xref: /linux/fs/f2fs/node.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		return -EFSCORRUPTED;
40 	}
41 	return 0;
42 }
43 
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 	struct f2fs_nm_info *nm_i = NM_I(sbi);
47 	struct sysinfo val;
48 	unsigned long avail_ram;
49 	unsigned long mem_size = 0;
50 	bool res = false;
51 
52 	si_meminfo(&val);
53 
54 	/* only uses low memory */
55 	avail_ram = val.totalram - val.totalhigh;
56 
57 	/*
58 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 	 */
60 	if (type == FREE_NIDS) {
61 		mem_size = (nm_i->nid_cnt[FREE_NID] *
62 				sizeof(struct free_nid)) >> PAGE_SHIFT;
63 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 	} else if (type == NAT_ENTRIES) {
65 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66 							PAGE_SHIFT;
67 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 		if (excess_cached_nats(sbi))
69 			res = false;
70 	} else if (type == DIRTY_DENTS) {
71 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 			return false;
73 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 	} else if (type == INO_ENTRIES) {
76 		int i;
77 
78 		for (i = 0; i < MAX_INO_ENTRY; i++)
79 			mem_size += sbi->im[i].ino_num *
80 						sizeof(struct ino_entry);
81 		mem_size >>= PAGE_SHIFT;
82 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 	} else if (type == EXTENT_CACHE) {
84 		mem_size = (atomic_read(&sbi->total_ext_tree) *
85 				sizeof(struct extent_tree) +
86 				atomic_read(&sbi->total_ext_node) *
87 				sizeof(struct extent_node)) >> PAGE_SHIFT;
88 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 	} else if (type == INMEM_PAGES) {
90 		/* it allows 20% / total_ram for inmemory pages */
91 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 		res = mem_size < (val.totalram / 5);
93 	} else {
94 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 			return true;
96 	}
97 	return res;
98 }
99 
100 static void clear_node_page_dirty(struct page *page)
101 {
102 	if (PageDirty(page)) {
103 		f2fs_clear_page_cache_dirty_tag(page);
104 		clear_page_dirty_for_io(page);
105 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 	}
107 	ClearPageUptodate(page);
108 }
109 
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 	return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
113 }
114 
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 	struct page *src_page;
118 	struct page *dst_page;
119 	pgoff_t dst_off;
120 	void *src_addr;
121 	void *dst_addr;
122 	struct f2fs_nm_info *nm_i = NM_I(sbi);
123 
124 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125 
126 	/* get current nat block page with lock */
127 	src_page = get_current_nat_page(sbi, nid);
128 	if (IS_ERR(src_page))
129 		return src_page;
130 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 	f2fs_bug_on(sbi, PageDirty(src_page));
132 
133 	src_addr = page_address(src_page);
134 	dst_addr = page_address(dst_page);
135 	memcpy(dst_addr, src_addr, PAGE_SIZE);
136 	set_page_dirty(dst_page);
137 	f2fs_put_page(src_page, 1);
138 
139 	set_to_next_nat(nm_i, nid);
140 
141 	return dst_page;
142 }
143 
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 	struct nat_entry *new;
147 
148 	if (no_fail)
149 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 	else
151 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 	if (new) {
153 		nat_set_nid(new, nid);
154 		nat_reset_flag(new);
155 	}
156 	return new;
157 }
158 
159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 	kmem_cache_free(nat_entry_slab, e);
162 }
163 
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 	if (no_fail)
169 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 		return NULL;
172 
173 	if (raw_ne)
174 		node_info_from_raw_nat(&ne->ni, raw_ne);
175 
176 	spin_lock(&nm_i->nat_list_lock);
177 	list_add_tail(&ne->list, &nm_i->nat_entries);
178 	spin_unlock(&nm_i->nat_list_lock);
179 
180 	nm_i->nat_cnt++;
181 	return ne;
182 }
183 
184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185 {
186 	struct nat_entry *ne;
187 
188 	ne = radix_tree_lookup(&nm_i->nat_root, n);
189 
190 	/* for recent accessed nat entry, move it to tail of lru list */
191 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 		spin_lock(&nm_i->nat_list_lock);
193 		if (!list_empty(&ne->list))
194 			list_move_tail(&ne->list, &nm_i->nat_entries);
195 		spin_unlock(&nm_i->nat_list_lock);
196 	}
197 
198 	return ne;
199 }
200 
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 		nid_t start, unsigned int nr, struct nat_entry **ep)
203 {
