1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/sched/mm.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "iostat.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); 40 return -EFSCORRUPTED; 41 } 42 return 0; 43 } 44 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 46 { 47 struct f2fs_nm_info *nm_i = NM_I(sbi); 48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 49 struct sysinfo val; 50 unsigned long avail_ram; 51 unsigned long mem_size = 0; 52 bool res = false; 53 54 if (!nm_i) 55 return true; 56 57 si_meminfo(&val); 58 59 /* only uses low memory */ 60 avail_ram = val.totalram - val.totalhigh; 61 62 /* 63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively 64 */ 65 if (type == FREE_NIDS) { 66 mem_size = (nm_i->nid_cnt[FREE_NID] * 67 sizeof(struct free_nid)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 69 } else if (type == NAT_ENTRIES) { 70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 71 sizeof(struct nat_entry)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 73 if (excess_cached_nats(sbi)) 74 res = false; 75 } else if (type == DIRTY_DENTS) { 76 if (sbi->sb->s_bdi->wb.dirty_exceeded) 77 return false; 78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 80 } else if (type == INO_ENTRIES) { 81 int i; 82 83 for (i = 0; i < MAX_INO_ENTRY; i++) 84 mem_size += sbi->im[i].ino_num * 85 sizeof(struct ino_entry); 86 mem_size >>= PAGE_SHIFT; 87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) { 89 enum extent_type etype = type == READ_EXTENT_CACHE ? 90 EX_READ : EX_BLOCK_AGE; 91 struct extent_tree_info *eti = &sbi->extent_tree[etype]; 92 93 mem_size = (atomic_read(&eti->total_ext_tree) * 94 sizeof(struct extent_tree) + 95 atomic_read(&eti->total_ext_node) * 96 sizeof(struct extent_node)) >> PAGE_SHIFT; 97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 98 } else if (type == DISCARD_CACHE) { 99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) * 100 sizeof(struct discard_cmd)) >> PAGE_SHIFT; 101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100); 102 } else if (type == COMPRESS_PAGE) { 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 unsigned long free_ram = val.freeram; 105 106 /* 107 * free memory is lower than watermark or cached page count 108 * exceed threshold, deny caching compress page. 109 */ 110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) && 111 (COMPRESS_MAPPING(sbi)->nrpages < 112 free_ram * sbi->compress_percent / 100); 113 #else 114 res = false; 115 #endif 116 } else { 117 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 118 return true; 119 } 120 return res; 121 } 122 123 static void clear_node_page_dirty(struct page *page) 124 { 125 if (PageDirty(page)) { 126 f2fs_clear_page_cache_dirty_tag(page); 127 clear_page_dirty_for_io(page); 128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 129 } 130 ClearPageUptodate(page); 131 } 132 133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 134 { 135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 136 } 137 138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 139 { 140 struct page *src_page; 141 struct page *dst_page; 142 pgoff_t dst_off; 143 void *src_addr; 144 void *dst_addr; 145 struct f2fs_nm_info *nm_i = NM_I(sbi); 146 147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 148 149 /* get current nat block page with lock */ 150 src_page = get_current_nat_page(sbi, nid); 151 if (IS_ERR(src_page)) 152 return src_page; 153 dst_page = f2fs_grab_meta_page(sbi, dst_off); 154 f2fs_bug_on(sbi, PageDirty(src_page)); 155 156 src_addr = page_address(src_page); 157 dst_addr = page_address(dst_page); 158 memcpy(dst_addr, src_addr, PAGE_SIZE); 159 set_page_dirty(dst_page); 160 f2fs_put_page(src_page, 1); 161 162 set_to_next_nat(nm_i, nid); 163 164 return dst_page; 165 } 166 167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, 168 nid_t nid, bool no_fail) 169 { 170 struct nat_entry *new; 171 172 new = f2fs_kmem_cache_alloc(nat_entry_slab, 173 GFP_F2FS_ZERO, no_fail, sbi); 174 if (new) { 175 nat_set_nid(new, nid); 176 nat_reset_flag(new); 177 } 178 return new; 179 } 180 181 static void __free_nat_entry(struct nat_entry *e) 182 { 183 kmem_cache_free(nat_entry_slab, e); 184 } 185 186 /* must be locked by nat_tree_lock */ 187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 189 { 190 if (no_fail) 191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 193 return NULL; 194 195 if (raw_ne) 196 node_info_from_raw_nat(&ne->ni, raw_ne); 197 198 spin_lock(&nm_i->nat_list_lock); 199 list_add_tail(&ne->list, &nm_i->nat_entries); 200 spin_unlock(&nm_i->nat_list_lock); 201 202 nm_i->nat_cnt[TOTAL_NAT]++; 203 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 204 return ne; 205 } 206 207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 208 { 209 struct nat_entry *ne; 210 211 ne = radix_tree_lookup(&nm_i->nat_root, n); 212 213 /* for recent accessed nat entry, move it to tail of lru list */ 214 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 215 spin_lock(&nm_i->nat_list_lock); 216 if (!list_empty(&ne->list)) 217 list_move_tail(&ne->list, &nm_i->nat_entries); 218 spin_unlock(&nm_i->nat_list_lock); 219 } 220 221 return ne; 222 } 223 224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 225 nid_t start, unsigned int nr, struct nat_entry **ep) 226 { 227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 228 } 229 230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 231 { 232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 233 nm_i->nat_cnt[TOTAL_NAT]--; 234 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 235 __free_nat_entry(e); 236 } 237 238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 239 struct nat_entry *ne) 240 { 241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 242 struct nat_entry_set *head; 243 244 head = radix_tree_lookup(&nm_i->nat_set_root, set); 245 if (!head) { 246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, 247 GFP_NOFS, true, NULL); 248 249 INIT_LIST_HEAD(&head->entry_list); 250 INIT_LIST_HEAD(&head->set_list); 251 head->set = set; 252 head->entry_cnt = 0; 253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 254 } 255 return head; 256 } 257 258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 259 struct nat_entry *ne) 260 { 261 struct nat_entry_set *head; 262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 263 264 if (!new_ne) 265 head = __grab_nat_entry_set(nm_i, ne); 266 267 /* 268 * update entry_cnt in below condition: 269 * 1. update NEW_ADDR to valid block address; 270 * 2. update old block address to new one; 271 */ 272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 273 !get_nat_flag(ne, IS_DIRTY))) 274 head->entry_cnt++; 275 276 set_nat_flag(ne, IS_PREALLOC, new_ne); 277 278 if (get_nat_flag(ne, IS_DIRTY)) 279 goto refresh_list; 280 281 nm_i->nat_cnt[DIRTY_NAT]++; 282 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 283 set_nat_flag(ne, IS_DIRTY, true); 284 refresh_list: 285 spin_lock(&nm_i->nat_list_lock); 286 if (new_ne) 287 list_del_init(&ne->list); 288 else 289 list_move_tail(&ne->list, &head->entry_list); 290 spin_unlock(&nm_i->nat_list_lock); 291 } 292 293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 294 struct nat_entry_set *set, struct nat_entry *ne) 295 { 296 spin_lock(&nm_i->nat_list_lock); 297 list_move_tail(&ne->list, &nm_i->nat_entries); 298 spin_unlock(&nm_i->nat_list_lock); 299 300 set_nat_flag(ne, IS_DIRTY, false); 301 set->entry_cnt--; 302 nm_i->nat_cnt[DIRTY_NAT]--; 303 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 304 } 305 306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 307 nid_t start, unsigned int nr, struct nat_entry_set **ep) 308 { 309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 310 start, nr); 311 } 312 313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 314 { 315 return NODE_MAPPING(sbi) == page->mapping && 316 IS_DNODE(page) && is_cold_node(page); 317 } 318 319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 320 { 321 spin_lock_init(&sbi->fsync_node_lock); 322 INIT_LIST_HEAD(&sbi->fsync_node_list); 323 sbi->fsync_seg_id = 0; 324 sbi->fsync_node_num = 0; 325 } 326 327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 328 struct page *page) 329 { 330 struct fsync_node_entry *fn; 331 unsigned long flags; 332 unsigned int seq_id; 333 334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, 335 GFP_NOFS, true, NULL); 336 337 get_page(page); 338 fn->page = page; 339 INIT_LIST_HEAD(&fn->list); 340 341 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 342 list_add_tail(&fn->list, &sbi->fsync_node_list); 343 fn->seq_id = sbi->fsync_seg_id++; 344 seq_id = fn->seq_id; 345 sbi->fsync_node_num++; 346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 347 348 return seq_id; 349 } 350 351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 352 { 353 struct fsync_node_entry *fn; 354 unsigned long flags; 355 356 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 357 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 358 if (fn->page == page) { 359 list_del(&fn->list); 360 sbi->fsync_node_num--; 361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 362 kmem_cache_free(fsync_node_entry_slab, fn); 363 put_page(page); 364 return; 365 } 366 } 367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 368 f2fs_bug_on(sbi, 1); 369 } 370 371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 372 { 373 unsigned long flags; 374 375 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 376 sbi->fsync_seg_id = 0; 377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 378 } 379 380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 381 { 382 struct f2fs_nm_info *nm_i = NM_I(sbi); 383 struct nat_entry *e; 384 bool need = false; 385 386 f2fs_down_read(&nm_i->nat_tree_lock); 387 e = __lookup_nat_cache(nm_i, nid); 388 if (e) { 389 if (!get_nat_flag(e, IS_CHECKPOINTED) && 390 !get_nat_flag(e, HAS_FSYNCED_INODE)) 391 need = true; 392 } 393 f2fs_up_read(&nm_i->nat_tree_lock); 394 return need; 395 } 396 397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 398 { 399 struct f2fs_nm_info *nm_i = NM_I(sbi); 400 struct nat_entry *e; 401 bool is_cp = true; 402 403 f2fs_down_read(&nm_i->nat_tree_lock); 404 e = __lookup_nat_cache(nm_i, nid); 405 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 406 is_cp = false; 407 f2fs_up_read(&nm_i->nat_tree_lock); 408 return is_cp; 409 } 410 411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 412 { 413 struct f2fs_nm_info *nm_i = NM_I(sbi); 414 struct nat_entry *e; 415 bool need_update = true; 416 417 f2fs_down_read(&nm_i->nat_tree_lock); 418 e = __lookup_nat_cache(nm_i, ino); 419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 420 (get_nat_flag(e, IS_CHECKPOINTED) || 421 get_nat_flag(e, HAS_FSYNCED_INODE))) 422 need_update = false; 423 f2fs_up_read(&nm_i->nat_tree_lock); 424 return need_update; 425 } 426 427 /* must be locked by nat_tree_lock */ 428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 429 struct f2fs_nat_entry *ne) 430 { 431 struct f2fs_nm_info *nm_i = NM_I(sbi); 432 struct nat_entry *new, *e; 433 434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ 435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) 436 return; 437 438 new = __alloc_nat_entry(sbi, nid, false); 439 if (!new) 440 return; 441 442 f2fs_down_write(&nm_i->nat_tree_lock); 443 e = __lookup_nat_cache(nm_i, nid); 444 if (!e) 445 e = __init_nat_entry(nm_i, new, ne, false); 446 else 447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 448 nat_get_blkaddr(e) != 449 le32_to_cpu(ne->block_addr) || 450 nat_get_version(e) != ne->version); 451 f2fs_up_write(&nm_i->nat_tree_lock); 452 if (e != new) 453 __free_nat_entry(new); 454 } 455 456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 457 block_t new_blkaddr, bool fsync_done) 458 { 459 struct f2fs_nm_info *nm_i = NM_I(sbi); 460 struct nat_entry *e; 461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); 462 463 f2fs_down_write(&nm_i->nat_tree_lock); 464 e = __lookup_nat_cache(nm_i, ni->nid); 465 if (!e) { 466 e = __init_nat_entry(nm_i, new, NULL, true); 467 copy_node_info(&e->ni, ni); 468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 469 } else if (new_blkaddr == NEW_ADDR) { 470 /* 471 * when nid is reallocated, 472 * previous nat entry can be remained in nat cache. 