xref: /linux/fs/f2fs/node.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_msg(sbi->sb, KERN_WARNING,
38 				"%s: out-of-range nid=%x, run fsck to fix.",
39 				__func__, nid);
40 		return -EINVAL;
41 	}
42 	return 0;
43 }
44 
45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 	struct f2fs_nm_info *nm_i = NM_I(sbi);
48 	struct sysinfo val;
49 	unsigned long avail_ram;
50 	unsigned long mem_size = 0;
51 	bool res = false;
52 
53 	si_meminfo(&val);
54 
55 	/* only uses low memory */
56 	avail_ram = val.totalram - val.totalhigh;
57 
58 	/*
59 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60 	 */
61 	if (type == FREE_NIDS) {
62 		mem_size = (nm_i->nid_cnt[FREE_NID] *
63 				sizeof(struct free_nid)) >> PAGE_SHIFT;
64 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
65 	} else if (type == NAT_ENTRIES) {
66 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
67 							PAGE_SHIFT;
68 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 		if (excess_cached_nats(sbi))
70 			res = false;
71 	} else if (type == DIRTY_DENTS) {
72 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
73 			return false;
74 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
75 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
76 	} else if (type == INO_ENTRIES) {
77 		int i;
78 
79 		for (i = 0; i < MAX_INO_ENTRY; i++)
80 			mem_size += sbi->im[i].ino_num *
81 						sizeof(struct ino_entry);
82 		mem_size >>= PAGE_SHIFT;
83 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
84 	} else if (type == EXTENT_CACHE) {
85 		mem_size = (atomic_read(&sbi->total_ext_tree) *
86 				sizeof(struct extent_tree) +
87 				atomic_read(&sbi->total_ext_node) *
88 				sizeof(struct extent_node)) >> PAGE_SHIFT;
89 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
90 	} else if (type == INMEM_PAGES) {
91 		/* it allows 20% / total_ram for inmemory pages */
92 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
93 		res = mem_size < (val.totalram / 5);
94 	} else {
95 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
96 			return true;
97 	}
98 	return res;
99 }
100 
101 static void clear_node_page_dirty(struct page *page)
102 {
103 	if (PageDirty(page)) {
104 		f2fs_clear_page_cache_dirty_tag(page);
105 		clear_page_dirty_for_io(page);
106 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
107 	}
108 	ClearPageUptodate(page);
109 }
110 
111 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
112 {
113 	return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
114 }
115 
116 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
117 {
118 	struct page *src_page;
119 	struct page *dst_page;
120 	pgoff_t dst_off;
121 	void *src_addr;
122 	void *dst_addr;
123 	struct f2fs_nm_info *nm_i = NM_I(sbi);
124 
125 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
126 
127 	/* get current nat block page with lock */
128 	src_page = get_current_nat_page(sbi, nid);
129 	if (IS_ERR(src_page))
130 		return src_page;
131 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
132 	f2fs_bug_on(sbi, PageDirty(src_page));
133 
134 	src_addr = page_address(src_page);
135 	dst_addr = page_address(dst_page);
136 	memcpy(dst_addr, src_addr, PAGE_SIZE);
137 	set_page_dirty(dst_page);
138 	f2fs_put_page(src_page, 1);
139 
140 	set_to_next_nat(nm_i, nid);
141 
142 	return dst_page;
143 }
144 
145 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
146 {
147 	struct nat_entry *new;
148 
149 	if (no_fail)
150 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
151 	else
152 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
153 	if (new) {
154 		nat_set_nid(new, nid);
155 		nat_reset_flag(new);
156 	}
157 	return new;
158 }
159 
160 static void __free_nat_entry(struct nat_entry *e)
161 {
162 	kmem_cache_free(nat_entry_slab, e);
163 }
164 
165 /* must be locked by nat_tree_lock */
166 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
167 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
168 {
169 	if (no_fail)
170 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
171 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
172 		return NULL;
173 
174 	if (raw_ne)
175 		node_info_from_raw_nat(&ne->ni, raw_ne);
176 
177 	spin_lock(&nm_i->nat_list_lock);
178 	list_add_tail(&ne->list, &nm_i->nat_entries);
179 	spin_unlock(&nm_i->nat_list_lock);
180 
181 	nm_i->nat_cnt++;
182 	return ne;
183 }
184 
185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187 	struct nat_entry *ne;
188 
189 	ne = radix_tree_lookup(&nm_i->nat_root, n);
190 
191 	/* for recent accessed nat entry, move it to tail of lru list */
192 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 		spin_lock(&nm_i->nat_list_lock);
194 		if (!list_empty(&ne->list))
195 			list_move_tail(&ne->list, &nm_i->nat_entries);
196 		spin_unlock(&nm_i->nat_list_lock);
197 	}
198 
199 	return ne;
200 }
201 
202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 		nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207 
208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 	nm_i->nat_cnt--;
212 	__free_nat_entry(e);
213 }
214 
215 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
216 							struct nat_entry *ne)
217 {
218 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
219 	struct nat_entry_set *head;
220 
221 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
222 	if (!head) {
223 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
224 
225 		INIT_LIST_HEAD(&head->entry_list);
226 		INIT_LIST_HEAD(&head->set_list);
227 		head->set = set;
228 		head->entry_cnt = 0;
229 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
230 	}
231 	return head;
232 }
233 
234 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
235 						struct nat_entry *ne)
236 {
237 	struct nat_entry_set *head;
238 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
239 
240 	if (!new_ne)
241 		head = __grab_nat_entry_set(nm_i, ne);
242 
243 	/*
244 	 * update entry_cnt in below condition:
245 	 * 1. update NEW_ADDR to valid block address;
246 	 * 2. update old block address to new one;
247 	 */
248 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
249 				!get_nat_flag(ne, IS_DIRTY)))
250 		head->entry_cnt++;
251 
252 	set_nat_flag(ne, IS_PREALLOC, new_ne);
253 
254 	if (get_nat_flag(ne, IS_DIRTY))
255 		goto refresh_list;
256 
257 	nm_i->dirty_nat_cnt++;
258 	set_nat_flag(ne, IS_DIRTY, true);
259 refresh_list:
260 	spin_lock(&nm_i->nat_list_lock);
261 	if (new_ne)
262 		list_del_init(&ne->list);
263 	else
264 		list_move_tail(&ne->list, &head->entry_list);
265 	spin_unlock(&nm_i->nat_list_lock);
266 }
267 
268 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
269 		struct nat_entry_set *set, struct nat_entry *ne)
270 {
271 	spin_lock(&nm_i->nat_list_lock);
272 	list_move_tail(&ne->list, &nm_i->nat_entries);
273 	spin_unlock(&nm_i->nat_list_lock);
274 
275 	set_nat_flag(ne, IS_DIRTY, false);
276 	set->entry_cnt--;
277 	nm_i->dirty_nat_cnt--;
278 }
279 
280 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
281 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
282 {
283 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
284 							start, nr);
285 }
286 
287 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
288 {
289 	return NODE_MAPPING(sbi) == page->mapping &&
290 			IS_DNODE(page) && is_cold_node(page);
291 }
292 
293 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
294 {
295 	spin_lock_init(&sbi->fsync_node_lock);
296 	INIT_LIST_HEAD(&sbi->fsync_node_list);
297 	sbi->fsync_seg_id = 0;
298 	sbi->fsync_node_num = 0;
299 }
300 
301 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
302 							struct page *page)
303 {
304 	struct fsync_node_entry *fn;
305 	unsigned long flags;
306 	unsigned int seq_id;
307 
308 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
309 
310 	get_page(page);
311 	fn->page = page;
312 	INIT_LIST_HEAD(&fn->list);
313 
314 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
315 	list_add_tail(&fn->list, &sbi->fsync_node_list);
316 	fn->seq_id = sbi->fsync_seg_id++;
317 	seq_id = fn->seq_id;
318 	sbi->fsync_node_num++;
319 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
320 
321 	return seq_id;
322 }
323 
324 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
325 {
326 	struct fsync_node_entry *fn;
327 	unsigned long flags;
328 
329 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
330 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
331 		if (fn->page == page) {
332 			list_del(&fn->list);
333 			sbi->fsync_node_num--;
334 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
335 			kmem_cache_free(fsync_node_entry_slab, fn);
336 			put_page(page);
337 			return;
338 		}
339 	}
340 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
341 	f2fs_bug_on(sbi, 1);
342 }
343 
344 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
345 {
346 	unsigned long flags;
347 
348 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
349 	sbi->fsync_seg_id = 0;
350 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
351 }
352 
353 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
354 {
355 	struct f2fs_nm_info *nm_i = NM_I(sbi);
356 	struct nat_entry *e;
357 	bool need = false;
358 
359 	down_read(&nm_i->nat_tree_lock);
360 	e = __lookup_nat_cache(nm_i, nid);
361 	if (e) {
362 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
363 				!get_nat_flag(e, HAS_FSYNCED_INODE))
364 			need = true;
365 	}
366 	up_read(&nm_i->nat_tree_lock);
367 	return need;
368 }
369 
370 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
371 {
372 	struct f2fs_nm_info *nm_i = NM_I(sbi);
373 	struct nat_entry *e;
374 	bool is_cp = true;
375 
376 	down_read(&nm_i->nat_tree_lock);
377 	e = __lookup_nat_cache(nm_i, nid);
378 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
379 		is_cp = false;
380 	up_read(&nm_i->nat_tree_lock);
381 	return is_cp;
382 }
383 
384 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
385 {
386 	struct f2fs_nm_info *nm_i = NM_I(sbi);
387 	struct nat_entry *e;
388 	bool need_update = true;
389 
390 	down_read(&nm_i->nat_tree_lock);
391 	e = __lookup_nat_cache(nm_i, ino);
392 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
393 			(get_nat_flag(e, IS_CHECKPOINTED) ||
394 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
395 		need_update = false;
396 	up_read(&nm_i->nat_tree_lock);
397 	return need_update;
398 }
399 
400 /* must be locked by nat_tree_lock */
401 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
402 						struct f2fs_nat_entry *ne)
403 {
404 	struct f2fs_nm_info *nm_i = NM_I(sbi);
405 	struct nat_entry *new, *e;
406 
407 	new = __alloc_nat_entry(nid, false);
408 	if (!new)
409 		return;
410 
411 	down_write(&nm_i->nat_tree_lock);
412 	e = __lookup_nat_cache(nm_i, nid);
413 	if (!e)
414 		e = __init_nat_entry(nm_i, new, ne, false);
415 	else
416 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
417 				nat_get_blkaddr(e) !=
418 					le32_to_cpu(ne->block_addr) ||
419 				nat_get_version(e) != ne->version);
420 	up_write(&nm_i->nat_tree_lock);
421 	if (e != new)
422 		__free_nat_entry(new);
423 }
424 
425 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
426 			block_t new_blkaddr, bool fsync_done)
427 {
428 	struct f2fs_nm_info *nm_i = NM_I(sbi);
429 	struct nat_entry *e;
430 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
431 
432 	down_write(&nm_i->nat_tree_lock);
433 	e = __lookup_nat_cache(nm_i, ni->nid);
434 	if (!e) {
435 		e = __init_nat_entry(nm_i, new, NULL, true);
436 		copy_node_info(&e->ni, ni);
437 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
438 	} else if (new_blkaddr == NEW_ADDR) {
439 		/*
440 		 * when nid is reallocated,
441 		 * previous nat entry can be remained in nat cache.
442 		 * So, reinitialize it with new information.
