1346 .encrypted_page = NULL, 1347 }; 1348 int err; 1349 1350 if (PageUptodate(page)) { 1351 if (!f2fs_inode_chksum_verify(sbi, page)) { 1352 ClearPageUptodate(page); 1353 return -EFSBADCRC; 1354 } 1355 return LOCKED_PAGE; 1356 } 1357 1358 err = f2fs_get_node_info(sbi, page->index, &ni, false); 1359 if (err) 1360 return err; 1361 1362 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ 1363 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) || 1364 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) { 1365 ClearPageUptodate(page); 1366 return -ENOENT; 1367 } 1368 1369 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1370 1371 err = f2fs_submit_page_bio(&fio); 1372 1373 if (!err) 1374 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE); 1375 1376 return err; 1377 } 1378 1379 /* 1380 * Readahead a node page 1381 */ 1382 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1383 { 1384 struct page *apage; 1385 int err; 1386 1387 if (!nid) 1388 return; 1389 if (f2fs_check_nid_range(sbi, nid)) 1390 return; 1391 1392 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1393 if (apage) 1394 return; 1395 1396 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1397 if (!apage) 1398 return; 1399 1400 err = read_node_page(apage, REQ_RAHEAD); 1401 f2fs_put_page(apage, err ? 1 : 0); 1402 } 1403 1404 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1405 struct page *parent, int start) 1406 { 1407 struct page *page; 1408 int err; 1409 1410 if (!nid) 1411 return ERR_PTR(-ENOENT); 1412 if (f2fs_check_nid_range(sbi, nid)) 1413 return ERR_PTR(-EINVAL); 1414 repeat: 1415 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1416 if (!page) 1417 return ERR_PTR(-ENOMEM); 1418 1419 err = read_node_page(page, 0); 1420 if (err < 0) { 1421 goto out_put_err; 1422 } else if (err == LOCKED_PAGE) { 1423 err = 0; 1424 goto page_hit; 1425 } 1426 1427 if (parent) 1428 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1429 1430 lock_page(page); 1431 1432 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1433 f2fs_put_page(page, 1); 1434 goto repeat; 1435 } 1436 1437 if (unlikely(!PageUptodate(page))) { 1438 err = -EIO; 1439 goto out_err; 1440 } 1441 1442 if (!f2fs_inode_chksum_verify(sbi, page)) { 1443 err = -EFSBADCRC; 1444 goto out_err; 1445 } 1446 page_hit: 1447 if (likely(nid == nid_of_node(page))) 1448 return page; 1449 1450 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1451 nid, nid_of_node(page), ino_of_node(page), 1452 ofs_of_node(page), cpver_of_node(page), 1453 next_blkaddr_of_node(page)); 1454 set_sbi_flag(sbi, SBI_NEED_FSCK); 1455 err = -EINVAL; 1456 out_err: 1457 ClearPageUptodate(page); 1458 out_put_err: 1459 /* ENOENT comes from read_node_page which is not an error. */ 1460 if (err != -ENOENT) 1461 f2fs_handle_page_eio(sbi, page->index, NODE); 1462 f2fs_put_page(page, 1); 1463 return ERR_PTR(err); 1464 } 1465 1466 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1467 { 1468 return __get_node_page(sbi, nid, NULL, 0); 1469 } 1470 1471 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1472 { 1473 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1474 nid_t nid = get_nid(parent, start, false); 1475 1476 return __get_node_page(sbi, nid, parent, start); 1477 } 1478 1479 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1480 { 1481 struct inode *inode; 1482 struct page *page; 1483 int ret; 1484 1485 /* should flush inline_data before evict_inode */ 1486 inode = ilookup(sbi->sb, ino); 1487 if (!inode) 1488 return; 1489 1490 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1491 FGP_LOCK|FGP_NOWAIT, 0); 1492 if (!page) 1493 goto iput_out; 1494 1495 if (!PageUptodate(page)) 1496 goto page_out; 1497 1498 if (!PageDirty(page)) 1499 goto page_out; 1500 1501 if (!clear_page_dirty_for_io(page)) 1502 goto page_out; 1503 1504 ret = f2fs_write_inline_data(inode, page); 1505 inode_dec_dirty_pages(inode); 1506 f2fs_remove_dirty_inode(inode); 1507 if (ret) 1508 set_page_dirty(page); 1509 page_out: 1510 f2fs_put_page(page, 1); 1511 iput_out: 1512 iput(inode); 1513 } 1514 1515 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1516 { 1517 pgoff_t index; 1518 struct pagevec pvec; 1519 struct page *last_page = NULL; 1520 int nr_pages; 1521 1522 pagevec_init(&pvec); 1523 index = 0; 1524 1525 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1526 PAGECACHE_TAG_DIRTY))) { 1527 int i; 1528 1529 for (i = 0; i < nr_pages; i++) { 1530 struct page *page = pvec.pages[i]; 1531 1532 if (unlikely(f2fs_cp_error(sbi))) { 1533 f2fs_put_page(last_page, 0); 1534 pagevec_release(&pvec); 1535 return ERR_PTR(-EIO); 1536 } 1537 1538 if (!IS_DNODE(page) || !is_cold_node(page)) 1539 continue; 1540 if (ino_of_node(page) != ino) 1541 continue; 1542 1543 lock_page(page); 1544 1545 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1546 continue_unlock: 1547 unlock_page(page); 1548 continue; 1549 } 1550 if (ino_of_node(page) != ino) 1551 goto continue_unlock; 1552 1553 if (!PageDirty(page)) { 1554 /* someone wrote it for us */ 1555 goto continue_unlock; 1556 } 1557 1558 if (last_page) 1559 f2fs_put_page(last_page, 0); 1560 1561 get_page(page); 1562 last_page = page; 1563 unlock_page(page); 1564 } 1565 pagevec_release(&pvec); 1566 cond_resched(); 1567 } 1568 return last_page; 1569 } 1570 1571 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1572 struct writeback_control *wbc, bool do_balance, 1573 enum iostat_type io_type, unsigned int *seq_id) 1574 { 1575 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1576 nid_t nid; 1577 struct node_info ni; 1578 struct f2fs_io_info fio = { 1579 .sbi = sbi, 1580 .ino = ino_of_node(page), 1581 .type = NODE, 1582 .op = REQ_OP_WRITE, 1583 .op_flags = wbc_to_write_flags(wbc), 1584 .page = page, 1585 .encrypted_page = NULL, 1586 .submitted = false, 1587 .io_type = io_type, 1588 .io_wbc = wbc, 1589 }; 1590 unsigned int seq; 1591 1592 trace_f2fs_writepage(page, NODE); 1593 1594 if (unlikely(f2fs_cp_error(sbi))) { 1595 ClearPageUptodate(page); 1596 dec_page_count(sbi, F2FS_DIRTY_NODES); 1597 unlock_page(page); 1598 return 0; 1599 } 1600 1601 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1602 goto redirty_out; 1603 1604 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1605 wbc->sync_mode == WB_SYNC_NONE && 1606 IS_DNODE(page) && is_cold_node(page)) 1607 goto redirty_out; 1608 1609 /* get old block addr of this node page */ 1610 nid = nid_of_node(page); 1611 f2fs_bug_on(sbi, page->index != nid); 1612 1613 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) 1614 goto redirty_out; 1615 1616 if (wbc->for_reclaim) { 1617 if (!f2fs_down_read_trylock(&sbi->node_write)) 1618 goto redirty_out; 1619 } else { 1620 f2fs_down_read(&sbi->node_write); 1621 } 1622 1623 /* This page is already truncated */ 1624 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1625 ClearPageUptodate(page); 1626 dec_page_count(sbi, F2FS_DIRTY_NODES); 1627 f2fs_up_read(&sbi->node_write); 1628 unlock_page(page); 1629 return 0; 1630 } 1631 1632 if (__is_valid_data_blkaddr(ni.blk_addr) && 1633 