473 * So, reinitialize it with new information. 474 */ 475 copy_node_info(&e->ni, ni); 476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 477 } 478 /* let's free early to reduce memory consumption */ 479 if (e != new) 480 __free_nat_entry(new); 481 482 /* sanity check */ 483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 485 new_blkaddr == NULL_ADDR); 486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 487 new_blkaddr == NEW_ADDR); 488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 489 new_blkaddr == NEW_ADDR); 490 491 /* increment version no as node is removed */ 492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 493 unsigned char version = nat_get_version(e); 494 495 nat_set_version(e, inc_node_version(version)); 496 } 497 498 /* change address */ 499 nat_set_blkaddr(e, new_blkaddr); 500 if (!__is_valid_data_blkaddr(new_blkaddr)) 501 set_nat_flag(e, IS_CHECKPOINTED, false); 502 __set_nat_cache_dirty(nm_i, e); 503 504 /* update fsync_mark if its inode nat entry is still alive */ 505 if (ni->nid != ni->ino) 506 e = __lookup_nat_cache(nm_i, ni->ino); 507 if (e) { 508 if (fsync_done && ni->nid == ni->ino) 509 set_nat_flag(e, HAS_FSYNCED_INODE, true); 510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 511 } 512 f2fs_up_write(&nm_i->nat_tree_lock); 513 } 514 515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 516 { 517 struct f2fs_nm_info *nm_i = NM_I(sbi); 518 int nr = nr_shrink; 519 520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) 521 return 0; 522 523 spin_lock(&nm_i->nat_list_lock); 524 while (nr_shrink) { 525 struct nat_entry *ne; 526 527 if (list_empty(&nm_i->nat_entries)) 528 break; 529 530 ne = list_first_entry(&nm_i->nat_entries, 531 struct nat_entry, list); 532 list_del(&ne->list); 533 spin_unlock(&nm_i->nat_list_lock); 534 535 __del_from_nat_cache(nm_i, ne); 536 nr_shrink--; 537 538 spin_lock(&nm_i->nat_list_lock); 539 } 540 spin_unlock(&nm_i->nat_list_lock); 541 542 f2fs_up_write(&nm_i->nat_tree_lock); 543 return nr - nr_shrink; 544 } 545 546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 547 struct node_info *ni, bool checkpoint_context) 548 { 549 struct f2fs_nm_info *nm_i = NM_I(sbi); 550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 551 struct f2fs_journal *journal = curseg->journal; 552 nid_t start_nid = START_NID(nid); 553 struct f2fs_nat_block *nat_blk; 554 struct page *page = NULL; 555 struct f2fs_nat_entry ne; 556 struct nat_entry *e; 557 pgoff_t index; 558 block_t blkaddr; 559 int i; 560 561 ni->nid = nid; 562 retry: 563 /* Check nat cache */ 564 f2fs_down_read(&nm_i->nat_tree_lock); 565 e = __lookup_nat_cache(nm_i, nid); 566 if (e) { 567 ni->ino = nat_get_ino(e); 568 ni->blk_addr = nat_get_blkaddr(e); 569 ni->version = nat_get_version(e); 570 f2fs_up_read(&nm_i->nat_tree_lock); 571 return 0; 572 } 573 574 /* 575 * Check current segment summary by trying to grab journal_rwsem first. 576 * This sem is on the critical path on the checkpoint requiring the above 577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here 578 * while not bothering checkpoint. 579 */ 580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { 581 down_read(&curseg->journal_rwsem); 582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || 583 !down_read_trylock(&curseg->journal_rwsem)) { 584 f2fs_up_read(&nm_i->nat_tree_lock); 585 goto retry; 586 } 587 588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 589 if (i >= 0) { 590 ne = nat_in_journal(journal, i); 591 node_info_from_raw_nat(ni, &ne); 592 } 593 up_read(&curseg->journal_rwsem); 594 if (i >= 0) { 595 f2fs_up_read(&nm_i->nat_tree_lock); 596 goto cache; 597 } 598 599 /* Fill node_info from nat page */ 600 index = current_nat_addr(sbi, nid); 601 f2fs_up_read(&nm_i->nat_tree_lock); 602 603 page = f2fs_get_meta_page(sbi, index); 604 if (IS_ERR(page)) 605 return PTR_ERR(page); 606 607 nat_blk = (struct f2fs_nat_block *)page_address(page); 608 ne = nat_blk->entries[nid - start_nid]; 609 node_info_from_raw_nat(ni, &ne); 610 f2fs_put_page(page, 1); 611 cache: 612 blkaddr = le32_to_cpu(ne.block_addr); 613 if (__is_valid_data_blkaddr(blkaddr) && 614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 615 return -EFAULT; 616 617 /* cache nat entry */ 618 cache_nat_entry(sbi, nid, &ne); 619 return 0; 620 } 621 622 /* 623 * readahead MAX_RA_NODE number of node pages. 624 */ 625 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 626 { 627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 628 struct blk_plug plug; 629 int i, end; 630 nid_t nid; 631 632 blk_start_plug(&plug); 633 634 /* Then, try readahead for siblings of the desired node */ 635 end = start + n; 636 end = min(end, (int)NIDS_PER_BLOCK); 637 for (i = start; i < end; i++) { 638 nid = get_nid(parent, i, false); 639 f2fs_ra_node_page(sbi, nid); 640 } 641 642 blk_finish_plug(&plug); 643 } 644 645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 646 { 647 const long direct_index = ADDRS_PER_INODE(dn->inode); 648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 651 int cur_level = dn->cur_level; 652 int max_level = dn->max_level; 653 pgoff_t base = 0; 654 655 if (!dn->max_level) 656 return pgofs + 1; 657 658 while (max_level-- > cur_level) 659 skipped_unit *= NIDS_PER_BLOCK; 660 661 switch (dn->max_level) { 662 case 3: 663 base += 2 * indirect_blks; 664 fallthrough; 665 case 2: 666 base += 2 * direct_blks; 667 fallthrough; 668 case 1: 669 base += direct_index; 670 break; 671 default: 672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 673 } 674 675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 676 } 677 678 /* 679 * The maximum depth is four. 680 * Offset[0] will have raw inode offset. 681 */ 682 static int get_node_path(struct inode *inode, long block, 683 int offset[4], unsigned int noffset[4]) 684 { 685 const long direct_index = ADDRS_PER_INODE(inode); 686 const long direct_blks = ADDRS_PER_BLOCK(inode); 687 const long dptrs_per_blk = NIDS_PER_BLOCK; 688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 690 int n = 0; 691 int level = 0; 692 693 noffset[0] = 0; 694 695 if (block < direct_index) { 696 offset[n] = block; 697 goto got; 698 } 699 block -= direct_index; 700 if (block < direct_blks) { 701 offset[n++] = NODE_DIR1_BLOCK; 702 noffset[n] = 1; 703 offset[n] = block; 704 level = 1; 705 goto got; 706 } 707 block -= direct_blks; 708 if (block < direct_blks) { 709 offset[n++] = NODE_DIR2_BLOCK; 710 noffset[n] = 2; 711 offset[n] = block; 712 level = 1; 713 goto got; 714 } 715 block -= direct_blks; 716 if (block < indirect_blks) { 717 offset[n++] = NODE_IND1_BLOCK; 718 noffset[n] = 3; 719 offset[n++] = block / direct_blks; 720 noffset[n] = 4 + offset[n - 1]; 721 offset[n] = block % direct_blks; 722 level = 2; 723 goto got; 724 } 725 block -= indirect_blks; 726 if (block < indirect_blks) { 727 offset[n++] = NODE_IND2_BLOCK; 728 noffset[n] = 4 + dptrs_per_blk; 729 offset[n++] = block / direct_blks; 730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 731 offset[n] = block % direct_blks; 732 level = 2; 733 goto got; 734 } 735 block -= indirect_blks; 736 if (block < dindirect_blks) { 737 offset[n++] = NODE_DIND_BLOCK; 738 noffset[n] = 5 + (dptrs_per_blk * 2); 739 offset[n++] = block / indirect_blks; 740 noffset[n] = 6 + (dptrs_per_blk * 2) + 741 offset[n - 1] * (dptrs_per_blk + 1); 742 offset[n++] = (block / direct_blks) % dptrs_per_blk; 743 noffset[n] = 7 + (dptrs_per_blk * 2) + 744 offset[n - 2] * (dptrs_per_blk + 1) + 745 offset[n - 1]; 746 offset[n] = block % direct_blks; 747 level = 3; 748 goto got; 749 } else { 750 return -E2BIG; 751 } 752 got: 753 return level; 754 } 755 756 /* 757 * Caller should call f2fs_put_dnode(dn). 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 760 */ 761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 762 { 763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 764 struct page *npage[4]; 765 struct page *parent = NULL; 766 int offset[4]; 767 unsigned int noffset[4]; 768 nid_t nids[4]; 769 int level, i = 0; 770 int err = 0; 771 772 level = get_node_path(dn->inode, index, offset, noffset); 773 if (level < 0) 774 return level; 775 776 nids[0] = dn->inode->i_ino; 777 npage[0] = dn->inode_page; 778 779 if (!npage[0]) { 780 npage[0] = f2fs_get_node_page(sbi, nids[0]); 781 if (IS_ERR(npage[0])) 782 return PTR_ERR(npage[0]); 783 } 784 785 /* if inline_data is set, should not report any block indices */ 786 if (f2fs_has_inline_data(dn->inode) && index) { 787 err = -ENOENT; 788 f2fs_put_page(npage[0], 1); 789 goto release_out; 790 } 791 792 parent = npage[0]; 793 if (level != 0) 794 nids[1] = get_nid(parent, offset[0], true); 795 dn->inode_page = npage[0]; 796 dn->inode_page_locked = true; 797 798 /* get indirect or direct nodes */ 799 for (i = 1; i <= level; i++) { 800 bool done = false; 801 802 if (!nids[i] && mode == ALLOC_NODE) { 803 /* alloc new node */ 804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 805 err = -ENOSPC; 806 goto release_pages; 807 } 808 809 dn->nid = nids[i]; 810 npage[i] = f2fs_new_node_page(dn, noffset[i]); 811 if (IS_ERR(npage[i])) { 812 f2fs_alloc_nid_failed(sbi, nids[i]); 813 err = PTR_ERR(npage[i]); 814 goto release_pages; 815 } 816 817 set_nid(parent, offset[i - 1], nids[i], i == 1); 818 f2fs_alloc_nid_done(sbi, nids[i]); 819 done = true; 820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 822 if (IS_ERR(npage[i])) { 823 err = PTR_ERR(npage[i]); 824 goto release_pages; 825 } 826 done = true; 827 } 828 if (i == 1) { 829 dn->inode_page_locked = false; 830 unlock_page(parent); 831 } else { 832 f2fs_put_page(parent, 1); 833 } 834 835 if (!done) { 836 npage[i] = f2fs_get_node_page(sbi, nids[i]); 837 if (IS_ERR(npage[i])) { 838 err = PTR_ERR(npage[i]); 839 f2fs_put_page(npage[0], 0); 840 goto release_out; 841 } 842 } 843 if (i < level) { 844 parent = npage[i]; 845 nids[i + 1] = get_nid(parent, offset[i], false); 846 } 847 } 848 dn->nid = nids[level]; 849 dn->ofs_in_node = offset[level]; 850 dn->node_page = npage[level]; 851 dn->data_blkaddr = f2fs_data_blkaddr(dn); 852 853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && 854 f2fs_sb_has_readonly(sbi)) { 855 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn); 856 block_t blkaddr; 857 858 if (!c_len) 859 goto out; 860 861 blkaddr = f2fs_data_blkaddr(dn); 862 if (blkaddr == COMPRESS_ADDR) 863 blkaddr = data_blkaddr(dn->inode, dn->node_page, 864 dn->ofs_in_node + 1); 865 866 f2fs_update_read_extent_tree_range_compressed(dn->inode, 867 index, blkaddr, 868 F2FS_I(dn->inode)->i_cluster_size, 869 c_len); 870 } 871 out: 872 return 0; 873 874 release_pages: 875 f2fs_put_page(parent, 1); 876 if (i > 1) 877 f2fs_put_page(npage[0], 0); 878 release_out: 879 dn->inode_page = NULL; 880 dn->node_page = NULL; 881 if (err == -ENOENT) { 882 dn->cur_level = i; 883 dn->max_level = level; 884 dn->ofs_in_node = offset[level]; 885 } 886 return err; 887 } 888 889 static int truncate_node(struct dnode_of_data *dn) 890 { 891 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 892 struct node_info ni; 893 int err; 894 pgoff_t index; 895 896 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 897 if (err) 898 return err; 899 900 /* Deallocate node address */ 901 f2fs_invalidate_blocks(sbi, ni.blk_addr); 902 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 903 set_node_addr(sbi, &ni, NULL_ADDR, false); 904 905 if (dn->nid == dn->inode->i_ino) { 906 f2fs_remove_orphan_inode(sbi, dn->nid); 907 dec_valid_inode_count(sbi); 908 f2fs_inode_synced(dn->inode); 909 } 910 911 clear_node_page_dirty(dn->node_page); 912 set_sbi_flag(sbi, SBI_IS_DIRTY); 913 914 index = dn->node_page->index; 915 f2fs_put_page(dn->node_page, 1); 916 917 invalidate_mapping_pages(NODE_MAPPING(sbi), 918 index, index); 919 920 dn->node_page = NULL; 921 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 922 923 return 0; 924 } 925 926 static int truncate_dnode(struct dnode_of_data *dn) 927 { 928 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 929 struct page *page; 930 int err; 931 932 if (dn->nid == 0) 933 return 1; 934 935 /* get direct node */ 936 page = f2fs_get_node_page(sbi, dn->nid); 937 if (PTR_ERR(page) == -ENOENT) 938 return 1; 939 else if (IS_ERR(page)) 940 return PTR_ERR(page); 941 942 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) { 943 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u", 944 dn->inode->i_ino, dn->nid, ino_of_node(page)); 945 set_sbi_flag(sbi, SBI_NEED_FSCK); 946 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE); 947 f2fs_put_page(page, 1); 948 return -EFSCORRUPTED; 949 } 950 951 /* Make dnode_of_data for parameter */ 952 dn->node_page = page; 953 dn->ofs_in_node = 0; 954 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 955 err = truncate_node(dn); 956 if (err) { 957 f2fs_put_page(page, 1); 958 return err; 959 } 960 961 return 1; 962 } 963 964 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 965 int ofs, int depth) 966 { 967 struct dnode_of_data rdn = *dn; 968 struct page *page; 969 struct f2fs_node *rn; 970 nid_t child_nid; 971 unsigned int child_nofs; 972 int freed = 0; 973 int i, ret; 974 975 if (dn->nid == 0) 976 return NIDS_PER_BLOCK + 1; 977 978 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 979 980 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 981 if (IS_ERR(page)) { 982 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 983 return PTR_ERR(page); 984 } 985 986 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 987 988 rn = F2FS_NODE(page); 989 if (depth < 3) { 990 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 991 child_nid = le32_to_cpu(rn->in.nid[i]); 992 if (child_nid == 0) 993 continue; 994 rdn.nid = child_nid; 995 ret = truncate_dnode(&rdn); 996 if (ret < 0) 997 goto out_err; 998 if (set_nid(page, i, 0, false)) 999 dn->node_changed = true; 1000 } 1001 } else { 1002 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 1003 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 1004 child_nid = le32_to_cpu(rn->in.nid[i]); 1005 if (child_nid == 0) { 1006 child_nofs += NIDS_PER_BLOCK + 1; 1007 continue; 1008 } 1009 rdn.nid = child_nid; 1010 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 1011 if (ret == (NIDS_PER_BLOCK + 1)) { 1012 if (set_nid(page, i, 0, false)) 1013 dn->node_changed = true; 1014 child_nofs += ret; 1015 } else if (ret < 0 && ret != -ENOENT) { 1016 goto out_err; 1017 } 1018 } 1019 freed = child_nofs; 1020 } 1021 1022 if (!ofs) { 1023 /* remove current indirect node */ 1024 dn->node_page = page; 1025 ret = truncate_node(dn); 1026 if (ret) 1027 goto out_err; 1028 freed++; 1029 } else { 1030 f2fs_put_page(page, 1); 1031 } 1032 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 1033 return freed; 1034 1035 out_err: 1036 f2fs_put_page(page, 1); 1037 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 1038 return ret; 1039 } 1040 1041 static int truncate_partial_nodes(struct dnode_of_data *dn, 1042 struct f2fs_inode *ri, int *offset, int depth) 1043 { 1044 struct page *pages[2]; 1045 nid_t nid[3]; 1046 nid_t child_nid; 1047 int err = 0; 1048 int i; 1049 int idx = depth - 2; 1050 1051 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1052 if (!nid[0]) 1053 return 0; 1054 1055 /* get indirect nodes in the path */ 1056 for (i = 0; i < idx + 1; i++) { 1057 /* reference count'll be increased */ 1058 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 1059 if (IS_ERR(pages[i])) { 1060 err = PTR_ERR(pages[i]); 1061 idx = i - 1; 1062 goto fail; 1063 } 1064 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 1065 } 1066 1067 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 1068 1069 /* free direct nodes linked to a partial indirect node */ 1070 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1071 child_nid = get_nid(pages[idx], i, false); 1072 if (!child_nid) 1073 continue; 1074 dn->nid = child_nid; 1075 err = truncate_dnode(dn); 1076 if (err < 0) 1077 goto fail; 1078 if (set_nid(pages[idx], i, 0, false)) 1079 dn->node_changed = true; 1080 } 1081 1082 if (offset[idx + 1] == 0) { 1083 dn->node_page = pages[idx]; 1084 dn->nid = nid[idx]; 1085 err = truncate_node(dn); 1086 if (err) 1087 goto fail; 1088 } else { 1089 f2fs_put_page(pages[idx], 1); 1090 } 1091 offset[idx]++; 1092 offset[idx + 1] = 0; 1093 idx--; 1094 fail: 1095 for (i = idx; i >= 0; i--) 1096 f2fs_put_page(pages[i], 1); 1097 1098 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1099 1100 return err; 1101 } 1102 1103 /* 1104 * All the block addresses of data and nodes should be nullified. 1105 */ 1106 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1107 { 1108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1109 int err = 0, cont = 1; 1110 int level, offset[4], noffset[4]; 1111 unsigned int nofs = 0; 1112 struct f2fs_inode *ri; 1113 struct dnode_of_data dn; 1114 struct page *page; 1115 1116 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1117 1118 level = get_node_path(inode, from, offset, noffset); 1119 if (level < 0) { 1120 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1121 return level; 1122 } 1123 1124 page = f2fs_get_node_page(sbi, inode->i_ino); 1125 if (IS_ERR(page)) { 1126 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1127 return PTR_ERR(page); 1128 } 1129 1130 set_new_dnode(&dn, inode, page, NULL, 0); 1131 unlock_page(page); 1132 1133 ri = F2FS_INODE(page); 1134 switch (level) { 1135 case 0: 1136 case 1: 1137 nofs = noffset[1]; 1138 break; 1139 case 2: 1140 nofs = noffset[1]; 1141 if (!offset[level - 1]) 1142 goto skip_partial; 1143 err = truncate_partial_nodes(&dn, ri, offset, level); 1144 if (err < 0 && err != -ENOENT) 1145 goto fail; 1146 nofs += 1 + NIDS_PER_BLOCK; 1147 break; 1148 case 3: 1149 nofs = 5 + 2 * NIDS_PER_BLOCK; 1150 if (!offset[level - 1]) 1151 goto skip_partial; 1152 err = truncate_partial_nodes(&dn, ri, offset, level); 1153 if (err < 0 && err != -ENOENT) 1154 goto fail; 1155 break; 1156 default: 1157 BUG(); 1158 } 1159 1160 skip_partial: 1161 while (cont) { 1162 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1163 switch (offset[0]) { 1164 case NODE_DIR1_BLOCK: 1165 case NODE_DIR2_BLOCK: 1166 err = truncate_dnode(&dn); 1167 break; 1168 1169 case NODE_IND1_BLOCK: 1170 case NODE_IND2_BLOCK: 1171 err = truncate_nodes(&dn, nofs, offset[1], 2); 1172 break; 1173 1174 case NODE_DIND_BLOCK: 1175 err = truncate_nodes(&dn, nofs, offset[1], 3); 1176 cont = 0; 1177 break; 1178 1179 default: 1180 BUG(); 1181 } 1182 if (err < 0 && err != -ENOENT) 1183 goto fail; 1184 if (offset[1] == 0 && 1185 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1186 lock_page(page); 1187 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1188 f2fs_wait_on_page_writeback(page, NODE, true, true); 1189 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1190 set_page_dirty(page); 1191 unlock_page(page); 1192 } 1193 offset[1] = 0; 1194 offset[0]++; 1195 nofs += err; 1196 } 1197 fail: 1198 f2fs_put_page(page, 0); 1199 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1200 return err > 0 ? 0 : err; 1201 } 1202 1203 /* caller must lock inode page */ 1204 int f2fs_truncate_xattr_node(struct inode *inode) 1205 { 1206 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1207 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1208 struct dnode_of_data dn; 1209 struct page *npage; 1210 int err; 1211 1212 if (!nid) 1213 return 0; 1214 1215 npage = f2fs_get_node_page(sbi, nid); 1216 if (IS_ERR(npage)) 1217 return PTR_ERR(npage); 1218 1219 set_new_dnode(&dn, inode, NULL, npage, nid); 1220 err = truncate_node(&dn); 1221 if (err) { 1222 f2fs_put_page(npage, 1); 1223 return err; 1224 } 1225 1226 f2fs_i_xnid_write(inode, 0); 1227 1228 return 0; 1229 } 1230 1231 /* 1232 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1233 * f2fs_unlock_op(). 1234 */ 1235 int f2fs_remove_inode_page(struct inode *inode) 1236 { 1237 struct dnode_of_data dn; 1238 int err; 1239 1240 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1241 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1242 if (err) 1243 return err; 1244 1245 err = f2fs_truncate_xattr_node(inode); 1246 if (err) { 1247 f2fs_put_dnode(&dn); 1248 return err; 1249 } 1250 1251 /* remove potential inline_data blocks */ 1252 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1253 S_ISLNK(inode->i_mode)) 1254 f2fs_truncate_data_blocks_range(&dn, 1); 1255 1256 /* 0 is possible, after f2fs_new_inode() has failed */ 1257 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1258 f2fs_put_dnode(&dn); 1259 return -EIO; 1260 } 1261 1262 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1263 f2fs_warn(F2FS_I_SB(inode), 1264 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1265 inode->i_ino, (unsigned long long)inode->i_blocks); 1266 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1267 } 1268 1269 /* will put inode & node pages */ 1270 err = truncate_node(&dn); 1271 if (err) { 1272 f2fs_put_dnode(&dn); 1273 return err; 1274 } 1275 return 0; 1276 } 1277 1278 struct page *f2fs_new_inode_page(struct inode *inode) 1279 { 1280 struct dnode_of_data dn; 1281 1282 /* allocate inode page for new inode */ 1283 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1284 1285 /* caller should f2fs_put_page(page, 1); */ 1286 return f2fs_new_node_page(&dn, 0); 1287 } 1288 1289 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1290 { 1291 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1292 struct node_info new_ni; 1293 struct page *page; 1294 int err; 1295 1296 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1297 return ERR_PTR(-EPERM); 1298 1299 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1300 if (!page) 1301 return ERR_PTR(-ENOMEM); 1302 1303 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1304 goto fail; 1305 1306 #ifdef CONFIG_F2FS_CHECK_FS 1307 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); 1308 if (err) { 1309 dec_valid_node_count(sbi, dn->inode, !ofs); 1310 goto fail; 1311 } 1312 if (unlikely(new_ni.blk_addr != NULL_ADDR)) { 1313 err = -EFSCORRUPTED; 1314 set_sbi_flag(sbi, SBI_NEED_FSCK); 1315 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1316 goto fail; 1317 } 1318 #endif 1319 new_ni.nid = dn->nid; 1320 new_ni.ino = dn->inode->i_ino; 1321 new_ni.blk_addr = NULL_ADDR; 1322 new_ni.flag = 0; 1323 new_ni.version = 0; 1324 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1325 1326 f2fs_wait_on_page_writeback(page, NODE, true, true); 1327 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1328 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1329 if (!PageUptodate(page)) 1330 SetPageUptodate(page); 1331 if (set_page_dirty(page)) 1332 dn->node_changed = true; 1333 1334 if (f2fs_has_xattr_block(ofs)) 1335 f2fs_i_xnid_write(dn->inode, dn->nid); 1336 1337 if (ofs == 0) 1338 inc_valid_inode_count(sbi); 1339 return page; 1340 1341 fail: 1342 clear_node_page_dirty(page); 1343 f2fs_put_page(page, 1); 1344 return ERR_PTR(err); 1345 } 1346 1347 /* 1348 * Caller should do after getting the following values. 