443 		 */
444 		copy_node_info(&e->ni, ni);
445 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
446 	}
447 	/* let's free early to reduce memory consumption */
448 	if (e != new)
449 		__free_nat_entry(new);
450 
451 	/* sanity check */
452 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
453 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
454 			new_blkaddr == NULL_ADDR);
455 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
456 			new_blkaddr == NEW_ADDR);
457 	f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
458 			new_blkaddr == NEW_ADDR);
459 
460 	/* increment version no as node is removed */
461 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
462 		unsigned char version = nat_get_version(e);
463 		nat_set_version(e, inc_node_version(version));
464 	}
465 
466 	/* change address */
467 	nat_set_blkaddr(e, new_blkaddr);
468 	if (!is_valid_data_blkaddr(sbi, new_blkaddr))
469 		set_nat_flag(e, IS_CHECKPOINTED, false);
470 	__set_nat_cache_dirty(nm_i, e);
471 
472 	/* update fsync_mark if its inode nat entry is still alive */
473 	if (ni->nid != ni->ino)
474 		e = __lookup_nat_cache(nm_i, ni->ino);
475 	if (e) {
476 		if (fsync_done && ni->nid == ni->ino)
477 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
478 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
479 	}
480 	up_write(&nm_i->nat_tree_lock);
481 }
482 
483 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
484 {
485 	struct f2fs_nm_info *nm_i = NM_I(sbi);
486 	int nr = nr_shrink;
487 
488 	if (!down_write_trylock(&nm_i->nat_tree_lock))
489 		return 0;
490 
491 	spin_lock(&nm_i->nat_list_lock);
492 	while (nr_shrink) {
493 		struct nat_entry *ne;
494 
495 		if (list_empty(&nm_i->nat_entries))
496 			break;
497 
498 		ne = list_first_entry(&nm_i->nat_entries,
499 					struct nat_entry, list);
500 		list_del(&ne->list);
501 		spin_unlock(&nm_i->nat_list_lock);
502 
503 		__del_from_nat_cache(nm_i, ne);
504 		nr_shrink--;
505 
506 		spin_lock(&nm_i->nat_list_lock);
507 	}
508 	spin_unlock(&nm_i->nat_list_lock);
509 
510 	up_write(&nm_i->nat_tree_lock);
511 	return nr - nr_shrink;
512 }
513 
514 /*
515  * This function always returns success
516  */
517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 						struct node_info *ni)
519 {
520 	struct f2fs_nm_info *nm_i = NM_I(sbi);
521 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 	struct f2fs_journal *journal = curseg->journal;
523 	nid_t start_nid = START_NID(nid);
524 	struct f2fs_nat_block *nat_blk;
525 	struct page *page = NULL;
526 	struct f2fs_nat_entry ne;
527 	struct nat_entry *e;
528 	pgoff_t index;
529 	int i;
530 
531 	ni->nid = nid;
532 
533 	/* Check nat cache */
534 	down_read(&nm_i->nat_tree_lock);
535 	e = __lookup_nat_cache(nm_i, nid);
536 	if (e) {
537 		ni->ino = nat_get_ino(e);
538 		ni->blk_addr = nat_get_blkaddr(e);
539 		ni->version = nat_get_version(e);
540 		up_read(&nm_i->nat_tree_lock);
541 		return 0;
542 	}
543 
544 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545 
546 	/* Check current segment summary */
547 	down_read(&curseg->journal_rwsem);
548 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549 	if (i >= 0) {
550 		ne = nat_in_journal(journal, i);
551 		node_info_from_raw_nat(ni, &ne);
552 	}
553 	up_read(&curseg->journal_rwsem);
554 	if (i >= 0) {
555 		up_read(&nm_i->nat_tree_lock);
556 		goto cache;
557 	}
558 
559 	/* Fill node_info from nat page */
560 	index = current_nat_addr(sbi, nid);
561 	up_read(&nm_i->nat_tree_lock);
562 
563 	page = f2fs_get_meta_page(sbi, index);
564 	if (IS_ERR(page))
565 		return PTR_ERR(page);
566 
567 	nat_blk = (struct f2fs_nat_block *)page_address(page);
568 	ne = nat_blk->entries[nid - start_nid];
569 	node_info_from_raw_nat(ni, &ne);
570 	f2fs_put_page(page, 1);
571 cache:
572 	/* cache nat entry */
573 	cache_nat_entry(sbi, nid, &ne);
574 	return 0;
575 }
576 
577 /*
578  * readahead MAX_RA_NODE number of node pages.
579  */
580 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
581 {
582 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
583 	struct blk_plug plug;
584 	int i, end;
585 	nid_t nid;
586 
587 	blk_start_plug(&plug);
588 
589 	/* Then, try readahead for siblings of the desired node */
590 	end = start + n;
591 	end = min(end, NIDS_PER_BLOCK);
592 	for (i = start; i < end; i++) {
593 		nid = get_nid(parent, i, false);
594 		f2fs_ra_node_page(sbi, nid);
595 	}
596 
597 	blk_finish_plug(&plug);
598 }
599 
600 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
601 {
602 	const long direct_index = ADDRS_PER_INODE(dn->inode);
603 	const long direct_blks = ADDRS_PER_BLOCK;
604 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
605 	unsigned int skipped_unit = ADDRS_PER_BLOCK;
606 	int cur_level = dn->cur_level;
607 	int max_level = dn->max_level;
608 	pgoff_t base = 0;
609 
610 	if (!dn->max_level)
611 		return pgofs + 1;
612 
613 	while (max_level-- > cur_level)
614 		skipped_unit *= NIDS_PER_BLOCK;
615 
616 	switch (dn->max_level) {
617 	case 3:
618 		base += 2 * indirect_blks;
619 	case 2:
620 		base += 2 * direct_blks;
621 	case 1:
622 		base += direct_index;
623 		break;
624 	default:
625 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
626 	}
627 
628 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
629 }
630 
631 /*
632  * The maximum depth is four.
633  * Offset[0] will have raw inode offset.
634  */
635 static int get_node_path(struct inode *inode, long block,
636 				int offset[4], unsigned int noffset[4])
637 {
638 	const long direct_index = ADDRS_PER_INODE(inode);
639 	const long direct_blks = ADDRS_PER_BLOCK;
640 	const long dptrs_per_blk = NIDS_PER_BLOCK;
641 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
642 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
643 	int n = 0;
644 	int level = 0;
645 
646 	noffset[0] = 0;
647 
648 	if (block < direct_index) {
649 		offset[n] = block;
650 		goto got;
651 	}
652 	block -= direct_index;
653 	if (block < direct_blks) {
654 		offset[n++] = NODE_DIR1_BLOCK;
655 		noffset[n] = 1;
656 		offset[n] = block;
657 		level = 1;
658 		goto got;
659 	}
660 	block -= direct_blks;
661 	if (block < direct_blks) {
662 		offset[n++] = NODE_DIR2_BLOCK;
663 		noffset[n] = 2;
664 		offset[n] = block;
665 		level = 1;
666 		goto got;
667 	}
668 	block -= direct_blks;
669 	if (block < indirect_blks) {
670 		offset[n++] = NODE_IND1_BLOCK;
671 		noffset[n] = 3;
672 		offset[n++] = block / direct_blks;
673 		noffset[n] = 4 + offset[n - 1];
674 		offset[n] = block % direct_blks;
675 		level = 2;
676 		goto got;
677 	}
678 	block -= indirect_blks;
679 	if (block < indirect_blks) {
680 		offset[n++] = NODE_IND2_BLOCK;
681 		noffset[n] = 4 + dptrs_per_blk;
682 		offset[n++] = block / direct_blks;
683 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
684 		offset[n] = block % direct_blks;
685 		level = 2;
686 		goto got;
687 	}
688 	block -= indirect_blks;
689 	if (block < dindirect_blks) {
690 		offset[n++] = NODE_DIND_BLOCK;
691 		noffset[n] = 5 + (dptrs_per_blk * 2);
692 		offset[n++] = block / indirect_blks;
693 		noffset[n] = 6 + (dptrs_per_blk * 2) +
694 			      offset[n - 1] * (dptrs_per_blk + 1);
695 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
696 		noffset[n] = 7 + (dptrs_per_blk * 2) +
697 			      offset[n - 2] * (dptrs_per_blk + 1) +
698 			      offset[n - 1];
699 		offset[n] = block % direct_blks;
700 		level = 3;
701 		goto got;
702 	} else {
703 		return -E2BIG;
704 	}
705 got:
706 	return level;
707 }
708 
709 /*
710  * Caller should call f2fs_put_dnode(dn).
711  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
712  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
713  * In the case of RDONLY_NODE, we don't need to care about mutex.
