1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/sched/mm.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "iostat.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 return -EFSCORRUPTED; 40 } 41 return 0; 42 } 43 44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 45 { 46 struct f2fs_nm_info *nm_i = NM_I(sbi); 47 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 48 struct sysinfo val; 49 unsigned long avail_ram; 50 unsigned long mem_size = 0; 51 bool res = false; 52 53 if (!nm_i) 54 return true; 55 56 si_meminfo(&val); 57 58 /* only uses low memory */ 59 avail_ram = val.totalram - val.totalhigh; 60 61 /* 62 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 63 */ 64 if (type == FREE_NIDS) { 65 mem_size = (nm_i->nid_cnt[FREE_NID] * 66 sizeof(struct free_nid)) >> PAGE_SHIFT; 67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 68 } else if (type == NAT_ENTRIES) { 69 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 70 sizeof(struct nat_entry)) >> PAGE_SHIFT; 71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 72 if (excess_cached_nats(sbi)) 73 res = false; 74 } else if (type == DIRTY_DENTS) { 75 if (sbi->sb->s_bdi->wb.dirty_exceeded) 76 return false; 77 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 78 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 79 } else if (type == INO_ENTRIES) { 80 int i; 81 82 for (i = 0; i < MAX_INO_ENTRY; i++) 83 mem_size += sbi->im[i].ino_num * 84 sizeof(struct ino_entry); 85 mem_size >>= PAGE_SHIFT; 86 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 87 } else if (type == EXTENT_CACHE) { 88 mem_size = (atomic_read(&sbi->total_ext_tree) * 89 sizeof(struct extent_tree) + 90 atomic_read(&sbi->total_ext_node) * 91 sizeof(struct extent_node)) >> PAGE_SHIFT; 92 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 93 } else if (type == DISCARD_CACHE) { 94 mem_size = (atomic_read(&dcc->discard_cmd_cnt) * 95 sizeof(struct discard_cmd)) >> PAGE_SHIFT; 96 res = mem_size < (avail_ram * nm_i->ram_thresh / 100); 97 } else if (type == COMPRESS_PAGE) { 98 #ifdef CONFIG_F2FS_FS_COMPRESSION 99 unsigned long free_ram = val.freeram; 100 101 /* 102 * free memory is lower than watermark or cached page count 103 * exceed threshold, deny caching compress page. 104 */ 105 res = (free_ram > avail_ram * sbi->compress_watermark / 100) && 106 (COMPRESS_MAPPING(sbi)->nrpages < 107 free_ram * sbi->compress_percent / 100); 108 #else 109 res = false; 110 #endif 111 } else { 112 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 113 return true; 114 } 115 return res; 116 } 117 118 static void clear_node_page_dirty(struct page *page) 119 { 120 if (PageDirty(page)) { 121 f2fs_clear_page_cache_dirty_tag(page); 122 clear_page_dirty_for_io(page); 123 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 124 } 125 ClearPageUptodate(page); 126 } 127 128 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 129 { 130 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 131 } 132 133 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 134 { 135 struct page *src_page; 136 struct page *dst_page; 137 pgoff_t dst_off; 138 void *src_addr; 139 void *dst_addr; 140 struct f2fs_nm_info *nm_i = NM_I(sbi); 141 142 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 143 144 /* get current nat block page with lock */ 145 src_page = get_current_nat_page(sbi, nid); 146 if (IS_ERR(src_page)) 147 return src_page; 148 dst_page = f2fs_grab_meta_page(sbi, dst_off); 149 f2fs_bug_on(sbi, PageDirty(src_page)); 150 151 src_addr = page_address(src_page); 152 dst_addr = page_address(dst_page); 153 memcpy(dst_addr, src_addr, PAGE_SIZE); 154 set_page_dirty(dst_page); 155 f2fs_put_page(src_page, 1); 156 157 set_to_next_nat(nm_i, nid); 158 159 return dst_page; 160 } 161 162 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, 163 nid_t nid, bool no_fail) 164 { 165 struct nat_entry *new; 166 167 new = f2fs_kmem_cache_alloc(nat_entry_slab, 168 GFP_F2FS_ZERO, no_fail, sbi); 169 if (new) { 170 nat_set_nid(new, nid); 171 nat_reset_flag(new); 172 } 173 return new; 174 } 175 176 static void __free_nat_entry(struct nat_entry *e) 177 { 178 kmem_cache_free(nat_entry_slab, e); 179 } 180 181 /* must be locked by nat_tree_lock */ 182 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 183 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 184 { 185 if (no_fail) 186 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 187 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 188 return NULL; 189 190 if (raw_ne) 191 node_info_from_raw_nat(&ne->ni, raw_ne); 192 193 spin_lock(&nm_i->nat_list_lock); 194 list_add_tail(&ne->list, &nm_i->nat_entries); 195 spin_unlock(&nm_i->nat_list_lock); 196 197 nm_i->nat_cnt[TOTAL_NAT]++; 198 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 199 return ne; 200 } 201 202 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 203 { 204 struct nat_entry *ne; 205 206 ne = radix_tree_lookup(&nm_i->nat_root, n); 207 208 /* for recent accessed nat entry, move it to tail of lru list */ 209 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 210 spin_lock(&nm_i->nat_list_lock); 211 if (!list_empty(&ne->list)) 212 list_move_tail(&ne->list, &nm_i->nat_entries); 213 spin_unlock(&nm_i->nat_list_lock); 214 } 215 216 return ne; 217 } 218 219 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 220 nid_t start, unsigned int nr, struct nat_entry **ep) 221 { 222 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 223 } 224 225 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 226 { 227 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 228 nm_i->nat_cnt[TOTAL_NAT]--; 229 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 230 __free_nat_entry(e); 231 } 232 233 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 234 struct nat_entry *ne) 235 { 236 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 237 struct nat_entry_set *head; 238 239 head = radix_tree_lookup(&nm_i->nat_set_root, set); 240 if (!head) { 241 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, 242 GFP_NOFS, true, NULL); 243 244 INIT_LIST_HEAD(&head->entry_list); 245 INIT_LIST_HEAD(&head->set_list); 246 head->set = set; 247 head->entry_cnt = 0; 248 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 249 } 250 return head; 251 } 252 253 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 254 struct nat_entry *ne) 255 { 256 struct nat_entry_set *head; 257 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 258 259 if (!new_ne) 260 head = __grab_nat_entry_set(nm_i, ne); 261 262 /* 263 * update entry_cnt in below condition: 264 * 1. update NEW_ADDR to valid block address; 265 * 2. update old block address to new one; 266 */ 267 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 268 !get_nat_flag(ne, IS_DIRTY))) 269 head->entry_cnt++; 270 271 set_nat_flag(ne, IS_PREALLOC, new_ne); 272 273 if (get_nat_flag(ne, IS_DIRTY)) 274 goto refresh_list; 275 276 nm_i->nat_cnt[DIRTY_NAT]++; 277 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 278 set_nat_flag(ne, IS_DIRTY, true); 279 refresh_list: 280 spin_lock(&nm_i->nat_list_lock); 281 if (new_ne) 282 list_del_init(&ne->list); 283 else 284 list_move_tail(&ne->list, &head->entry_list); 285 spin_unlock(&nm_i->nat_list_lock); 286 } 287 288 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 289 struct nat_entry_set *set, struct nat_entry *ne) 290 { 291 spin_lock(&nm_i->nat_list_lock); 292 list_move_tail(&ne->list, &nm_i->nat_entries); 293 spin_unlock(&nm_i->nat_list_lock); 294 295 set_nat_flag(ne, IS_DIRTY, false); 296 set->entry_cnt--; 297 nm_i->nat_cnt[DIRTY_NAT]--; 298 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 299 } 300 301 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 302 nid_t start, unsigned int nr, struct nat_entry_set **ep) 303 { 304 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 305 start, nr); 306 } 307 308 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 309 { 310 return NODE_MAPPING(sbi) == page->mapping && 311 IS_DNODE(page) && is_cold_node(page); 312 } 313 314 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 315 { 316 spin_lock_init(&sbi->fsync_node_lock); 317 INIT_LIST_HEAD(&sbi->fsync_node_list); 318 sbi->fsync_seg_id = 0; 319 sbi->fsync_node_num = 0; 320 } 321 322 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 323 struct page *page) 324 { 325 struct fsync_node_entry *fn; 326 unsigned long flags; 327 unsigned int seq_id; 328 329 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, 330 GFP_NOFS, true, NULL); 331 332 get_page(page); 333 fn->page = page; 334 INIT_LIST_HEAD(&fn->list); 335 336 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 337 list_add_tail(&fn->list, &sbi->fsync_node_list); 338 fn->seq_id = sbi->fsync_seg_id++; 339 seq_id = fn->seq_id; 340 sbi->fsync_node_num++; 341 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 342 343 return seq_id; 344 } 345 346 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 347 { 348 struct fsync_node_entry *fn; 349 unsigned long flags; 350 351 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 352 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 353 if (fn->page == page) { 354 list_del(&fn->list); 355 sbi->fsync_node_num--; 356 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 357 kmem_cache_free(fsync_node_entry_slab, fn); 358 put_page(page); 359 return; 360 } 361 } 362 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 363 f2fs_bug_on(sbi, 1); 364 } 365 366 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 367 { 368 unsigned long flags; 369 370 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 371 sbi->fsync_seg_id = 0; 372 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 373 } 374 375 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 376 { 377 struct f2fs_nm_info *nm_i = NM_I(sbi); 378 struct nat_entry *e; 379 bool need = false; 380 381 f2fs_down_read(&nm_i->nat_tree_lock); 382 e = __lookup_nat_cache(nm_i, nid); 383 if (e) { 384 if (!get_nat_flag(e, IS_CHECKPOINTED) && 385 !get_nat_flag(e, HAS_FSYNCED_INODE)) 386 need = true; 387 } 388 f2fs_up_read(&nm_i->nat_tree_lock); 389 return need; 390 } 391 392 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 393 { 394 struct f2fs_nm_info *nm_i = NM_I(sbi); 395 struct nat_entry *e; 396 bool is_cp = true; 397 398 f2fs_down_read(&nm_i->nat_tree_lock); 399 e = __lookup_nat_cache(nm_i, nid); 400 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 401 is_cp = false; 402 f2fs_up_read(&nm_i->nat_tree_lock); 403 return is_cp; 404 } 405 406 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 407 { 408 struct f2fs_nm_info *nm_i = NM_I(sbi); 409 struct nat_entry *e; 410 bool need_update = true; 411 412 f2fs_down_read(&nm_i->nat_tree_lock); 413 e = __lookup_nat_cache(nm_i, ino); 414 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 415 (get_nat_flag(e, IS_CHECKPOINTED) || 416 get_nat_flag(e, HAS_FSYNCED_INODE))) 417 need_update = false; 418 f2fs_up_read(&nm_i->nat_tree_lock); 419 return need_update; 420 } 421 422 /* must be locked by nat_tree_lock */ 423 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 424 struct f2fs_nat_entry *ne) 425 { 426 struct f2fs_nm_info *nm_i = NM_I(sbi); 427 struct nat_entry *new, *e; 428 429 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ 430 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) 431 return; 432 433 new = __alloc_nat_entry(sbi, nid, false); 434 if (!new) 435 return; 436 437 f2fs_down_write(&nm_i->nat_tree_lock); 438 e = __lookup_nat_cache(nm_i, nid); 439 if (!e) 440 e = __init_nat_entry(nm_i, new, ne, false); 441 else 442 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 443 nat_get_blkaddr(e) != 444 le32_to_cpu(ne->block_addr) || 445 nat_get_version(e) != ne->version); 446 f2fs_up_write(&nm_i->nat_tree_lock); 447 if (e != new) 448 __free_nat_entry(new); 449 } 450 451 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 452 block_t new_blkaddr, bool fsync_done) 453 { 454 struct f2fs_nm_info *nm_i = NM_I(sbi); 455 struct nat_entry *e; 456 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); 457 458 f2fs_down_write(&nm_i->nat_tree_lock); 459 e = __lookup_nat_cache(nm_i, ni->nid); 460 if (!e) { 461 e = __init_nat_entry(nm_i, new, NULL, true); 462 copy_node_info(&e->ni, ni); 463 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 464 } else if (new_blkaddr == NEW_ADDR) { 465 /* 466 * when nid is reallocated, 467 * previous nat entry can be remained in nat cache. 