1349 * 0: f2fs_put_page(page, 0) 1350 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1351 */ 1352 static int read_node_page(struct page *page, blk_opf_t op_flags) 1353 { 1354 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1355 struct node_info ni; 1356 struct f2fs_io_info fio = { 1357 .sbi = sbi, 1358 .type = NODE, 1359 .op = REQ_OP_READ, 1360 .op_flags = op_flags, 1361 .page = page, 1362 .encrypted_page = NULL, 1363 }; 1364 int err; 1365 1366 if (PageUptodate(page)) { 1367 if (!f2fs_inode_chksum_verify(sbi, page)) { 1368 ClearPageUptodate(page); 1369 return -EFSBADCRC; 1370 } 1371 return LOCKED_PAGE; 1372 } 1373 1374 err = f2fs_get_node_info(sbi, page->index, &ni, false); 1375 if (err) 1376 return err; 1377 1378 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ 1379 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) { 1380 ClearPageUptodate(page); 1381 return -ENOENT; 1382 } 1383 1384 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1385 1386 err = f2fs_submit_page_bio(&fio); 1387 1388 if (!err) 1389 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE); 1390 1391 return err; 1392 } 1393 1394 /* 1395 * Readahead a node page 1396 */ 1397 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1398 { 1399 struct page *apage; 1400 int err; 1401 1402 if (!nid) 1403 return; 1404 if (f2fs_check_nid_range(sbi, nid)) 1405 return; 1406 1407 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1408 if (apage) 1409 return; 1410 1411 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1412 if (!apage) 1413 return; 1414 1415 err = read_node_page(apage, REQ_RAHEAD); 1416 f2fs_put_page(apage, err ? 1 : 0); 1417 } 1418 1419 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1420 struct page *parent, int start) 1421 { 1422 struct page *page; 1423 int err; 1424 1425 if (!nid) 1426 return ERR_PTR(-ENOENT); 1427 if (f2fs_check_nid_range(sbi, nid)) 1428 return ERR_PTR(-EINVAL); 1429 repeat: 1430 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1431 if (!page) 1432 return ERR_PTR(-ENOMEM); 1433 1434 err = read_node_page(page, 0); 1435 if (err < 0) { 1436 goto out_put_err; 1437 } else if (err == LOCKED_PAGE) { 1438 err = 0; 1439 goto page_hit; 1440 } 1441 1442 if (parent) 1443 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1444 1445 lock_page(page); 1446 1447 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1448 f2fs_put_page(page, 1); 1449 goto repeat; 1450 } 1451 1452 if (unlikely(!PageUptodate(page))) { 1453 err = -EIO; 1454 goto out_err; 1455 } 1456 1457 if (!f2fs_inode_chksum_verify(sbi, page)) { 1458 err = -EFSBADCRC; 1459 goto out_err; 1460 } 1461 page_hit: 1462 if (likely(nid == nid_of_node(page))) 1463 return page; 1464 1465 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1466 nid, nid_of_node(page), ino_of_node(page), 1467 ofs_of_node(page), cpver_of_node(page), 1468 next_blkaddr_of_node(page)); 1469 set_sbi_flag(sbi, SBI_NEED_FSCK); 1470 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER); 1471 err = -EFSCORRUPTED; 1472 out_err: 1473 ClearPageUptodate(page); 1474 out_put_err: 1475 /* ENOENT comes from read_node_page which is not an error. */ 1476 if (err != -ENOENT) 1477 f2fs_handle_page_eio(sbi, page->index, NODE); 1478 f2fs_put_page(page, 1); 1479 return ERR_PTR(err); 1480 } 1481 1482 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1483 { 1484 return __get_node_page(sbi, nid, NULL, 0); 1485 } 1486 1487 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1488 { 1489 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1490 nid_t nid = get_nid(parent, start, false); 1491 1492 return __get_node_page(sbi, nid, parent, start); 1493 } 1494 1495 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1496 { 1497 struct inode *inode; 1498 struct page *page; 1499 int ret; 1500 1501 /* should flush inline_data before evict_inode */ 1502 inode = ilookup(sbi->sb, ino); 1503 if (!inode) 1504 return; 1505 1506 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1507 FGP_LOCK|FGP_NOWAIT, 0); 1508 if (!page) 1509 goto iput_out; 1510 1511 if (!PageUptodate(page)) 1512 goto page_out; 1513 1514 if (!PageDirty(page)) 1515 goto page_out; 1516 1517 if (!clear_page_dirty_for_io(page)) 1518 goto page_out; 1519 1520 ret = f2fs_write_inline_data(inode, page); 1521 inode_dec_dirty_pages(inode); 1522 f2fs_remove_dirty_inode(inode); 1523 if (ret) 1524 set_page_dirty(page); 1525 page_out: 1526 f2fs_put_page(page, 1); 1527 iput_out: 1528 iput(inode); 1529 } 1530 1531 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1532 { 1533 pgoff_t index; 1534 struct folio_batch fbatch; 1535 struct page *last_page = NULL; 1536 int nr_folios; 1537 1538 folio_batch_init(&fbatch); 1539 index = 0; 1540 1541 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1542 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1543 &fbatch))) { 1544 int i; 1545 1546 for (i = 0; i < nr_folios; i++) { 1547 struct page *page = &fbatch.folios[i]->page; 1548 1549 if (unlikely(f2fs_cp_error(sbi))) { 1550 f2fs_put_page(last_page, 0); 1551 folio_batch_release(&fbatch); 1552 return ERR_PTR(-EIO); 1553 } 1554 1555 if (!IS_DNODE(page) || !is_cold_node(page)) 1556 continue; 1557 if (ino_of_node(page) != ino) 1558 continue; 1559 1560 lock_page(page); 1561 1562 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1563 continue_unlock: 1564 unlock_page(page); 1565 continue; 1566 } 1567 if (ino_of_node(page) != ino) 1568 goto continue_unlock; 1569 1570 if (!PageDirty(page)) { 1571 /* someone wrote it for us */ 1572 goto continue_unlock; 1573 } 1574 1575 if (last_page) 1576 f2fs_put_page(last_page, 0); 1577 1578 get_page(page); 1579 last_page = page; 1580 unlock_page(page); 1581 } 1582 folio_batch_release(&fbatch); 1583 cond_resched(); 1584 } 1585 return last_page; 1586 } 1587 1588 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1589 struct writeback_control *wbc, bool do_balance, 1590 enum iostat_type io_type, unsigned int *seq_id) 1591 { 1592 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1593 nid_t nid; 1594 struct node_info ni; 1595 struct f2fs_io_info fio = { 1596 .sbi = sbi, 1597 .ino = ino_of_node(page), 1598 .type = NODE, 1599 .op = REQ_OP_WRITE, 1600 .op_flags = wbc_to_write_flags(wbc), 1601 .page = page, 1602 .encrypted_page = NULL, 1603 .submitted = 0, 1604 .io_type = io_type, 1605 .io_wbc = wbc, 1606 }; 1607 unsigned int seq; 1608 1609 trace_f2fs_writepage(page, NODE); 1610 1611 if (unlikely(f2fs_cp_error(sbi))) { 1612 /* keep node pages in remount-ro mode */ 1613 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 1614 goto redirty_out; 1615 ClearPageUptodate(page); 1616 dec_page_count(sbi, F2FS_DIRTY_NODES); 1617 unlock_page(page); 1618 return 0; 1619 } 1620 1621 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1622 goto redirty_out; 1623 1624 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1625 wbc->sync_mode == WB_SYNC_NONE && 1626 IS_DNODE(page) && is_cold_node(page)) 1627 goto redirty_out; 1628 1629 /* get old block addr of this node page */ 1630 nid = nid_of_node(page); 1631 f2fs_bug_on(sbi, page->index != nid); 1632 1633 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) 1634 goto redirty_out; 1635 1636 if (wbc->for_reclaim) { 1637 if (!f2fs_down_read_trylock(&sbi->node_write)) 1638 goto redirty_out; 1639 } else { 1640 f2fs_down_read(&sbi->node_write); 1641 } 1642 1643 /* This page is already truncated */ 1644 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1645 ClearPageUptodate(page); 1646 dec_page_count(sbi, F2FS_DIRTY_NODES); 1647 f2fs_up_read(&sbi->node_write); 1648 unlock_page(page); 1649 return 0; 1650 } 1651 1652 if (__is_valid_data_blkaddr(ni.blk_addr) && 1653 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1654 DATA_GENERIC_ENHANCE)) { 1655 f2fs_up_read(&sbi->node_write); 1656 goto redirty_out; 1657 } 1658 1659 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi)) 1660 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1661 1662 /* should add to global list before clearing PAGECACHE status */ 1663 if (f2fs_in_warm_node_list(sbi, page)) { 1664 seq = f2fs_add_fsync_node_entry(sbi, page); 1665 if (seq_id) 1666 *seq_id = seq; 1667 } 1668 1669 set_page_writeback(page); 1670 1671 fio.old_blkaddr = ni.blk_addr; 1672 f2fs_do_write_node_page(nid, &fio); 1673 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1674 dec_page_count(sbi, F2FS_DIRTY_NODES); 1675 f2fs_up_read(&sbi->node_write); 1676 1677 if (wbc->for_reclaim) { 1678 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1679 submitted = NULL; 1680 } 1681 1682 unlock_page(page); 1683 1684 if (unlikely(f2fs_cp_error(sbi))) { 1685 f2fs_submit_merged_write(sbi, NODE); 1686 submitted = NULL; 1687 } 1688 if (submitted) 1689 *submitted = fio.submitted; 1690 1691 if (do_balance) 1692 f2fs_balance_fs(sbi, false); 1693 return 0; 1694 1695 redirty_out: 1696 redirty_page_for_writepage(wbc, page); 1697 return AOP_WRITEPAGE_ACTIVATE; 1698 } 1699 1700 int f2fs_move_node_page(struct page *node_page, int gc_type) 1701 { 1702 int err = 0; 1703 1704 if (gc_type == FG_GC) { 1705 struct writeback_control wbc = { 1706 .sync_mode = WB_SYNC_ALL, 1707 .nr_to_write = 1, 1708 .for_reclaim = 0, 1709 }; 1710 1711 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1712 1713 set_page_dirty(node_page); 1714 1715 if (!clear_page_dirty_for_io(node_page)) { 1716 err = -EAGAIN; 1717 goto out_page; 1718 } 1719 1720 if (__write_node_page(node_page, false, NULL, 1721 &wbc, false, FS_GC_NODE_IO, NULL)) { 1722 err = -EAGAIN; 1723 unlock_page(node_page); 1724 } 1725 goto release_page; 1726 } else { 1727 /* set page dirty and write it */ 1728 if (!PageWriteback(node_page)) 1729 set_page_dirty(node_page); 1730 } 1731 out_page: 1732 unlock_page(node_page); 1733 release_page: 1734 f2fs_put_page(node_page, 0); 1735 return err; 1736 } 1737 1738 static int f2fs_write_node_page(struct page *page, 1739 struct writeback_control *wbc) 1740 { 1741 return __write_node_page(page, false, NULL, wbc, false, 1742 FS_NODE_IO, NULL); 1743 } 1744 1745 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1746 struct writeback_control *wbc, bool atomic, 1747 unsigned int *seq_id) 1748 { 1749 pgoff_t index; 1750 struct folio_batch fbatch; 1751 int ret = 0; 1752 struct page *last_page = NULL; 1753 bool marked = false; 1754 nid_t ino = inode->i_ino; 1755 int nr_folios; 1756 int nwritten = 0; 1757 1758 if (atomic) { 1759 last_page = last_fsync_dnode(sbi, ino); 1760 if (IS_ERR_OR_NULL(last_page)) 1761 return PTR_ERR_OR_ZERO(last_page); 1762 } 1763 retry: 1764 folio_batch_init(&fbatch); 1765 index = 0; 1766 1767 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1768 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1769 &fbatch))) { 1770 int i; 1771 1772 for (i = 0; i < nr_folios; i++) { 1773 struct page *page = &fbatch.folios[i]->page; 1774 bool submitted = false; 1775 1776 if (unlikely(f2fs_cp_error(sbi))) { 1777 f2fs_put_page(last_page, 0); 1778 folio_batch_release(&fbatch); 1779 ret = -EIO; 1780 goto out; 1781 } 1782 1783 if (!IS_DNODE(page) || !is_cold_node(page)) 1784 