714  */
715 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
716 {
717 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
718 	struct page *npage[4];
719 	struct page *parent = NULL;
720 	int offset[4];
721 	unsigned int noffset[4];
722 	nid_t nids[4];
723 	int level, i = 0;
724 	int err = 0;
725 
726 	level = get_node_path(dn->inode, index, offset, noffset);
727 	if (level < 0)
728 		return level;
729 
730 	nids[0] = dn->inode->i_ino;
731 	npage[0] = dn->inode_page;
732 
733 	if (!npage[0]) {
734 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
735 		if (IS_ERR(npage[0]))
736 			return PTR_ERR(npage[0]);
737 	}
738 
739 	/* if inline_data is set, should not report any block indices */
740 	if (f2fs_has_inline_data(dn->inode) && index) {
741 		err = -ENOENT;
742 		f2fs_put_page(npage[0], 1);
743 		goto release_out;
744 	}
745 
746 	parent = npage[0];
747 	if (level != 0)
748 		nids[1] = get_nid(parent, offset[0], true);
749 	dn->inode_page = npage[0];
750 	dn->inode_page_locked = true;
751 
752 	/* get indirect or direct nodes */
753 	for (i = 1; i <= level; i++) {
754 		bool done = false;
755 
756 		if (!nids[i] && mode == ALLOC_NODE) {
757 			/* alloc new node */
758 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
759 				err = -ENOSPC;
760 				goto release_pages;
761 			}
762 
763 			dn->nid = nids[i];
764 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
765 			if (IS_ERR(npage[i])) {
766 				f2fs_alloc_nid_failed(sbi, nids[i]);
767 				err = PTR_ERR(npage[i]);
768 				goto release_pages;
769 			}
770 
771 			set_nid(parent, offset[i - 1], nids[i], i == 1);
772 			f2fs_alloc_nid_done(sbi, nids[i]);
773 			done = true;
774 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
775 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
776 			if (IS_ERR(npage[i])) {
777 				err = PTR_ERR(npage[i]);
778 				goto release_pages;
779 			}
780 			done = true;
781 		}
782 		if (i == 1) {
783 			dn->inode_page_locked = false;
784 			unlock_page(parent);
785 		} else {
786 			f2fs_put_page(parent, 1);
787 		}
788 
789 		if (!done) {
790 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
791 			if (IS_ERR(npage[i])) {
792 				err = PTR_ERR(npage[i]);
793 				f2fs_put_page(npage[0], 0);
794 				goto release_out;
795 			}
796 		}
797 		if (i < level) {
798 			parent = npage[i];
799 			nids[i + 1] = get_nid(parent, offset[i], false);
800 		}
801 	}
802 	dn->nid = nids[level];
803 	dn->ofs_in_node = offset[level];
804 	dn->node_page = npage[level];
805 	dn->data_blkaddr = datablock_addr(dn->inode,
806 				dn->node_page, dn->ofs_in_node);
807 	return 0;
808 
809 release_pages:
810 	f2fs_put_page(parent, 1);
811 	if (i > 1)
812 		f2fs_put_page(npage[0], 0);
813 release_out:
814 	dn->inode_page = NULL;
815 	dn->node_page = NULL;
816 	if (err == -ENOENT) {
817 		dn->cur_level = i;
818 		dn->max_level = level;
819 		dn->ofs_in_node = offset[level];
820 	}
821 	return err;
822 }
823 
824 static int truncate_node(struct dnode_of_data *dn)
825 {
826 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
827 	struct node_info ni;
828 	int err;
829 	pgoff_t index;
830 
831 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
832 	if (err)
833 		return err;
834 
835 	/* Deallocate node address */
836 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
837 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
838 	set_node_addr(sbi, &ni, NULL_ADDR, false);
839 
840 	if (dn->nid == dn->inode->i_ino) {
841 		f2fs_remove_orphan_inode(sbi, dn->nid);
842 		dec_valid_inode_count(sbi);
843 		f2fs_inode_synced(dn->inode);
844 	}
845 
846 	clear_node_page_dirty(dn->node_page);
847 	set_sbi_flag(sbi, SBI_IS_DIRTY);
848 
849 	index = dn->node_page->index;
850 	f2fs_put_page(dn->node_page, 1);
851 
852 	invalidate_mapping_pages(NODE_MAPPING(sbi),
853 			index, index);
854 
855 	dn->node_page = NULL;
856 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
857 
858 	return 0;
859 }
860 
861 static int truncate_dnode(struct dnode_of_data *dn)
862 {
863 	struct page *page;
864 	int err;
865 
866 	if (dn->nid == 0)
867 		return 1;
868 
869 	/* get direct node */
870 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
871 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
872 		return 1;
873 	else if (IS_ERR(page))
874 		return PTR_ERR(page);
875 
876 	/* Make dnode_of_data for parameter */
877 	dn->node_page = page;
878 	dn->ofs_in_node = 0;
879 	f2fs_truncate_data_blocks(dn);
880 	err = truncate_node(dn);
881 	if (err)
882 		return err;
883 
884 	return 1;
885 }
886 
887 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
888 						int ofs, int depth)
889 {
890 	struct dnode_of_data rdn = *dn;
891 	struct page *page;
892 	struct f2fs_node *rn;
893 	nid_t child_nid;
894 	unsigned int child_nofs;
895 	int freed = 0;
896 	int i, ret;
897 
898 	if (dn->nid == 0)
899 		return NIDS_PER_BLOCK + 1;
900 
901 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
902 
903 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
904 	if (IS_ERR(page)) {
905 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
906 		return PTR_ERR(page);
907 	}
908 
909 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
910 
911 	rn = F2FS_NODE(page);
912 	if (depth < 3) {
913 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
914 			child_nid = le32_to_cpu(rn->in.nid[i]);
915 			if (child_nid == 0)
916 				continue;
917 			rdn.nid = child_nid;
918 			ret = truncate_dnode(&rdn);
919 			if (ret < 0)
920 				goto out_err;
921 			if (set_nid(page, i, 0, false))
922 				dn->node_changed = true;
923 		}
924 	} else {
925 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
926 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
927 			child_nid = le32_to_cpu(rn->in.nid[i]);
928 			if (child_nid == 0) {
929 				child_nofs += NIDS_PER_BLOCK + 1;
930 				continue;
931 			}
932 			rdn.nid = child_nid;
933 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
934 			if (ret == (NIDS_PER_BLOCK + 1)) {
935 				if (set_nid(page, i, 0, false))
936 					dn->node_changed = true;
937 				child_nofs += ret;
938 			} else if (ret < 0 && ret != -ENOENT) {
939 				goto out_err;
940 			}
941 		}
942 		freed = child_nofs;
943 	}
944 
945 	if (!ofs) {
946 		/* remove current indirect node */
947 		dn->node_page = page;
948 		ret = truncate_node(dn);
949 		if (ret)
950 			goto out_err;
951 		freed++;
952 	} else {
953 		f2fs_put_page(page, 1);
954 	}
955 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
956 	return freed;
957 
958 out_err:
959 	f2fs_put_page(page, 1);
960 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
961 	return ret;
962 }
963 
964 static int truncate_partial_nodes(struct dnode_of_data *dn,
965 			struct f2fs_inode *ri, int *offset, int depth)
966 {
967 	struct page *pages[2];
968 	nid_t nid[3];
969 	nid_t child_nid;
970 	int err = 0;
971 	int i;
972 	int idx = depth - 2;
973 
974 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
975 	if (!nid[0])
976 		return 0;
977 
978 	/* get indirect nodes in the path */
979 	for (i = 0; i < idx + 1; i++) {
980 		/* reference count'll be increased */
981 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
982 		if (IS_ERR(pages[i])) {
983 			err = PTR_ERR(pages[i]);
984 			idx = i - 1;
985 			goto fail;
986 		}
987 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
988 	}
989 
990 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
991 
992 	/* free direct nodes linked to a partial indirect node */
993 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
994 		child_nid = get_nid(pages[idx], i, false);
995 		if (!child_nid)
996 			continue;
997 		dn->nid = child_nid;
998 		err = truncate_dnode(dn);
999 		if (err < 0)
1000 			goto fail;
1001 		if (set_nid(pages[idx], i, 0, false))
1002 			dn->node_changed = true;
1003 	}
1004 
1005 	if (offset[idx + 1] == 0) {
1006 		dn->node_page = pages[idx];
1007 		dn->nid = nid[idx];
1008 		err = truncate_node(dn);
1009 		if (err)
1010 			goto fail;
1011 	} else {
1012 		f2fs_put_page(pages[idx], 1);
1013 	}
1014 	offset[idx]++;
1015 	offset[idx + 1] = 0;
1016 	idx--;
1017 fail:
1018 	for (i = idx; i >= 0; i--)
1019 		f2fs_put_page(pages[i], 1);
1020 
1021 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1022 
1023 	return err;
1024 }
1025 
1026 /*
1027  * All the block addresses of data and nodes should be nullified.
1028  */
1029 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1030 {
1031 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1032 	int err = 0, cont = 1;
1033 	int level, offset[4], noffset[4];
1034 	unsigned int nofs = 0;
1035 	struct f2fs_inode *ri;
1036 	struct dnode_of_data dn;
1037 	struct page *page;
1038 
1039 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1040 
1041 	level = get_node_path(inode, from, offset, noffset);
1042 	if (level < 0)
1043 		return level;
1044 
1045 	page = f2fs_get_node_page(sbi, inode->i_ino);
1046 	if (IS_ERR(page)) {
1047 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1048 		return PTR_ERR(page);
1049 	}
1050 
1051 	set_new_dnode(&dn, inode, page, NULL, 0);
1052 	unlock_page(page);
1053 
1054 	ri = F2FS_INODE(page);
1055 	switch (level) {
1056 	case 0:
1057 	case 1:
1058 		nofs = noffset[1];
1059 		break;
1060 	case 2:
1061 		nofs = noffset[1];
1062 		if (!offset[level - 1])
1063 			goto skip_partial;
1064 		err = truncate_partial_nodes(&dn, ri, offset, level);
1065 		if (err < 0 && err != -ENOENT)
1066 			goto fail;
1067 		nofs += 1 + NIDS_PER_BLOCK;
1068 		break;
1069 	case 3:
1070 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1071 		if (!offset[level - 1])
1072 			goto skip_partial;
1073 		err = truncate_partial_nodes(&dn, ri, offset, level);
1074 		if (err < 0 && err != -ENOENT)
1075 			goto fail;
1076 		break;
1077 	default:
1078 		BUG();
1079 	}
1080 
1081 skip_partial:
1082 	while (cont) {
1083 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1084 		switch (offset[0]) {
1085 		case NODE_DIR1_BLOCK:
1086 		case NODE_DIR2_BLOCK:
1087 			err = truncate_dnode(&dn);
1088 			break;
1089 
1090 		case NODE_IND1_BLOCK:
1091 		case NODE_IND2_BLOCK:
1092 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1093 			break;
1094 
1095 		case NODE_DIND_BLOCK:
1096 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1097 			cont = 0;
1098 			break;
1099 
1100 		default:
1101 			BUG();
1102 		}
1103 		if (err < 0 && err != -ENOENT)
1104 			goto fail;
1105 		if (offset[1] == 0 &&
1106 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1107 			lock_page(page);
1108 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1109 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1110 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1111 			set_page_dirty(page);
1112 			unlock_page(page);
1113 		}
1114 		offset[1] = 0;
1115 		offset[0]++;
1116 		nofs += err;
1117 	}
1118 fail:
1119 	f2fs_put_page(page, 0);
1120 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1121 	return err > 0 ? 0 : err;
1122 }
1123 
1124 /* caller must lock inode page */
1125 int f2fs_truncate_xattr_node(struct inode *inode)
1126 {
1127 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1128 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1129 	struct dnode_of_data dn;
1130 	struct page *npage;
1131 	int err;
1132 
1133 	if (!nid)
1134 		return 0;
1135 
1136 	npage = f2fs_get_node_page(sbi, nid);
1137 	if (IS_ERR(npage))
1138 		return PTR_ERR(npage);
1139 
1140 	set_new_dnode(&dn, inode, NULL, npage, nid);
1141 	err = truncate_node(&dn);
1142 	if (err) {
1143 		f2fs_put_page(npage, 1);
1144 		return err;
1145 	}
1146 
1147 	f2fs_i_xnid_write(inode, 0);
1148 
1149 	return 0;
1150 }
1151 
1152 /*
1153  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1154  * f2fs_unlock_op().
1155  */
1156 int f2fs_remove_inode_page(struct inode *inode)
1157 {
1158 	struct dnode_of_data dn;
1159 	int err;
1160 
1161 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1162 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1163 	if (err)
1164 		return err;
1165 
1166 	err = f2fs_truncate_xattr_node(inode);
1167 	if (err) {
1168 		f2fs_put_dnode(&dn);
1169 		return err;
1170 	}
1171 
1172 	/* remove potential inline_data blocks */
1173 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1174 				S_ISLNK(inode->i_mode))
1175 		f2fs_truncate_data_blocks_range(&dn, 1);
1176 
1177 	/* 0 is possible, after f2fs_new_inode() has failed */
1178 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1179 		f2fs_put_dnode(&dn);
1180 		return -EIO;
1181 	}
1182 	f2fs_bug_on(F2FS_I_SB(inode),
1183 			inode->i_blocks != 0 && inode->i_blocks != 8);
1184 
1185 	/* will put inode & node pages */
1186 	err = truncate_node(&dn);
1187 	if (err) {
1188 		f2fs_put_dnode(&dn);
1189 		return err;
1190 	}
1191 	return 0;
1192 }
1193 
1194 struct page *f2fs_new_inode_page(struct inode *inode)
1195 {
1196 	struct dnode_of_data dn;
1197 
1198 	/* allocate inode page for new inode */
1199 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1200 
1201 	/* caller should f2fs_put_page(page, 1); */
1202 	return f2fs_new_node_page(&dn, 0);
1203 }
1204 
1205 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1206 {
1207 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1208 	struct node_info new_ni;
1209 	struct page *page;
1210 	int err;
1211 
1212 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1213 		return ERR_PTR(-EPERM);
1214 
1215 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1216 	if (!page)
1217 		return ERR_PTR(-ENOMEM);
1218 
1219 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1220 		goto fail;
1221 
1222 #ifdef CONFIG_F2FS_CHECK_FS
1223 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1224 	if (err) {
1225 		dec_valid_node_count(sbi, dn->inode, !ofs);
1226 		goto fail;
1227 	}
1228 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1229 #endif
1230 	new_ni.nid = dn->nid;
1231 	new_ni.ino = dn->inode->i_ino;
1232 	new_ni.blk_addr = NULL_ADDR;
1233 	new_ni.flag = 0;
1234 	new_ni.version = 0;
1235 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1236 
1237 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1238 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1239 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1240 	if (!PageUptodate(page))
1241 		SetPageUptodate(page);
1242 	if (set_page_dirty(page))
1243 		dn->node_changed = true;
1244 
1245 	if (f2fs_has_xattr_block(ofs))
1246 		f2fs_i_xnid_write(dn->inode, dn->nid);
1247 
1248 	if (ofs == 0)
1249 		inc_valid_inode_count(sbi);
1250 	return page;
1251 
1252 fail:
1253 	clear_node_page_dirty(page);
1254 	f2fs_put_page(page, 1);
1255 	return ERR_PTR(err);
1256 }
1257 
1258 /*
1259  * Caller should do after getting the following values.