468 * So, reinitialize it with new information. 469 */ 470 copy_node_info(&e->ni, ni); 471 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 472 } 473 /* let's free early to reduce memory consumption */ 474 if (e != new) 475 __free_nat_entry(new); 476 477 /* sanity check */ 478 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 479 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 480 new_blkaddr == NULL_ADDR); 481 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 482 new_blkaddr == NEW_ADDR); 483 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 484 new_blkaddr == NEW_ADDR); 485 486 /* increment version no as node is removed */ 487 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 488 unsigned char version = nat_get_version(e); 489 490 nat_set_version(e, inc_node_version(version)); 491 } 492 493 /* change address */ 494 nat_set_blkaddr(e, new_blkaddr); 495 if (!__is_valid_data_blkaddr(new_blkaddr)) 496 set_nat_flag(e, IS_CHECKPOINTED, false); 497 __set_nat_cache_dirty(nm_i, e); 498 499 /* update fsync_mark if its inode nat entry is still alive */ 500 if (ni->nid != ni->ino) 501 e = __lookup_nat_cache(nm_i, ni->ino); 502 if (e) { 503 if (fsync_done && ni->nid == ni->ino) 504 set_nat_flag(e, HAS_FSYNCED_INODE, true); 505 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 506 } 507 f2fs_up_write(&nm_i->nat_tree_lock); 508 } 509 510 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 511 { 512 struct f2fs_nm_info *nm_i = NM_I(sbi); 513 int nr = nr_shrink; 514 515 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) 516 return 0; 517 518 spin_lock(&nm_i->nat_list_lock); 519 while (nr_shrink) { 520 struct nat_entry *ne; 521 522 if (list_empty(&nm_i->nat_entries)) 523 break; 524 525 ne = list_first_entry(&nm_i->nat_entries, 526 struct nat_entry, list); 527 list_del(&ne->list); 528 spin_unlock(&nm_i->nat_list_lock); 529 530 __del_from_nat_cache(nm_i, ne); 531 nr_shrink--; 532 533 spin_lock(&nm_i->nat_list_lock); 534 } 535 spin_unlock(&nm_i->nat_list_lock); 536 537 f2fs_up_write(&nm_i->nat_tree_lock); 538 return nr - nr_shrink; 539 } 540 541 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 542 struct node_info *ni, bool checkpoint_context) 543 { 544 struct f2fs_nm_info *nm_i = NM_I(sbi); 545 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 546 struct f2fs_journal *journal = curseg->journal; 547 nid_t start_nid = START_NID(nid); 548 struct f2fs_nat_block *nat_blk; 549 struct page *page = NULL; 550 struct f2fs_nat_entry ne; 551 struct nat_entry *e; 552 pgoff_t index; 553 block_t blkaddr; 554 int i; 555 556 ni->nid = nid; 557 retry: 558 /* Check nat cache */ 559 f2fs_down_read(&nm_i->nat_tree_lock); 560 e = __lookup_nat_cache(nm_i, nid); 561 if (e) { 562 ni->ino = nat_get_ino(e); 563 ni->blk_addr = nat_get_blkaddr(e); 564 ni->version = nat_get_version(e); 565 f2fs_up_read(&nm_i->nat_tree_lock); 566 return 0; 567 } 568 569 /* 570 * Check current segment summary by trying to grab journal_rwsem first. 571 * This sem is on the critical path on the checkpoint requiring the above 572 * nat_tree_lock. Therefore, we should retry, if we failed to grab here 573 * while not bothering checkpoint. 574 */ 575 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { 576 down_read(&curseg->journal_rwsem); 577 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || 578 !down_read_trylock(&curseg->journal_rwsem)) { 579 f2fs_up_read(&nm_i->nat_tree_lock); 580 goto retry; 581 } 582 583 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 584 if (i >= 0) { 585 ne = nat_in_journal(journal, i); 586 node_info_from_raw_nat(ni, &ne); 587 } 588 up_read(&curseg->journal_rwsem); 589 if (i >= 0) { 590 f2fs_up_read(&nm_i->nat_tree_lock); 591 goto cache; 592 } 593 594 /* Fill node_info from nat page */ 595 index = current_nat_addr(sbi, nid); 596 f2fs_up_read(&nm_i->nat_tree_lock); 597 598 page = f2fs_get_meta_page(sbi, index); 599 if (IS_ERR(page)) 600 return PTR_ERR(page); 601 602 nat_blk = (struct f2fs_nat_block *)page_address(page); 603 ne = nat_blk->entries[nid - start_nid]; 604 node_info_from_raw_nat(ni, &ne); 605 f2fs_put_page(page, 1); 606 cache: 607 blkaddr = le32_to_cpu(ne.block_addr); 608 if (__is_valid_data_blkaddr(blkaddr) && 609 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 610 return -EFAULT; 611 612 /* cache nat entry */ 613 cache_nat_entry(sbi, nid, &ne); 614 return 0; 615 } 616 617 /* 618 * readahead MAX_RA_NODE number of node pages. 619 */ 620 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 621 { 622 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 623 struct blk_plug plug; 624 int i, end; 625 nid_t nid; 626 627 blk_start_plug(&plug); 628 629 /* Then, try readahead for siblings of the desired node */ 630 end = start + n; 631 end = min(end, NIDS_PER_BLOCK); 632 for (i = start; i < end; i++) { 633 nid = get_nid(parent, i, false); 634 f2fs_ra_node_page(sbi, nid); 635 } 636 637 blk_finish_plug(&plug); 638 } 639 640 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 641 { 642 const long direct_index = ADDRS_PER_INODE(dn->inode); 643 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 644 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 645 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 646 int cur_level = dn->cur_level; 647 int max_level = dn->max_level; 648 pgoff_t base = 0; 649 650 if (!dn->max_level) 651 return pgofs + 1; 652 653 while (max_level-- > cur_level) 654 skipped_unit *= NIDS_PER_BLOCK; 655 656 switch (dn->max_level) { 657 case 3: 658 base += 2 * indirect_blks; 659 fallthrough; 660 case 2: 661 base += 2 * direct_blks; 662 fallthrough; 663 case 1: 664 base += direct_index; 665 break; 666 default: 667 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 668 } 669 670 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 671 } 672 673 /* 674 * The maximum depth is four. 675 * Offset[0] will have raw inode offset. 676 */ 677 static int get_node_path(struct inode *inode, long block, 678 int offset[4], unsigned int noffset[4]) 679 { 680 const long direct_index = ADDRS_PER_INODE(inode); 681 const long direct_blks = ADDRS_PER_BLOCK(inode); 682 const long dptrs_per_blk = NIDS_PER_BLOCK; 683 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 684 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 685 int n = 0; 686 int level = 0; 687 688 noffset[0] = 0; 689 690 if (block < direct_index) { 691 offset[n] = block; 692 goto got; 693 } 694 block -= direct_index; 695 if (block < direct_blks) { 696 offset[n++] = NODE_DIR1_BLOCK; 697 noffset[n] = 1; 698 offset[n] = block; 699 level = 1; 700 goto got; 701 } 702 block -= direct_blks; 703 if (block < direct_blks) { 704 offset[n++] = NODE_DIR2_BLOCK; 705 noffset[n] = 2; 706 offset[n] = block; 707 level = 1; 708 goto got; 709 } 710 block -= direct_blks; 711 if (block < indirect_blks) { 712 offset[n++] = NODE_IND1_BLOCK; 713 noffset[n] = 3; 714 offset[n++] = block / direct_blks; 715 noffset[n] = 4 + offset[n - 1]; 716 offset[n] = block % direct_blks; 717 level = 2; 718 goto got; 719 } 720 block -= indirect_blks; 721 if (block < indirect_blks) { 722 offset[n++] = NODE_IND2_BLOCK; 723 noffset[n] = 4 + dptrs_per_blk; 724 offset[n++] = block / direct_blks; 725 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 726 offset[n] = block % direct_blks; 727 level = 2; 728 goto got; 729 } 730 block -= indirect_blks; 731 if (block < dindirect_blks) { 732 offset[n++] = NODE_DIND_BLOCK; 733 noffset[n] = 5 + (dptrs_per_blk * 2); 734 offset[n++] = block / indirect_blks; 735 noffset[n] = 6 + (dptrs_per_blk * 2) + 736 offset[n - 1] * (dptrs_per_blk + 1); 737 offset[n++] = (block / direct_blks) % dptrs_per_blk; 738 noffset[n] = 7 + (dptrs_per_blk * 2) + 739 offset[n - 2] * (dptrs_per_blk + 1) + 740 offset[n - 1]; 741 offset[n] = block % direct_blks; 742 level = 3; 743 goto got; 744 } else { 745 return -E2BIG; 746 } 747 got: 748 return level; 749 } 750 751 /* 752 * Caller should call f2fs_put_dnode(dn). 753 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 754 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 755 */ 756 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 757 { 758 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 759 struct page *npage[4]; 760 struct page *parent = NULL; 761 int offset[4]; 762 unsigned int noffset[4]; 763 nid_t nids[4]; 764 int level, i = 0; 765 int err = 0; 766 767 level = get_node_path(dn->inode, index, offset, noffset); 768 if (level < 0) 769 return level; 770 771 nids[0] = dn->inode->i_ino; 772 npage[0] = dn->inode_page; 773 774 if (!npage[0]) { 775 npage[0] = f2fs_get_node_page(sbi, nids[0]); 776 if (IS_ERR(npage[0])) 777 return PTR_ERR(npage[0]); 778 } 779 780 /* if inline_data is set, should not report any block indices */ 781 if (f2fs_has_inline_data(dn->inode) && index) { 782 err = -ENOENT; 783 f2fs_put_page(npage[0], 1); 784 goto release_out; 785 } 786 787 parent = npage[0]; 788 if (level != 0) 789 nids[1] = get_nid(parent, offset[0], true); 790 dn->inode_page = npage[0]; 791 dn->inode_page_locked = true; 792 793 /* get indirect or direct nodes */ 794 for (i = 1; i <= level; i++) { 795 bool done = false; 796 797 if (!nids[i] && mode == ALLOC_NODE) { 798 /* alloc new node */ 799 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 800 err = -ENOSPC; 801 goto release_pages; 802 } 803 804 dn->nid = nids[i]; 805 npage[i] = f2fs_new_node_page(dn, noffset[i]); 806 if (IS_ERR(npage[i])) { 807 f2fs_alloc_nid_failed(sbi, nids[i]); 808 err = PTR_ERR(npage[i]); 809 goto release_pages; 810 } 811 812 set_nid(parent, offset[i - 1], nids[i], i == 1); 813 f2fs_alloc_nid_done(sbi, nids[i]); 814 done = true; 815 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 816 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 817 if (IS_ERR(npage[i])) { 818 err = PTR_ERR(npage[i]); 819 goto release_pages; 820 } 821 done = true; 822 } 823 if (i == 1) { 824 dn->inode_page_locked = false; 825 unlock_page(parent); 826 } else { 827 f2fs_put_page(parent, 1); 828 } 829 830 if (!done) { 831 npage[i] = f2fs_get_node_page(sbi, nids[i]); 832 if (IS_ERR(npage[i])) { 833 err = PTR_ERR(npage[i]); 834 f2fs_put_page(npage[0], 0); 835 goto release_out; 836 } 837 } 838 if (i < level) { 839 parent = npage[i]; 840 nids[i + 1] = get_nid(parent, offset[i], false); 841 } 842 } 843 dn->nid = nids[level]; 844 dn->ofs_in_node = offset[level]; 845 dn->node_page = npage[level]; 846 dn->data_blkaddr = f2fs_data_blkaddr(dn); 847 848 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && 849 f2fs_sb_has_readonly(sbi)) { 850 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn); 851 block_t blkaddr; 852 