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1634 DATA_GENERIC_ENHANCE)) { 1635 f2fs_up_read(&sbi->node_write); 1636 goto redirty_out; 1637 } 1638 1639 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi)) 1640 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1641 1642 /* should add to global list before clearing PAGECACHE status */ 1643 if (f2fs_in_warm_node_list(sbi, page)) { 1644 seq = f2fs_add_fsync_node_entry(sbi, page); 1645 if (seq_id) 1646 *seq_id = seq; 1647 } 1648 1649 set_page_writeback(page); 1650 ClearPageError(page); 1651 1652 fio.old_blkaddr = ni.blk_addr; 1653 f2fs_do_write_node_page(nid, &fio); 1654 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1655 dec_page_count(sbi, F2FS_DIRTY_NODES); 1656 f2fs_up_read(&sbi->node_write); 1657 1658 if (wbc->for_reclaim) { 1659 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1660 submitted = NULL; 1661 } 1662 1663 unlock_page(page); 1664 1665 if (unlikely(f2fs_cp_error(sbi))) { 1666 f2fs_submit_merged_write(sbi, NODE); 1667 submitted = NULL; 1668 } 1669 if (submitted) 1670 *submitted = fio.submitted; 1671 1672 if (do_balance) 1673 f2fs_balance_fs(sbi, false); 1674 return 0; 1675 1676 redirty_out: 1677 redirty_page_for_writepage(wbc, page); 1678 return AOP_WRITEPAGE_ACTIVATE; 1679 } 1680 1681 int f2fs_move_node_page(struct page *node_page, int gc_type) 1682 { 1683 int err = 0; 1684 1685 if (gc_type == FG_GC) { 1686 struct writeback_control wbc = { 1687 .sync_mode = WB_SYNC_ALL, 1688 .nr_to_write = 1, 1689 .for_reclaim = 0, 1690 }; 1691 1692 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1693 1694 set_page_dirty(node_page); 1695 1696 if (!clear_page_dirty_for_io(node_page)) { 1697 err = -EAGAIN; 1698 goto out_page; 1699 } 1700 1701 if (__write_node_page(node_page, false, NULL, 1702 &wbc, false, FS_GC_NODE_IO, NULL)) { 1703 err = -EAGAIN; 1704 unlock_page(node_page); 1705 } 1706 goto release_page; 1707 } else { 1708 /* set page dirty and write it */ 1709 if (!PageWriteback(node_page)) 1710 set_page_dirty(node_page); 1711 } 1712 out_page: 1713 unlock_page(node_page); 1714 release_page: 1715 f2fs_put_page(node_page, 0); 1716 return err; 1717 } 1718 1719 static int f2fs_write_node_page(struct page *page, 1720 struct writeback_control *wbc) 1721 { 1722 return __write_node_page(page, false, NULL, wbc, false, 1723 FS_NODE_IO, NULL); 1724 } 1725 1726 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1727 struct writeback_control *wbc, bool atomic, 1728 unsigned int *seq_id) 1729 { 1730 pgoff_t index; 1731 struct pagevec pvec; 1732 int ret = 0; 1733 struct page *last_page = NULL; 1734 bool marked = false; 1735 nid_t ino = inode->i_ino; 1736 int nr_pages; 1737 int nwritten = 0; 1738 1739 if (atomic) { 1740 last_page = last_fsync_dnode(sbi, ino); 1741 if (IS_ERR_OR_NULL(last_page)) 1742 return PTR_ERR_OR_ZERO(last_page); 1743 } 1744 retry: 1745 pagevec_init(&pvec); 1746 index = 0; 1747 1748 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1749 PAGECACHE_TAG_DIRTY))) { 1750 int i; 1751 1752 for (i = 0; i < nr_pages; i++) { 1753 struct page *page = pvec.pages[i]; 1754 bool submitted = false; 1755 1756 if (unlikely(f2fs_cp_error(sbi))) { 1757 f2fs_put_page(last_page, 0); 1758 pagevec_release(&pvec); 1759 ret = -EIO; 1760 goto out; 1761 } 1762 1763 if (!IS_DNODE(page) || !is_cold_node(page)) 1764 continue; 1765 if (ino_of_node(page) != ino) 1766 continue; 1767 1768 lock_page(page); 1769 1770 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1771 continue_unlock: 1772 unlock_page(page); 1773 continue; 1774 } 1775 if (ino_of_node(page) != ino) 1776 goto continue_unlock; 1777 1778 if (!PageDirty(page) && page != last_page) { 1779 /* someone wrote it for us */ 1780 goto continue_unlock; 1781 } 1782 1783 f2fs_wait_on_page_writeback(page, NODE, true, true); 1784 1785 set_fsync_mark(page, 0); 1786 set_dentry_mark(page, 0); 1787 1788 if (!atomic || page == last_page) { 1789 set_fsync_mark(page, 1); 1790 percpu_counter_inc(&sbi->rf_node_block_count); 1791 if (IS_INODE(page)) { 1792 if (is_inode_flag_set(inode, 1793 FI_DIRTY_INODE)) 1794 f2fs_update_inode(inode, page); 1795 set_dentry_mark(page, 1796 f2fs_need_dentry_mark(sbi, ino)); 1797 } 1798 /* may be written by other thread */ 1799 if (!PageDirty(page)) 1800 set_page_dirty(page); 1801 } 1802 1803 if (!clear_page_dirty_for_io(page)) 1804 goto continue_unlock; 1805 1806 ret = __write_node_page(page, atomic && 1807 page == last_page, 1808 &submitted, wbc, true, 1809 FS_NODE_IO, seq_id); 1810 if (ret) { 1811 unlock_page(page); 1812 f2fs_put_page(last_page, 0); 1813 break; 1814 } else if (submitted) { 1815 nwritten++; 1816 } 1817 1818 if (page == last_page) { 1819 f2fs_put_page(page, 0); 1820 marked = true; 1821 break; 1822 } 1823 } 1824 pagevec_release(&pvec); 1825 cond_resched(); 1826 1827 if (ret || marked) 1828 break; 1829 } 1830 if (!ret && atomic && !marked) { 1831 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1832 ino, last_page->index); 1833 lock_page(last_page); 1834 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1835 set_page_dirty(last_page); 1836 unlock_page(last_page); 1837 goto retry; 1838 } 1839 out: 1840 if (nwritten) 1841 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1842 return ret ? -EIO : 0; 1843 } 1844 1845 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1846 { 1847 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1848 bool clean; 1849 1850 if (inode->i_ino != ino) 1851 return 0; 1852 1853 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1854 return 0; 1855 1856 spin_lock(&sbi->inode_lock[DIRTY_META]); 1857 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1858 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1859 1860 if (clean) 1861 return 0; 1862 1863 inode = igrab(inode); 1864 if (!inode) 1865 return 0; 1866 return 1; 1867 } 1868 1869 static bool flush_dirty_inode(struct page *page) 1870 { 1871 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1872 struct inode *inode; 1873 nid_t ino = ino_of_node(page); 1874 1875 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1876 if (!inode) 1877 return false; 1878 1879 f2fs_update_inode(inode, page); 1880 unlock_page(page); 1881 1882 iput(inode); 1883 return true; 1884 } 1885 1886 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1887 { 1888 pgoff_t index = 0; 1889 struct pagevec pvec; 1890 int nr_pages; 1891 1892 pagevec_init(&pvec); 1893 1894 while ((nr_pages = pagevec_lookup_tag(&pvec, 1895 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1896 int i; 1897 1898 for (i = 0; i < nr_pages; i++) { 1899 struct page *page = pvec.pages[i]; 1900 1901 if (!IS_DNODE(page)) 1902 continue; 1903 1904 lock_page(page); 1905 1906 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1907 continue_unlock: 1908 unlock_page(page); 1909 continue; 1910 } 1911 1912 if (!PageDirty(page)) { 1913 /* someone wrote it for us */ 1914 goto continue_unlock; 1915 } 1916 1917 /* flush inline_data, if it's async context. */ 1918 if (page_private_inline(page)) { 1919 clear_page_private_inline(page); 1920 unlock_page(page); 1921 