1260  * 0: f2fs_put_page(page, 0)
1261  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1262  */
1263 static int read_node_page(struct page *page, int op_flags)
1264 {
1265 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1266 	struct node_info ni;
1267 	struct f2fs_io_info fio = {
1268 		.sbi = sbi,
1269 		.type = NODE,
1270 		.op = REQ_OP_READ,
1271 		.op_flags = op_flags,
1272 		.page = page,
1273 		.encrypted_page = NULL,
1274 	};
1275 	int err;
1276 
1277 	if (PageUptodate(page)) {
1278 #ifdef CONFIG_F2FS_CHECK_FS
1279 		f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page));
1280 #endif
1281 		return LOCKED_PAGE;
1282 	}
1283 
1284 	err = f2fs_get_node_info(sbi, page->index, &ni);
1285 	if (err)
1286 		return err;
1287 
1288 	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1289 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1290 		ClearPageUptodate(page);
1291 		return -ENOENT;
1292 	}
1293 
1294 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1295 	return f2fs_submit_page_bio(&fio);
1296 }
1297 
1298 /*
1299  * Readahead a node page
1300  */
1301 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1302 {
1303 	struct page *apage;
1304 	int err;
1305 
1306 	if (!nid)
1307 		return;
1308 	if (f2fs_check_nid_range(sbi, nid))
1309 		return;
1310 
1311 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1312 	if (apage)
1313 		return;
1314 
1315 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1316 	if (!apage)
1317 		return;
1318 
1319 	err = read_node_page(apage, REQ_RAHEAD);
1320 	f2fs_put_page(apage, err ? 1 : 0);
1321 }
1322 
1323 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1324 					struct page *parent, int start)
1325 {
1326 	struct page *page;
1327 	int err;
1328 
1329 	if (!nid)
1330 		return ERR_PTR(-ENOENT);
1331 	if (f2fs_check_nid_range(sbi, nid))
1332 		return ERR_PTR(-EINVAL);
1333 repeat:
1334 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1335 	if (!page)
1336 		return ERR_PTR(-ENOMEM);
1337 
1338 	err = read_node_page(page, 0);
1339 	if (err < 0) {
1340 		f2fs_put_page(page, 1);
1341 		return ERR_PTR(err);
1342 	} else if (err == LOCKED_PAGE) {
1343 		err = 0;
1344 		goto page_hit;
1345 	}
1346 
1347 	if (parent)
1348 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1349 
1350 	lock_page(page);
1351 
1352 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1353 		f2fs_put_page(page, 1);
1354 		goto repeat;
1355 	}
1356 
1357 	if (unlikely(!PageUptodate(page))) {
1358 		err = -EIO;
1359 		goto out_err;
1360 	}
1361 
1362 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1363 		err = -EBADMSG;
1364 		goto out_err;
1365 	}
1366 page_hit:
1367 	if(unlikely(nid != nid_of_node(page))) {
1368 		f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1369 			"nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1370 			nid, nid_of_node(page), ino_of_node(page),
1371 			ofs_of_node(page), cpver_of_node(page),
1372 			next_blkaddr_of_node(page));
1373 		err = -EINVAL;
1374 out_err:
1375 		ClearPageUptodate(page);
1376 		f2fs_put_page(page, 1);
1377 		return ERR_PTR(err);
1378 	}
1379 	return page;
1380 }
1381 
1382 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1383 {
1384 	return __get_node_page(sbi, nid, NULL, 0);
1385 }
1386 
1387 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1388 {
1389 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1390 	nid_t nid = get_nid(parent, start, false);
1391 
1392 	return __get_node_page(sbi, nid, parent, start);
1393 }
1394 
1395 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1396 {
1397 	struct inode *inode;
1398 	struct page *page;
1399 	int ret;
1400 
1401 	/* should flush inline_data before evict_inode */
1402 	inode = ilookup(sbi->sb, ino);
1403 	if (!inode)
1404 		return;
1405 
1406 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1407 					FGP_LOCK|FGP_NOWAIT, 0);
1408 	if (!page)
1409 		goto iput_out;
1410 
1411 	if (!PageUptodate(page))
1412 		goto page_out;
1413 
1414 	if (!PageDirty(page))
1415 		goto page_out;
1416 
1417 	if (!clear_page_dirty_for_io(page))
1418 		goto page_out;
1419 
1420 	ret = f2fs_write_inline_data(inode, page);
1421 	inode_dec_dirty_pages(inode);
1422 	f2fs_remove_dirty_inode(inode);
1423 	if (ret)
1424 		set_page_dirty(page);
1425 page_out:
1426 	f2fs_put_page(page, 1);
1427 iput_out:
1428 	iput(inode);
1429 }
1430 
1431 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1432 {
1433 	pgoff_t index;
1434 	struct pagevec pvec;
1435 	struct page *last_page = NULL;
1436 	int nr_pages;
1437 
1438 	pagevec_init(&pvec);
1439 	index = 0;
1440 
1441 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1442 				PAGECACHE_TAG_DIRTY))) {
1443 		int i;
1444 
1445 		for (i = 0; i < nr_pages; i++) {
1446 			struct page *page = pvec.pages[i];
1447 
1448 			if (unlikely(f2fs_cp_error(sbi))) {
1449 				f2fs_put_page(last_page, 0);
1450 				pagevec_release(&pvec);
1451 				return ERR_PTR(-EIO);
1452 			}
1453 
1454 			if (!IS_DNODE(page) || !is_cold_node(page))
1455 				continue;
1456 			if (ino_of_node(page) != ino)
1457 				continue;
1458 
1459 			lock_page(page);
1460 
1461 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1462 continue_unlock:
1463 				unlock_page(page);
1464 				continue;
1465 			}
1466 			if (ino_of_node(page) != ino)
1467 				goto continue_unlock;
1468 
1469 			if (!PageDirty(page)) {
1470 				/* someone wrote it for us */
1471 				goto continue_unlock;
1472 			}
1473 
1474 			if (last_page)
1475 				f2fs_put_page(last_page, 0);
1476 
1477 			get_page(page);
1478 			last_page = page;
1479 			unlock_page(page);
1480 		}
1481 		pagevec_release(&pvec);
1482 		cond_resched();
1483 	}
1484 	return last_page;
1485 }
1486 
1487 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1488 				struct writeback_control *wbc, bool do_balance,
1489 				enum iostat_type io_type, unsigned int *seq_id)
1490 {
1491 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1492 	nid_t nid;
1493 	struct node_info ni;
1494 	struct f2fs_io_info fio = {
1495 		.sbi = sbi,
1496 		.ino = ino_of_node(page),
1497 		.type = NODE,
1498 		.op = REQ_OP_WRITE,
1499 		.op_flags = wbc_to_write_flags(wbc),
1500 		.page = page,
1501 		.encrypted_page = NULL,
1502 		.submitted = false,
1503 		.io_type = io_type,
1504 		.io_wbc = wbc,
1505 	};
1506 	unsigned int seq;
1507 
1508 	trace_f2fs_writepage(page, NODE);
1509 
1510 	if (unlikely(f2fs_cp_error(sbi)))
1511 		goto redirty_out;
1512 
1513 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1514 		goto redirty_out;
1515 
1516 	if (wbc->sync_mode == WB_SYNC_NONE &&
1517 			IS_DNODE(page) && is_cold_node(page))
1518 		goto redirty_out;
1519 
1520 	/* get old block addr of this node page */
1521 	nid = nid_of_node(page);
1522 	f2fs_bug_on(sbi, page->index != nid);
1523 
1524 	if (f2fs_get_node_info(sbi, nid, &ni))
1525 		goto redirty_out;
1526 
1527 	if (wbc->for_reclaim) {
1528 		if (!down_read_trylock(&sbi->node_write))
1529 			goto redirty_out;
1530 	} else {
1531 		down_read(&sbi->node_write);
1532 	}
1533 
1534 	/* This page is already truncated */
1535 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1536 		ClearPageUptodate(page);
1537 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1538 		up_read(&sbi->node_write);
1539 		unlock_page(page);
1540 		return 0;
1541 	}
1542 
1543 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1544 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) {
1545 		up_read(&sbi->node_write);
1546 		goto redirty_out;
1547 	}
1548 
1549 	if (atomic && !test_opt(sbi, NOBARRIER))
1550 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1551 
1552 	set_page_writeback(page);
1553 	ClearPageError(page);
1554 
1555 	if (f2fs_in_warm_node_list(sbi, page)) {
1556 		seq = f2fs_add_fsync_node_entry(sbi, page);
1557 		if (seq_id)
1558 			*seq_id = seq;
1559 	}
1560 
1561 	fio.old_blkaddr = ni.blk_addr;
1562 	f2fs_do_write_node_page(nid, &fio);
1563 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1564 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1565 	up_read(&sbi->node_write);
1566 
1567 	if (wbc->for_reclaim) {
1568 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1569 		submitted = NULL;
1570 	}
1571 
1572 	unlock_page(page);
1573 
1574 	if (unlikely(f2fs_cp_error(sbi))) {
1575 		f2fs_submit_merged_write(sbi, NODE);
1576 		submitted = NULL;
1577 	}
1578 	if (submitted)
1579 		*submitted = fio.submitted;
1580 
1581 	if (do_balance)
1582 		f2fs_balance_fs(sbi, false);
1583 	return 0;
1584 
1585 redirty_out:
1586 	redirty_page_for_writepage(wbc, page);
1587 	return AOP_WRITEPAGE_ACTIVATE;
1588 }
1589 
1590 int f2fs_move_node_page(struct page *node_page, int gc_type)
1591 {
1592 	int err = 0;
1593 
1594 	if (gc_type == FG_GC) {
1595 		struct writeback_control wbc = {
1596 			.sync_mode = WB_SYNC_ALL,
1597 			.nr_to_write = 1,
1598 			.for_reclaim = 0,
1599 		};
1600 
1601 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1602 
1603 		set_page_dirty(node_page);
1604 
1605 		if (!clear_page_dirty_for_io(node_page)) {
1606 			err = -EAGAIN;
1607 			goto out_page;
1608 		}
1609 
1610 		if (__write_node_page(node_page, false, NULL,
1611 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1612 			err = -EAGAIN;
1613 			unlock_page(node_page);
1614 		}
1615 		goto release_page;
1616 	} else {
1617 		/* set page dirty and write it */
1618 		if (!PageWriteback(node_page))
1619 			set_page_dirty(node_page);
1620 	}
1621 out_page:
1622 	unlock_page(node_page);
1623 release_page:
1624 	f2fs_put_page(node_page, 0);
1625 	return err;
1626 }
1627 
1628 static int f2fs_write_node_page(struct page *page,
1629 				struct writeback_control *wbc)
1630 {
1631 	return __write_node_page(page, false, NULL, wbc, false,
1632 						FS_NODE_IO, NULL);
1633 }
1634 
1635 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1636 			struct writeback_control *wbc, bool atomic,
1637 			unsigned int *seq_id)
1638 {
1639 	pgoff_t index;
1640 	struct pagevec pvec;
1641 	int ret = 0;
1642 	struct page *last_page = NULL;
1643 	bool marked = false;
1644 	nid_t ino = inode->i_ino;
1645 	int nr_pages;
1646 	int nwritten = 0;
1647 
1648 	if (atomic) {
1649 		last_page = last_fsync_dnode(sbi, ino);
1650 		if (IS_ERR_OR_NULL(last_page))
1651 			return PTR_ERR_OR_ZERO(last_page);
1652 	}
1653 retry:
1654 	pagevec_init(&pvec);
1655 	index = 0;
1656 
1657 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1658 				PAGECACHE_TAG_DIRTY))) {