853 if (!c_len) 854 goto out; 855 856 blkaddr = f2fs_data_blkaddr(dn); 857 if (blkaddr == COMPRESS_ADDR) 858 blkaddr = data_blkaddr(dn->inode, dn->node_page, 859 dn->ofs_in_node + 1); 860 861 f2fs_update_extent_tree_range_compressed(dn->inode, 862 index, blkaddr, 863 F2FS_I(dn->inode)->i_cluster_size, 864 c_len); 865 } 866 out: 867 return 0; 868 869 release_pages: 870 f2fs_put_page(parent, 1); 871 if (i > 1) 872 f2fs_put_page(npage[0], 0); 873 release_out: 874 dn->inode_page = NULL; 875 dn->node_page = NULL; 876 if (err == -ENOENT) { 877 dn->cur_level = i; 878 dn->max_level = level; 879 dn->ofs_in_node = offset[level]; 880 } 881 return err; 882 } 883 884 static int truncate_node(struct dnode_of_data *dn) 885 { 886 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 887 struct node_info ni; 888 int err; 889 pgoff_t index; 890 891 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 892 if (err) 893 return err; 894 895 /* Deallocate node address */ 896 f2fs_invalidate_blocks(sbi, ni.blk_addr); 897 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 898 set_node_addr(sbi, &ni, NULL_ADDR, false); 899 900 if (dn->nid == dn->inode->i_ino) { 901 f2fs_remove_orphan_inode(sbi, dn->nid); 902 dec_valid_inode_count(sbi); 903 f2fs_inode_synced(dn->inode); 904 } 905 906 clear_node_page_dirty(dn->node_page); 907 set_sbi_flag(sbi, SBI_IS_DIRTY); 908 909 index = dn->node_page->index; 910 f2fs_put_page(dn->node_page, 1); 911 912 invalidate_mapping_pages(NODE_MAPPING(sbi), 913 index, index); 914 915 dn->node_page = NULL; 916 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 917 918 return 0; 919 } 920 921 static int truncate_dnode(struct dnode_of_data *dn) 922 { 923 struct page *page; 924 int err; 925 926 if (dn->nid == 0) 927 return 1; 928 929 /* get direct node */ 930 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 931 if (PTR_ERR(page) == -ENOENT) 932 return 1; 933 else if (IS_ERR(page)) 934 return PTR_ERR(page); 935 936 /* Make dnode_of_data for parameter */ 937 dn->node_page = page; 938 dn->ofs_in_node = 0; 939 f2fs_truncate_data_blocks(dn); 940 err = truncate_node(dn); 941 if (err) 942 return err; 943 944 return 1; 945 } 946 947 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 948 int ofs, int depth) 949 { 950 struct dnode_of_data rdn = *dn; 951 struct page *page; 952 struct f2fs_node *rn; 953 nid_t child_nid; 954 unsigned int child_nofs; 955 int freed = 0; 956 int i, ret; 957 958 if (dn->nid == 0) 959 return NIDS_PER_BLOCK + 1; 960 961 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 962 963 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 964 if (IS_ERR(page)) { 965 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 966 return PTR_ERR(page); 967 } 968 969 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 970 971 rn = F2FS_NODE(page); 972 if (depth < 3) { 973 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 974 child_nid = le32_to_cpu(rn->in.nid[i]); 975 if (child_nid == 0) 976 continue; 977 rdn.nid = child_nid; 978 ret = truncate_dnode(&rdn); 979 if (ret < 0) 980 goto out_err; 981 if (set_nid(page, i, 0, false)) 982 dn->node_changed = true; 983 } 984 } else { 985 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 986 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 987 child_nid = le32_to_cpu(rn->in.nid[i]); 988 if (child_nid == 0) { 989 child_nofs += NIDS_PER_BLOCK + 1; 990 continue; 991 } 992 rdn.nid = child_nid; 993 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 994 if (ret == (NIDS_PER_BLOCK + 1)) { 995 if (set_nid(page, i, 0, false)) 996 dn->node_changed = true; 997 child_nofs += ret; 998 } else if (ret < 0 && ret != -ENOENT) { 999 goto out_err; 1000 } 1001 } 1002 freed = child_nofs; 1003 } 1004 1005 if (!ofs) { 1006 /* remove current indirect node */ 1007 dn->node_page = page; 1008 ret = truncate_node(dn); 1009 if (ret) 1010 goto out_err; 1011 freed++; 1012 } else { 1013 f2fs_put_page(page, 1); 1014 } 1015 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 1016 return freed; 1017 1018 out_err: 1019 f2fs_put_page(page, 1); 1020 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 1021 return ret; 1022 } 1023 1024 static int truncate_partial_nodes(struct dnode_of_data *dn, 1025 struct f2fs_inode *ri, int *offset, int depth) 1026 { 1027 struct page *pages[2]; 1028 nid_t nid[3]; 1029 nid_t child_nid; 1030 int err = 0; 1031 int i; 1032 int idx = depth - 2; 1033 1034 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1035 if (!nid[0]) 1036 return 0; 1037 1038 /* get indirect nodes in the path */ 1039 for (i = 0; i < idx + 1; i++) { 1040 /* reference count'll be increased */ 1041 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 1042 if (IS_ERR(pages[i])) { 1043 err = PTR_ERR(pages[i]); 1044 idx = i - 1; 1045 goto fail; 1046 } 1047 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 1048 } 1049 1050 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 1051 1052 /* free direct nodes linked to a partial indirect node */ 1053 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1054 child_nid = get_nid(pages[idx], i, false); 1055 if (!child_nid) 1056 continue; 1057 dn->nid = child_nid; 1058 err = truncate_dnode(dn); 1059 if (err < 0) 1060 goto fail; 1061 if (set_nid(pages[idx], i, 0, false)) 1062 dn->node_changed = true; 1063 } 1064 1065 if (offset[idx + 1] == 0) { 1066 dn->node_page = pages[idx]; 1067 dn->nid = nid[idx]; 1068 err = truncate_node(dn); 1069 if (err) 1070 goto fail; 1071 } else { 1072 f2fs_put_page(pages[idx], 1); 1073 } 1074 offset[idx]++; 1075 offset[idx + 1] = 0; 1076 idx--; 1077 fail: 1078 for (i = idx; i >= 0; i--) 1079 f2fs_put_page(pages[i], 1); 1080 1081 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1082 1083 return err; 1084 } 1085 1086 /* 1087 * All the block addresses of data and nodes should be nullified. 1088 */ 1089 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1090 { 1091 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1092 int err = 0, cont = 1; 1093 int level, offset[4], noffset[4]; 1094 unsigned int nofs = 0; 1095 struct f2fs_inode *ri; 1096 struct dnode_of_data dn; 1097 struct page *page; 1098 1099 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1100 1101 level = get_node_path(inode, from, offset, noffset); 1102 if (level < 0) { 1103 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1104 return level; 1105 } 1106 1107 page = f2fs_get_node_page(sbi, inode->i_ino); 1108 if (IS_ERR(page)) { 1109 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1110 return PTR_ERR(page); 1111 } 1112 1113 set_new_dnode(&dn, inode, page, NULL, 0); 1114 unlock_page(page); 1115 1116 ri = F2FS_INODE(page); 1117 switch (level) { 1118 case 0: 1119 case 1: 1120 nofs = noffset[1]; 1121 break; 1122 case 2: 1123 nofs = noffset[1]; 1124 if (!offset[level - 1]) 1125 goto skip_partial; 1126 err = truncate_partial_nodes(&dn, ri, offset, level); 1127 if (err < 0 && err != -ENOENT) 1128 goto fail; 1129 nofs += 1 + NIDS_PER_BLOCK; 1130 break; 1131 case 3: 1132 nofs = 5 + 2 * NIDS_PER_BLOCK; 1133 if (!offset[level - 1]) 1134 goto skip_partial; 1135 err = truncate_partial_nodes(&dn, ri, offset, level); 1136 if (err < 0 && err != -ENOENT) 1137 goto fail; 1138 break; 1139 default: 1140 BUG(); 1141 } 1142 1143 skip_partial: 1144 while (cont) { 1145 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1146 switch (offset[0]) { 1147 case NODE_DIR1_BLOCK: 1148 case NODE_DIR2_BLOCK: 1149 err = truncate_dnode(&dn); 1150 break; 1151 1152 case NODE_IND1_BLOCK: 1153 case NODE_IND2_BLOCK: 1154 err = truncate_nodes(&dn, nofs, offset[1], 2); 1155 break; 1156 1157 case NODE_DIND_BLOCK: 1158 err = truncate_nodes(&dn, nofs, offset[1], 3); 1159 cont = 0; 1160 break; 1161 1162 default: 1163 BUG(); 1164 } 1165 if (err < 0 && err != -ENOENT) 1166 goto fail; 1167 if (offset[1] == 0 && 1168 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1169 lock_page(page); 1170 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1171 f2fs_wait_on_page_writeback(page, NODE, true, true); 1172 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1173 set_page_dirty(page); 1174 unlock_page(page); 1175 } 1176 offset[1] = 0; 1177 offset[0]++; 1178 nofs += err; 1179 } 1180 fail: 1181 f2fs_put_page(page, 0); 1182 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1183 return err > 0 ? 0 : err; 1184 } 1185 1186 /* caller must lock inode page */ 1187 int f2fs_truncate_xattr_node(struct inode *inode) 1188 { 1189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1190 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1191 struct dnode_of_data dn; 1192 struct page *npage; 1193 int err; 1194 1195 if (!nid) 1196 return 0; 1197 1198 npage = f2fs_get_node_page(sbi, nid); 1199 if (IS_ERR(npage)) 1200 return PTR_ERR(npage); 1201 1202 set_new_dnode(&dn, inode, NULL, npage, nid); 1203 err = truncate_node(&dn); 1204 if (err) { 1205 f2fs_put_page(npage, 1); 1206 return err; 1207 } 1208 1209 f2fs_i_xnid_write(inode, 0); 1210 1211 return 0; 1212 } 1213 1214 /* 1215 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1216 * f2fs_unlock_op(). 1217 */ 1218 int f2fs_remove_inode_page(struct inode *inode) 1219 { 1220 struct dnode_of_data dn; 1221 int err; 1222 1223 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1224 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1225 if (err) 1226 return err; 1227 1228 err = f2fs_truncate_xattr_node(inode); 1229 if (err) { 1230 f2fs_put_dnode(&dn); 1231 return err; 1232 } 1233 1234 /* remove potential inline_data blocks */ 1235 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1236 S_ISLNK(inode->i_mode)) 1237 f2fs_truncate_data_blocks_range(&dn, 1); 1238 1239 /* 0 is possible, after f2fs_new_inode() has failed */ 1240 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1241 f2fs_put_dnode(&dn); 1242 return -EIO; 1243 } 1244 1245 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1246 f2fs_warn(F2FS_I_SB(inode), 1247 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1248 inode->i_ino, (unsigned long long)inode->i_blocks); 1249 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1250 } 1251 1252 /* will put inode & node pages */ 1253 err = truncate_node(&dn); 1254 if (err) { 1255 f2fs_put_dnode(&dn); 1256 return err; 1257 } 1258 return 0; 1259 } 1260 1261 struct page *f2fs_new_inode_page(struct inode *inode) 1262 { 1263 struct dnode_of_data dn; 1264 1265 /* allocate inode page for new inode */ 1266 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1267 1268 /* caller should f2fs_put_page(page, 1); */ 1269 return f2fs_new_node_page(&dn, 0); 1270 } 1271 1272 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1273 { 1274 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1275 struct node_info new_ni; 1276 struct page *page; 1277 int err; 1278 1279 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1280 return ERR_PTR(-EPERM); 1281 1282 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1283 if (!page) 1284 return ERR_PTR(-ENOMEM); 1285 1286 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1287 goto fail; 1288 1289 #ifdef CONFIG_F2FS_CHECK_FS 1290 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); 1291 if (err) { 1292 dec_valid_node_count(sbi, dn->inode, !ofs); 1293 goto fail; 1294 } 1295 if (unlikely(new_ni.blk_addr != NULL_ADDR)) { 1296 err = -EFSCORRUPTED; 1297 set_sbi_flag(sbi, SBI_NEED_FSCK); 1298 goto fail; 1299 } 1300 #endif 1301 new_ni.nid = dn->nid; 1302 new_ni.ino = dn->inode->i_ino; 1303 new_ni.blk_addr = NULL_ADDR; 1304 new_ni.flag = 0; 1305 new_ni.version = 0; 1306 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1307 1308 f2fs_wait_on_page_writeback(page, NODE, true, true); 1309 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1310 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1311 if (!PageUptodate(page)) 1312 SetPageUptodate(page); 1313 if (set_page_dirty(page)) 1314 dn->node_changed = true; 1315 1316 if (f2fs_has_xattr_block(ofs)) 1317 f2fs_i_xnid_write(dn->inode, dn->nid); 1318 1319 if (ofs == 0) 1320 inc_valid_inode_count(sbi); 1321 return page; 1322 1323 fail: 1324 clear_node_page_dirty(page); 1325 f2fs_put_page(page, 1); 1326 return ERR_PTR(err); 1327 } 1328 1329 /* 1330 * Caller should do after getting the following values. 