continue; 1785 if (ino_of_node(page) != ino) 1786 continue; 1787 1788 lock_page(page); 1789 1790 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1791 continue_unlock: 1792 unlock_page(page); 1793 continue; 1794 } 1795 if (ino_of_node(page) != ino) 1796 goto continue_unlock; 1797 1798 if (!PageDirty(page) && page != last_page) { 1799 /* someone wrote it for us */ 1800 goto continue_unlock; 1801 } 1802 1803 f2fs_wait_on_page_writeback(page, NODE, true, true); 1804 1805 set_fsync_mark(page, 0); 1806 set_dentry_mark(page, 0); 1807 1808 if (!atomic || page == last_page) { 1809 set_fsync_mark(page, 1); 1810 percpu_counter_inc(&sbi->rf_node_block_count); 1811 if (IS_INODE(page)) { 1812 if (is_inode_flag_set(inode, 1813 FI_DIRTY_INODE)) 1814 f2fs_update_inode(inode, page); 1815 set_dentry_mark(page, 1816 f2fs_need_dentry_mark(sbi, ino)); 1817 } 1818 /* may be written by other thread */ 1819 if (!PageDirty(page)) 1820 set_page_dirty(page); 1821 } 1822 1823 if (!clear_page_dirty_for_io(page)) 1824 goto continue_unlock; 1825 1826 ret = __write_node_page(page, atomic && 1827 page == last_page, 1828 &submitted, wbc, true, 1829 FS_NODE_IO, seq_id); 1830 if (ret) { 1831 unlock_page(page); 1832 f2fs_put_page(last_page, 0); 1833 break; 1834 } else if (submitted) { 1835 nwritten++; 1836 } 1837 1838 if (page == last_page) { 1839 f2fs_put_page(page, 0); 1840 marked = true; 1841 break; 1842 } 1843 } 1844 folio_batch_release(&fbatch); 1845 cond_resched(); 1846 1847 if (ret || marked) 1848 break; 1849 } 1850 if (!ret && atomic && !marked) { 1851 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1852 ino, last_page->index); 1853 lock_page(last_page); 1854 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1855 set_page_dirty(last_page); 1856 unlock_page(last_page); 1857 goto retry; 1858 } 1859 out: 1860 if (nwritten) 1861 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1862 return ret ? -EIO : 0; 1863 } 1864 1865 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1866 { 1867 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1868 bool clean; 1869 1870 if (inode->i_ino != ino) 1871 return 0; 1872 1873 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1874 return 0; 1875 1876 spin_lock(&sbi->inode_lock[DIRTY_META]); 1877 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1878 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1879 1880 if (clean) 1881 return 0; 1882 1883 inode = igrab(inode); 1884 if (!inode) 1885 return 0; 1886 return 1; 1887 } 1888 1889 static bool flush_dirty_inode(struct page *page) 1890 { 1891 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1892 struct inode *inode; 1893 nid_t ino = ino_of_node(page); 1894 1895 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1896 if (!inode) 1897 return false; 1898 1899 f2fs_update_inode(inode, page); 1900 unlock_page(page); 1901 1902 iput(inode); 1903 return true; 1904 } 1905 1906 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1907 { 1908 pgoff_t index = 0; 1909 struct folio_batch fbatch; 1910 int nr_folios; 1911 1912 folio_batch_init(&fbatch); 1913 1914 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index, 1915 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1916 &fbatch))) { 1917 int i; 1918 1919 for (i = 0; i < nr_folios; i++) { 1920 struct page *page = &fbatch.folios[i]->page; 1921 1922 if (!IS_DNODE(page)) 1923 continue; 1924 1925 lock_page(page); 1926 1927 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1928 continue_unlock: 1929 unlock_page(page); 1930 continue; 1931 } 1932 1933 if (!PageDirty(page)) { 1934 /* someone wrote it for us */ 1935 goto continue_unlock; 1936 } 1937 1938 /* flush inline_data, if it's async context. */ 1939 if (page_private_inline(page)) { 1940 clear_page_private_inline(page); 1941 unlock_page(page); 1942 flush_inline_data(sbi, ino_of_node(page)); 1943 continue; 1944 } 1945 unlock_page(page); 1946 } 1947 folio_batch_release(&fbatch); 1948 cond_resched(); 1949 } 1950 } 1951 1952 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1953 struct writeback_control *wbc, 1954 bool do_balance, enum iostat_type io_type) 1955 { 1956 pgoff_t index; 1957 struct folio_batch fbatch; 1958 int step = 0; 1959 int nwritten = 0; 1960 int ret = 0; 1961 int nr_folios, done = 0; 1962 1963 folio_batch_init(&fbatch); 1964 1965 next_step: 1966 index = 0; 1967 1968 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), 1969 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY, 1970 &fbatch))) { 1971 int i; 1972 1973 for (i = 0; i < nr_folios; i++) { 1974 struct page *page = &fbatch.folios[i]->page; 1975 bool submitted = false; 1976 1977 /* give a priority to WB_SYNC threads */ 1978 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1979 wbc->sync_mode == WB_SYNC_NONE) { 1980 done = 1; 1981 break; 1982 } 1983 1984 /* 1985 * flushing sequence with step: 1986 * 0. indirect nodes 1987 * 1. dentry dnodes 1988 * 2. file dnodes 1989 */ 1990 if (step == 0 && IS_DNODE(page)) 1991 continue; 1992 if (step == 1 && (!IS_DNODE(page) || 1993 is_cold_node(page))) 1994 continue; 1995 if (step == 2 && (!IS_DNODE(page) || 1996 !is_cold_node(page))) 1997 continue; 1998 lock_node: 1999 if (wbc->sync_mode == WB_SYNC_ALL) 2000 lock_page(page); 2001 else if (!trylock_page(page)) 2002 continue; 2003 2004 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 2005 continue_unlock: 2006 unlock_page(page); 2007 continue; 2008 } 2009 2010 if (!PageDirty(page)) { 2011 /* someone wrote it for us */ 2012 goto continue_unlock; 2013 } 2014 2015 /* flush inline_data/inode, if it's async context. */ 2016 if (!do_balance) 2017 goto write_node; 2018 2019 /* flush inline_data */ 2020 if (page_private_inline(page)) { 2021 clear_page_private_inline(page); 2022 unlock_page(page); 2023 flush_inline_data(sbi, ino_of_node(page)); 2024 goto lock_node; 2025 } 2026 2027 /* flush dirty inode */ 2028 if (IS_INODE(page) && flush_dirty_inode(page)) 2029 goto lock_node; 2030 write_node: 2031 f2fs_wait_on_page_writeback(page, NODE, true, true); 2032 2033 if (!clear_page_dirty_for_io(page)) 2034 goto continue_unlock; 2035 2036 set_fsync_mark(page, 0); 2037 set_dentry_mark(page, 0); 2038 2039 ret = __write_node_page(page, false, &submitted, 2040 wbc, do_balance, io_type, NULL); 2041 if (ret) 2042 unlock_page(page); 2043 else if (submitted) 2044 nwritten++; 2045 2046 if (--wbc->nr_to_write == 0) 2047 break; 2048 } 2049 folio_batch_release(&fbatch); 2050 cond_resched(); 2051 2052 if (wbc->nr_to_write == 0) { 2053 step = 2; 2054 break; 2055 } 2056 } 2057 2058 if (step < 2) { 2059 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2060 wbc->sync_mode == WB_SYNC_NONE && step == 1) 2061 goto out; 2062 step++; 2063 goto next_step; 2064 } 2065 out: 2066 if (nwritten) 2067 f2fs_submit_merged_write(sbi, NODE); 2068 2069 if (unlikely(f2fs_cp_error(sbi))) 2070 return -EIO; 2071 return ret; 2072 } 2073 2074 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2075 unsigned int seq_id) 2076 { 2077 struct fsync_node_entry *fn; 2078 struct page *page; 2079 struct list_head *head = &sbi->fsync_node_list; 2080 unsigned long flags; 2081 unsigned int cur_seq_id = 0; 2082 2083 while (seq_id && cur_seq_id < seq_id) { 2084 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2085 if (list_empty(head)) { 2086 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2087 break; 2088 } 2089 fn = list_first_entry(head, struct fsync_node_entry, list); 2090 if (fn->seq_id > seq_id) { 2091 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2092 break; 2093 } 2094 cur_seq_id = fn->seq_id; 2095 page = fn->page; 2096 get_page(page); 2097 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2098 2099 f2fs_wait_on_page_writeback(page, NODE, true, false); 2100 2101 put_page(page); 2102 } 2103 2104 return filemap_check_errors(NODE_MAPPING(sbi)); 2105 } 2106 2107 static int f2fs_write_node_pages(struct address_space *mapping, 2108 struct writeback_control *wbc) 2109 { 2110 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2111 struct blk_plug plug; 2112 long diff; 2113 2114 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2115 goto skip_write; 2116 2117 /* balancing f2fs's metadata in background */ 2118 f2fs_balance_fs_bg(sbi, true); 2119 2120 /* collect a number of dirty node pages and write together */ 2121 if (wbc->sync_mode != WB_SYNC_ALL && 2122 get_pages(sbi, F2FS_DIRTY_NODES) < 2123 nr_pages_to_skip(sbi, NODE)) 2124 goto skip_write; 2125 2126 if (wbc->sync_mode == WB_SYNC_ALL) 2127 atomic_inc(&sbi->wb_sync_req[NODE]); 2128 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2129 /* to avoid potential deadlock */ 2130 if (current->plug) 2131 blk_finish_plug(current->plug); 2132 goto skip_write; 2133 } 2134 2135 trace_f2fs_writepages(mapping->host, wbc, NODE); 2136 2137 diff = nr_pages_to_write(sbi, NODE, wbc); 2138 blk_start_plug(&plug); 2139 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2140 blk_finish_plug(&plug); 2141 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2142 2143 if (wbc->sync_mode == WB_SYNC_ALL) 2144 atomic_dec(&sbi->wb_sync_req[NODE]); 2145 return 0; 2146 2147 skip_write: 2148 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2149 trace_f2fs_writepages(mapping->host, wbc, NODE); 2150 return 0; 2151 } 2152 2153 static bool f2fs_dirty_node_folio(struct address_space *mapping, 2154 struct folio *folio) 2155 { 2156 trace_f2fs_set_page_dirty(&folio->page, NODE); 2157 2158 if (!folio_test_uptodate(folio)) 2159 folio_mark_uptodate(folio); 2160 #ifdef CONFIG_F2FS_CHECK_FS 2161 if (IS_INODE(&folio->page)) 2162 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); 2163 #endif 2164 if (filemap_dirty_folio(mapping, folio)) { 2165 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 2166 set_page_private_reference(&folio->page); 2167 return true; 2168 } 2169 return false; 2170 } 2171 2172 /* 2173 * Structure of the f2fs node operations 2174 */ 2175 const struct address_space_operations f2fs_node_aops = { 2176 .writepage = f2fs_write_node_page, 2177 .writepages = f2fs_write_node_pages, 2178 .dirty_folio = f2fs_dirty_node_folio, 2179 .invalidate_folio = f2fs_invalidate_folio, 2180 .release_folio = f2fs_release_folio, 2181 .migrate_folio = filemap_migrate_folio, 2182 }; 2183 2184 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2185 nid_t n) 2186 { 2187 return radix_tree_lookup(&nm_i->free_nid_root, n); 2188 } 2189 2190 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2191 struct free_nid *i) 2192 { 2193 struct f2fs_nm_info *nm_i = NM_I(sbi); 2194 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2195 2196 if (err) 2197 return err; 2198 2199 nm_i->nid_cnt[FREE_NID]++; 2200 list_add_tail(&i->list, &nm_i->free_nid_list); 2201 return 0; 2202 } 2203 2204 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2205 struct free_nid *i, enum nid_state state) 2206 { 2207 struct f2fs_nm_info *nm_i = NM_I(sbi); 2208 2209 f2fs_bug_on(sbi, state != i->state); 2210 nm_i->nid_cnt[state]--; 2211 if (state == FREE_NID) 2212 list_del(&i->list); 2213 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2214 } 2215 2216 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2217 enum nid_state org_state, enum nid_state dst_state) 2218 { 2219 struct f2fs_nm_info *nm_i = NM_I(sbi); 2220 2221 f2fs_bug_on(sbi, org_state != i->state); 2222 i->state = dst_state; 2223 nm_i->nid_cnt[org_state]--; 2224 nm_i->nid_cnt[dst_state]++; 2225 2226 switch (dst_state) { 2227 case PREALLOC_NID: 2228 list_del(&i->list); 2229 break; 2230 case FREE_NID: 2231 list_add_tail(&i->list, &nm_i->free_nid_list); 2232 break; 2233 default: 2234 