1659 		int i;
1660 
1661 		for (i = 0; i < nr_pages; i++) {
1662 			struct page *page = pvec.pages[i];
1663 			bool submitted = false;
1664 
1665 			if (unlikely(f2fs_cp_error(sbi))) {
1666 				f2fs_put_page(last_page, 0);
1667 				pagevec_release(&pvec);
1668 				ret = -EIO;
1669 				goto out;
1670 			}
1671 
1672 			if (!IS_DNODE(page) || !is_cold_node(page))
1673 				continue;
1674 			if (ino_of_node(page) != ino)
1675 				continue;
1676 
1677 			lock_page(page);
1678 
1679 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1680 continue_unlock:
1681 				unlock_page(page);
1682 				continue;
1683 			}
1684 			if (ino_of_node(page) != ino)
1685 				goto continue_unlock;
1686 
1687 			if (!PageDirty(page) && page != last_page) {
1688 				/* someone wrote it for us */
1689 				goto continue_unlock;
1690 			}
1691 
1692 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1693 
1694 			set_fsync_mark(page, 0);
1695 			set_dentry_mark(page, 0);
1696 
1697 			if (!atomic || page == last_page) {
1698 				set_fsync_mark(page, 1);
1699 				if (IS_INODE(page)) {
1700 					if (is_inode_flag_set(inode,
1701 								FI_DIRTY_INODE))
1702 						f2fs_update_inode(inode, page);
1703 					set_dentry_mark(page,
1704 						f2fs_need_dentry_mark(sbi, ino));
1705 				}
1706 				/*  may be written by other thread */
1707 				if (!PageDirty(page))
1708 					set_page_dirty(page);
1709 			}
1710 
1711 			if (!clear_page_dirty_for_io(page))
1712 				goto continue_unlock;
1713 
1714 			ret = __write_node_page(page, atomic &&
1715 						page == last_page,
1716 						&submitted, wbc, true,
1717 						FS_NODE_IO, seq_id);
1718 			if (ret) {
1719 				unlock_page(page);
1720 				f2fs_put_page(last_page, 0);
1721 				break;
1722 			} else if (submitted) {
1723 				nwritten++;
1724 			}
1725 
1726 			if (page == last_page) {
1727 				f2fs_put_page(page, 0);
1728 				marked = true;
1729 				break;
1730 			}
1731 		}
1732 		pagevec_release(&pvec);
1733 		cond_resched();
1734 
1735 		if (ret || marked)
1736 			break;
1737 	}
1738 	if (!ret && atomic && !marked) {
1739 		f2fs_msg(sbi->sb, KERN_DEBUG,
1740 			"Retry to write fsync mark: ino=%u, idx=%lx",
1741 					ino, last_page->index);
1742 		lock_page(last_page);
1743 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1744 		set_page_dirty(last_page);
1745 		unlock_page(last_page);
1746 		goto retry;
1747 	}
1748 out:
1749 	if (nwritten)
1750 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1751 	return ret ? -EIO: 0;
1752 }
1753 
1754 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1755 				struct writeback_control *wbc,
1756 				bool do_balance, enum iostat_type io_type)
1757 {
1758 	pgoff_t index;
1759 	struct pagevec pvec;
1760 	int step = 0;
1761 	int nwritten = 0;
1762 	int ret = 0;
1763 	int nr_pages, done = 0;
1764 
1765 	pagevec_init(&pvec);
1766 
1767 next_step:
1768 	index = 0;
1769 
1770 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1771 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1772 		int i;
1773 
1774 		for (i = 0; i < nr_pages; i++) {
1775 			struct page *page = pvec.pages[i];
1776 			bool submitted = false;
1777 
1778 			/* give a priority to WB_SYNC threads */
1779 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1780 					wbc->sync_mode == WB_SYNC_NONE) {
1781 				done = 1;
1782 				break;
1783 			}
1784 
1785 			/*
1786 			 * flushing sequence with step:
1787 			 * 0. indirect nodes
1788 			 * 1. dentry dnodes
1789 			 * 2. file dnodes
1790 			 */
1791 			if (step == 0 && IS_DNODE(page))
1792 				continue;
1793 			if (step == 1 && (!IS_DNODE(page) ||
1794 						is_cold_node(page)))
1795 				continue;
1796 			if (step == 2 && (!IS_DNODE(page) ||
1797 						!is_cold_node(page)))
1798 				continue;
1799 lock_node:
1800 			if (wbc->sync_mode == WB_SYNC_ALL)
1801 				lock_page(page);
1802 			else if (!trylock_page(page))
1803 				continue;
1804 
1805 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1806 continue_unlock:
1807 				unlock_page(page);
1808 				continue;
1809 			}
1810 
1811 			if (!PageDirty(page)) {
1812 				/* someone wrote it for us */
1813 				goto continue_unlock;
1814 			}
1815 
1816 			/* flush inline_data */
1817 			if (is_inline_node(page)) {
1818 				clear_inline_node(page);
1819 				unlock_page(page);
1820 				flush_inline_data(sbi, ino_of_node(page));
1821 				goto lock_node;
1822 			}
1823 
1824 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1825 
1826 			if (!clear_page_dirty_for_io(page))
1827 				goto continue_unlock;
1828 
1829 			set_fsync_mark(page, 0);
1830 			set_dentry_mark(page, 0);
1831 
1832 			ret = __write_node_page(page, false, &submitted,
1833 						wbc, do_balance, io_type, NULL);
1834 			if (ret)
1835 				unlock_page(page);
1836 			else if (submitted)
1837 				nwritten++;
1838 
1839 			if (--wbc->nr_to_write == 0)
1840 				break;
1841 		}
1842 		pagevec_release(&pvec);
1843 		cond_resched();
1844 
1845 		if (wbc->nr_to_write == 0) {
1846 			step = 2;
1847 			break;
1848 		}
1849 	}
1850 
1851 	if (step < 2) {
1852 		if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1853 			goto out;
1854 		step++;
1855 		goto next_step;
1856 	}
1857 out:
1858 	if (nwritten)
1859 		f2fs_submit_merged_write(sbi, NODE);
1860 
1861 	if (unlikely(f2fs_cp_error(sbi)))
1862 		return -EIO;
1863 	return ret;
1864 }
1865 
1866 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1867 						unsigned int seq_id)
1868 {
1869 	struct fsync_node_entry *fn;
1870 	struct page *page;
1871 	struct list_head *head = &sbi->fsync_node_list;
1872 	unsigned long flags;
1873 	unsigned int cur_seq_id = 0;
1874 	int ret2, ret = 0;
1875 
1876 	while (seq_id && cur_seq_id < seq_id) {
1877 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1878 		if (list_empty(head)) {
1879 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1880 			break;
1881 		}
1882 		fn = list_first_entry(head, struct fsync_node_entry, list);
1883 		if (fn->seq_id > seq_id) {
1884 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1885 			break;
1886 		}
1887 		cur_seq_id = fn->seq_id;
1888 		page = fn->page;
1889 		get_page(page);
1890 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1891 
1892 		f2fs_wait_on_page_writeback(page, NODE, true, false);
1893 		if (TestClearPageError(page))
1894 			ret = -EIO;
1895 
1896 		put_page(page);
1897 
1898 		if (ret)
1899 			break;
1900 	}
1901 
1902 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1903 	if (!ret)
1904 		ret = ret2;
1905 
1906 	return ret;
1907 }
1908 
1909 static int f2fs_write_node_pages(struct address_space *mapping,
1910 			    struct writeback_control *wbc)
1911 {
1912 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1913 	struct blk_plug plug;
1914 	long diff;
1915 
1916 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1917 		goto skip_write;
1918 
1919 	/* balancing f2fs's metadata in background */
1920 	f2fs_balance_fs_bg(sbi);
1921 
1922 	/* collect a number of dirty node pages and write together */
1923 	if (wbc->sync_mode != WB_SYNC_ALL &&
1924 			get_pages(sbi, F2FS_DIRTY_NODES) <
1925 					nr_pages_to_skip(sbi, NODE))
1926 		goto skip_write;
1927 
1928 	if (wbc->sync_mode == WB_SYNC_ALL)
1929 		atomic_inc(&sbi->wb_sync_req[NODE]);
1930 	else if (atomic_read(&sbi->wb_sync_req[NODE]))
1931 		goto skip_write;
1932 
1933 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1934 
1935 	diff = nr_pages_to_write(sbi, NODE, wbc);
1936 	blk_start_plug(&plug);
1937 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1938 	blk_finish_plug(&plug);
1939 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1940 
1941 	if (wbc->sync_mode == WB_SYNC_ALL)
1942 		atomic_dec(&sbi->wb_sync_req[NODE]);
1943 	return 0;
1944 
1945 skip_write:
1946 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1947 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1948 	return 0;
1949 }
1950 
1951 static int f2fs_set_node_page_dirty(struct page *page)
1952 {
1953 	trace_f2fs_set_page_dirty(page, NODE);
1954 
1955 	if (!PageUptodate(page))
1956 		SetPageUptodate(page);
1957 #ifdef CONFIG_F2FS_CHECK_FS
1958 	if (IS_INODE(page))
1959 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1960 #endif
1961 	if (!PageDirty(page)) {
1962 		__set_page_dirty_nobuffers(page);
1963 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1964 		f2fs_set_page_private(page, 0);
1965 		f2fs_trace_pid(page);
1966 		return 1;
1967 	}
1968 	return 0;
1969 }
1970 
1971 /*
1972  * Structure of the f2fs node operations
1973  */
1974 const struct address_space_operations f2fs_node_aops = {
1975 	.writepage	= f2fs_write_node_page,
1976 	.writepages	= f2fs_write_node_pages,
1977 	.set_page_dirty	= f2fs_set_node_page_dirty,
1978 	.invalidatepage	= f2fs_invalidate_page,
1979 	.releasepage	= f2fs_release_page,
1980 #ifdef CONFIG_MIGRATION
1981 	.migratepage    = f2fs_migrate_page,
1982 #endif
1983 };
1984 
1985 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1986 						nid_t n)
1987 {
1988 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1989 }
1990 
1991 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1992 			struct free_nid *i, enum nid_state state)
1993 {
1994 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1995 
1996 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1997 	if (err)
1998 		return err;
1999 
2000 	f2fs_bug_on(sbi, state != i->state);
2001 	nm_i->nid_cnt[state]++;
2002 	if (state == FREE_NID)
2003 		list_add_tail(&i->list, &nm_i->free_nid_list);
2004 	return 0;
2005 }
2006 
2007 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2008 			struct free_nid *i, enum nid_state state)
2009 {
2010 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2011 
2012 	f2fs_bug_on(sbi, state != i->state);
2013 	nm_i->nid_cnt[state]--;
2014 	if (state == FREE_NID)
2015 		list_del(&i->list);
2016 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2017 }
2018 
2019 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2020 			enum nid_state org_state, enum nid_state dst_state)
2021 {
2022 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2023 
2024 	f2fs_bug_on(sbi, org_state != i->state);
2025 	i->state = dst_state;
2026 	nm_i->nid_cnt[org_state]--;
2027 	nm_i->nid_cnt[dst_state]++;
2028 
2029 	switch (dst_state) {
2030 	case PREALLOC_NID:
2031 		list_del(&i->list);
2032 		break;
2033 	case FREE_NID:
2034 		list_add_tail(&i->list, &nm_i->free_nid_list);
2035 		break;