1331 * 0: f2fs_put_page(page, 0) 1332 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1333 */ 1334 static int read_node_page(struct page *page, blk_opf_t op_flags) 1335 { 1336 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1337 struct node_info ni; 1338 struct f2fs_io_info fio = { 1339 .sbi = sbi, 1340 .type = NODE, 1341 .op = REQ_OP_READ, 1342 .op_flags = op_flags, 1343 .page = page, 1344 .encrypted_page = NULL, 1345 }; 1346 int err; 1347 1348 if (PageUptodate(page)) { 1349 if (!f2fs_inode_chksum_verify(sbi, page)) { 1350 ClearPageUptodate(page); 1351 return -EFSBADCRC; 1352 } 1353 return LOCKED_PAGE; 1354 } 1355 1356 err = f2fs_get_node_info(sbi, page->index, &ni, false); 1357 if (err) 1358 return err; 1359 1360 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ 1361 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) || 1362 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) { 1363 ClearPageUptodate(page); 1364 return -ENOENT; 1365 } 1366 1367 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1368 1369 err = f2fs_submit_page_bio(&fio); 1370 1371 if (!err) 1372 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE); 1373 1374 return err; 1375 } 1376 1377 /* 1378 * Readahead a node page 1379 */ 1380 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1381 { 1382 struct page *apage; 1383 int err; 1384 1385 if (!nid) 1386 return; 1387 if (f2fs_check_nid_range(sbi, nid)) 1388 return; 1389 1390 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1391 if (apage) 1392 return; 1393 1394 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1395 if (!apage) 1396 return; 1397 1398 err = read_node_page(apage, REQ_RAHEAD); 1399 f2fs_put_page(apage, err ? 1 : 0); 1400 } 1401 1402 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1403 struct page *parent, int start) 1404 { 1405 struct page *page; 1406 int err; 1407 1408 if (!nid) 1409 return ERR_PTR(-ENOENT); 1410 if (f2fs_check_nid_range(sbi, nid)) 1411 return ERR_PTR(-EINVAL); 1412 repeat: 1413 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1414 if (!page) 1415 return ERR_PTR(-ENOMEM); 1416 1417 err = read_node_page(page, 0); 1418 if (err < 0) { 1419 goto out_put_err; 1420 } else if (err == LOCKED_PAGE) { 1421 err = 0; 1422 goto page_hit; 1423 } 1424 1425 if (parent) 1426 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1427 1428 lock_page(page); 1429 1430 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1431 f2fs_put_page(page, 1); 1432 goto repeat; 1433 } 1434 1435 if (unlikely(!PageUptodate(page))) { 1436 err = -EIO; 1437 goto out_err; 1438 } 1439 1440 if (!f2fs_inode_chksum_verify(sbi, page)) { 1441 err = -EFSBADCRC; 1442 goto out_err; 1443 } 1444 page_hit: 1445 if (likely(nid == nid_of_node(page))) 1446 return page; 1447 1448 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1449 nid, nid_of_node(page), ino_of_node(page), 1450 ofs_of_node(page), cpver_of_node(page), 1451 next_blkaddr_of_node(page)); 1452 set_sbi_flag(sbi, SBI_NEED_FSCK); 1453 err = -EINVAL; 1454 out_err: 1455 ClearPageUptodate(page); 1456 out_put_err: 1457 /* ENOENT comes from read_node_page which is not an error. */ 1458 if (err != -ENOENT) 1459 f2fs_handle_page_eio(sbi, page->index, NODE); 1460 f2fs_put_page(page, 1); 1461 return ERR_PTR(err); 1462 } 1463 1464 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1465 { 1466 return __get_node_page(sbi, nid, NULL, 0); 1467 } 1468 1469 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1470 { 1471 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1472 nid_t nid = get_nid(parent, start, false); 1473 1474 return __get_node_page(sbi, nid, parent, start); 1475 } 1476 1477 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1478 { 1479 struct inode *inode; 1480 struct page *page; 1481 int ret; 1482 1483 /* should flush inline_data before evict_inode */ 1484 inode = ilookup(sbi->sb, ino); 1485 if (!inode) 1486 return; 1487 1488 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1489 FGP_LOCK|FGP_NOWAIT, 0); 1490 if (!page) 1491 goto iput_out; 1492 1493 if (!PageUptodate(page)) 1494 goto page_out; 1495 1496 if (!PageDirty(page)) 1497 goto page_out; 1498 1499 if (!clear_page_dirty_for_io(page)) 1500 goto page_out; 1501 1502 ret = f2fs_write_inline_data(inode, page); 1503 inode_dec_dirty_pages(inode); 1504 f2fs_remove_dirty_inode(inode); 1505 if (ret) 1506 set_page_dirty(page); 1507 page_out: 1508 f2fs_put_page(page, 1); 1509 iput_out: 1510 iput(inode); 1511 } 1512 1513 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1514 { 1515 pgoff_t index; 1516 struct pagevec pvec; 1517 struct page *last_page = NULL; 1518 int nr_pages; 1519 1520 pagevec_init(&pvec); 1521 index = 0; 1522 1523 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1524 PAGECACHE_TAG_DIRTY))) { 1525 int i; 1526 1527 for (i = 0; i < nr_pages; i++) { 1528 struct page *page = pvec.pages[i]; 1529 1530 if (unlikely(f2fs_cp_error(sbi))) { 1531 f2fs_put_page(last_page, 0); 1532 pagevec_release(&pvec); 1533 return ERR_PTR(-EIO); 1534 } 1535 1536 if (!IS_DNODE(page) || !is_cold_node(page)) 1537 continue; 1538 if (ino_of_node(page) != ino) 1539 continue; 1540 1541 lock_page(page); 1542 1543 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1544 continue_unlock: 1545 unlock_page(page); 1546 continue; 1547 } 1548 if (ino_of_node(page) != ino) 1549 goto continue_unlock; 1550 1551 if (!PageDirty(page)) { 1552 /* someone wrote it for us */ 1553 goto continue_unlock; 1554 } 1555 1556 if (last_page) 1557 f2fs_put_page(last_page, 0); 1558 1559 get_page(page); 1560 last_page = page; 1561 unlock_page(page); 1562 } 1563 pagevec_release(&pvec); 1564 cond_resched(); 1565 } 1566 return last_page; 1567 } 1568 1569 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1570 struct writeback_control *wbc, bool do_balance, 1571 enum iostat_type io_type, unsigned int *seq_id) 1572 { 1573 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1574 nid_t nid; 1575 struct node_info ni; 1576 struct f2fs_io_info fio = { 1577 .sbi = sbi, 1578 .ino = ino_of_node(page), 1579 .type = NODE, 1580 .op = REQ_OP_WRITE, 1581 .op_flags = wbc_to_write_flags(wbc), 1582 .page = page, 1583 .encrypted_page = NULL, 1584 .submitted = false, 1585 .io_type = io_type, 1586 .io_wbc = wbc, 1587 }; 1588 unsigned int seq; 1589 1590 trace_f2fs_writepage(page, NODE); 1591 1592 if (unlikely(f2fs_cp_error(sbi))) { 1593 ClearPageUptodate(page); 1594 dec_page_count(sbi, F2FS_DIRTY_NODES); 1595 unlock_page(page); 1596 return 0; 1597 } 1598 1599 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1600 goto redirty_out; 1601 1602 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1603 wbc->sync_mode == WB_SYNC_NONE && 1604 IS_DNODE(page) && is_cold_node(page)) 1605 goto redirty_out; 1606 1607 /* get old block addr of this node page */ 1608 nid = nid_of_node(page); 1609 f2fs_bug_on(sbi, page->index != nid); 1610 1611 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) 1612 goto redirty_out; 1613 1614 if (wbc->for_reclaim) { 1615 if (!f2fs_down_read_trylock(&sbi->node_write)) 1616 goto redirty_out; 1617 } else { 1618 f2fs_down_read(&sbi->node_write); 1619 } 1620 1621 /* This page is already truncated */ 1622 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1623 ClearPageUptodate(page); 1624 dec_page_count(sbi, F2FS_DIRTY_NODES); 1625 f2fs_up_read(&sbi->node_write); 1626 unlock_page(page); 1627 return 0; 1628 } 1629 1630 if (__is_valid_data_blkaddr(ni.blk_addr) && 1631 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1632 DATA_GENERIC_ENHANCE)) { 1633 f2fs_up_read(&sbi->node_write); 1634 goto redirty_out; 1635 } 1636 1637 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi)) 1638 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1639 1640 /* should add to global list before clearing PAGECACHE status */ 1641 if (f2fs_in_warm_node_list(sbi, page)) { 1642 seq = f2fs_add_fsync_node_entry(sbi, page); 1643 if (seq_id) 1644 *seq_id = seq; 1645 } 1646 1647 set_page_writeback(page); 1648 ClearPageError(page); 1649 1650 fio.old_blkaddr = ni.blk_addr; 1651 f2fs_do_write_node_page(nid, &fio); 1652 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1653 dec_page_count(sbi, F2FS_DIRTY_NODES); 1654 f2fs_up_read(&sbi->node_write); 1655 1656 if (wbc->for_reclaim) { 1657 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1658 submitted = NULL; 1659 } 1660 1661 unlock_page(page); 1662 1663 if (unlikely(f2fs_cp_error(sbi))) { 1664 f2fs_submit_merged_write(sbi, NODE); 1665 submitted = NULL; 1666 } 1667 if (submitted) 1668 *submitted = fio.submitted; 1669 1670 if (do_balance) 1671 f2fs_balance_fs(sbi, false); 1672 return 0; 1673 1674 redirty_out: 1675 redirty_page_for_writepage(wbc, page); 1676 return AOP_WRITEPAGE_ACTIVATE; 1677 } 1678 1679 int f2fs_move_node_page(struct page *node_page, int gc_type) 1680 { 1681 int err = 0; 1682 1683 if (gc_type == FG_GC) { 1684 struct writeback_control wbc = { 1685 .sync_mode = WB_SYNC_ALL, 1686 .nr_to_write = 1, 1687 .for_reclaim = 0, 1688 }; 1689 1690 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1691 1692 set_page_dirty(node_page); 1693 1694 if (!clear_page_dirty_for_io(node_page)) { 1695 err = -EAGAIN; 1696 goto out_page; 1697 } 1698 1699 if (__write_node_page(node_page, false, NULL, 1700 &wbc, false, FS_GC_NODE_IO, NULL)) { 1701 err = -EAGAIN; 1702 unlock_page(node_page); 1703 } 1704 goto release_page; 1705 } else { 1706 /* set page dirty and write it */ 1707 if (!PageWriteback(node_page)) 1708 set_page_dirty(node_page); 1709 } 1710 out_page: 1711 unlock_page(node_page); 1712 release_page: 1713 f2fs_put_page(node_page, 0); 1714 return err; 1715 } 1716 1717 static int f2fs_write_node_page(struct page *page, 1718 struct writeback_control *wbc) 1719 { 1720 return __write_node_page(page, false, NULL, wbc, false, 1721 FS_NODE_IO, NULL); 1722 } 1723 1724 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1725 struct writeback_control *wbc, bool atomic, 1726 unsigned int *seq_id) 1727 { 1728 pgoff_t index; 1729 struct pagevec pvec; 1730 int ret = 0; 1731 struct page *last_page = NULL; 1732 bool marked = false; 1733 nid_t ino = inode->i_ino; 1734 int nr_pages; 1735 int nwritten = 0; 1736 1737 if (atomic) { 1738 last_page = last_fsync_dnode(sbi, ino); 1739 if (IS_ERR_OR_NULL(last_page)) 1740 return PTR_ERR_OR_ZERO(last_page); 1741 } 1742 retry: 1743 pagevec_init(&pvec); 1744 index = 0; 1745 1746 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1747 PAGECACHE_TAG_DIRTY))) { 1748 int i; 1749 1750 for (i = 0; i < nr_pages; i++) { 1751 struct page *page = pvec.pages[i]; 1752 bool submitted = false; 1753 1754 if (unlikely(f2fs_cp_error(sbi))) { 1755 f2fs_put_page(last_page, 0); 1756 pagevec_release(&pvec); 1757 ret = -EIO; 1758 goto out; 1759 } 1760 1761 if (!IS_DNODE(page) || !is_cold_node(page)) 1762 continue; 1763 if (ino_of_node(page) != ino) 1764 