flush_inline_data(sbi, ino_of_node(page)); 1922 continue; 1923 } 1924 unlock_page(page); 1925 } 1926 pagevec_release(&pvec); 1927 cond_resched(); 1928 } 1929 } 1930 1931 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1932 struct writeback_control *wbc, 1933 bool do_balance, enum iostat_type io_type) 1934 { 1935 pgoff_t index; 1936 struct pagevec pvec; 1937 int step = 0; 1938 int nwritten = 0; 1939 int ret = 0; 1940 int nr_pages, done = 0; 1941 1942 pagevec_init(&pvec); 1943 1944 next_step: 1945 index = 0; 1946 1947 while (!done && (nr_pages = pagevec_lookup_tag(&pvec, 1948 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1949 int i; 1950 1951 for (i = 0; i < nr_pages; i++) { 1952 struct page *page = pvec.pages[i]; 1953 bool submitted = false; 1954 1955 /* give a priority to WB_SYNC threads */ 1956 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1957 wbc->sync_mode == WB_SYNC_NONE) { 1958 done = 1; 1959 break; 1960 } 1961 1962 /* 1963 * flushing sequence with step: 1964 * 0. indirect nodes 1965 * 1. dentry dnodes 1966 * 2. file dnodes 1967 */ 1968 if (step == 0 && IS_DNODE(page)) 1969 continue; 1970 if (step == 1 && (!IS_DNODE(page) || 1971 is_cold_node(page))) 1972 continue; 1973 if (step == 2 && (!IS_DNODE(page) || 1974 !is_cold_node(page))) 1975 continue; 1976 lock_node: 1977 if (wbc->sync_mode == WB_SYNC_ALL) 1978 lock_page(page); 1979 else if (!trylock_page(page)) 1980 continue; 1981 1982 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1983 continue_unlock: 1984 unlock_page(page); 1985 continue; 1986 } 1987 1988 if (!PageDirty(page)) { 1989 /* someone wrote it for us */ 1990 goto continue_unlock; 1991 } 1992 1993 /* flush inline_data/inode, if it's async context. */ 1994 if (!do_balance) 1995 goto write_node; 1996 1997 /* flush inline_data */ 1998 if (page_private_inline(page)) { 1999 clear_page_private_inline(page); 2000 unlock_page(page); 2001 flush_inline_data(sbi, ino_of_node(page)); 2002 goto lock_node; 2003 } 2004 2005 /* flush dirty inode */ 2006 if (IS_INODE(page) && flush_dirty_inode(page)) 2007 goto lock_node; 2008 write_node: 2009 f2fs_wait_on_page_writeback(page, NODE, true, true); 2010 2011 if (!clear_page_dirty_for_io(page)) 2012 goto continue_unlock; 2013 2014 set_fsync_mark(page, 0); 2015 set_dentry_mark(page, 0); 2016 2017 ret = __write_node_page(page, false, &submitted, 2018 wbc, do_balance, io_type, NULL); 2019 if (ret) 2020 unlock_page(page); 2021 else if (submitted) 2022 nwritten++; 2023 2024 if (--wbc->nr_to_write == 0) 2025 break; 2026 } 2027 pagevec_release(&pvec); 2028 cond_resched(); 2029 2030 if (wbc->nr_to_write == 0) { 2031 step = 2; 2032 break; 2033 } 2034 } 2035 2036 if (step < 2) { 2037 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2038 wbc->sync_mode == WB_SYNC_NONE && step == 1) 2039 goto out; 2040 step++; 2041 goto next_step; 2042 } 2043 out: 2044 if (nwritten) 2045 f2fs_submit_merged_write(sbi, NODE); 2046 2047 if (unlikely(f2fs_cp_error(sbi))) 2048 return -EIO; 2049 return ret; 2050 } 2051 2052 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2053 unsigned int seq_id) 2054 { 2055 struct fsync_node_entry *fn; 2056 struct page *page; 2057 struct list_head *head = &sbi->fsync_node_list; 2058 unsigned long flags; 2059 unsigned int cur_seq_id = 0; 2060 int ret2, ret = 0; 2061 2062 while (seq_id && cur_seq_id < seq_id) { 2063 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2064 if (list_empty(head)) { 2065 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2066 break; 2067 } 2068 fn = list_first_entry(head, struct fsync_node_entry, list); 2069 if (fn->seq_id > seq_id) { 2070 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2071 break; 2072 } 2073 cur_seq_id = fn->seq_id; 2074 page = fn->page; 2075 get_page(page); 2076 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2077 2078 f2fs_wait_on_page_writeback(page, NODE, true, false); 2079 if (TestClearPageError(page)) 2080 ret = -EIO; 2081 2082 put_page(page); 2083 2084 if (ret) 2085 break; 2086 } 2087 2088 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 2089 if (!ret) 2090 ret = ret2; 2091 2092 return ret; 2093 } 2094 2095 static int f2fs_write_node_pages(struct address_space *mapping, 2096 struct writeback_control *wbc) 2097 { 2098 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2099 struct blk_plug plug; 2100 long diff; 2101 2102 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2103 goto skip_write; 2104 2105 /* balancing f2fs's metadata in background */ 2106 f2fs_balance_fs_bg(sbi, true); 2107 2108 /* collect a number of dirty node pages and write together */ 2109 if (wbc->sync_mode != WB_SYNC_ALL && 2110 get_pages(sbi, F2FS_DIRTY_NODES) < 2111 nr_pages_to_skip(sbi, NODE)) 2112 goto skip_write; 2113 2114 if (wbc->sync_mode == WB_SYNC_ALL) 2115 atomic_inc(&sbi->wb_sync_req[NODE]); 2116 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2117 /* to avoid potential deadlock */ 2118 if (current->plug) 2119 blk_finish_plug(current->plug); 2120 goto skip_write; 2121 } 2122 2123 trace_f2fs_writepages(mapping->host, wbc, NODE); 2124 2125 diff = nr_pages_to_write(sbi, NODE, wbc); 2126 blk_start_plug(&plug); 2127 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2128 blk_finish_plug(&plug); 2129 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2130 2131 if (wbc->sync_mode == WB_SYNC_ALL) 2132 atomic_dec(&sbi->wb_sync_req[NODE]); 2133 return 0; 2134 2135 skip_write: 2136 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2137 trace_f2fs_writepages(mapping->host, wbc, NODE); 2138 return 0; 2139 } 2140 2141 static bool f2fs_dirty_node_folio(struct address_space *mapping, 2142 struct folio *folio) 2143 { 2144 trace_f2fs_set_page_dirty(&folio->page, NODE); 2145 2146 if (!folio_test_uptodate(folio)) 2147 folio_mark_uptodate(folio); 2148 #ifdef CONFIG_F2FS_CHECK_FS 2149 if (IS_INODE(&folio->page)) 2150 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); 2151 #endif 2152 if (filemap_dirty_folio(mapping, folio)) { 2153 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 2154 set_page_private_reference(&folio->page); 2155 return true; 2156 } 2157 return false; 2158 } 2159 2160 /* 2161 * Structure of the f2fs node operations 2162 */ 2163 const struct address_space_operations f2fs_node_aops = { 2164 .writepage = f2fs_write_node_page, 2165 .writepages = f2fs_write_node_pages, 2166 .dirty_folio = f2fs_dirty_node_folio, 2167 .invalidate_folio = f2fs_invalidate_folio, 2168 .release_folio = f2fs_release_folio, 2169 .migrate_folio = filemap_migrate_folio, 2170 }; 2171 2172 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2173 nid_t n) 2174 { 2175 return radix_tree_lookup(&nm_i->free_nid_root, n); 2176 } 2177 2178 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2179 struct free_nid *i) 2180 { 2181 struct f2fs_nm_info *nm_i = NM_I(sbi); 2182 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2183 2184 if (err) 2185 return err; 2186 2187 nm_i->nid_cnt[FREE_NID]++; 2188 list_add_tail(&i->list, &nm_i->free_nid_list); 2189 return 0; 2190 } 2191 2192 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2193 