2036 	default:
2037 		BUG_ON(1);
2038 	}
2039 }
2040 
2041 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2042 							bool set, bool build)
2043 {
2044 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2045 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2046 	unsigned int nid_ofs = nid - START_NID(nid);
2047 
2048 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2049 		return;
2050 
2051 	if (set) {
2052 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2053 			return;
2054 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2055 		nm_i->free_nid_count[nat_ofs]++;
2056 	} else {
2057 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2058 			return;
2059 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2060 		if (!build)
2061 			nm_i->free_nid_count[nat_ofs]--;
2062 	}
2063 }
2064 
2065 /* return if the nid is recognized as free */
2066 static bool add_free_nid(struct f2fs_sb_info *sbi,
2067 				nid_t nid, bool build, bool update)
2068 {
2069 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2070 	struct free_nid *i, *e;
2071 	struct nat_entry *ne;
2072 	int err = -EINVAL;
2073 	bool ret = false;
2074 
2075 	/* 0 nid should not be used */
2076 	if (unlikely(nid == 0))
2077 		return false;
2078 
2079 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2080 	i->nid = nid;
2081 	i->state = FREE_NID;
2082 
2083 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2084 
2085 	spin_lock(&nm_i->nid_list_lock);
2086 
2087 	if (build) {
2088 		/*
2089 		 *   Thread A             Thread B
2090 		 *  - f2fs_create
2091 		 *   - f2fs_new_inode
2092 		 *    - f2fs_alloc_nid
2093 		 *     - __insert_nid_to_list(PREALLOC_NID)
2094 		 *                     - f2fs_balance_fs_bg
2095 		 *                      - f2fs_build_free_nids
2096 		 *                       - __f2fs_build_free_nids
2097 		 *                        - scan_nat_page
2098 		 *                         - add_free_nid
2099 		 *                          - __lookup_nat_cache
2100 		 *  - f2fs_add_link
2101 		 *   - f2fs_init_inode_metadata
2102 		 *    - f2fs_new_inode_page
2103 		 *     - f2fs_new_node_page
2104 		 *      - set_node_addr
2105 		 *  - f2fs_alloc_nid_done
2106 		 *   - __remove_nid_from_list(PREALLOC_NID)
2107 		 *                         - __insert_nid_to_list(FREE_NID)
2108 		 */
2109 		ne = __lookup_nat_cache(nm_i, nid);
2110 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2111 				nat_get_blkaddr(ne) != NULL_ADDR))
2112 			goto err_out;
2113 
2114 		e = __lookup_free_nid_list(nm_i, nid);
2115 		if (e) {
2116 			if (e->state == FREE_NID)
2117 				ret = true;
2118 			goto err_out;
2119 		}
2120 	}
2121 	ret = true;
2122 	err = __insert_free_nid(sbi, i, FREE_NID);
2123 err_out:
2124 	if (update) {
2125 		update_free_nid_bitmap(sbi, nid, ret, build);
2126 		if (!build)
2127 			nm_i->available_nids++;
2128 	}
2129 	spin_unlock(&nm_i->nid_list_lock);
2130 	radix_tree_preload_end();
2131 
2132 	if (err)
2133 		kmem_cache_free(free_nid_slab, i);
2134 	return ret;
2135 }
2136 
2137 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2138 {
2139 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2140 	struct free_nid *i;
2141 	bool need_free = false;
2142 
2143 	spin_lock(&nm_i->nid_list_lock);
2144 	i = __lookup_free_nid_list(nm_i, nid);
2145 	if (i && i->state == FREE_NID) {
2146 		__remove_free_nid(sbi, i, FREE_NID);
2147 		need_free = true;
2148 	}
2149 	spin_unlock(&nm_i->nid_list_lock);
2150 
2151 	if (need_free)
2152 		kmem_cache_free(free_nid_slab, i);
2153 }
2154 
2155 static int scan_nat_page(struct f2fs_sb_info *sbi,
2156 			struct page *nat_page, nid_t start_nid)
2157 {
2158 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2159 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2160 	block_t blk_addr;
2161 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2162 	int i;
2163 
2164 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2165 
2166 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2167 
2168 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2169 		if (unlikely(start_nid >= nm_i->max_nid))
2170 			break;
2171 
2172 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2173 
2174 		if (blk_addr == NEW_ADDR)
2175 			return -EINVAL;
2176 
2177 		if (blk_addr == NULL_ADDR) {
2178 			add_free_nid(sbi, start_nid, true, true);
2179 		} else {
2180 			spin_lock(&NM_I(sbi)->nid_list_lock);
2181 			update_free_nid_bitmap(sbi, start_nid, false, true);
2182 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2183 		}
2184 	}
2185 
2186 	return 0;
2187 }
2188 
2189 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2190 {
2191 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2192 	struct f2fs_journal *journal = curseg->journal;
2193 	int i;
2194 
2195 	down_read(&curseg->journal_rwsem);
2196 	for (i = 0; i < nats_in_cursum(journal); i++) {
2197 		block_t addr;
2198 		nid_t nid;
2199 
2200 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2201 		nid = le32_to_cpu(nid_in_journal(journal, i));
2202 		if (addr == NULL_ADDR)
2203 			add_free_nid(sbi, nid, true, false);
2204 		else
2205 			remove_free_nid(sbi, nid);
2206 	}
2207 	up_read(&curseg->journal_rwsem);
2208 }
2209 
2210 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2211 {
2212 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2213 	unsigned int i, idx;
2214 	nid_t nid;
2215 
2216 	down_read(&nm_i->nat_tree_lock);
2217 
2218 	for (i = 0; i < nm_i->nat_blocks; i++) {
2219 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2220 			continue;
2221 		if (!nm_i->free_nid_count[i])
2222 			continue;
2223 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2224 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2225 						NAT_ENTRY_PER_BLOCK, idx);
2226 			if (idx >= NAT_ENTRY_PER_BLOCK)
2227 				break;
2228 
2229 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2230 			add_free_nid(sbi, nid, true, false);
2231 
2232 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2233 				goto out;
2234 		}
2235 	}
2236 out:
2237 	scan_curseg_cache(sbi);
2238 
2239 	up_read(&nm_i->nat_tree_lock);
2240 }
2241 
2242 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2243 						bool sync, bool mount)
2244 {
2245 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2246 	int i = 0, ret;
2247 	nid_t nid = nm_i->next_scan_nid;
2248 
2249 	if (unlikely(nid >= nm_i->max_nid))
2250 		nid = 0;
2251 
2252 	/* Enough entries */
2253 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2254 		return 0;
2255 
2256 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2257 		return 0;
2258 
2259 	if (!mount) {
2260 		/* try to find free nids in free_nid_bitmap */
2261 		scan_free_nid_bits(sbi);
2262 
2263 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2264 			return 0;
2265 	}
2266 
2267 	/* readahead nat pages to be scanned */
2268 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2269 							META_NAT, true);
2270 
2271 	down_read(&nm_i->nat_tree_lock);
2272 
2273 	while (1) {
2274 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2275 						nm_i->nat_block_bitmap)) {
2276 			struct page *page = get_current_nat_page(sbi, nid);
2277 
2278 			if (IS_ERR(page)) {
2279 				ret = PTR_ERR(page);
2280 			} else {
2281 				ret = scan_nat_page(sbi, page, nid);
2282 				f2fs_put_page(page, 1);
2283 			}
2284 
2285 			if (ret) {
2286 				up_read(&nm_i->nat_tree_lock);
2287 				f2fs_bug_on(sbi, !mount);
2288 				f2fs_msg(sbi->sb, KERN_ERR,
2289 					"NAT is corrupt, run fsck to fix it");
2290 				return ret;
2291 			}
2292 		}
2293 
2294 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2295 		if (unlikely(nid >= nm_i->max_nid))
2296 			nid = 0;
2297 
2298 		if (++i >= FREE_NID_PAGES)
2299 			break;
2300 	}
2301 
2302 	/* go to the next free nat pages to find free nids abundantly */
2303 	nm_i->next_scan_nid = nid;
2304 
2305 	/* find free nids from current sum_pages */
2306 	scan_curseg_cache(sbi);
2307 
2308 	up_read(&nm_i->nat_tree_lock);
2309 
2310 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2311 					nm_i->ra_nid_pages, META_NAT, false);
2312 
2313 	return 0;
2314 }
2315 
2316 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2317 {
2318 	int ret;
2319 
2320 	mutex_lock(&NM_I(sbi)->build_lock);
2321 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2322 	mutex_unlock(&NM_I(sbi)->build_lock);
2323 
2324 	return ret;
2325 }
2326 
2327 /*
2328  * If this function returns success, caller can obtain a new nid
2329  * from second parameter of this function.
2330  * The returned nid could be used ino as well as nid when inode is created.
2331  */
2332 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2333 {
2334 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2335 	struct free_nid *i = NULL;
2336 retry:
2337 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2338 		f2fs_show_injection_info(FAULT_ALLOC_NID);
2339 		return false;
2340 	}
2341 
2342 	spin_lock(&nm_i->nid_list_lock);
2343 
2344 	if (unlikely(nm_i->available_nids == 0)) {
2345 		spin_unlock(&nm_i->nid_list_lock);
2346 		return false;
2347 	}
2348 
2349 	/* We should not use stale free nids created by f2fs_build_free_nids */
2350 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2351 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2352 		i = list_first_entry(&nm_i->free_nid_list,
2353 					struct free_nid, list);
2354 		*nid = i->nid;
2355 
2356 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2357 		nm_i->available_nids--;
2358 
2359 		update_free_nid_bitmap(sbi, *nid, false, false);
2360 
2361 		spin_unlock(&nm_i->nid_list_lock);
2362 		return true;
2363 	}
2364 	spin_unlock(&nm_i->nid_list_lock);
2365 
2366 	/* Let's scan nat pages and its caches to get free nids */
2367 	if (!f2fs_build_free_nids(sbi, true, false))
2368 		goto retry;
2369 	return false;
2370 }
2371 
2372 /*
2373  * f2fs_alloc_nid() should be called prior to this function.
2374  */
2375 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2376 {
2377 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2378 	struct free_nid *i;
2379 
2380 	spin_lock(&nm_i->nid_list_lock);
2381 	i = __lookup_free_nid_list(nm_i, nid);
2382 	f2fs_bug_on(sbi, !i);
2383 	__remove_free_nid(sbi, i, PREALLOC_NID);
2384 	spin_unlock(&nm_i->nid_list_lock);
2385 
2386 	kmem_cache_free(free_nid_slab, i);
2387 }
2388 
2389 /*
2390  * f2fs_alloc_nid() should be called prior to this function.