BUG_ON(1); 2235 } 2236 } 2237 2238 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi) 2239 { 2240 struct f2fs_nm_info *nm_i = NM_I(sbi); 2241 unsigned int i; 2242 bool ret = true; 2243 2244 f2fs_down_read(&nm_i->nat_tree_lock); 2245 for (i = 0; i < nm_i->nat_blocks; i++) { 2246 if (!test_bit_le(i, nm_i->nat_block_bitmap)) { 2247 ret = false; 2248 break; 2249 } 2250 } 2251 f2fs_up_read(&nm_i->nat_tree_lock); 2252 2253 return ret; 2254 } 2255 2256 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2257 bool set, bool build) 2258 { 2259 struct f2fs_nm_info *nm_i = NM_I(sbi); 2260 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2261 unsigned int nid_ofs = nid - START_NID(nid); 2262 2263 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2264 return; 2265 2266 if (set) { 2267 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2268 return; 2269 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2270 nm_i->free_nid_count[nat_ofs]++; 2271 } else { 2272 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2273 return; 2274 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2275 if (!build) 2276 nm_i->free_nid_count[nat_ofs]--; 2277 } 2278 } 2279 2280 /* return if the nid is recognized as free */ 2281 static bool add_free_nid(struct f2fs_sb_info *sbi, 2282 nid_t nid, bool build, bool update) 2283 { 2284 struct f2fs_nm_info *nm_i = NM_I(sbi); 2285 struct free_nid *i, *e; 2286 struct nat_entry *ne; 2287 int err = -EINVAL; 2288 bool ret = false; 2289 2290 /* 0 nid should not be used */ 2291 if (unlikely(nid == 0)) 2292 return false; 2293 2294 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2295 return false; 2296 2297 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); 2298 i->nid = nid; 2299 i->state = FREE_NID; 2300 2301 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2302 2303 spin_lock(&nm_i->nid_list_lock); 2304 2305 if (build) { 2306 /* 2307 * Thread A Thread B 2308 * - f2fs_create 2309 * - f2fs_new_inode 2310 * - f2fs_alloc_nid 2311 * - __insert_nid_to_list(PREALLOC_NID) 2312 * - f2fs_balance_fs_bg 2313 * - f2fs_build_free_nids 2314 * - __f2fs_build_free_nids 2315 * - scan_nat_page 2316 * - add_free_nid 2317 * - __lookup_nat_cache 2318 * - f2fs_add_link 2319 * - f2fs_init_inode_metadata 2320 * - f2fs_new_inode_page 2321 * - f2fs_new_node_page 2322 * - set_node_addr 2323 * - f2fs_alloc_nid_done 2324 * - __remove_nid_from_list(PREALLOC_NID) 2325 * - __insert_nid_to_list(FREE_NID) 2326 */ 2327 ne = __lookup_nat_cache(nm_i, nid); 2328 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2329 nat_get_blkaddr(ne) != NULL_ADDR)) 2330 goto err_out; 2331 2332 e = __lookup_free_nid_list(nm_i, nid); 2333 if (e) { 2334 if (e->state == FREE_NID) 2335 ret = true; 2336 goto err_out; 2337 } 2338 } 2339 ret = true; 2340 err = __insert_free_nid(sbi, i); 2341 err_out: 2342 if (update) { 2343 update_free_nid_bitmap(sbi, nid, ret, build); 2344 if (!build) 2345 nm_i->available_nids++; 2346 } 2347 spin_unlock(&nm_i->nid_list_lock); 2348 radix_tree_preload_end(); 2349 2350 if (err) 2351 kmem_cache_free(free_nid_slab, i); 2352 return ret; 2353 } 2354 2355 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2356 { 2357 struct f2fs_nm_info *nm_i = NM_I(sbi); 2358 struct free_nid *i; 2359 bool need_free = false; 2360 2361 spin_lock(&nm_i->nid_list_lock); 2362 i = __lookup_free_nid_list(nm_i, nid); 2363 if (i && i->state == FREE_NID) { 2364 __remove_free_nid(sbi, i, FREE_NID); 2365 need_free = true; 2366 } 2367 spin_unlock(&nm_i->nid_list_lock); 2368 2369 if (need_free) 2370 kmem_cache_free(free_nid_slab, i); 2371 } 2372 2373 static int scan_nat_page(struct f2fs_sb_info *sbi, 2374 struct page *nat_page, nid_t start_nid) 2375 { 2376 struct f2fs_nm_info *nm_i = NM_I(sbi); 2377 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2378 block_t blk_addr; 2379 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2380 int i; 2381 2382 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2383 2384 i = start_nid % NAT_ENTRY_PER_BLOCK; 2385 2386 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2387 if (unlikely(start_nid >= nm_i->max_nid)) 2388 break; 2389 2390 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2391 2392 if (blk_addr == NEW_ADDR) 2393 return -EFSCORRUPTED; 2394 2395 if (blk_addr == NULL_ADDR) { 2396 add_free_nid(sbi, start_nid, true, true); 2397 } else { 2398 spin_lock(&NM_I(sbi)->nid_list_lock); 2399 update_free_nid_bitmap(sbi, start_nid, false, true); 2400 spin_unlock(&NM_I(sbi)->nid_list_lock); 2401 } 2402 } 2403 2404 return 0; 2405 } 2406 2407 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2408 { 2409 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2410 struct f2fs_journal *journal = curseg->journal; 2411 int i; 2412 2413 down_read(&curseg->journal_rwsem); 2414 for (i = 0; i < nats_in_cursum(journal); i++) { 2415 block_t addr; 2416 nid_t nid; 2417 2418 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2419 nid = le32_to_cpu(nid_in_journal(journal, i)); 2420 if (addr == NULL_ADDR) 2421 add_free_nid(sbi, nid, true, false); 2422 else 2423 remove_free_nid(sbi, nid); 2424 } 2425 up_read(&curseg->journal_rwsem); 2426 } 2427 2428 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2429 { 2430 struct f2fs_nm_info *nm_i = NM_I(sbi); 2431 unsigned int i, idx; 2432 nid_t nid; 2433 2434 f2fs_down_read(&nm_i->nat_tree_lock); 2435 2436 for (i = 0; i < nm_i->nat_blocks; i++) { 2437 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2438 continue; 2439 if (!nm_i->free_nid_count[i]) 2440 continue; 2441 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2442 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2443 NAT_ENTRY_PER_BLOCK, idx); 2444 if (idx >= NAT_ENTRY_PER_BLOCK) 2445 break; 2446 2447 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2448 add_free_nid(sbi, nid, true, false); 2449 2450 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2451 goto out; 2452 } 2453 } 2454 out: 2455 scan_curseg_cache(sbi); 2456 2457 f2fs_up_read(&nm_i->nat_tree_lock); 2458 } 2459 2460 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2461 bool sync, bool mount) 2462 { 2463 struct f2fs_nm_info *nm_i = NM_I(sbi); 2464 int i = 0, ret; 2465 nid_t nid = nm_i->next_scan_nid; 2466 2467 if (unlikely(nid >= nm_i->max_nid)) 2468 nid = 0; 2469 2470 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2471 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2472 2473 /* Enough entries */ 2474 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2475 return 0; 2476 2477 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2478 return 0; 2479 2480 if (!mount) { 2481 /* try to find free nids in free_nid_bitmap */ 2482 scan_free_nid_bits(sbi); 2483 2484 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2485 return 0; 2486 } 2487 2488 /* readahead nat pages to be scanned */ 2489 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2490 META_NAT, true); 2491 2492 f2fs_down_read(&nm_i->nat_tree_lock); 2493 2494 while (1) { 2495 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2496 nm_i->nat_block_bitmap)) { 2497 struct page *page = get_current_nat_page(sbi, nid); 2498 2499 if (IS_ERR(page)) { 2500 ret = PTR_ERR(page); 2501 } else { 2502 ret = scan_nat_page(sbi, page, nid); 2503 f2fs_put_page(page, 1); 2504 } 2505 2506 if (ret) { 2507 f2fs_up_read(&nm_i->nat_tree_lock); 2508 2509 if (ret == -EFSCORRUPTED) { 2510 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2511 set_sbi_flag(sbi, SBI_NEED_FSCK); 2512 f2fs_handle_error(sbi, 2513 ERROR_INCONSISTENT_NAT); 2514 } 2515 2516 return ret; 2517 } 2518 } 2519 2520 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2521 if (unlikely(nid >= nm_i->max_nid)) 2522 nid = 0; 2523 2524 if (++i >= FREE_NID_PAGES) 2525 break; 2526 } 2527 2528 /* go to the next free nat pages to find free nids abundantly */ 2529 nm_i->next_scan_nid = nid; 2530 2531 /* find free nids from current sum_pages */ 2532 scan_curseg_cache(sbi); 2533 2534 f2fs_up_read(&nm_i->nat_tree_lock); 2535 2536 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2537 nm_i->ra_nid_pages, META_NAT, false); 2538 2539 return 0; 2540 } 2541 2542 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2543 { 2544 int ret; 2545 2546 mutex_lock(&NM_I(sbi)->build_lock); 2547 ret = __f2fs_build_free_nids(sbi, sync, mount); 2548 mutex_unlock(&NM_I(sbi)->build_lock); 2549 2550 return ret; 2551 } 2552 2553 /* 2554 * If this function returns success, caller can obtain a new nid 2555 * from second parameter of this function. 2556 * The returned nid could be used ino as well as nid when inode is created. 2557 */ 2558 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2559 { 2560 struct f2fs_nm_info *nm_i = NM_I(sbi); 2561 struct free_nid *i = NULL; 2562 retry: 2563 if (time_to_inject(sbi, FAULT_ALLOC_NID)) 2564 return false; 2565 2566 spin_lock(&nm_i->nid_list_lock); 2567 2568 if (unlikely(nm_i->available_nids == 0)) { 2569 spin_unlock(&nm_i->nid_list_lock); 2570 return false; 2571 } 2572 2573 /* We should not use stale free nids created by f2fs_build_free_nids */ 2574 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2575 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2576 i = list_first_entry(&nm_i->free_nid_list, 2577 struct free_nid, list); 2578 *nid = i->nid; 2579 2580 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2581 nm_i->available_nids--; 2582 2583 update_free_nid_bitmap(sbi, *nid, false, false); 2584 2585 spin_unlock(&nm_i->nid_list_lock); 2586 return true; 2587 } 2588 spin_unlock(&nm_i->nid_list_lock); 2589 2590 /* Let's scan nat pages and its caches to get free nids */ 2591 if (!f2fs_build_free_nids(sbi, true, false)) 2592 goto retry; 2593 return false; 2594 } 2595 2596 /* 2597 * f2fs_alloc_nid() should be called prior to this function. 2598 */ 2599 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2600 { 2601 struct f2fs_nm_info *nm_i = NM_I(sbi); 2602 struct free_nid *i; 2603 2604 spin_lock(&nm_i->nid_list_lock); 2605 i = __lookup_free_nid_list(nm_i, nid); 2606 f2fs_bug_on(sbi, !i); 2607 __remove_free_nid(sbi, i, PREALLOC_NID); 2608 spin_unlock(&nm_i->nid_list_lock); 2609 2610 kmem_cache_free(free_nid_slab, i); 2611 } 2612 2613 /* 2614 * f2fs_alloc_nid() should be called prior to this function. 