struct free_nid *i, enum nid_state state) 2194 { 2195 struct f2fs_nm_info *nm_i = NM_I(sbi); 2196 2197 f2fs_bug_on(sbi, state != i->state); 2198 nm_i->nid_cnt[state]--; 2199 if (state == FREE_NID) 2200 list_del(&i->list); 2201 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2202 } 2203 2204 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2205 enum nid_state org_state, enum nid_state dst_state) 2206 { 2207 struct f2fs_nm_info *nm_i = NM_I(sbi); 2208 2209 f2fs_bug_on(sbi, org_state != i->state); 2210 i->state = dst_state; 2211 nm_i->nid_cnt[org_state]--; 2212 nm_i->nid_cnt[dst_state]++; 2213 2214 switch (dst_state) { 2215 case PREALLOC_NID: 2216 list_del(&i->list); 2217 break; 2218 case FREE_NID: 2219 list_add_tail(&i->list, &nm_i->free_nid_list); 2220 break; 2221 default: 2222 BUG_ON(1); 2223 } 2224 } 2225 2226 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi) 2227 { 2228 struct f2fs_nm_info *nm_i = NM_I(sbi); 2229 unsigned int i; 2230 bool ret = true; 2231 2232 f2fs_down_read(&nm_i->nat_tree_lock); 2233 for (i = 0; i < nm_i->nat_blocks; i++) { 2234 if (!test_bit_le(i, nm_i->nat_block_bitmap)) { 2235 ret = false; 2236 break; 2237 } 2238 } 2239 f2fs_up_read(&nm_i->nat_tree_lock); 2240 2241 return ret; 2242 } 2243 2244 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2245 bool set, bool build) 2246 { 2247 struct f2fs_nm_info *nm_i = NM_I(sbi); 2248 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2249 unsigned int nid_ofs = nid - START_NID(nid); 2250 2251 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2252 return; 2253 2254 if (set) { 2255 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2256 return; 2257 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2258 nm_i->free_nid_count[nat_ofs]++; 2259 } else { 2260 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2261 return; 2262 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2263 if (!build) 2264 nm_i->free_nid_count[nat_ofs]--; 2265 } 2266 } 2267 2268 /* return if the nid is recognized as free */ 2269 static bool add_free_nid(struct f2fs_sb_info *sbi, 2270 nid_t nid, bool build, bool update) 2271 { 2272 struct f2fs_nm_info *nm_i = NM_I(sbi); 2273 struct free_nid *i, *e; 2274 struct nat_entry *ne; 2275 int err = -EINVAL; 2276 bool ret = false; 2277 2278 /* 0 nid should not be used */ 2279 if (unlikely(nid == 0)) 2280 return false; 2281 2282 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2283 return false; 2284 2285 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); 2286 i->nid = nid; 2287 i->state = FREE_NID; 2288 2289 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2290 2291 spin_lock(&nm_i->nid_list_lock); 2292 2293 if (build) { 2294 /* 2295 * Thread A Thread B 2296 * - f2fs_create 2297 * - f2fs_new_inode 2298 * - f2fs_alloc_nid 2299 * - __insert_nid_to_list(PREALLOC_NID) 2300 * - f2fs_balance_fs_bg 2301 * - f2fs_build_free_nids 2302 * - __f2fs_build_free_nids 2303 * - scan_nat_page 2304 * - add_free_nid 2305 * - __lookup_nat_cache 2306 * - f2fs_add_link 2307 * - f2fs_init_inode_metadata 2308 * - f2fs_new_inode_page 2309 * - f2fs_new_node_page 2310 * - set_node_addr 2311 * - f2fs_alloc_nid_done 2312 * - __remove_nid_from_list(PREALLOC_NID) 2313 * - __insert_nid_to_list(FREE_NID) 2314 */ 2315 ne = __lookup_nat_cache(nm_i, nid); 2316 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2317 nat_get_blkaddr(ne) != NULL_ADDR)) 2318 goto err_out; 2319 2320 e = __lookup_free_nid_list(nm_i, nid); 2321 if (e) { 2322 if (e->state == FREE_NID) 2323 ret = true; 2324 goto err_out; 2325 } 2326 } 2327 ret = true; 2328 err = __insert_free_nid(sbi, i); 2329 err_out: 2330 if (update) { 2331 update_free_nid_bitmap(sbi, nid, ret, build); 2332 if (!build) 2333 nm_i->available_nids++; 2334 } 2335 spin_unlock(&nm_i->nid_list_lock); 2336 radix_tree_preload_end(); 2337 2338 if (err) 2339 kmem_cache_free(free_nid_slab, i); 2340 return ret; 2341 } 2342 2343 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2344 { 2345 struct f2fs_nm_info *nm_i = NM_I(sbi); 2346 struct free_nid *i; 2347 bool need_free = false; 2348 2349 spin_lock(&nm_i->nid_list_lock); 2350 i = __lookup_free_nid_list(nm_i, nid); 2351 if (i && i->state == FREE_NID) { 2352 __remove_free_nid(sbi, i, FREE_NID); 2353 need_free = true; 2354 } 2355 spin_unlock(&nm_i->nid_list_lock); 2356 2357 if (need_free) 2358 kmem_cache_free(free_nid_slab, i); 2359 } 2360 2361 static int scan_nat_page(struct f2fs_sb_info *sbi, 2362 struct page *nat_page, nid_t start_nid) 2363 { 2364 struct f2fs_nm_info *nm_i = NM_I(sbi); 2365 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2366 block_t blk_addr; 2367 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2368 int i; 2369 2370 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2371 2372 i = start_nid % NAT_ENTRY_PER_BLOCK; 2373 2374 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2375 if (unlikely(start_nid >= nm_i->max_nid)) 2376 break; 2377 2378 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2379 2380 if (blk_addr == NEW_ADDR) 2381 return -EINVAL; 2382 2383 if (blk_addr == NULL_ADDR) { 2384 add_free_nid(sbi, start_nid, true, true); 2385 } else { 2386 spin_lock(&NM_I(sbi)->nid_list_lock); 2387 update_free_nid_bitmap(sbi, start_nid, false, true); 2388 spin_unlock(&NM_I(sbi)->nid_list_lock); 2389 } 2390 } 2391 2392 return 0; 2393 } 2394 2395 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2396 { 2397 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2398 struct f2fs_journal *journal = curseg->journal; 2399 int i; 2400 2401 down_read(&curseg->journal_rwsem); 2402 for (i = 0; i < nats_in_cursum(journal); i++) { 2403 block_t addr; 2404 nid_t nid; 2405 2406 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2407 nid = le32_to_cpu(nid_in_journal(journal, i)); 2408 if (addr == NULL_ADDR) 2409 add_free_nid(sbi, nid, true, false); 2410 else 2411 remove_free_nid(sbi, nid); 2412 } 2413 up_read(&curseg->journal_rwsem); 2414 } 2415 2416 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2417 { 2418 struct f2fs_nm_info *nm_i = NM_I(sbi); 2419 unsigned int i, idx; 2420 nid_t nid; 2421 2422 f2fs_down_read(&nm_i->nat_tree_lock); 2423 2424 for (i = 0; i < nm_i->nat_blocks; i++) { 2425 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2426 continue; 2427 if (!nm_i->free_nid_count[i]) 2428 continue; 2429 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2430 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2431 NAT_ENTRY_PER_BLOCK, idx); 2432 if (idx >= NAT_ENTRY_PER_BLOCK) 2433 break; 2434 2435 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2436 add_free_nid(sbi, nid, true, false); 2437 2438 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2439 goto out; 2440 } 2441 } 2442 out: 2443 scan_curseg_cache(sbi); 2444 2445 f2fs_up_read(&nm_i->nat_tree_lock); 2446 } 2447 2448 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2449 bool sync, bool mount) 2450 { 2451 struct f2fs_nm_info *nm_i = NM_I(sbi); 2452 int i = 0, ret; 2453 nid_t nid = nm_i->next_scan_nid; 2454 2455 if (unlikely(nid >= nm_i->max_nid)) 2456 nid = 0; 2457 2458 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2459 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2460 2461 /* Enough entries */ 2462 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2463 return 0; 2464 2465 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2466 return 0; 2467 2468 if (!mount) { 2469 /* try to find free nids in free_nid_bitmap */ 2470 scan_free_nid_bits(sbi); 2471 2472 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2473 return 0; 2474 } 2475 2476 /* readahead nat pages to be scanned */ 2477 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2478 META_NAT, true); 2479 2480 f2fs_down_read(&nm_i->nat_tree_lock); 2481 2482 while (1) { 2483 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2484 nm_i->nat_block_bitmap)) { 2485 struct page *page = get_current_nat_page(sbi, nid); 2486 2487 if (IS_ERR(page)) { 2488 ret = PTR_ERR(page); 2489 } else { 2490 ret = scan_nat_page(sbi, page, nid); 2491 f2fs_put_page(page, 1); 2492 } 2493 2494 if (ret) { 2495 f2fs_up_read(&nm_i->nat_tree_lock); 2496 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2497 return ret; 2498 } 2499 } 2500 2501 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2502 if (unlikely(nid >= nm_i->max_nid)) 2503 nid = 0; 2504 2505 if (++i >= FREE_NID_PAGES) 2506 break; 2507 } 2508 2509 /* go to the next free nat pages to find free nids abundantly */ 2510 nm_i->next_scan_nid = nid; 2511 2512 /* find free nids from current sum_pages */ 2513 scan_curseg_cache(sbi); 2514 2515 f2fs_up_read(&nm_i->nat_tree_lock); 2516 2517 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2518 nm_i->ra_nid_pages, META_NAT, false); 2519 2520 return 0; 2521 } 2522 2523 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2524 { 2525 int ret; 2526 2527 mutex_lock(&NM_I(sbi)->build_lock); 2528 ret = __f2fs_build_free_nids(sbi, sync, mount); 2529 mutex_unlock(&NM_I(sbi)->build_lock); 2530 2531 return ret; 2532 } 2533 2534 /* 2535 * If this function returns success, caller can obtain a new nid 2536 * from second parameter of this function. 2537 * The returned nid could be used ino as well as nid when inode is created. 2538 */ 2539 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2540 { 2541 struct f2fs_nm_info *nm_i = NM_I(sbi); 2542 struct free_nid *i = NULL; 2543 retry: 2544 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2545 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID); 2546 return false; 2547 } 2548 2549 spin_lock(&nm_i->nid_list_lock); 2550 2551 if (unlikely(nm_i->available_nids == 0)) { 2552 spin_unlock(&nm_i->nid_list_lock); 2553 return false; 2554 } 2555 2556 /* We should not use stale free nids created by f2fs_build_free_nids */ 2557 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2558 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2559 i = list_first_entry(&nm_i->free_nid_list, 2560 struct free_nid, list); 2561 *nid = i->nid; 2562 2563 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2564 nm_i->available_nids--; 2565 2566 update_free_nid_bitmap(sbi, *nid, false, false); 2567 2568 spin_unlock(&nm_i->nid_list_lock); 2569 return true; 2570 } 2571 spin_unlock(&nm_i->nid_list_lock); 2572 2573 /* Let's scan nat pages and its caches to get free nids */ 2574 if (!f2fs_build_free_nids(sbi, true, false)) 2575 goto retry; 2576 return false; 2577 } 2578 2579 /* 2580 * f2fs_alloc_nid() should be called prior to this function. 2581 */ 2582 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2583 { 2584 struct f2fs_nm_info *nm_i = NM_I(sbi); 2585 struct free_nid *i; 2586 2587 spin_lock(&nm_i->nid_list_lock); 2588 i = __lookup_free_nid_list(nm_i, nid); 2589 f2fs_bug_on(sbi, !i); 2590 __remove_free_nid(sbi, i, PREALLOC_NID); 2591 spin_unlock(&nm_i->nid_list_lock); 2592 2593 kmem_cache_free(free_nid_slab, i); 2594 } 2595 2596 /* 2597 * f2fs_alloc_nid() should be called prior to this function. 2598 */ 2599 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2600 { 2601 struct f2fs_nm_info *nm_i = NM_I(sbi); 2602 struct free_nid *i; 2603 bool need_free = false; 2604 2605 if (!nid) 2606 return; 2607 2608 spin_lock(&nm_i->nid_list_lock); 2609 i = __lookup_free_nid_list(nm_i, nid); 2610 f2fs_bug_on(sbi, !i); 2611 2612 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2613 __remove_free_nid(sbi, i, PREALLOC_NID); 2614 need_free = true; 2615 } else { 2616 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2617 } 2618 2619 nm_i->available_nids++; 2620 2621 update_free_nid_bitmap(sbi, nid, true, false); 2622 2623 spin_unlock(&nm_i->nid_list_lock); 2624 2625 if (need_free) 2626 kmem_cache_free(free_nid_slab, i); 2627 } 2628 2629 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2630 { 2631 struct f2fs_nm_info *nm_i = NM_I(sbi); 2632 int nr = nr_shrink; 2633 2634 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2635 return 0; 2636 2637 if (!mutex_trylock(&nm_i->build_lock)) 2638 return 0; 2639 2640 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2641 struct free_nid *i, *next; 2642 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2643 2644 spin_lock(&nm_i->nid_list_lock); 2645 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2646 if (!nr_shrink || !batch || 2647 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2648 break; 2649 __remove_free_nid(sbi, i, FREE_NID); 2650 kmem_cache_free(free_nid_slab, i); 2651 nr_shrink--; 2652 batch--; 2653 } 2654 spin_unlock(&nm_i->nid_list_lock); 2655 } 2656 2657 mutex_unlock(&nm_i->build_lock); 2658 2659 return nr - nr_shrink; 2660 } 2661 2662 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2663 { 2664 void *src_addr, *dst_addr; 2665 size_t inline_size; 2666 struct page *ipage; 2667 struct f2fs_inode *ri; 2668 2669 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2670 if (IS_ERR(ipage)) 2671 return PTR_ERR(ipage); 2672 2673 ri = F2FS_INODE(page); 2674 if (ri->i_inline & F2FS_INLINE_XATTR) { 2675 if (!f2fs_has_inline_xattr(inode)) { 2676 set_inode_flag(inode, FI_INLINE_XATTR); 2677 stat_inc_inline_xattr(inode); 2678 } 2679 } else { 2680 if (f2fs_has_inline_xattr(inode)) { 2681 stat_dec_inline_xattr(inode); 2682 clear_inode_flag(inode, FI_INLINE_XATTR); 2683 } 2684 goto update_inode; 2685 } 2686 2687 dst_addr = inline_xattr_addr(inode, ipage); 2688 src_addr = inline_xattr_addr(inode, page); 2689 inline_size = inline_xattr_size(inode); 2690 2691 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2692 memcpy(dst_addr, src_addr, inline_size); 2693 update_inode: 2694 f2fs_update_inode(inode, ipage); 2695 f2fs_put_page(ipage, 1); 2696 return 0; 2697 } 2698 2699 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2700 { 2701 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2702 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2703 nid_t new_xnid; 2704 struct dnode_of_data dn; 2705 struct node_info ni; 2706 struct page *xpage; 2707 int err; 2708 2709 if (!prev_xnid) 2710 goto recover_xnid; 2711 2712 /* 1: invalidate the previous xattr nid */ 2713 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); 