2391  */
2392 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2393 {
2394 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2395 	struct free_nid *i;
2396 	bool need_free = false;
2397 
2398 	if (!nid)
2399 		return;
2400 
2401 	spin_lock(&nm_i->nid_list_lock);
2402 	i = __lookup_free_nid_list(nm_i, nid);
2403 	f2fs_bug_on(sbi, !i);
2404 
2405 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2406 		__remove_free_nid(sbi, i, PREALLOC_NID);
2407 		need_free = true;
2408 	} else {
2409 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2410 	}
2411 
2412 	nm_i->available_nids++;
2413 
2414 	update_free_nid_bitmap(sbi, nid, true, false);
2415 
2416 	spin_unlock(&nm_i->nid_list_lock);
2417 
2418 	if (need_free)
2419 		kmem_cache_free(free_nid_slab, i);
2420 }
2421 
2422 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2423 {
2424 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2425 	struct free_nid *i, *next;
2426 	int nr = nr_shrink;
2427 
2428 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2429 		return 0;
2430 
2431 	if (!mutex_trylock(&nm_i->build_lock))
2432 		return 0;
2433 
2434 	spin_lock(&nm_i->nid_list_lock);
2435 	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2436 		if (nr_shrink <= 0 ||
2437 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2438 			break;
2439 
2440 		__remove_free_nid(sbi, i, FREE_NID);
2441 		kmem_cache_free(free_nid_slab, i);
2442 		nr_shrink--;
2443 	}
2444 	spin_unlock(&nm_i->nid_list_lock);
2445 	mutex_unlock(&nm_i->build_lock);
2446 
2447 	return nr - nr_shrink;
2448 }
2449 
2450 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2451 {
2452 	void *src_addr, *dst_addr;
2453 	size_t inline_size;
2454 	struct page *ipage;
2455 	struct f2fs_inode *ri;
2456 
2457 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2458 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2459 
2460 	ri = F2FS_INODE(page);
2461 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2462 		set_inode_flag(inode, FI_INLINE_XATTR);
2463 	} else {
2464 		clear_inode_flag(inode, FI_INLINE_XATTR);
2465 		goto update_inode;
2466 	}
2467 
2468 	dst_addr = inline_xattr_addr(inode, ipage);
2469 	src_addr = inline_xattr_addr(inode, page);
2470 	inline_size = inline_xattr_size(inode);
2471 
2472 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2473 	memcpy(dst_addr, src_addr, inline_size);
2474 update_inode:
2475 	f2fs_update_inode(inode, ipage);
2476 	f2fs_put_page(ipage, 1);
2477 }
2478 
2479 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2480 {
2481 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2482 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2483 	nid_t new_xnid;
2484 	struct dnode_of_data dn;
2485 	struct node_info ni;
2486 	struct page *xpage;
2487 	int err;
2488 
2489 	if (!prev_xnid)
2490 		goto recover_xnid;
2491 
2492 	/* 1: invalidate the previous xattr nid */
2493 	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2494 	if (err)
2495 		return err;
2496 
2497 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2498 	dec_valid_node_count(sbi, inode, false);
2499 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2500 
2501 recover_xnid:
2502 	/* 2: update xattr nid in inode */
2503 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2504 		return -ENOSPC;
2505 
2506 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2507 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2508 	if (IS_ERR(xpage)) {
2509 		f2fs_alloc_nid_failed(sbi, new_xnid);
2510 		return PTR_ERR(xpage);
2511 	}
2512 
2513 	f2fs_alloc_nid_done(sbi, new_xnid);
2514 	f2fs_update_inode_page(inode);
2515 
2516 	/* 3: update and set xattr node page dirty */
2517 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2518 
2519 	set_page_dirty(xpage);
2520 	f2fs_put_page(xpage, 1);
2521 
2522 	return 0;
2523 }
2524 
2525 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2526 {
2527 	struct f2fs_inode *src, *dst;
2528 	nid_t ino = ino_of_node(page);
2529 	struct node_info old_ni, new_ni;
2530 	struct page *ipage;
2531 	int err;
2532 
2533 	err = f2fs_get_node_info(sbi, ino, &old_ni);
2534 	if (err)
2535 		return err;
2536 
2537 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2538 		return -EINVAL;
2539 retry:
2540 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2541 	if (!ipage) {
2542 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2543 		goto retry;
2544 	}
2545 
2546 	/* Should not use this inode from free nid list */
2547 	remove_free_nid(sbi, ino);
2548 
2549 	if (!PageUptodate(ipage))
2550 		SetPageUptodate(ipage);
2551 	fill_node_footer(ipage, ino, ino, 0, true);
2552 	set_cold_node(ipage, false);
2553 
2554 	src = F2FS_INODE(page);
2555 	dst = F2FS_INODE(ipage);
2556 
2557 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2558 	dst->i_size = 0;
2559 	dst->i_blocks = cpu_to_le64(1);
2560 	dst->i_links = cpu_to_le32(1);
2561 	dst->i_xattr_nid = 0;
2562 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2563 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2564 		dst->i_extra_isize = src->i_extra_isize;
2565 
2566 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2567 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2568 							i_inline_xattr_size))
2569 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2570 
2571 		if (f2fs_sb_has_project_quota(sbi) &&
2572 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2573 								i_projid))
2574 			dst->i_projid = src->i_projid;
2575 
2576 		if (f2fs_sb_has_inode_crtime(sbi) &&
2577 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2578 							i_crtime_nsec)) {
2579 			dst->i_crtime = src->i_crtime;
2580 			dst->i_crtime_nsec = src->i_crtime_nsec;
2581 		}
2582 	}
2583 
2584 	new_ni = old_ni;
2585 	new_ni.ino = ino;
2586 
2587 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2588 		WARN_ON(1);
2589 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2590 	inc_valid_inode_count(sbi);
2591 	set_page_dirty(ipage);
2592 	f2fs_put_page(ipage, 1);
2593 	return 0;
2594 }
2595 
2596 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2597 			unsigned int segno, struct f2fs_summary_block *sum)
2598 {
2599 	struct f2fs_node *rn;
2600 	struct f2fs_summary *sum_entry;
2601 	block_t addr;
2602 	int i, idx, last_offset, nrpages;
2603 
2604 	/* scan the node segment */
2605 	last_offset = sbi->blocks_per_seg;
2606 	addr = START_BLOCK(sbi, segno);
2607 	sum_entry = &sum->entries[0];
2608 
2609 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2610 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2611 
2612 		/* readahead node pages */
2613 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2614 
2615 		for (idx = addr; idx < addr + nrpages; idx++) {
2616 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2617 
2618 			if (IS_ERR(page))
2619 				return PTR_ERR(page);
2620 
2621 			rn = F2FS_NODE(page);
2622 			sum_entry->nid = rn->footer.nid;
2623 			sum_entry->version = 0;
2624 			sum_entry->ofs_in_node = 0;
2625 			sum_entry++;
2626 			f2fs_put_page(page, 1);
2627 		}
2628 
2629 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2630 							addr + nrpages);
2631 	}
2632 	return 0;
2633 }
2634 
2635 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2636 {
2637 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2638 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2639 	struct f2fs_journal *journal = curseg->journal;
2640 	int i;
2641 
2642 	down_write(&curseg->journal_rwsem);
2643 	for (i = 0; i < nats_in_cursum(journal); i++) {
2644 		struct nat_entry *ne;
2645 		struct f2fs_nat_entry raw_ne;
2646 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2647 
2648 		raw_ne = nat_in_journal(journal, i);
2649 
2650 		ne = __lookup_nat_cache(nm_i, nid);
2651 		if (!ne) {
2652 			ne = __alloc_nat_entry(nid, true);
2653 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2654 		}
2655 
2656 		/*
2657 		 * if a free nat in journal has not been used after last
2658 		 * checkpoint, we should remove it from available nids,
2659 		 * since later we will add it again.
2660 		 */
2661 		if (!get_nat_flag(ne, IS_DIRTY) &&
2662 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2663 			spin_lock(&nm_i->nid_list_lock);
2664 			nm_i->available_nids--;
2665 			spin_unlock(&nm_i->nid_list_lock);
2666 		}
2667 
2668 		__set_nat_cache_dirty(nm_i, ne);
2669 	}
2670 	update_nats_in_cursum(journal, -i);
2671 	up_write(&curseg->journal_rwsem);
2672 }
2673 
2674 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2675 						struct list_head *head, int max)
2676 {
2677 	struct nat_entry_set *cur;
2678 
2679 	if (nes->entry_cnt >= max)
2680 		goto add_out;
2681 
2682 	list_for_each_entry(cur, head, set_list) {
2683 		if (cur->entry_cnt >= nes->entry_cnt) {
2684 			list_add(&nes->set_list, cur->set_list.prev);
2685 			return;
2686 		}
2687 	}
2688 add_out:
2689 	list_add_tail(&nes->set_list, head);
2690 }
2691 
2692 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2693 						struct page *page)
2694 {
2695 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2696 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2697 	struct f2fs_nat_block *nat_blk = page_address(page);
2698 	int valid = 0;
2699 	int i = 0;
2700 
2701 	if (!enabled_nat_bits(sbi, NULL))
2702 		return;
2703 
2704 	if (nat_index == 0) {
2705 		valid = 1;
2706 		i = 1;
2707 	}
2708 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2709 		if (nat_blk->entries[i].block_addr != NULL_ADDR)
2710 			valid++;
2711 	}
2712 	if (valid == 0) {
2713 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2714 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2715 		return;
2716 	}
2717 
2718 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2719 	if (valid == NAT_ENTRY_PER_BLOCK)
2720 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2721 	else
2722 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2723 }
2724 
2725 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2726 		struct nat_entry_set *set, struct cp_control *cpc)
2727 {
2728 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2729 	struct f2fs_journal *journal = curseg->journal;
2730 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2731 	bool to_journal = true;
2732 	struct f2fs_nat_block *nat_blk;
2733 	struct nat_entry *ne, *cur;
2734 	struct page *page = NULL;
2735 
2736 	/*
2737 	 * there are two steps to flush nat entries:
2738 	 * #1, flush nat entries to journal in current hot data summary block.
2739 	 * #2, flush nat entries to nat page.
2740 	 */
2741 	if (enabled_nat_bits(sbi, cpc) ||
2742 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2743 		to_journal = false;
2744 
2745 	if (to_journal) {
2746 		down_write(&curseg->journal_rwsem);
2747 	} else {
2748 		page = get_next_nat_page(sbi, start_nid);
2749 		if (IS_ERR(page))
2750 			return PTR_ERR(page);
2751 
2752 		nat_blk = page_address(page);
2753 		f2fs_bug_on(sbi, !nat_blk);
2754 	}
2755 
2756 	/* flush dirty nats in nat entry set */
2757 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2758 		struct f2fs_nat_entry *raw_ne;
2759 		nid_t nid = nat_get_nid(ne);
2760 		int offset;
2761 
2762 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2763 
2764 		if (to_journal) {
2765 			offset = f2fs_lookup_journal_in_cursum(journal,
2766 							NAT_JOURNAL, nid, 1);
2767 			f2fs_bug_on(sbi, offset < 0);
2768 			raw_ne = &nat_in_journal(journal, offset);
2769 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2770 		} else {
2771 			raw_ne = &nat_blk->entries[nid - start_nid];
2772 		}
2773 		raw_nat_from_node_info(raw_ne, &ne->ni);
2774 		nat_reset_flag(ne);
2775 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2776 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2777 			add_free_nid(sbi, nid, false, true);
2778 		} else {
2779 			spin_lock(&NM_I(sbi)->nid_list_lock);
2780 			update_free_nid_bitmap(sbi, nid, false, false);
2781 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2782 		}
2783 	}
2784 
2785 	if (to_journal) {
2786 		up_write(&curseg->journal_rwsem);
2787 	} else {
2788 		__update_nat_bits(sbi, start_nid, page);
2789 		f2fs_put_page(page, 1);
2790 	}
2791 
2792 	/* Allow dirty nats by node block allocation in write_begin */
2793 	if (!set->entry_cnt) {
2794 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2795 		kmem_cache_free(nat_entry_set_slab, set);
2796 	}
2797 	return 0;
2798 }
2799 
2800 /*
2801  * This function is called during the checkpointing process.