continue; 1765 1766 lock_page(page); 1767 1768 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1769 continue_unlock: 1770 unlock_page(page); 1771 continue; 1772 } 1773 if (ino_of_node(page) != ino) 1774 goto continue_unlock; 1775 1776 if (!PageDirty(page) && page != last_page) { 1777 /* someone wrote it for us */ 1778 goto continue_unlock; 1779 } 1780 1781 f2fs_wait_on_page_writeback(page, NODE, true, true); 1782 1783 set_fsync_mark(page, 0); 1784 set_dentry_mark(page, 0); 1785 1786 if (!atomic || page == last_page) { 1787 set_fsync_mark(page, 1); 1788 percpu_counter_inc(&sbi->rf_node_block_count); 1789 if (IS_INODE(page)) { 1790 if (is_inode_flag_set(inode, 1791 FI_DIRTY_INODE)) 1792 f2fs_update_inode(inode, page); 1793 set_dentry_mark(page, 1794 f2fs_need_dentry_mark(sbi, ino)); 1795 } 1796 /* may be written by other thread */ 1797 if (!PageDirty(page)) 1798 set_page_dirty(page); 1799 } 1800 1801 if (!clear_page_dirty_for_io(page)) 1802 goto continue_unlock; 1803 1804 ret = __write_node_page(page, atomic && 1805 page == last_page, 1806 &submitted, wbc, true, 1807 FS_NODE_IO, seq_id); 1808 if (ret) { 1809 unlock_page(page); 1810 f2fs_put_page(last_page, 0); 1811 break; 1812 } else if (submitted) { 1813 nwritten++; 1814 } 1815 1816 if (page == last_page) { 1817 f2fs_put_page(page, 0); 1818 marked = true; 1819 break; 1820 } 1821 } 1822 pagevec_release(&pvec); 1823 cond_resched(); 1824 1825 if (ret || marked) 1826 break; 1827 } 1828 if (!ret && atomic && !marked) { 1829 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1830 ino, last_page->index); 1831 lock_page(last_page); 1832 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1833 set_page_dirty(last_page); 1834 unlock_page(last_page); 1835 goto retry; 1836 } 1837 out: 1838 if (nwritten) 1839 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1840 return ret ? -EIO : 0; 1841 } 1842 1843 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1844 { 1845 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1846 bool clean; 1847 1848 if (inode->i_ino != ino) 1849 return 0; 1850 1851 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1852 return 0; 1853 1854 spin_lock(&sbi->inode_lock[DIRTY_META]); 1855 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1856 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1857 1858 if (clean) 1859 return 0; 1860 1861 inode = igrab(inode); 1862 if (!inode) 1863 return 0; 1864 return 1; 1865 } 1866 1867 static bool flush_dirty_inode(struct page *page) 1868 { 1869 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1870 struct inode *inode; 1871 nid_t ino = ino_of_node(page); 1872 1873 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1874 if (!inode) 1875 return false; 1876 1877 f2fs_update_inode(inode, page); 1878 unlock_page(page); 1879 1880 iput(inode); 1881 return true; 1882 } 1883 1884 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1885 { 1886 pgoff_t index = 0; 1887 struct pagevec pvec; 1888 int nr_pages; 1889 1890 pagevec_init(&pvec); 1891 1892 while ((nr_pages = pagevec_lookup_tag(&pvec, 1893 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1894 int i; 1895 1896 for (i = 0; i < nr_pages; i++) { 1897 struct page *page = pvec.pages[i]; 1898 1899 if (!IS_DNODE(page)) 1900 continue; 1901 1902 lock_page(page); 1903 1904 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1905 continue_unlock: 1906 unlock_page(page); 1907 continue; 1908 } 1909 1910 if (!PageDirty(page)) { 1911 /* someone wrote it for us */ 1912 goto continue_unlock; 1913 } 1914 1915 /* flush inline_data, if it's async context. */ 1916 if (page_private_inline(page)) { 1917 clear_page_private_inline(page); 1918 unlock_page(page); 1919 flush_inline_data(sbi, ino_of_node(page)); 1920 continue; 1921 } 1922 unlock_page(page); 1923 } 1924 pagevec_release(&pvec); 1925 cond_resched(); 1926 } 1927 } 1928 1929 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1930 struct writeback_control *wbc, 1931 bool do_balance, enum iostat_type io_type) 1932 { 1933 pgoff_t index; 1934 struct pagevec pvec; 1935 int step = 0; 1936 int nwritten = 0; 1937 int ret = 0; 1938 int nr_pages, done = 0; 1939 1940 pagevec_init(&pvec); 1941 1942 next_step: 1943 index = 0; 1944 1945 while (!done && (nr_pages = pagevec_lookup_tag(&pvec, 1946 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1947 int i; 1948 1949 for (i = 0; i < nr_pages; i++) { 1950 struct page *page = pvec.pages[i]; 1951 bool submitted = false; 1952 1953 /* give a priority to WB_SYNC threads */ 1954 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1955 wbc->sync_mode == WB_SYNC_NONE) { 1956 done = 1; 1957 break; 1958 } 1959 1960 /* 1961 * flushing sequence with step: 1962 * 0. indirect nodes 1963 * 1. dentry dnodes 1964 * 2. file dnodes 1965 */ 1966 if (step == 0 && IS_DNODE(page)) 1967 continue; 1968 if (step == 1 && (!IS_DNODE(page) || 1969 is_cold_node(page))) 1970 continue; 1971 if (step == 2 && (!IS_DNODE(page) || 1972 !is_cold_node(page))) 1973 continue; 1974 lock_node: 1975 if (wbc->sync_mode == WB_SYNC_ALL) 1976 lock_page(page); 1977 else if (!trylock_page(page)) 1978 continue; 1979 1980 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1981 continue_unlock: 1982 unlock_page(page); 1983 continue; 1984 } 1985 1986 if (!PageDirty(page)) { 1987 /* someone wrote it for us */ 1988 goto continue_unlock; 1989 } 1990 1991 /* flush inline_data/inode, if it's async context. */ 1992 if (!do_balance) 1993 goto write_node; 1994 1995 /* flush inline_data */ 1996 if (page_private_inline(page)) { 1997 clear_page_private_inline(page); 1998 unlock_page(page); 1999 flush_inline_data(sbi, ino_of_node(page)); 2000 goto lock_node; 2001 } 2002 2003 /* flush dirty inode */ 2004 if (IS_INODE(page) && flush_dirty_inode(page)) 2005 goto lock_node; 2006 write_node: 2007 f2fs_wait_on_page_writeback(page, NODE, true, true); 2008 2009 if (!clear_page_dirty_for_io(page)) 2010 goto continue_unlock; 2011 2012 set_fsync_mark(page, 0); 2013 set_dentry_mark(page, 0); 2014 2015 ret = __write_node_page(page, false, &submitted, 2016 wbc, do_balance, io_type, NULL); 2017 if (ret) 2018 unlock_page(page); 2019 else if (submitted) 2020 nwritten++; 2021 2022 if (--wbc->nr_to_write == 0) 2023 break; 2024 } 2025 pagevec_release(&pvec); 2026 cond_resched(); 2027 2028 if (wbc->nr_to_write == 0) { 2029 step = 2; 2030 break; 2031 } 2032 } 2033 2034 if (step < 2) { 2035 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2036 wbc->sync_mode == WB_SYNC_NONE && step == 1) 2037 goto out; 2038 step++; 2039 goto next_step; 2040 } 2041 out: 2042 if (nwritten) 2043 f2fs_submit_merged_write(sbi, NODE); 2044 2045 if (unlikely(f2fs_cp_error(sbi))) 2046 return -EIO; 2047 return ret; 2048 } 2049 2050 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2051 unsigned int seq_id) 2052 { 2053 struct fsync_node_entry *fn; 2054 struct page *page; 2055 struct list_head *head = &sbi->fsync_node_list; 2056 unsigned long flags; 2057 unsigned int cur_seq_id = 0; 2058 int ret2, ret = 0; 2059 2060 while (seq_id && cur_seq_id < seq_id) { 2061 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2062 if (list_empty(head)) { 2063 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2064 break; 2065 } 2066 fn = list_first_entry(head, struct fsync_node_entry, list); 2067 if (fn->seq_id > seq_id) { 2068 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2069 break; 2070 } 2071 cur_seq_id = fn->seq_id; 2072 page = fn->page; 2073 get_page(page); 2074 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2075 2076 f2fs_wait_on_page_writeback(page, NODE, true, false); 2077 if (TestClearPageError(page)) 2078 ret = -EIO; 2079 2080 put_page(page); 2081 2082 if (ret) 2083 break; 2084 } 2085 2086 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 2087 if (!ret) 2088 ret = ret2; 2089 2090 return ret; 2091 } 2092 2093 static int f2fs_write_node_pages(struct address_space *mapping, 2094 struct writeback_control *wbc) 2095 { 2096 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2097 struct blk_plug plug; 2098 long diff; 2099 2100 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2101 goto skip_write; 2102 2103 /* balancing f2fs's metadata in background */ 2104 f2fs_balance_fs_bg(sbi, true); 2105 2106 /* collect a number of dirty node pages and write together */ 2107 if (wbc->sync_mode != WB_SYNC_ALL && 2108 get_pages(sbi, F2FS_DIRTY_NODES) < 2109 nr_pages_to_skip(sbi, NODE)) 2110 goto skip_write; 2111 2112 if (wbc->sync_mode == WB_SYNC_ALL) 2113 atomic_inc(&sbi->wb_sync_req[NODE]); 2114 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2115 /* to avoid potential deadlock */ 2116 if (current->plug) 2117 blk_finish_plug(current->plug); 2118 goto skip_write; 2119 } 2120 2121 trace_f2fs_writepages(mapping->host, wbc, NODE); 2122 2123 diff = nr_pages_to_write(sbi, NODE, wbc); 2124 blk_start_plug(&plug); 2125 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2126 blk_finish_plug(&plug); 2127 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2128 2129 if (wbc->sync_mode == WB_SYNC_ALL) 2130 atomic_dec(&sbi->wb_sync_req[NODE]); 2131 return 0; 2132 2133 skip_write: 2134 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2135 trace_f2fs_writepages(mapping->host, wbc, NODE); 2136 return 0; 2137 } 2138 2139 static bool f2fs_dirty_node_folio(struct address_space *mapping, 2140 struct folio *folio) 2141 { 2142 trace_f2fs_set_page_dirty(&folio->page, NODE); 2143 2144 if (!folio_test_uptodate(folio)) 2145 folio_mark_uptodate(folio); 2146 #ifdef CONFIG_F2FS_CHECK_FS 2147 if (IS_INODE(&folio->page)) 2148 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); 2149 #endif 2150 if (!folio_test_dirty(folio)) { 2151 filemap_dirty_folio(mapping, folio); 2152 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 2153 set_page_private_reference(&folio->page); 2154 return true; 2155 } 2156 return false; 2157 } 2158 2159 /* 2160 * Structure of the f2fs node operations 2161 */ 2162 const struct address_space_operations f2fs_node_aops = { 2163 .writepage = f2fs_write_node_page, 2164 .writepages = f2fs_write_node_pages, 2165 .dirty_folio = f2fs_dirty_node_folio, 2166 .invalidate_folio = f2fs_invalidate_folio, 2167 .release_folio = f2fs_release_folio, 2168 .migrate_folio = filemap_migrate_folio, 2169 }; 2170 2171 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2172 nid_t n) 2173 { 2174 return radix_tree_lookup(&nm_i->free_nid_root, n); 2175 } 2176 2177 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2178 struct free_nid *i) 2179 { 2180 struct f2fs_nm_info *nm_i = NM_I(sbi); 2181 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2182 2183 if (err) 2184 return err; 2185 2186 nm_i->nid_cnt[FREE_NID]++; 2187 list_add_tail(&i->list, &nm_i->free_nid_list); 2188 return 0; 2189 } 2190 2191 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2192 struct free_nid *i, enum nid_state state) 2193 { 2194 struct f2fs_nm_info *nm_i = NM_I(sbi); 2195 2196 f2fs_bug_on(sbi, state != i->state); 2197 nm_i->nid_cnt[state]--; 2198 if (state == FREE_NID) 2199 list_del(&i->list); 2200 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2201 } 2202 2203 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2204 enum nid_state org_state, enum nid_state dst_state) 2205 { 2206 struct f2fs_nm_info *nm_i = NM_I(sbi); 2207 2208 f2fs_bug_on(sbi, org_state != i->state); 2209 i->state = dst_state; 2210 nm_i->nid_cnt[org_state]--; 2211 nm_i->nid_cnt[dst_state]++; 2212 2213 switch (dst_state) { 2214 case PREALLOC_NID: 2215 list_del(&i->list); 2216 break; 2217 case FREE_NID: 