2615 */ 2616 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2617 { 2618 struct f2fs_nm_info *nm_i = NM_I(sbi); 2619 struct free_nid *i; 2620 bool need_free = false; 2621 2622 if (!nid) 2623 return; 2624 2625 spin_lock(&nm_i->nid_list_lock); 2626 i = __lookup_free_nid_list(nm_i, nid); 2627 f2fs_bug_on(sbi, !i); 2628 2629 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2630 __remove_free_nid(sbi, i, PREALLOC_NID); 2631 need_free = true; 2632 } else { 2633 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2634 } 2635 2636 nm_i->available_nids++; 2637 2638 update_free_nid_bitmap(sbi, nid, true, false); 2639 2640 spin_unlock(&nm_i->nid_list_lock); 2641 2642 if (need_free) 2643 kmem_cache_free(free_nid_slab, i); 2644 } 2645 2646 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2647 { 2648 struct f2fs_nm_info *nm_i = NM_I(sbi); 2649 int nr = nr_shrink; 2650 2651 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2652 return 0; 2653 2654 if (!mutex_trylock(&nm_i->build_lock)) 2655 return 0; 2656 2657 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2658 struct free_nid *i, *next; 2659 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2660 2661 spin_lock(&nm_i->nid_list_lock); 2662 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2663 if (!nr_shrink || !batch || 2664 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2665 break; 2666 __remove_free_nid(sbi, i, FREE_NID); 2667 kmem_cache_free(free_nid_slab, i); 2668 nr_shrink--; 2669 batch--; 2670 } 2671 spin_unlock(&nm_i->nid_list_lock); 2672 } 2673 2674 mutex_unlock(&nm_i->build_lock); 2675 2676 return nr - nr_shrink; 2677 } 2678 2679 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2680 { 2681 void *src_addr, *dst_addr; 2682 size_t inline_size; 2683 struct page *ipage; 2684 struct f2fs_inode *ri; 2685 2686 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2687 if (IS_ERR(ipage)) 2688 return PTR_ERR(ipage); 2689 2690 ri = F2FS_INODE(page); 2691 if (ri->i_inline & F2FS_INLINE_XATTR) { 2692 if (!f2fs_has_inline_xattr(inode)) { 2693 set_inode_flag(inode, FI_INLINE_XATTR); 2694 stat_inc_inline_xattr(inode); 2695 } 2696 } else { 2697 if (f2fs_has_inline_xattr(inode)) { 2698 stat_dec_inline_xattr(inode); 2699 clear_inode_flag(inode, FI_INLINE_XATTR); 2700 } 2701 goto update_inode; 2702 } 2703 2704 dst_addr = inline_xattr_addr(inode, ipage); 2705 src_addr = inline_xattr_addr(inode, page); 2706 inline_size = inline_xattr_size(inode); 2707 2708 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2709 memcpy(dst_addr, src_addr, inline_size); 2710 update_inode: 2711 f2fs_update_inode(inode, ipage); 2712 f2fs_put_page(ipage, 1); 2713 return 0; 2714 } 2715 2716 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2717 { 2718 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2719 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2720 nid_t new_xnid; 2721 struct dnode_of_data dn; 2722 struct node_info ni; 2723 struct page *xpage; 2724 int err; 2725 2726 if (!prev_xnid) 2727 goto recover_xnid; 2728 2729 /* 1: invalidate the previous xattr nid */ 2730 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); 2731 if (err) 2732 return err; 2733 2734 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2735 dec_valid_node_count(sbi, inode, false); 2736 set_node_addr(sbi, &ni, NULL_ADDR, false); 2737 2738 recover_xnid: 2739 /* 2: update xattr nid in inode */ 2740 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2741 return -ENOSPC; 2742 2743 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2744 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2745 if (IS_ERR(xpage)) { 2746 f2fs_alloc_nid_failed(sbi, new_xnid); 2747 return PTR_ERR(xpage); 2748 } 2749 2750 f2fs_alloc_nid_done(sbi, new_xnid); 2751 f2fs_update_inode_page(inode); 2752 2753 /* 3: update and set xattr node page dirty */ 2754 if (page) 2755 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), 2756 VALID_XATTR_BLOCK_SIZE); 2757 2758 set_page_dirty(xpage); 2759 f2fs_put_page(xpage, 1); 2760 2761 return 0; 2762 } 2763 2764 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2765 { 2766 struct f2fs_inode *src, *dst; 2767 nid_t ino = ino_of_node(page); 2768 struct node_info old_ni, new_ni; 2769 struct page *ipage; 2770 int err; 2771 2772 err = f2fs_get_node_info(sbi, ino, &old_ni, false); 2773 if (err) 2774 return err; 2775 2776 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2777 return -EINVAL; 2778 retry: 2779 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2780 if (!ipage) { 2781 memalloc_retry_wait(GFP_NOFS); 2782 goto retry; 2783 } 2784 2785 /* Should not use this inode from free nid list */ 2786 remove_free_nid(sbi, ino); 2787 2788 if (!PageUptodate(ipage)) 2789 SetPageUptodate(ipage); 2790 fill_node_footer(ipage, ino, ino, 0, true); 2791 set_cold_node(ipage, false); 2792 2793 src = F2FS_INODE(page); 2794 dst = F2FS_INODE(ipage); 2795 2796 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2797 dst->i_size = 0; 2798 dst->i_blocks = cpu_to_le64(1); 2799 dst->i_links = cpu_to_le32(1); 2800 dst->i_xattr_nid = 0; 2801 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2802 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2803 dst->i_extra_isize = src->i_extra_isize; 2804 2805 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2806 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2807 i_inline_xattr_size)) 2808 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2809 2810 if (f2fs_sb_has_project_quota(sbi) && 2811 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2812 i_projid)) 2813 dst->i_projid = src->i_projid; 2814 2815 if (f2fs_sb_has_inode_crtime(sbi) && 2816 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2817 i_crtime_nsec)) { 2818 dst->i_crtime = src->i_crtime; 2819 dst->i_crtime_nsec = src->i_crtime_nsec; 2820 } 2821 } 2822 2823 new_ni = old_ni; 2824 new_ni.ino = ino; 2825 2826 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2827 WARN_ON(1); 2828 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2829 inc_valid_inode_count(sbi); 2830 set_page_dirty(ipage); 2831 f2fs_put_page(ipage, 1); 2832 return 0; 2833 } 2834 2835 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2836 unsigned int segno, struct f2fs_summary_block *sum) 2837 { 2838 struct f2fs_node *rn; 2839 struct f2fs_summary *sum_entry; 2840 block_t addr; 2841 int i, idx, last_offset, nrpages; 2842 2843 /* scan the node segment */ 2844 last_offset = sbi->blocks_per_seg; 2845 addr = START_BLOCK(sbi, segno); 2846 sum_entry = &sum->entries[0]; 2847 2848 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2849 nrpages = bio_max_segs(last_offset - i); 2850 2851 /* readahead node pages */ 2852 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2853 2854 for (idx = addr; idx < addr + nrpages; idx++) { 2855 struct page *page = f2fs_get_tmp_page(sbi, idx); 2856 2857 if (IS_ERR(page)) 2858 return PTR_ERR(page); 2859 2860 rn = F2FS_NODE(page); 2861 sum_entry->nid = rn->footer.nid; 2862 sum_entry->version = 0; 2863 sum_entry->ofs_in_node = 0; 2864 sum_entry++; 2865 f2fs_put_page(page, 1); 2866 } 2867 2868 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2869 addr + nrpages); 2870 } 2871 return 0; 2872 } 2873 2874 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2875 { 2876 struct f2fs_nm_info *nm_i = NM_I(sbi); 2877 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2878 struct f2fs_journal *journal = curseg->journal; 2879 int i; 2880 2881 down_write(&curseg->journal_rwsem); 2882 for (i = 0; i < nats_in_cursum(journal); i++) { 2883 struct nat_entry *ne; 2884 struct f2fs_nat_entry raw_ne; 2885 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2886 2887 if (f2fs_check_nid_range(sbi, nid)) 2888 continue; 2889 2890 raw_ne = nat_in_journal(journal, i); 2891 2892 ne = __lookup_nat_cache(nm_i, nid); 2893 if (!ne) { 2894 ne = __alloc_nat_entry(sbi, nid, true); 2895 __init_nat_entry(nm_i, ne, &raw_ne, true); 2896 } 2897 2898 /* 2899 * if a free nat in journal has not been used after last 2900 * checkpoint, we should remove it from available nids, 2901 * since later we will add it again. 2902 */ 2903 if (!get_nat_flag(ne, IS_DIRTY) && 2904 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2905 spin_lock(&nm_i->nid_list_lock); 2906 nm_i->available_nids--; 2907 spin_unlock(&nm_i->nid_list_lock); 2908 } 2909 2910 __set_nat_cache_dirty(nm_i, ne); 2911 } 2912 update_nats_in_cursum(journal, -i); 2913 up_write(&curseg->journal_rwsem); 2914 } 2915 2916 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2917 struct list_head *head, int max) 2918 { 2919 struct nat_entry_set *cur; 2920 2921 if (nes->entry_cnt >= max) 2922 goto add_out; 2923 2924 list_for_each_entry(cur, head, set_list) { 2925 if (cur->entry_cnt >= nes->entry_cnt) { 2926 list_add(&nes->set_list, cur->set_list.prev); 2927 return; 2928 } 2929 } 2930 add_out: 2931 list_add_tail(&nes->set_list, head); 2932 } 2933 2934 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs, 2935 unsigned int valid) 2936 { 2937 if (valid == 0) { 2938 __set_bit_le(nat_ofs, nm_i->empty_nat_bits); 2939 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2940 return; 2941 } 2942 2943 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits); 2944 if (valid == NAT_ENTRY_PER_BLOCK) 2945 __set_bit_le(nat_ofs, nm_i->full_nat_bits); 2946 else 2947 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2948 } 2949 2950 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2951 struct page *page) 2952 { 2953 struct f2fs_nm_info *nm_i = NM_I(sbi); 2954 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2955 struct f2fs_nat_block *nat_blk = page_address(page); 2956 int valid = 0; 2957 int i = 0; 2958 2959 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 2960 return; 2961 2962 if (nat_index == 0) { 2963 valid = 1; 2964 i = 1; 2965 } 2966 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2967 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2968 valid++; 2969 } 2970 2971 __update_nat_bits(nm_i, nat_index, valid); 2972 } 2973 2974 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi) 2975 { 2976 struct f2fs_nm_info *nm_i = NM_I(sbi); 2977 unsigned int nat_ofs; 2978 2979 f2fs_down_read(&nm_i->nat_tree_lock); 2980 2981 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) { 2982 unsigned int valid = 0, nid_ofs = 0; 2983 2984 /* handle nid zero due to it should never be used */ 2985 if (unlikely(nat_ofs == 0)) { 2986 valid = 1; 2987 nid_ofs = 1; 2988 } 2989 2990 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) { 2991 if (!test_bit_le(nid_ofs, 2992 nm_i->free_nid_bitmap[nat_ofs])) 2993 valid++; 2994 } 2995 2996 __update_nat_bits(nm_i, nat_ofs, valid); 2997 } 2998 2999 f2fs_up_read(&nm_i->nat_tree_lock); 3000 } 3001 3002 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 3003 struct nat_entry_set *set, struct cp_control *cpc) 3004 { 3005 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3006 struct f2fs_journal *journal = curseg->journal; 3007 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 3008 bool to_journal = true; 3009 struct f2fs_nat_block *nat_blk; 3010 struct nat_entry *ne, *cur; 3011 struct page *page = NULL; 3012 3013 /* 3014 * there are two steps to flush nat entries: 3015 * #1, flush nat entries to journal in current hot data summary block. 3016 * #2, flush nat entries to nat page. 3017 */ 3018 if ((cpc->reason & CP_UMOUNT) || 3019 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 3020 to_journal = false; 3021 3022 if (to_journal) { 3023 down_write(&curseg->journal_rwsem); 3024 } else { 3025 page = get_next_nat_page(sbi, start_nid); 3026 if (IS_ERR(page)) 3027 return PTR_ERR(page); 3028 3029 nat_blk = page_address(page); 3030 f2fs_bug_on(sbi, !nat_blk); 3031 } 3032 3033 /* flush dirty nats in nat entry set */ 3034 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 3035 struct f2fs_nat_entry *raw_ne; 3036 nid_t nid = nat_get_nid(ne); 3037 int offset; 3038 3039 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 3040 3041 if (to_journal) { 3042 offset = f2fs_lookup_journal_in_cursum(journal, 3043 NAT_JOURNAL, nid, 1); 3044 f2fs_bug_on(sbi, offset < 0); 3045 raw_ne = &nat_in_journal(journal, offset); 3046 nid_in_journal(journal, offset) = cpu_to_le32(nid); 3047 } else { 3048 raw_ne = &nat_blk->entries[nid - start_nid]; 3049 } 3050 raw_nat_from_node_info(raw_ne, &ne->ni); 3051 nat_reset_flag(ne); 3052 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 3053 if (nat_get_blkaddr(ne) == NULL_ADDR) { 3054 add_free_nid(sbi, nid, false, true); 3055 } else { 3056 spin_lock(&NM_I(sbi)->nid_list_lock); 3057 update_free_nid_bitmap(sbi, nid, false, false); 3058 spin_unlock(&NM_I(sbi)->nid_list_lock); 3059 } 3060 } 3061 3062 if (to_journal) { 3063 up_write(&curseg->journal_rwsem); 3064 } else { 3065 update_nat_bits(sbi, start_nid, page); 3066 f2fs_put_page(page, 1); 3067 } 3068 3069 /* Allow dirty nats by node block allocation in write_begin */ 3070 if (!set->entry_cnt) { 3071 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 3072 kmem_cache_free(nat_entry_set_slab, set); 3073 } 3074 return 0; 3075 } 3076 3077 /* 3078 * This function is called during the checkpointing process. 