2714 if (err) 2715 return err; 2716 2717 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2718 dec_valid_node_count(sbi, inode, false); 2719 set_node_addr(sbi, &ni, NULL_ADDR, false); 2720 2721 recover_xnid: 2722 /* 2: update xattr nid in inode */ 2723 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2724 return -ENOSPC; 2725 2726 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2727 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2728 if (IS_ERR(xpage)) { 2729 f2fs_alloc_nid_failed(sbi, new_xnid); 2730 return PTR_ERR(xpage); 2731 } 2732 2733 f2fs_alloc_nid_done(sbi, new_xnid); 2734 f2fs_update_inode_page(inode); 2735 2736 /* 3: update and set xattr node page dirty */ 2737 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2738 2739 set_page_dirty(xpage); 2740 f2fs_put_page(xpage, 1); 2741 2742 return 0; 2743 } 2744 2745 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2746 { 2747 struct f2fs_inode *src, *dst; 2748 nid_t ino = ino_of_node(page); 2749 struct node_info old_ni, new_ni; 2750 struct page *ipage; 2751 int err; 2752 2753 err = f2fs_get_node_info(sbi, ino, &old_ni, false); 2754 if (err) 2755 return err; 2756 2757 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2758 return -EINVAL; 2759 retry: 2760 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2761 if (!ipage) { 2762 memalloc_retry_wait(GFP_NOFS); 2763 goto retry; 2764 } 2765 2766 /* Should not use this inode from free nid list */ 2767 remove_free_nid(sbi, ino); 2768 2769 if (!PageUptodate(ipage)) 2770 SetPageUptodate(ipage); 2771 fill_node_footer(ipage, ino, ino, 0, true); 2772 set_cold_node(ipage, false); 2773 2774 src = F2FS_INODE(page); 2775 dst = F2FS_INODE(ipage); 2776 2777 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2778 dst->i_size = 0; 2779 dst->i_blocks = cpu_to_le64(1); 2780 dst->i_links = cpu_to_le32(1); 2781 dst->i_xattr_nid = 0; 2782 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2783 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2784 dst->i_extra_isize = src->i_extra_isize; 2785 2786 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2787 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2788 i_inline_xattr_size)) 2789 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2790 2791 if (f2fs_sb_has_project_quota(sbi) && 2792 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2793 i_projid)) 2794 dst->i_projid = src->i_projid; 2795 2796 if (f2fs_sb_has_inode_crtime(sbi) && 2797 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2798 i_crtime_nsec)) { 2799 dst->i_crtime = src->i_crtime; 2800 dst->i_crtime_nsec = src->i_crtime_nsec; 2801 } 2802 } 2803 2804 new_ni = old_ni; 2805 new_ni.ino = ino; 2806 2807 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2808 WARN_ON(1); 2809 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2810 inc_valid_inode_count(sbi); 2811 set_page_dirty(ipage); 2812 f2fs_put_page(ipage, 1); 2813 return 0; 2814 } 2815 2816 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2817 unsigned int segno, struct f2fs_summary_block *sum) 2818 { 2819 struct f2fs_node *rn; 2820 struct f2fs_summary *sum_entry; 2821 block_t addr; 2822 int i, idx, last_offset, nrpages; 2823 2824 /* scan the node segment */ 2825 last_offset = sbi->blocks_per_seg; 2826 addr = START_BLOCK(sbi, segno); 2827 sum_entry = &sum->entries[0]; 2828 2829 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2830 nrpages = bio_max_segs(last_offset - i); 2831 2832 /* readahead node pages */ 2833 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2834 2835 for (idx = addr; idx < addr + nrpages; idx++) { 2836 struct page *page = f2fs_get_tmp_page(sbi, idx); 2837 2838 if (IS_ERR(page)) 2839 return PTR_ERR(page); 2840 2841 rn = F2FS_NODE(page); 2842 sum_entry->nid = rn->footer.nid; 2843 sum_entry->version = 0; 2844 sum_entry->ofs_in_node = 0; 2845 sum_entry++; 2846 f2fs_put_page(page, 1); 2847 } 2848 2849 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2850 addr + nrpages); 2851 } 2852 return 0; 2853 } 2854 2855 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2856 { 2857 struct f2fs_nm_info *nm_i = NM_I(sbi); 2858 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2859 struct f2fs_journal *journal = curseg->journal; 2860 int i; 2861 2862 down_write(&curseg->journal_rwsem); 2863 for (i = 0; i < nats_in_cursum(journal); i++) { 2864 struct nat_entry *ne; 2865 struct f2fs_nat_entry raw_ne; 2866 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2867 2868 if (f2fs_check_nid_range(sbi, nid)) 2869 continue; 2870 2871 raw_ne = nat_in_journal(journal, i); 2872 2873 ne = __lookup_nat_cache(nm_i, nid); 2874 if (!ne) { 2875 ne = __alloc_nat_entry(sbi, nid, true); 2876 __init_nat_entry(nm_i, ne, &raw_ne, true); 2877 } 2878 2879 /* 2880 * if a free nat in journal has not been used after last 2881 * checkpoint, we should remove it from available nids, 2882 * since later we will add it again. 2883 */ 2884 if (!get_nat_flag(ne, IS_DIRTY) && 2885 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2886 spin_lock(&nm_i->nid_list_lock); 2887 nm_i->available_nids--; 2888 spin_unlock(&nm_i->nid_list_lock); 2889 } 2890 2891 __set_nat_cache_dirty(nm_i, ne); 2892 } 2893 update_nats_in_cursum(journal, -i); 2894 up_write(&curseg->journal_rwsem); 2895 } 2896 2897 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2898 struct list_head *head, int max) 2899 { 2900 struct nat_entry_set *cur; 2901 2902 if (nes->entry_cnt >= max) 2903 goto add_out; 2904 2905 list_for_each_entry(cur, head, set_list) { 2906 if (cur->entry_cnt >= nes->entry_cnt) { 2907 list_add(&nes->set_list, cur->set_list.prev); 2908 return; 2909 } 2910 } 2911 add_out: 2912 list_add_tail(&nes->set_list, head); 2913 } 2914 2915 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs, 2916 unsigned int valid) 2917 { 2918 if (valid == 0) { 2919 __set_bit_le(nat_ofs, nm_i->empty_nat_bits); 2920 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2921 return; 2922 } 2923 2924 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits); 2925 if (valid == NAT_ENTRY_PER_BLOCK) 2926 __set_bit_le(nat_ofs, nm_i->full_nat_bits); 2927 else 2928 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2929 } 2930 2931 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2932 struct page *page) 2933 { 2934 struct f2fs_nm_info *nm_i = NM_I(sbi); 2935 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2936 struct f2fs_nat_block *nat_blk = page_address(page); 2937 int valid = 0; 2938 int i = 0; 2939 2940 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 2941 return; 2942 2943 if (nat_index == 0) { 2944 valid = 1; 2945 i = 1; 2946 } 2947 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2948 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2949 valid++; 2950 } 2951 2952 __update_nat_bits(nm_i, nat_index, valid); 2953 } 2954 2955 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi) 2956 { 2957 struct f2fs_nm_info *nm_i = NM_I(sbi); 2958 unsigned int nat_ofs; 2959 2960 f2fs_down_read(&nm_i->nat_tree_lock); 2961 2962 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) { 2963 unsigned int valid = 0, nid_ofs = 0; 2964 2965 /* handle nid zero due to it should never be used */ 2966 if (unlikely(nat_ofs == 0)) { 2967 valid = 1; 2968 nid_ofs = 1; 2969 } 2970 2971 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) { 2972 if (!test_bit_le(nid_ofs, 2973 nm_i->free_nid_bitmap[nat_ofs])) 2974 valid++; 2975 } 2976 2977 __update_nat_bits(nm_i, nat_ofs, valid); 2978 } 2979 2980 f2fs_up_read(&nm_i->nat_tree_lock); 2981 } 2982 2983 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2984 struct nat_entry_set *set, struct cp_control *cpc) 2985 { 2986 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2987 struct f2fs_journal *journal = curseg->journal; 2988 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2989 bool to_journal = true; 2990 struct f2fs_nat_block *nat_blk; 2991 struct nat_entry *ne, *cur; 2992 struct page *page = NULL; 2993 2994 /* 2995 * there are two steps to flush nat entries: 2996 * #1, flush nat entries to journal in current hot data summary block. 