2218 list_add_tail(&i->list, &nm_i->free_nid_list); 2219 break; 2220 default: 2221 BUG_ON(1); 2222 } 2223 } 2224 2225 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi) 2226 { 2227 struct f2fs_nm_info *nm_i = NM_I(sbi); 2228 unsigned int i; 2229 bool ret = true; 2230 2231 f2fs_down_read(&nm_i->nat_tree_lock); 2232 for (i = 0; i < nm_i->nat_blocks; i++) { 2233 if (!test_bit_le(i, nm_i->nat_block_bitmap)) { 2234 ret = false; 2235 break; 2236 } 2237 } 2238 f2fs_up_read(&nm_i->nat_tree_lock); 2239 2240 return ret; 2241 } 2242 2243 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2244 bool set, bool build) 2245 { 2246 struct f2fs_nm_info *nm_i = NM_I(sbi); 2247 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2248 unsigned int nid_ofs = nid - START_NID(nid); 2249 2250 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2251 return; 2252 2253 if (set) { 2254 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2255 return; 2256 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2257 nm_i->free_nid_count[nat_ofs]++; 2258 } else { 2259 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2260 return; 2261 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2262 if (!build) 2263 nm_i->free_nid_count[nat_ofs]--; 2264 } 2265 } 2266 2267 /* return if the nid is recognized as free */ 2268 static bool add_free_nid(struct f2fs_sb_info *sbi, 2269 nid_t nid, bool build, bool update) 2270 { 2271 struct f2fs_nm_info *nm_i = NM_I(sbi); 2272 struct free_nid *i, *e; 2273 struct nat_entry *ne; 2274 int err = -EINVAL; 2275 bool ret = false; 2276 2277 /* 0 nid should not be used */ 2278 if (unlikely(nid == 0)) 2279 return false; 2280 2281 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2282 return false; 2283 2284 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); 2285 i->nid = nid; 2286 i->state = FREE_NID; 2287 2288 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2289 2290 spin_lock(&nm_i->nid_list_lock); 2291 2292 if (build) { 2293 /* 2294 * Thread A Thread B 2295 * - f2fs_create 2296 * - f2fs_new_inode 2297 * - f2fs_alloc_nid 2298 * - __insert_nid_to_list(PREALLOC_NID) 2299 * - f2fs_balance_fs_bg 2300 * - f2fs_build_free_nids 2301 * - __f2fs_build_free_nids 2302 * - scan_nat_page 2303 * - add_free_nid 2304 * - __lookup_nat_cache 2305 * - f2fs_add_link 2306 * - f2fs_init_inode_metadata 2307 * - f2fs_new_inode_page 2308 * - f2fs_new_node_page 2309 * - set_node_addr 2310 * - f2fs_alloc_nid_done 2311 * - __remove_nid_from_list(PREALLOC_NID) 2312 * - __insert_nid_to_list(FREE_NID) 2313 */ 2314 ne = __lookup_nat_cache(nm_i, nid); 2315 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2316 nat_get_blkaddr(ne) != NULL_ADDR)) 2317 goto err_out; 2318 2319 e = __lookup_free_nid_list(nm_i, nid); 2320 if (e) { 2321 if (e->state == FREE_NID) 2322 ret = true; 2323 goto err_out; 2324 } 2325 } 2326 ret = true; 2327 err = __insert_free_nid(sbi, i); 2328 err_out: 2329 if (update) { 2330 update_free_nid_bitmap(sbi, nid, ret, build); 2331 if (!build) 2332 nm_i->available_nids++; 2333 } 2334 spin_unlock(&nm_i->nid_list_lock); 2335 radix_tree_preload_end(); 2336 2337 if (err) 2338 kmem_cache_free(free_nid_slab, i); 2339 return ret; 2340 } 2341 2342 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2343 { 2344 struct f2fs_nm_info *nm_i = NM_I(sbi); 2345 struct free_nid *i; 2346 bool need_free = false; 2347 2348 spin_lock(&nm_i->nid_list_lock); 2349 i = __lookup_free_nid_list(nm_i, nid); 2350 if (i && i->state == FREE_NID) { 2351 __remove_free_nid(sbi, i, FREE_NID); 2352 need_free = true; 2353 } 2354 spin_unlock(&nm_i->nid_list_lock); 2355 2356 if (need_free) 2357 kmem_cache_free(free_nid_slab, i); 2358 } 2359 2360 static int scan_nat_page(struct f2fs_sb_info *sbi, 2361 struct page *nat_page, nid_t start_nid) 2362 { 2363 struct f2fs_nm_info *nm_i = NM_I(sbi); 2364 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2365 block_t blk_addr; 2366 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2367 int i; 2368 2369 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2370 2371 i = start_nid % NAT_ENTRY_PER_BLOCK; 2372 2373 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2374 if (unlikely(start_nid >= nm_i->max_nid)) 2375 break; 2376 2377 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2378 2379 if (blk_addr == NEW_ADDR) 2380 return -EINVAL; 2381 2382 if (blk_addr == NULL_ADDR) { 2383 add_free_nid(sbi, start_nid, true, true); 2384 } else { 2385 spin_lock(&NM_I(sbi)->nid_list_lock); 2386 update_free_nid_bitmap(sbi, start_nid, false, true); 2387 spin_unlock(&NM_I(sbi)->nid_list_lock); 2388 } 2389 } 2390 2391 return 0; 2392 } 2393 2394 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2395 { 2396 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2397 struct f2fs_journal *journal = curseg->journal; 2398 int i; 2399 2400 down_read(&curseg->journal_rwsem); 2401 for (i = 0; i < nats_in_cursum(journal); i++) { 2402 block_t addr; 2403 nid_t nid; 2404 2405 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2406 nid = le32_to_cpu(nid_in_journal(journal, i)); 2407 if (addr == NULL_ADDR) 2408 add_free_nid(sbi, nid, true, false); 2409 else 2410 remove_free_nid(sbi, nid); 2411 } 2412 up_read(&curseg->journal_rwsem); 2413 } 2414 2415 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2416 { 2417 struct f2fs_nm_info *nm_i = NM_I(sbi); 2418 unsigned int i, idx; 2419 nid_t nid; 2420 2421 f2fs_down_read(&nm_i->nat_tree_lock); 2422 2423 for (i = 0; i < nm_i->nat_blocks; i++) { 2424 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2425 continue; 2426 if (!nm_i->free_nid_count[i]) 2427 continue; 2428 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2429 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2430 NAT_ENTRY_PER_BLOCK, idx); 2431 if (idx >= NAT_ENTRY_PER_BLOCK) 2432 break; 2433 2434 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2435 add_free_nid(sbi, nid, true, false); 2436 2437 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2438 goto out; 2439 } 2440 } 2441 out: 2442 scan_curseg_cache(sbi); 2443 2444 f2fs_up_read(&nm_i->nat_tree_lock); 2445 } 2446 2447 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2448 bool sync, bool mount) 2449 { 2450 struct f2fs_nm_info *nm_i = NM_I(sbi); 2451 int i = 0, ret; 2452 nid_t nid = nm_i->next_scan_nid; 2453 2454 if (unlikely(nid >= nm_i->max_nid)) 2455 nid = 0; 2456 2457 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2458 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2459 2460 /* Enough entries */ 2461 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2462 return 0; 2463 2464 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2465 return 0; 2466 2467 if (!mount) { 2468 /* try to find free nids in free_nid_bitmap */ 2469 scan_free_nid_bits(sbi); 2470 2471 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2472 return 0; 2473 } 2474 2475 /* readahead nat pages to be scanned */ 2476 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2477 META_NAT, true); 2478 2479 f2fs_down_read(&nm_i->nat_tree_lock); 2480 2481 while (1) { 2482 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2483 nm_i->nat_block_bitmap)) { 2484 struct page *page = get_current_nat_page(sbi, nid); 2485 2486 if (IS_ERR(page)) { 2487 ret = PTR_ERR(page); 2488 } else { 2489 ret = scan_nat_page(sbi, page, nid); 2490 f2fs_put_page(page, 1); 2491 } 2492 2493 if (ret) { 2494 f2fs_up_read(&nm_i->nat_tree_lock); 2495 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2496 return ret; 2497 } 2498 } 2499 2500 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2501 if (unlikely(nid >= nm_i->max_nid)) 2502 nid = 0; 2503 2504 if (++i >= FREE_NID_PAGES) 2505 break; 2506 } 2507 2508 /* go to the next free nat pages to find free nids abundantly */ 2509 nm_i->next_scan_nid = nid; 2510 2511 /* find free nids from current sum_pages */ 2512 scan_curseg_cache(sbi); 2513 2514 f2fs_up_read(&nm_i->nat_tree_lock); 2515 2516 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2517 nm_i->ra_nid_pages, META_NAT, false); 2518 2519 return 0; 2520 } 2521 2522 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2523 { 2524 int ret; 2525 2526 mutex_lock(&NM_I(sbi)->build_lock); 2527 ret = __f2fs_build_free_nids(sbi, sync, mount); 2528 mutex_unlock(&NM_I(sbi)->build_lock); 2529 2530 return ret; 2531 } 2532 2533 /* 2534 * If this function returns success, caller can obtain a new nid 2535 * from second parameter of this function. 2536 * The returned nid could be used ino as well as nid when inode is created. 2537 */ 2538 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2539 { 2540 struct f2fs_nm_info *nm_i = NM_I(sbi); 2541 struct free_nid *i = NULL; 2542 retry: 2543 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2544 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID); 2545 return false; 2546 } 2547 2548 spin_lock(&nm_i->nid_list_lock); 2549 2550 if (unlikely(nm_i->available_nids == 0)) { 2551 spin_unlock(&nm_i->nid_list_lock); 2552 return false; 2553 } 2554 2555 /* We should not use stale free nids created by f2fs_build_free_nids */ 2556 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2557 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2558 i = list_first_entry(&nm_i->free_nid_list, 2559 struct free_nid, list); 2560 *nid = i->nid; 2561 2562 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2563 nm_i->available_nids--; 2564 2565 update_free_nid_bitmap(sbi, *nid, false, false); 2566 2567 spin_unlock(&nm_i->nid_list_lock); 2568 return true; 2569 } 2570 spin_unlock(&nm_i->nid_list_lock); 2571 2572 /* Let's scan nat pages and its caches to get free nids */ 2573 if (!f2fs_build_free_nids(sbi, true, false)) 2574 goto retry; 2575 return false; 2576 } 2577 2578 /* 2579 * f2fs_alloc_nid() should be called prior to this function. 2580 */ 2581 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2582 { 2583 struct f2fs_nm_info *nm_i = NM_I(sbi); 2584 struct free_nid *i; 2585 2586 spin_lock(&nm_i->nid_list_lock); 2587 i = __lookup_free_nid_list(nm_i, nid); 2588 f2fs_bug_on(sbi, !i); 2589 __remove_free_nid(sbi, i, PREALLOC_NID); 2590 spin_unlock(&nm_i->nid_list_lock); 2591 2592 kmem_cache_free(free_nid_slab, i); 2593 } 2594 2595 /* 2596 * f2fs_alloc_nid() should be called prior to this function. 