3079 */ 3080 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3081 { 3082 struct f2fs_nm_info *nm_i = NM_I(sbi); 3083 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3084 struct f2fs_journal *journal = curseg->journal; 3085 struct nat_entry_set *setvec[NAT_VEC_SIZE]; 3086 struct nat_entry_set *set, *tmp; 3087 unsigned int found; 3088 nid_t set_idx = 0; 3089 LIST_HEAD(sets); 3090 int err = 0; 3091 3092 /* 3093 * during unmount, let's flush nat_bits before checking 3094 * nat_cnt[DIRTY_NAT]. 3095 */ 3096 if (cpc->reason & CP_UMOUNT) { 3097 f2fs_down_write(&nm_i->nat_tree_lock); 3098 remove_nats_in_journal(sbi); 3099 f2fs_up_write(&nm_i->nat_tree_lock); 3100 } 3101 3102 if (!nm_i->nat_cnt[DIRTY_NAT]) 3103 return 0; 3104 3105 f2fs_down_write(&nm_i->nat_tree_lock); 3106 3107 /* 3108 * if there are no enough space in journal to store dirty nat 3109 * entries, remove all entries from journal and merge them 3110 * into nat entry set. 3111 */ 3112 if (cpc->reason & CP_UMOUNT || 3113 !__has_cursum_space(journal, 3114 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 3115 remove_nats_in_journal(sbi); 3116 3117 while ((found = __gang_lookup_nat_set(nm_i, 3118 set_idx, NAT_VEC_SIZE, setvec))) { 3119 unsigned idx; 3120 3121 set_idx = setvec[found - 1]->set + 1; 3122 for (idx = 0; idx < found; idx++) 3123 __adjust_nat_entry_set(setvec[idx], &sets, 3124 MAX_NAT_JENTRIES(journal)); 3125 } 3126 3127 /* flush dirty nats in nat entry set */ 3128 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3129 err = __flush_nat_entry_set(sbi, set, cpc); 3130 if (err) 3131 break; 3132 } 3133 3134 f2fs_up_write(&nm_i->nat_tree_lock); 3135 /* Allow dirty nats by node block allocation in write_begin */ 3136 3137 return err; 3138 } 3139 3140 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3141 { 3142 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3143 struct f2fs_nm_info *nm_i = NM_I(sbi); 3144 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3145 unsigned int i; 3146 __u64 cp_ver = cur_cp_version(ckpt); 3147 block_t nat_bits_addr; 3148 3149 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3150 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3151 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3152 if (!nm_i->nat_bits) 3153 return -ENOMEM; 3154 3155 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3156 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3157 3158 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3159 return 0; 3160 3161 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 3162 nm_i->nat_bits_blocks; 3163 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3164 struct page *page; 3165 3166 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3167 if (IS_ERR(page)) 3168 return PTR_ERR(page); 3169 3170 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3171 page_address(page), F2FS_BLKSIZE); 3172 f2fs_put_page(page, 1); 3173 } 3174 3175 cp_ver |= (cur_cp_crc(ckpt) << 32); 3176 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3177 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 3178 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)", 3179 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits)); 3180 return 0; 3181 } 3182 3183 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3184 return 0; 3185 } 3186 3187 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3188 { 3189 struct f2fs_nm_info *nm_i = NM_I(sbi); 3190 unsigned int i = 0; 3191 nid_t nid, last_nid; 3192 3193 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3194 return; 3195 3196 for (i = 0; i < nm_i->nat_blocks; i++) { 3197 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3198 if (i >= nm_i->nat_blocks) 3199 break; 3200 3201 __set_bit_le(i, nm_i->nat_block_bitmap); 3202 3203 nid = i * NAT_ENTRY_PER_BLOCK; 3204 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3205 3206 spin_lock(&NM_I(sbi)->nid_list_lock); 3207 for (; nid < last_nid; nid++) 3208 update_free_nid_bitmap(sbi, nid, true, true); 3209 spin_unlock(&NM_I(sbi)->nid_list_lock); 3210 } 3211 3212 for (i = 0; i < nm_i->nat_blocks; i++) { 3213 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3214 if (i >= nm_i->nat_blocks) 3215 break; 3216 3217 __set_bit_le(i, nm_i->nat_block_bitmap); 3218 } 3219 } 3220 3221 static int init_node_manager(struct f2fs_sb_info *sbi) 3222 { 3223 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3224 struct f2fs_nm_info *nm_i = NM_I(sbi); 3225 unsigned char *version_bitmap; 3226 unsigned int nat_segs; 3227 int err; 3228 3229 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3230 3231 /* segment_count_nat includes pair segment so divide to 2. */ 3232 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3233 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3234 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3235 3236 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3237 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3238 F2FS_RESERVED_NODE_NUM; 3239 nm_i->nid_cnt[FREE_NID] = 0; 3240 nm_i->nid_cnt[PREALLOC_NID] = 0; 3241 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3242 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3243 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3244 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; 3245 3246 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3247 INIT_LIST_HEAD(&nm_i->free_nid_list); 3248 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3249 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3250 INIT_LIST_HEAD(&nm_i->nat_entries); 3251 spin_lock_init(&nm_i->nat_list_lock); 3252 3253 mutex_init(&nm_i->build_lock); 3254 spin_lock_init(&nm_i->nid_list_lock); 3255 init_f2fs_rwsem(&nm_i->nat_tree_lock); 3256 3257 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3258 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3259 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3260 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3261 GFP_KERNEL); 3262 if (!nm_i->nat_bitmap) 3263 return -ENOMEM; 3264 3265 err = __get_nat_bitmaps(sbi); 3266 if (err) 3267 return err; 3268 3269 #ifdef CONFIG_F2FS_CHECK_FS 3270 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3271 GFP_KERNEL); 3272 if (!nm_i->nat_bitmap_mir) 3273 return -ENOMEM; 3274 #endif 3275 3276 return 0; 3277 } 3278 3279 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3280 { 3281 struct f2fs_nm_info *nm_i = NM_I(sbi); 3282 int i; 3283 3284 nm_i->free_nid_bitmap = 3285 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3286 nm_i->nat_blocks), 3287 GFP_KERNEL); 3288 if (!nm_i->free_nid_bitmap) 3289 return -ENOMEM; 3290 3291 for (i = 0; i < nm_i->nat_blocks; i++) { 3292 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3293 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3294 if (!nm_i->free_nid_bitmap[i]) 3295 return -ENOMEM; 3296 } 3297 3298 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3299 GFP_KERNEL); 3300 if (!nm_i->nat_block_bitmap) 3301 return -ENOMEM; 3302 3303 nm_i->free_nid_count = 3304 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3305 nm_i->nat_blocks), 3306 GFP_KERNEL); 3307 if (!nm_i->free_nid_count) 3308 return -ENOMEM; 3309 return 0; 3310 } 3311 3312 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3313 { 3314 int err; 3315 3316 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3317 GFP_KERNEL); 3318 if (!sbi->nm_info) 3319 return -ENOMEM; 3320 3321 err = init_node_manager(sbi); 3322 if (err) 3323 return err; 3324 3325 err = init_free_nid_cache(sbi); 3326 if (err) 3327 return err; 3328 3329 /* load free nid status from nat_bits table */ 3330 load_free_nid_bitmap(sbi); 3331 3332 return f2fs_build_free_nids(sbi, true, true); 3333 } 3334 3335 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3336 { 3337 struct f2fs_nm_info *nm_i = NM_I(sbi); 3338 struct free_nid *i, *next_i; 3339 void *vec[NAT_VEC_SIZE]; 3340 struct nat_entry **natvec = (struct nat_entry **)vec; 3341 struct nat_entry_set **setvec = (struct nat_entry_set **)vec; 3342 nid_t nid = 0; 3343 unsigned int found; 3344 3345 if (!nm_i) 3346 return; 3347 3348 /* destroy free nid list */ 3349 spin_lock(&nm_i->nid_list_lock); 3350 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3351 __remove_free_nid(sbi, i, FREE_NID); 3352 spin_unlock(&nm_i->nid_list_lock); 3353 kmem_cache_free(free_nid_slab, i); 3354 spin_lock(&nm_i->nid_list_lock); 3355 } 3356 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3357 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3358 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3359 spin_unlock(&nm_i->nid_list_lock); 3360 3361 /* destroy nat cache */ 3362 f2fs_down_write(&nm_i->nat_tree_lock); 3363 while ((found = __gang_lookup_nat_cache(nm_i, 3364 nid, NAT_VEC_SIZE, natvec))) { 3365 unsigned idx; 3366 3367 nid = nat_get_nid(natvec[found - 1]) + 1; 3368 for (idx = 0; idx < found; idx++) { 3369 spin_lock(&nm_i->nat_list_lock); 3370 list_del(&natvec[idx]->list); 3371 spin_unlock(&nm_i->nat_list_lock); 3372 3373 __del_from_nat_cache(nm_i, natvec[idx]); 3374 } 3375 } 3376 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3377 3378 /* destroy nat set cache */ 3379 nid = 0; 3380 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE); 3381 while ((found = __gang_lookup_nat_set(nm_i, 3382 nid, NAT_VEC_SIZE, setvec))) { 3383 unsigned idx; 3384 3385 nid = setvec[found - 1]->set + 1; 3386 for (idx = 0; idx < found; idx++) { 3387 /* entry_cnt is not zero, when cp_error was occurred */ 3388 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3389 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3390 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3391 } 3392 } 3393 f2fs_up_write(&nm_i->nat_tree_lock); 3394 3395 kvfree(nm_i->nat_block_bitmap); 3396 if (nm_i->free_nid_bitmap) { 3397 int i; 3398 3399 for (i = 0; i < nm_i->nat_blocks; i++) 3400 kvfree(nm_i->free_nid_bitmap[i]); 3401 kvfree(nm_i->free_nid_bitmap); 3402 } 3403 kvfree(nm_i->free_nid_count); 3404 3405 kvfree(nm_i->nat_bitmap); 3406 kvfree(nm_i->nat_bits); 3407 #ifdef CONFIG_F2FS_CHECK_FS 3408 kvfree(nm_i->nat_bitmap_mir); 3409 #endif 3410 sbi->nm_info = NULL; 3411 kfree(nm_i); 3412 } 3413 3414 int __init f2fs_create_node_manager_caches(void) 3415 { 3416 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3417 sizeof(struct nat_entry)); 3418 if (!nat_entry_slab) 3419 goto fail; 3420 3421 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3422 sizeof(struct free_nid)); 3423 if (!free_nid_slab) 3424 goto destroy_nat_entry; 3425 3426 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3427 sizeof(struct nat_entry_set)); 3428 if (!nat_entry_set_slab) 3429 goto destroy_free_nid; 3430 3431 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3432 sizeof(struct fsync_node_entry)); 3433 if (!fsync_node_entry_slab) 3434 goto destroy_nat_entry_set; 3435 return 0; 3436 3437 destroy_nat_entry_set: 3438 kmem_cache_destroy(nat_entry_set_slab); 3439 destroy_free_nid: 3440 kmem_cache_destroy(free_nid_slab); 3441 destroy_nat_entry: 3442 kmem_cache_destroy(nat_entry_slab); 3443 fail: 3444 return -ENOMEM; 3445 } 3446 3447 void f2fs_destroy_node_manager_caches(void) 3448 { 3449 kmem_cache_destroy(fsync_node_entry_slab); 3450 kmem_cache_destroy(nat_entry_set_slab); 3451 kmem_cache_destroy(free_nid_slab); 3452 kmem_cache_destroy(nat_entry_slab); 3453 } 3454