2997 * #2, flush nat entries to nat page. 2998 */ 2999 if ((cpc->reason & CP_UMOUNT) || 3000 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 3001 to_journal = false; 3002 3003 if (to_journal) { 3004 down_write(&curseg->journal_rwsem); 3005 } else { 3006 page = get_next_nat_page(sbi, start_nid); 3007 if (IS_ERR(page)) 3008 return PTR_ERR(page); 3009 3010 nat_blk = page_address(page); 3011 f2fs_bug_on(sbi, !nat_blk); 3012 } 3013 3014 /* flush dirty nats in nat entry set */ 3015 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 3016 struct f2fs_nat_entry *raw_ne; 3017 nid_t nid = nat_get_nid(ne); 3018 int offset; 3019 3020 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 3021 3022 if (to_journal) { 3023 offset = f2fs_lookup_journal_in_cursum(journal, 3024 NAT_JOURNAL, nid, 1); 3025 f2fs_bug_on(sbi, offset < 0); 3026 raw_ne = &nat_in_journal(journal, offset); 3027 nid_in_journal(journal, offset) = cpu_to_le32(nid); 3028 } else { 3029 raw_ne = &nat_blk->entries[nid - start_nid]; 3030 } 3031 raw_nat_from_node_info(raw_ne, &ne->ni); 3032 nat_reset_flag(ne); 3033 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 3034 if (nat_get_blkaddr(ne) == NULL_ADDR) { 3035 add_free_nid(sbi, nid, false, true); 3036 } else { 3037 spin_lock(&NM_I(sbi)->nid_list_lock); 3038 update_free_nid_bitmap(sbi, nid, false, false); 3039 spin_unlock(&NM_I(sbi)->nid_list_lock); 3040 } 3041 } 3042 3043 if (to_journal) { 3044 up_write(&curseg->journal_rwsem); 3045 } else { 3046 update_nat_bits(sbi, start_nid, page); 3047 f2fs_put_page(page, 1); 3048 } 3049 3050 /* Allow dirty nats by node block allocation in write_begin */ 3051 if (!set->entry_cnt) { 3052 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 3053 kmem_cache_free(nat_entry_set_slab, set); 3054 } 3055 return 0; 3056 } 3057 3058 /* 3059 * This function is called during the checkpointing process. 3060 */ 3061 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3062 { 3063 struct f2fs_nm_info *nm_i = NM_I(sbi); 3064 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3065 struct f2fs_journal *journal = curseg->journal; 3066 struct nat_entry_set *setvec[SETVEC_SIZE]; 3067 struct nat_entry_set *set, *tmp; 3068 unsigned int found; 3069 nid_t set_idx = 0; 3070 LIST_HEAD(sets); 3071 int err = 0; 3072 3073 /* 3074 * during unmount, let's flush nat_bits before checking 3075 * nat_cnt[DIRTY_NAT]. 3076 */ 3077 if (cpc->reason & CP_UMOUNT) { 3078 f2fs_down_write(&nm_i->nat_tree_lock); 3079 remove_nats_in_journal(sbi); 3080 f2fs_up_write(&nm_i->nat_tree_lock); 3081 } 3082 3083 if (!nm_i->nat_cnt[DIRTY_NAT]) 3084 return 0; 3085 3086 f2fs_down_write(&nm_i->nat_tree_lock); 3087 3088 /* 3089 * if there are no enough space in journal to store dirty nat 3090 * entries, remove all entries from journal and merge them 3091 * into nat entry set. 3092 */ 3093 if (cpc->reason & CP_UMOUNT || 3094 !__has_cursum_space(journal, 3095 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 3096 remove_nats_in_journal(sbi); 3097 3098 while ((found = __gang_lookup_nat_set(nm_i, 3099 set_idx, SETVEC_SIZE, setvec))) { 3100 unsigned idx; 3101 3102 set_idx = setvec[found - 1]->set + 1; 3103 for (idx = 0; idx < found; idx++) 3104 __adjust_nat_entry_set(setvec[idx], &sets, 3105 MAX_NAT_JENTRIES(journal)); 3106 } 3107 3108 /* flush dirty nats in nat entry set */ 3109 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3110 err = __flush_nat_entry_set(sbi, set, cpc); 3111 if (err) 3112 break; 3113 } 3114 3115 f2fs_up_write(&nm_i->nat_tree_lock); 3116 /* Allow dirty nats by node block allocation in write_begin */ 3117 3118 return err; 3119 } 3120 3121 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3122 { 3123 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3124 struct f2fs_nm_info *nm_i = NM_I(sbi); 3125 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3126 unsigned int i; 3127 __u64 cp_ver = cur_cp_version(ckpt); 3128 block_t nat_bits_addr; 3129 3130 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3131 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3132 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3133 if (!nm_i->nat_bits) 3134 return -ENOMEM; 3135 3136 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3137 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3138 3139 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3140 return 0; 3141 3142 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 3143 nm_i->nat_bits_blocks; 3144 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3145 struct page *page; 3146 3147 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3148 if (IS_ERR(page)) 3149 return PTR_ERR(page); 3150 3151 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3152 page_address(page), F2FS_BLKSIZE); 3153 f2fs_put_page(page, 1); 3154 } 3155 3156 cp_ver |= (cur_cp_crc(ckpt) << 32); 3157 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3158 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 3159 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)", 3160 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits)); 3161 return 0; 3162 } 3163 3164 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3165 return 0; 3166 } 3167 3168 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3169 { 3170 struct f2fs_nm_info *nm_i = NM_I(sbi); 3171 unsigned int i = 0; 3172 nid_t nid, last_nid; 3173 3174 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3175 return; 3176 3177 for (i = 0; i < nm_i->nat_blocks; i++) { 3178 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3179 if (i >= nm_i->nat_blocks) 3180 break; 3181 3182 __set_bit_le(i, nm_i->nat_block_bitmap); 3183 3184 nid = i * NAT_ENTRY_PER_BLOCK; 3185 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3186 3187 spin_lock(&NM_I(sbi)->nid_list_lock); 3188 for (; nid < last_nid; nid++) 3189 update_free_nid_bitmap(sbi, nid, true, true); 3190 spin_unlock(&NM_I(sbi)->nid_list_lock); 3191 } 3192 3193 for (i = 0; i < nm_i->nat_blocks; i++) { 3194 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3195 