2597 */ 2598 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2599 { 2600 struct f2fs_nm_info *nm_i = NM_I(sbi); 2601 struct free_nid *i; 2602 bool need_free = false; 2603 2604 if (!nid) 2605 return; 2606 2607 spin_lock(&nm_i->nid_list_lock); 2608 i = __lookup_free_nid_list(nm_i, nid); 2609 f2fs_bug_on(sbi, !i); 2610 2611 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2612 __remove_free_nid(sbi, i, PREALLOC_NID); 2613 need_free = true; 2614 } else { 2615 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2616 } 2617 2618 nm_i->available_nids++; 2619 2620 update_free_nid_bitmap(sbi, nid, true, false); 2621 2622 spin_unlock(&nm_i->nid_list_lock); 2623 2624 if (need_free) 2625 kmem_cache_free(free_nid_slab, i); 2626 } 2627 2628 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2629 { 2630 struct f2fs_nm_info *nm_i = NM_I(sbi); 2631 int nr = nr_shrink; 2632 2633 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2634 return 0; 2635 2636 if (!mutex_trylock(&nm_i->build_lock)) 2637 return 0; 2638 2639 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2640 struct free_nid *i, *next; 2641 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2642 2643 spin_lock(&nm_i->nid_list_lock); 2644 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2645 if (!nr_shrink || !batch || 2646 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2647 break; 2648 __remove_free_nid(sbi, i, FREE_NID); 2649 kmem_cache_free(free_nid_slab, i); 2650 nr_shrink--; 2651 batch--; 2652 } 2653 spin_unlock(&nm_i->nid_list_lock); 2654 } 2655 2656 mutex_unlock(&nm_i->build_lock); 2657 2658 return nr - nr_shrink; 2659 } 2660 2661 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2662 { 2663 void *src_addr, *dst_addr; 2664 size_t inline_size; 2665 struct page *ipage; 2666 struct f2fs_inode *ri; 2667 2668 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2669 if (IS_ERR(ipage)) 2670 return PTR_ERR(ipage); 2671 2672 ri = F2FS_INODE(page); 2673 if (ri->i_inline & F2FS_INLINE_XATTR) { 2674 if (!f2fs_has_inline_xattr(inode)) { 2675 set_inode_flag(inode, FI_INLINE_XATTR); 2676 stat_inc_inline_xattr(inode); 2677 } 2678 } else { 2679 if (f2fs_has_inline_xattr(inode)) { 2680 stat_dec_inline_xattr(inode); 2681 clear_inode_flag(inode, FI_INLINE_XATTR); 2682 } 2683 goto update_inode; 2684 } 2685 2686 dst_addr = inline_xattr_addr(inode, ipage); 2687 src_addr = inline_xattr_addr(inode, page); 2688 inline_size = inline_xattr_size(inode); 2689 2690 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2691 memcpy(dst_addr, src_addr, inline_size); 2692 update_inode: 2693 f2fs_update_inode(inode, ipage); 2694 f2fs_put_page(ipage, 1); 2695 return 0; 2696 } 2697 2698 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2699 { 2700 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2701 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2702 nid_t new_xnid; 2703 struct dnode_of_data dn; 2704 struct node_info ni; 2705 struct page *xpage; 2706 int err; 2707 2708 if (!prev_xnid) 2709 goto recover_xnid; 2710 2711 /* 1: invalidate the previous xattr nid */ 2712 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); 2713 if (err) 2714 return err; 2715 2716 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2717 dec_valid_node_count(sbi, inode, false); 2718 set_node_addr(sbi, &ni, NULL_ADDR, false); 2719 2720 recover_xnid: 2721 /* 2: update xattr nid in inode */ 2722 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2723 return -ENOSPC; 2724 2725 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2726 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2727 if (IS_ERR(xpage)) { 2728 f2fs_alloc_nid_failed(sbi, new_xnid); 2729 return PTR_ERR(xpage); 2730 } 2731 2732 f2fs_alloc_nid_done(sbi, new_xnid); 2733 f2fs_update_inode_page(inode); 2734 2735 /* 3: update and set xattr node page dirty */ 2736 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2737 2738 set_page_dirty(xpage); 2739 f2fs_put_page(xpage, 1); 2740 2741 return 0; 2742 } 2743 2744 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2745 { 2746 struct f2fs_inode *src, *dst; 2747 nid_t ino = ino_of_node(page); 2748 struct node_info old_ni, new_ni; 2749 struct page *ipage; 2750 int err; 2751 2752 err = f2fs_get_node_info(sbi, ino, &old_ni, false); 2753 if (err) 2754 return err; 2755 2756 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2757 return -EINVAL; 2758 retry: 2759 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2760 if (!ipage) { 2761 memalloc_retry_wait(GFP_NOFS); 2762 goto retry; 2763 } 2764 2765 /* Should not use this inode from free nid list */ 2766 remove_free_nid(sbi, ino); 2767 2768 if (!PageUptodate(ipage)) 2769 SetPageUptodate(ipage); 2770 fill_node_footer(ipage, ino, ino, 0, true); 2771 set_cold_node(ipage, false); 2772 2773 src = F2FS_INODE(page); 2774 dst = F2FS_INODE(ipage); 2775 2776 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2777 dst->i_size = 0; 2778 dst->i_blocks = cpu_to_le64(1); 2779 dst->i_links = cpu_to_le32(1); 2780 dst->i_xattr_nid = 0; 2781 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2782 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2783 dst->i_extra_isize = src->i_extra_isize; 2784 2785 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2786 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2787 i_inline_xattr_size)) 2788 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2789 2790 if (f2fs_sb_has_project_quota(sbi) && 2791 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2792 i_projid)) 2793 dst->i_projid = src->i_projid; 2794 2795 if (f2fs_sb_has_inode_crtime(sbi) && 2796 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2797 i_crtime_nsec)) { 2798 dst->i_crtime = src->i_crtime; 2799 dst->i_crtime_nsec = src->i_crtime_nsec; 2800 } 2801 } 2802 2803 new_ni = old_ni; 2804 new_ni.ino = ino; 2805 2806 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2807 WARN_ON(1); 2808 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2809 inc_valid_inode_count(sbi); 2810 set_page_dirty(ipage); 2811 f2fs_put_page(ipage, 1); 2812 return 0; 2813 } 2814 2815 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2816 unsigned int segno, struct f2fs_summary_block *sum) 2817 { 2818 struct f2fs_node *rn; 2819 struct f2fs_summary *sum_entry; 2820 block_t addr; 2821 int i, idx, last_offset, nrpages; 2822 2823 /* scan the node segment */ 2824 last_offset = sbi->blocks_per_seg; 2825 addr = START_BLOCK(sbi, segno); 2826 sum_entry = &sum->entries[0]; 2827 2828 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2829 nrpages = bio_max_segs(last_offset - i); 2830 2831 /* readahead node pages */ 2832 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2833 2834 for (idx = addr; idx < addr + nrpages; idx++) { 2835 struct page *page = f2fs_get_tmp_page(sbi, idx); 2836 2837 if (IS_ERR(page)) 2838 return PTR_ERR(page); 2839 2840 rn = F2FS_NODE(page); 2841 sum_entry->nid = rn->footer.nid; 2842 sum_entry->version = 0; 2843 sum_entry->ofs_in_node = 0; 2844 sum_entry++; 2845 f2fs_put_page(page, 1); 2846 } 2847 2848 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2849 addr + nrpages); 2850 } 2851 return 0; 2852 } 2853 2854 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2855 { 2856 struct f2fs_nm_info *nm_i = NM_I(sbi); 2857 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2858 struct f2fs_journal *journal = curseg->journal; 2859 int i; 2860 2861 down_write(&curseg->journal_rwsem); 2862 for (i = 0; i < nats_in_cursum(journal); i++) { 2863 struct nat_entry *ne; 2864 struct f2fs_nat_entry raw_ne; 2865 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2866 2867 if (f2fs_check_nid_range(sbi, nid)) 2868 continue; 2869 2870 raw_ne = nat_in_journal(journal, i); 2871 2872 ne = __lookup_nat_cache(nm_i, nid); 2873 if (!ne) { 2874 ne = __alloc_nat_entry(sbi, nid, true); 2875 __init_nat_entry(nm_i, ne, &raw_ne, true); 2876 } 2877 2878 /* 2879 * if a free nat in journal has not been used after last 2880 * checkpoint, we should remove it from available nids, 2881 * since later we will add it again. 2882 */ 2883 if (!get_nat_flag(ne, IS_DIRTY) && 2884 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2885 spin_lock(&nm_i->nid_list_lock); 2886 nm_i->available_nids--; 2887 spin_unlock(&nm_i->nid_list_lock); 2888 } 2889 2890 __set_nat_cache_dirty(nm_i, ne); 2891 } 2892 update_nats_in_cursum(journal, -i); 2893 up_write(&curseg->journal_rwsem); 2894 } 2895 2896 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2897 struct list_head *head, int max) 2898 { 2899 struct nat_entry_set *cur; 2900 2901 if (nes->entry_cnt >= max) 2902 goto add_out; 2903 2904 list_for_each_entry(cur, head, set_list) { 2905 if (cur->entry_cnt >= nes->entry_cnt) { 2906 list_add(&nes->set_list, cur->set_list.prev); 2907 return; 2908 } 2909 } 2910 add_out: 2911 list_add_tail(&nes->set_list, head); 2912 } 2913 2914 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs, 2915 unsigned int valid) 2916 { 2917 if (valid == 0) { 2918 __set_bit_le(nat_ofs, nm_i->empty_nat_bits); 2919 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2920 return; 2921 } 2922 2923 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits); 2924 if (valid == NAT_ENTRY_PER_BLOCK) 2925 __set_bit_le(nat_ofs, nm_i->full_nat_bits); 2926 else 2927 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2928 } 2929 2930 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2931 struct page *page) 2932 { 2933 struct f2fs_nm_info *nm_i = NM_I(sbi); 2934 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2935 struct f2fs_nat_block *nat_blk = page_address(page); 2936 int valid = 0; 2937 int i = 0; 2938 2939 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 2940 return; 2941 2942 if (nat_index == 0) { 2943 valid = 1; 2944 i = 1; 2945 } 2946 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2947 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2948 valid++; 2949 } 2950 2951 __update_nat_bits(nm_i, nat_index, valid); 2952 } 2953 2954 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi) 2955 { 2956 struct f2fs_nm_info *nm_i = NM_I(sbi); 2957 unsigned int nat_ofs; 2958 2959 f2fs_down_read(&nm_i->nat_tree_lock); 2960 2961 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) { 2962 unsigned int valid = 0, nid_ofs = 0; 2963 2964 /* handle nid zero due to it should never be used */ 2965 if (unlikely(nat_ofs == 0)) { 2966 valid = 1; 2967 nid_ofs = 1; 2968 } 2969 2970 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) { 2971 if (!test_bit_le(nid_ofs, 2972 nm_i->free_nid_bitmap[nat_ofs])) 2973 valid++; 2974 } 2975 2976 __update_nat_bits(nm_i, nat_ofs, valid); 2977 } 2978 2979 f2fs_up_read(&nm_i->nat_tree_lock); 2980 } 2981 2982 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2983 struct nat_entry_set *set, struct cp_control *cpc) 2984 { 2985 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2986 struct f2fs_journal *journal = curseg->journal; 2987 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2988 bool to_journal = true; 2989 struct f2fs_nat_block *nat_blk; 2990 struct nat_entry *ne, *cur; 2991 struct page *page = NULL; 2992 2993 /* 2994 * there are two steps to flush nat entries: 2995 * #1, flush nat entries to journal in current hot data summary block. 2996 * #2, flush nat entries to nat page. 2997 */ 2998 if ((cpc->reason & CP_UMOUNT) || 2999 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 3000 to_journal = false; 3001 3002 if (to_journal) { 3003 down_write(&curseg->journal_rwsem); 3004 } else { 3005 page = get_next_nat_page(sbi, start_nid); 3006 if (IS_ERR(page)) 3007 return PTR_ERR(page); 3008 3009 nat_blk = page_address(page); 3010 f2fs_bug_on(sbi, !nat_blk); 3011 } 3012 3013 /* flush dirty nats in nat entry set */ 3014 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 3015 struct f2fs_nat_entry *raw_ne; 3016 nid_t nid = nat_get_nid(ne); 3017 int offset; 3018 3019 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 3020 3021 if (to_journal) { 3022 offset = f2fs_lookup_journal_in_cursum(journal, 3023 NAT_JOURNAL, nid, 1); 3024 f2fs_bug_on(sbi, offset < 0); 3025 raw_ne = &nat_in_journal(journal, offset); 3026 nid_in_journal(journal, offset) = cpu_to_le32(nid); 3027 } else { 3028 raw_ne = &nat_blk->entries[nid - start_nid]; 3029 } 3030 raw_nat_from_node_info(raw_ne, &ne->ni); 3031 nat_reset_flag(ne); 3032 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 3033 if (nat_get_blkaddr(ne) == NULL_ADDR) { 3034 add_free_nid(sbi, nid, false, true); 3035 } else { 3036 spin_lock(&NM_I(sbi)->nid_list_lock); 3037 update_free_nid_bitmap(sbi, nid, false, false); 3038 spin_unlock(&NM_I(sbi)->nid_list_lock); 3039 } 3040 } 3041 3042 if (to_journal) { 3043 up_write(&curseg->journal_rwsem); 3044 } else { 3045 update_nat_bits(sbi, start_nid, page); 3046 f2fs_put_page(page, 1); 3047 } 3048 3049 /* Allow dirty nats by node block allocation in write_begin */ 3050 if (!set->entry_cnt) { 3051 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 3052 kmem_cache_free(nat_entry_set_slab, set); 3053 } 3054 return 0; 3055 } 3056 3057 /* 3058 * This function is called during the checkpointing process. 