2802  */
2803 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2804 {
2805 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2806 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2807 	struct f2fs_journal *journal = curseg->journal;
2808 	struct nat_entry_set *setvec[SETVEC_SIZE];
2809 	struct nat_entry_set *set, *tmp;
2810 	unsigned int found;
2811 	nid_t set_idx = 0;
2812 	LIST_HEAD(sets);
2813 	int err = 0;
2814 
2815 	/* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2816 	if (enabled_nat_bits(sbi, cpc)) {
2817 		down_write(&nm_i->nat_tree_lock);
2818 		remove_nats_in_journal(sbi);
2819 		up_write(&nm_i->nat_tree_lock);
2820 	}
2821 
2822 	if (!nm_i->dirty_nat_cnt)
2823 		return 0;
2824 
2825 	down_write(&nm_i->nat_tree_lock);
2826 
2827 	/*
2828 	 * if there are no enough space in journal to store dirty nat
2829 	 * entries, remove all entries from journal and merge them
2830 	 * into nat entry set.
2831 	 */
2832 	if (enabled_nat_bits(sbi, cpc) ||
2833 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2834 		remove_nats_in_journal(sbi);
2835 
2836 	while ((found = __gang_lookup_nat_set(nm_i,
2837 					set_idx, SETVEC_SIZE, setvec))) {
2838 		unsigned idx;
2839 		set_idx = setvec[found - 1]->set + 1;
2840 		for (idx = 0; idx < found; idx++)
2841 			__adjust_nat_entry_set(setvec[idx], &sets,
2842 						MAX_NAT_JENTRIES(journal));
2843 	}
2844 
2845 	/* flush dirty nats in nat entry set */
2846 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
2847 		err = __flush_nat_entry_set(sbi, set, cpc);
2848 		if (err)
2849 			break;
2850 	}
2851 
2852 	up_write(&nm_i->nat_tree_lock);
2853 	/* Allow dirty nats by node block allocation in write_begin */
2854 
2855 	return err;
2856 }
2857 
2858 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2859 {
2860 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2861 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2862 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2863 	unsigned int i;
2864 	__u64 cp_ver = cur_cp_version(ckpt);
2865 	block_t nat_bits_addr;
2866 
2867 	if (!enabled_nat_bits(sbi, NULL))
2868 		return 0;
2869 
2870 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2871 	nm_i->nat_bits = f2fs_kzalloc(sbi,
2872 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2873 	if (!nm_i->nat_bits)
2874 		return -ENOMEM;
2875 
2876 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2877 						nm_i->nat_bits_blocks;
2878 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2879 		struct page *page;
2880 
2881 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2882 		if (IS_ERR(page))
2883 			return PTR_ERR(page);
2884 
2885 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2886 					page_address(page), F2FS_BLKSIZE);
2887 		f2fs_put_page(page, 1);
2888 	}
2889 
2890 	cp_ver |= (cur_cp_crc(ckpt) << 32);
2891 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2892 		disable_nat_bits(sbi, true);
2893 		return 0;
2894 	}
2895 
2896 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2897 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2898 
2899 	f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2900 	return 0;
2901 }
2902 
2903 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2904 {
2905 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2906 	unsigned int i = 0;
2907 	nid_t nid, last_nid;
2908 
2909 	if (!enabled_nat_bits(sbi, NULL))
2910 		return;
2911 
2912 	for (i = 0; i < nm_i->nat_blocks; i++) {
2913 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2914 		if (i >= nm_i->nat_blocks)
2915 			break;
2916 
2917 		__set_bit_le(i, nm_i->nat_block_bitmap);
2918 
2919 		nid = i * NAT_ENTRY_PER_BLOCK;
2920 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2921 
2922 		spin_lock(&NM_I(sbi)->nid_list_lock);
2923 		for (; nid < last_nid; nid++)
2924 			update_free_nid_bitmap(sbi, nid, true, true);
2925 		spin_unlock(&NM_I(sbi)->nid_list_lock);
2926 	}
2927 
2928 	for (i = 0; i < nm_i->nat_blocks; i++) {
2929 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2930 		if (i >= nm_i->nat_blocks)
2931 			break;
2932 
2933 		__set_bit_le(i, nm_i->nat_block_bitmap);
2934 	}
2935 }
2936 
2937 static int init_node_manager(struct f2fs_sb_info *sbi)
2938 {
2939 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2940 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2941 	unsigned char *version_bitmap;
2942 	unsigned int nat_segs;
2943 	int err;
2944 
2945 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2946 
2947 	/* segment_count_nat includes pair segment so divide to 2. */
2948 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2949 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2950 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2951 
2952 	/* not used nids: 0, node, meta, (and root counted as valid node) */
2953 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2954 				sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2955 	nm_i->nid_cnt[FREE_NID] = 0;
2956 	nm_i->nid_cnt[PREALLOC_NID] = 0;
2957 	nm_i->nat_cnt = 0;
2958 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2959 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2960 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2961 
2962 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2963 	INIT_LIST_HEAD(&nm_i->free_nid_list);
2964 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2965 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2966 	INIT_LIST_HEAD(&nm_i->nat_entries);
2967 	spin_lock_init(&nm_i->nat_list_lock);
2968 
2969 	mutex_init(&nm_i->build_lock);
2970 	spin_lock_init(&nm_i->nid_list_lock);
2971 	init_rwsem(&nm_i->nat_tree_lock);
2972 
2973 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2974 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2975 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2976 	if (!version_bitmap)
2977 		return -EFAULT;
2978 
2979 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2980 					GFP_KERNEL);
2981 	if (!nm_i->nat_bitmap)
2982 		return -ENOMEM;
2983 
2984 	err = __get_nat_bitmaps(sbi);
2985 	if (err)
2986 		return err;
2987 
2988 #ifdef CONFIG_F2FS_CHECK_FS
2989 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2990 					GFP_KERNEL);
2991 	if (!nm_i->nat_bitmap_mir)
2992 		return -ENOMEM;
2993 #endif
2994 
2995 	return 0;
2996 }
2997 
2998 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2999 {
3000 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3001 	int i;
3002 
3003 	nm_i->free_nid_bitmap =
3004 		f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3005 					     nm_i->nat_blocks),
3006 			     GFP_KERNEL);
3007 	if (!nm_i->free_nid_bitmap)
3008 		return -ENOMEM;
3009 
3010 	for (i = 0; i < nm_i->nat_blocks; i++) {
3011 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3012 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3013 		if (!nm_i->free_nid_bitmap[i])
3014 			return -ENOMEM;
3015 	}
3016 
3017 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3018 								GFP_KERNEL);
3019 	if (!nm_i->nat_block_bitmap)
3020 		return -ENOMEM;
3021 
3022 	nm_i->free_nid_count =
3023 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3024 					      nm_i->nat_blocks),
3025 			      GFP_KERNEL);
3026 	if (!nm_i->free_nid_count)
3027 		return -ENOMEM;
3028 	return 0;
3029 }
3030 
3031 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3032 {
3033 	int err;
3034 
3035 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3036 							GFP_KERNEL);
3037 	if (!sbi->nm_info)
3038 		return -ENOMEM;
3039 
3040 	err = init_node_manager(sbi);
3041 	if (err)
3042 		return err;
3043 
3044 	err = init_free_nid_cache(sbi);
3045 	if (err)
3046 		return err;
3047 
3048 	/* load free nid status from nat_bits table */
3049 	load_free_nid_bitmap(sbi);
3050 
3051 	return f2fs_build_free_nids(sbi, true, true);
3052 }
3053 
3054 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3055 {
3056 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3057 	struct free_nid *i, *next_i;
3058 	struct nat_entry *natvec[NATVEC_SIZE];
3059 	struct nat_entry_set *setvec[SETVEC_SIZE];
3060 	nid_t nid = 0;
3061 	unsigned int found;
3062 
3063 	if (!nm_i)
3064 		return;
3065 
3066 	/* destroy free nid list */
3067 	spin_lock(&nm_i->nid_list_lock);
3068 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3069 		__remove_free_nid(sbi, i, FREE_NID);
3070 		spin_unlock(&nm_i->nid_list_lock);
3071 		kmem_cache_free(free_nid_slab, i);
3072 		spin_lock(&nm_i->nid_list_lock);
3073 	}
3074 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3075 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3076 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3077 	spin_unlock(&nm_i->nid_list_lock);
3078 
3079 	/* destroy nat cache */
3080 	down_write(&nm_i->nat_tree_lock);
3081 	while ((found = __gang_lookup_nat_cache(nm_i,
3082 					nid, NATVEC_SIZE, natvec))) {
3083 		unsigned idx;
3084 
3085 		nid = nat_get_nid(natvec[found - 1]) + 1;
3086 		for (idx = 0; idx < found; idx++) {
3087 			spin_lock(&nm_i->nat_list_lock);
3088 			list_del(&natvec[idx]->list);
3089 			spin_unlock(&nm_i->nat_list_lock);
3090 
3091 			__del_from_nat_cache(nm_i, natvec[idx]);
3092 		}
3093 	}
3094 	f2fs_bug_on(sbi, nm_i->nat_cnt);
3095 
3096 	/* destroy nat set cache */
3097 	nid = 0;
3098 	while ((found = __gang_lookup_nat_set(nm_i,
3099 					nid, SETVEC_SIZE, setvec))) {
3100 		unsigned idx;
3101 
3102 		nid = setvec[found - 1]->set + 1;
3103 		for (idx = 0; idx < found; idx++) {
3104 			/* entry_cnt is not zero, when cp_error was occurred */
3105 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3106 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3107 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3108 		}
3109 	}
3110 	up_write(&nm_i->nat_tree_lock);
3111 
3112 	kvfree(nm_i->nat_block_bitmap);
3113 	if (nm_i->free_nid_bitmap) {
3114 		int i;
3115 
3116 		for (i = 0; i < nm_i->nat_blocks; i++)
3117 			kvfree(nm_i->free_nid_bitmap[i]);
3118 		kvfree(nm_i->free_nid_bitmap);
3119 	}
3120 	kvfree(nm_i->free_nid_count);
3121 
3122 	kvfree(nm_i->nat_bitmap);
3123 	kvfree(nm_i->nat_bits);
3124 #ifdef CONFIG_F2FS_CHECK_FS
3125 	kvfree(nm_i->nat_bitmap_mir);
3126 #endif
3127 	sbi->nm_info = NULL;
3128 	kvfree(nm_i);
3129 }
3130 
3131 int __init f2fs_create_node_manager_caches(void)
3132 {
3133 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3134 			sizeof(struct nat_entry));
3135 	if (!nat_entry_slab)
3136 		goto fail;
3137 
3138 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
3139 			sizeof(struct free_nid));
3140 	if (!free_nid_slab)
3141 		goto destroy_nat_entry;
3142 
3143 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3144 			sizeof(struct nat_entry_set));
3145 	if (!nat_entry_set_slab)
3146 		goto destroy_free_nid;
3147 
3148 	fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3149 			sizeof(struct fsync_node_entry));
3150 	if (!fsync_node_entry_slab)
3151 		goto destroy_nat_entry_set;
3152 	return 0;
3153 
3154 destroy_nat_entry_set:
3155 	kmem_cache_destroy(nat_entry_set_slab);
3156 destroy_free_nid:
3157 	kmem_cache_destroy(free_nid_slab);
3158 destroy_nat_entry:
3159 	kmem_cache_destroy(nat_entry_slab);
3160 fail:
3161 	return -ENOMEM;
3162 }
3163 
3164 void f2fs_destroy_node_manager_caches(void)
3165 {
3166 	kmem_cache_destroy(fsync_node_entry_slab);
3167 	kmem_cache_destroy(nat_entry_set_slab);
3168 	kmem_cache_destroy(free_nid_slab);
3169 	kmem_cache_destroy(nat_entry_slab);
3170 }
3171