if (i >= nm_i->nat_blocks) 3196 break; 3197 3198 __set_bit_le(i, nm_i->nat_block_bitmap); 3199 } 3200 } 3201 3202 static int init_node_manager(struct f2fs_sb_info *sbi) 3203 { 3204 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3205 struct f2fs_nm_info *nm_i = NM_I(sbi); 3206 unsigned char *version_bitmap; 3207 unsigned int nat_segs; 3208 int err; 3209 3210 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3211 3212 /* segment_count_nat includes pair segment so divide to 2. */ 3213 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3214 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3215 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3216 3217 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3218 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3219 F2FS_RESERVED_NODE_NUM; 3220 nm_i->nid_cnt[FREE_NID] = 0; 3221 nm_i->nid_cnt[PREALLOC_NID] = 0; 3222 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3223 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3224 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3225 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; 3226 3227 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3228 INIT_LIST_HEAD(&nm_i->free_nid_list); 3229 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3230 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3231 INIT_LIST_HEAD(&nm_i->nat_entries); 3232 spin_lock_init(&nm_i->nat_list_lock); 3233 3234 mutex_init(&nm_i->build_lock); 3235 spin_lock_init(&nm_i->nid_list_lock); 3236 init_f2fs_rwsem(&nm_i->nat_tree_lock); 3237 3238 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3239 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3240 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3241 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3242 GFP_KERNEL); 3243 if (!nm_i->nat_bitmap) 3244 return -ENOMEM; 3245 3246 err = __get_nat_bitmaps(sbi); 3247 if (err) 3248 return err; 3249 3250 #ifdef CONFIG_F2FS_CHECK_FS 3251 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3252 GFP_KERNEL); 3253 if (!nm_i->nat_bitmap_mir) 3254 return -ENOMEM; 3255 #endif 3256 3257 return 0; 3258 } 3259 3260 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3261 { 3262 struct f2fs_nm_info *nm_i = NM_I(sbi); 3263 int i; 3264 3265 nm_i->free_nid_bitmap = 3266 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3267 nm_i->nat_blocks), 3268 GFP_KERNEL); 3269 if (!nm_i->free_nid_bitmap) 3270 return -ENOMEM; 3271 3272 for (i = 0; i < nm_i->nat_blocks; i++) { 3273 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3274 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3275 if (!nm_i->free_nid_bitmap[i]) 3276 return -ENOMEM; 3277 } 3278 3279 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3280 GFP_KERNEL); 3281 if (!nm_i->nat_block_bitmap) 3282 return -ENOMEM; 3283 3284 nm_i->free_nid_count = 3285 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3286 nm_i->nat_blocks), 3287 GFP_KERNEL); 3288 if (!nm_i->free_nid_count) 3289 return -ENOMEM; 3290 return 0; 3291 } 3292 3293 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3294 { 3295 int err; 3296 3297 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3298 GFP_KERNEL); 3299 if (!sbi->nm_info) 3300 return -ENOMEM; 3301 3302 err = init_node_manager(sbi); 3303 if (err) 3304 return err; 3305 3306 err = init_free_nid_cache(sbi); 3307 if (err) 3308 return err; 3309 3310 /* load free nid status from nat_bits table */ 3311 load_free_nid_bitmap(sbi); 3312 3313 return f2fs_build_free_nids(sbi, true, true); 3314 } 3315 3316 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3317 { 3318 struct f2fs_nm_info *nm_i = NM_I(sbi); 3319 struct free_nid *i, *next_i; 3320 struct nat_entry *natvec[NATVEC_SIZE]; 3321 struct nat_entry_set *setvec[SETVEC_SIZE]; 3322 nid_t nid = 0; 3323 unsigned int found; 3324 3325 if (!nm_i) 3326 return; 3327 3328 /* destroy free nid list */ 3329 spin_lock(&nm_i->nid_list_lock); 3330 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3331 __remove_free_nid(sbi, i, FREE_NID); 3332 spin_unlock(&nm_i->nid_list_lock); 3333 kmem_cache_free(free_nid_slab, i); 3334 spin_lock(&nm_i->nid_list_lock); 3335 } 3336 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3337 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3338 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3339 spin_unlock(&nm_i->nid_list_lock); 3340 3341 /* destroy nat cache */ 3342 f2fs_down_write(&nm_i->nat_tree_lock); 3343 while ((found = __gang_lookup_nat_cache(nm_i, 3344 nid, NATVEC_SIZE, natvec))) { 3345 unsigned idx; 3346 3347 nid = nat_get_nid(natvec[found - 1]) + 1; 3348 for (idx = 0; idx < found; idx++) { 3349 spin_lock(&nm_i->nat_list_lock); 3350 list_del(&natvec[idx]->list); 3351 spin_unlock(&nm_i->nat_list_lock); 3352 3353 __del_from_nat_cache(nm_i, natvec[idx]); 3354 } 3355 } 3356 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3357 3358 /* destroy nat set cache */ 3359 nid = 0; 3360 while ((found = __gang_lookup_nat_set(nm_i, 3361 nid, SETVEC_SIZE, setvec))) { 3362 unsigned idx; 3363 3364 nid = setvec[found - 1]->set + 1; 3365 for (idx = 0; idx < found; idx++) { 3366 /* entry_cnt is not zero, when cp_error was occurred */ 3367 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3368 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3369 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3370 } 3371 } 3372 f2fs_up_write(&nm_i->nat_tree_lock); 3373 3374 kvfree(nm_i->nat_block_bitmap); 3375 if (nm_i->free_nid_bitmap) { 3376 int i; 3377 3378 for (i = 0; i < nm_i->nat_blocks; i++) 3379 kvfree(nm_i->free_nid_bitmap[i]); 3380 kvfree(nm_i->free_nid_bitmap); 3381 } 3382 kvfree(nm_i->free_nid_count); 3383 3384 kvfree(nm_i->nat_bitmap); 3385 kvfree(nm_i->nat_bits); 3386 #ifdef CONFIG_F2FS_CHECK_FS 3387 kvfree(nm_i->nat_bitmap_mir); 3388 #endif 3389 sbi->nm_info = NULL; 3390 kfree(nm_i); 3391 } 3392 3393 int __init f2fs_create_node_manager_caches(void) 3394 { 3395 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3396 sizeof(struct nat_entry)); 3397 if (!nat_entry_slab) 3398 goto fail; 3399 3400 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3401 sizeof(struct free_nid)); 3402 if (!free_nid_slab) 3403 goto destroy_nat_entry; 3404 3405 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3406 sizeof(struct nat_entry_set)); 3407 if (!nat_entry_set_slab) 3408 goto destroy_free_nid; 3409 3410 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3411 sizeof(struct fsync_node_entry)); 3412 if (!fsync_node_entry_slab) 3413 goto destroy_nat_entry_set; 3414 return 0; 3415 3416 destroy_nat_entry_set: 3417 kmem_cache_destroy(nat_entry_set_slab); 3418 destroy_free_nid: 3419 kmem_cache_destroy(free_nid_slab); 3420 destroy_nat_entry: 3421 kmem_cache_destroy(nat_entry_slab); 3422 fail: 3423 return -ENOMEM; 3424 } 3425 3426 void f2fs_destroy_node_manager_caches(void) 3427 { 3428 kmem_cache_destroy(fsync_node_entry_slab); 3429 kmem_cache_destroy(nat_entry_set_slab); 3430 kmem_cache_destroy(free_nid_slab); 3431 kmem_cache_destroy(nat_entry_slab); 3432 } 3433