3059 */ 3060 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3061 { 3062 struct f2fs_nm_info *nm_i = NM_I(sbi); 3063 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3064 struct f2fs_journal *journal = curseg->journal; 3065 struct nat_entry_set *setvec[SETVEC_SIZE]; 3066 struct nat_entry_set *set, *tmp; 3067 unsigned int found; 3068 nid_t set_idx = 0; 3069 LIST_HEAD(sets); 3070 int err = 0; 3071 3072 /* 3073 * during unmount, let's flush nat_bits before checking 3074 * nat_cnt[DIRTY_NAT]. 3075 */ 3076 if (cpc->reason & CP_UMOUNT) { 3077 f2fs_down_write(&nm_i->nat_tree_lock); 3078 remove_nats_in_journal(sbi); 3079 f2fs_up_write(&nm_i->nat_tree_lock); 3080 } 3081 3082 if (!nm_i->nat_cnt[DIRTY_NAT]) 3083 return 0; 3084 3085 f2fs_down_write(&nm_i->nat_tree_lock); 3086 3087 /* 3088 * if there are no enough space in journal to store dirty nat 3089 * entries, remove all entries from journal and merge them 3090 * into nat entry set. 3091 */ 3092 if (cpc->reason & CP_UMOUNT || 3093 !__has_cursum_space(journal, 3094 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 3095 remove_nats_in_journal(sbi); 3096 3097 while ((found = __gang_lookup_nat_set(nm_i, 3098 set_idx, SETVEC_SIZE, setvec))) { 3099 unsigned idx; 3100 3101 set_idx = setvec[found - 1]->set + 1; 3102 for (idx = 0; idx < found; idx++) 3103 __adjust_nat_entry_set(setvec[idx], &sets, 3104 MAX_NAT_JENTRIES(journal)); 3105 } 3106 3107 /* flush dirty nats in nat entry set */ 3108 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3109 err = __flush_nat_entry_set(sbi, set, cpc); 3110 if (err) 3111 break; 3112 } 3113 3114 f2fs_up_write(&nm_i->nat_tree_lock); 3115 /* Allow dirty nats by node block allocation in write_begin */ 3116 3117 return err; 3118 } 3119 3120 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3121 { 3122 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3123 struct f2fs_nm_info *nm_i = NM_I(sbi); 3124 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3125 unsigned int i; 3126 __u64 cp_ver = cur_cp_version(ckpt); 3127 block_t nat_bits_addr; 3128 3129 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3130 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3131 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3132 if (!nm_i->nat_bits) 3133 return -ENOMEM; 3134 3135 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3136 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3137 3138 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3139 return 0; 3140 3141 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 3142 nm_i->nat_bits_blocks; 3143 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3144 struct page *page; 3145 3146 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3147 if (IS_ERR(page)) 3148 return PTR_ERR(page); 3149 3150 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3151 page_address(page), F2FS_BLKSIZE); 3152 f2fs_put_page(page, 1); 3153 } 3154 3155 cp_ver |= (cur_cp_crc(ckpt) << 32); 3156 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3157 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 3158 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)", 3159 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits)); 3160 return 0; 3161 } 3162 3163 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3164 return 0; 3165 } 3166 3167 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3168 { 3169 struct f2fs_nm_info *nm_i = NM_I(sbi); 3170 unsigned int i = 0; 3171 nid_t nid, last_nid; 3172 3173 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3174 return; 3175 3176 for (i = 0; i < nm_i->nat_blocks; i++) { 3177 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3178 if (i >= nm_i->nat_blocks) 3179 break; 3180 3181 __set_bit_le(i, nm_i->nat_block_bitmap); 3182 3183 nid = i * NAT_ENTRY_PER_BLOCK; 3184 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3185 3186 spin_lock(&NM_I(sbi)->nid_list_lock); 3187 for (; nid < last_nid; nid++) 3188 update_free_nid_bitmap(sbi, nid, true, true); 3189 spin_unlock(&NM_I(sbi)->nid_list_lock); 3190 } 3191 3192 for (i = 0; i < nm_i->nat_blocks; i++) { 3193 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3194 if (i >= nm_i->nat_blocks) 3195 break; 3196 3197 __set_bit_le(i, nm_i->nat_block_bitmap); 3198 } 3199 } 3200 3201 static int init_node_manager(struct f2fs_sb_info *sbi) 3202 { 3203 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3204 struct f2fs_nm_info *nm_i = NM_I(sbi); 3205 unsigned char *version_bitmap; 3206 unsigned int nat_segs; 3207 int err; 3208 3209 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3210 3211 /* segment_count_nat includes pair segment so divide to 2. */ 3212 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3213 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3214 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3215 3216 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3217 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3218 F2FS_RESERVED_NODE_NUM; 3219 nm_i->nid_cnt[FREE_NID] = 0; 3220 nm_i->nid_cnt[PREALLOC_NID] = 0; 3221 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3222 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3223 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3224 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; 3225 3226 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3227 INIT_LIST_HEAD(&nm_i->free_nid_list); 3228 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3229 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3230 INIT_LIST_HEAD(&nm_i->nat_entries); 3231 spin_lock_init(&nm_i->nat_list_lock); 3232 3233 mutex_init(&nm_i->build_lock); 3234 spin_lock_init(&nm_i->nid_list_lock); 3235 init_f2fs_rwsem(&nm_i->nat_tree_lock); 3236 3237 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3238 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3239 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3240 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3241 GFP_KERNEL); 3242 if (!nm_i->nat_bitmap) 3243 return -ENOMEM; 3244 3245 err = __get_nat_bitmaps(sbi); 3246 if (err) 3247 return err; 3248 3249 #ifdef CONFIG_F2FS_CHECK_FS 3250 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3251 GFP_KERNEL); 3252 if (!nm_i->nat_bitmap_mir) 3253 return -ENOMEM; 3254 #endif 3255 3256 return 0; 3257 } 3258 3259 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3260 { 3261 struct f2fs_nm_info *nm_i = NM_I(sbi); 3262 int i; 3263 3264 nm_i->free_nid_bitmap = 3265 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3266 nm_i->nat_blocks), 3267 GFP_KERNEL); 3268 if (!nm_i->free_nid_bitmap) 3269 return -ENOMEM; 3270 3271 for (i = 0; i < nm_i->nat_blocks; i++) { 3272 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3273 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3274 if (!nm_i->free_nid_bitmap[i]) 3275 return -ENOMEM; 3276 } 3277 3278 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3279 GFP_KERNEL); 3280 if (!nm_i->nat_block_bitmap) 3281 return -ENOMEM; 3282 3283 nm_i->free_nid_count = 3284 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3285 nm_i->nat_blocks), 3286 GFP_KERNEL); 3287 if (!nm_i->free_nid_count) 3288 return -ENOMEM; 3289 return 0; 3290 } 3291 3292 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3293 { 3294 int err; 3295 3296 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3297 GFP_KERNEL); 3298 if (!sbi->nm_info) 3299 return -ENOMEM; 3300 3301 err = init_node_manager(sbi); 3302 if (err) 3303 return err; 3304 3305 err = init_free_nid_cache(sbi); 3306 if (err) 3307 return err; 3308 3309 /* load free nid status from nat_bits table */ 3310 load_free_nid_bitmap(sbi); 3311 3312 return f2fs_build_free_nids(sbi, true, true); 3313 } 3314 3315 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3316 { 3317 struct f2fs_nm_info *nm_i = NM_I(sbi); 3318 struct free_nid *i, *next_i; 3319 struct nat_entry *natvec[NATVEC_SIZE]; 3320 struct nat_entry_set *setvec[SETVEC_SIZE]; 3321 nid_t nid = 0; 3322 unsigned int found; 3323 3324 if (!nm_i) 3325 return; 3326 3327 /* destroy free nid list */ 3328 spin_lock(&nm_i->nid_list_lock); 3329 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3330 __remove_free_nid(sbi, i, FREE_NID); 3331 spin_unlock(&nm_i->nid_list_lock); 3332 kmem_cache_free(free_nid_slab, i); 3333 spin_lock(&nm_i->nid_list_lock); 3334 } 3335 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3336 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3337 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3338 spin_unlock(&nm_i->nid_list_lock); 3339 3340 /* destroy nat cache */ 3341 f2fs_down_write(&nm_i->nat_tree_lock); 3342 while ((found = __gang_lookup_nat_cache(nm_i, 3343 nid, NATVEC_SIZE, natvec))) { 3344 unsigned idx; 3345 3346 nid = nat_get_nid(natvec[found - 1]) + 1; 3347 for (idx = 0; idx < found; idx++) { 3348 spin_lock(&nm_i->nat_list_lock); 3349 list_del(&natvec[idx]->list); 3350 spin_unlock(&nm_i->nat_list_lock); 3351 3352 __del_from_nat_cache(nm_i, natvec[idx]); 3353 } 3354 } 3355 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3356 3357 /* destroy nat set cache */ 3358 nid = 0; 3359 while ((found = __gang_lookup_nat_set(nm_i, 3360 nid, SETVEC_SIZE, setvec))) { 3361 unsigned idx; 3362 3363 nid = setvec[found - 1]->set + 1; 3364 for (idx = 0; idx < found; idx++) { 3365 /* entry_cnt is not zero, when cp_error was occurred */ 3366 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3367 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3368 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3369 } 3370 } 3371 f2fs_up_write(&nm_i->nat_tree_lock); 3372 3373 kvfree(nm_i->nat_block_bitmap); 3374 if (nm_i->free_nid_bitmap) { 3375 int i; 3376 3377 for (i = 0; i < nm_i->nat_blocks; i++) 3378 kvfree(nm_i->free_nid_bitmap[i]); 3379 kvfree(nm_i->free_nid_bitmap); 3380 } 3381 kvfree(nm_i->free_nid_count); 3382 3383 kvfree(nm_i->nat_bitmap); 3384 kvfree(nm_i->nat_bits); 3385 #ifdef CONFIG_F2FS_CHECK_FS 3386 kvfree(nm_i->nat_bitmap_mir); 3387 #endif 3388 sbi->nm_info = NULL; 3389 kfree(nm_i); 3390 } 3391 3392 int __init f2fs_create_node_manager_caches(void) 3393 { 3394 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3395 sizeof(struct nat_entry)); 3396 if (!nat_entry_slab) 3397 goto fail; 3398 3399 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3400 sizeof(struct free_nid)); 3401 if (!free_nid_slab) 3402 goto destroy_nat_entry; 3403 3404 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3405 sizeof(struct nat_entry_set)); 3406 if (!nat_entry_set_slab) 3407 goto destroy_free_nid; 3408 3409 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3410 sizeof(struct fsync_node_entry)); 3411 if (!fsync_node_entry_slab) 3412 goto destroy_nat_entry_set; 3413 return 0; 3414 3415 destroy_nat_entry_set: 3416 kmem_cache_destroy(nat_entry_set_slab); 3417 destroy_free_nid: 3418 kmem_cache_destroy(free_nid_slab); 3419 destroy_nat_entry: 3420 kmem_cache_destroy(nat_entry_slab); 3421 fail: 3422 return -ENOMEM; 3423 } 3424 3425 void f2fs_destroy_node_manager_caches(void) 3426 { 3427 kmem_cache_destroy(fsync_node_entry_slab); 3428 kmem_cache_destroy(nat_entry_set_slab); 3429 kmem_cache_destroy(free_nid_slab); 3430 kmem_cache_destroy(nat_entry_slab); 3431 } 3432