204 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205 }
206 
207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208 {
209 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210 	nm_i->nat_cnt--;
211 	__free_nat_entry(e);
212 }
213 
214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215 							struct nat_entry *ne)
216 {
217 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218 	struct nat_entry_set *head;
219 
220 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
221 	if (!head) {
222 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223 
224 		INIT_LIST_HEAD(&head->entry_list);
225 		INIT_LIST_HEAD(&head->set_list);
226 		head->set = set;
227 		head->entry_cnt = 0;
228 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229 	}
230 	return head;
231 }
232 
233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234 						struct nat_entry *ne)
235 {
236 	struct nat_entry_set *head;
237 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238 
239 	if (!new_ne)
240 		head = __grab_nat_entry_set(nm_i, ne);
241 
242 	/*
243 	 * update entry_cnt in below condition:
244 	 * 1. update NEW_ADDR to valid block address;
245 	 * 2. update old block address to new one;
246 	 */
247 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248 				!get_nat_flag(ne, IS_DIRTY)))
249 		head->entry_cnt++;
250 
251 	set_nat_flag(ne, IS_PREALLOC, new_ne);
252 
253 	if (get_nat_flag(ne, IS_DIRTY))
254 		goto refresh_list;
255 
256 	nm_i->dirty_nat_cnt++;
257 	set_nat_flag(ne, IS_DIRTY, true);
258 refresh_list:
259 	spin_lock(&nm_i->nat_list_lock);
260 	if (new_ne)
261 		list_del_init(&ne->list);
262 	else
263 		list_move_tail(&ne->list, &head->entry_list);
264 	spin_unlock(&nm_i->nat_list_lock);
265 }
266 
267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 		struct nat_entry_set *set, struct nat_entry *ne)
269 {
270 	spin_lock(&nm_i->nat_list_lock);
271 	list_move_tail(&ne->list, &nm_i->nat_entries);
272 	spin_unlock(&nm_i->nat_list_lock);
273 
274 	set_nat_flag(ne, IS_DIRTY, false);
275 	set->entry_cnt--;
276 	nm_i->dirty_nat_cnt--;
277 }
278 
279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
281 {
282 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283 							start, nr);
284 }
285 
286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287 {
288 	return NODE_MAPPING(sbi) == page->mapping &&
289 			IS_DNODE(page) && is_cold_node(page);
290 }
291 
292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293 {
294 	spin_lock_init(&sbi->fsync_node_lock);
295 	INIT_LIST_HEAD(&sbi->fsync_node_list);
296 	sbi->fsync_seg_id = 0;
297 	sbi->fsync_node_num = 0;
298 }
299 
300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301 							struct page *page)
302 {
303 	struct fsync_node_entry *fn;
304 	unsigned long flags;
305 	unsigned int seq_id;
306 
307 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308 
309 	get_page(page);
310 	fn->page = page;
311 	INIT_LIST_HEAD(&fn->list);
312 
313 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314 	list_add_tail(&fn->list, &sbi->fsync_node_list);
315 	fn->seq_id = sbi->fsync_seg_id++;
316 	seq_id = fn->seq_id;
317 	sbi->fsync_node_num++;
318 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319 
320 	return seq_id;
321 }
322 
323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324 {
325 	struct fsync_node_entry *fn;
326 	unsigned long flags;
327 
328 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330 		if (fn->page == page) {
331 			list_del(&fn->list);
332 			sbi->fsync_node_num--;
333 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334 			kmem_cache_free(fsync_node_entry_slab, fn);
335 			put_page(page);
336 			return;
337 		}
338 	}
339 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340 	f2fs_bug_on(sbi, 1);
341 }
342 
343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344 {
345 	unsigned long flags;
346 
347 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348 	sbi->fsync_seg_id = 0;
349 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350 }
351 
352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353 {
354 	struct f2fs_nm_info *nm_i = NM_I(sbi);
355 	struct nat_entry *e;
356 	bool need = false;
357 
358 	down_read(&nm_i->nat_tree_lock);
359 	e = __lookup_nat_cache(nm_i, nid);
360 	if (e) {
361 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362 				!get_nat_flag(e, HAS_FSYNCED_INODE))
363 			need = true;
364 	}
365 	up_read(&nm_i->nat_tree_lock);
366 	return need;
367 }
368 
369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370 {
371 	struct f2fs_nm_info *nm_i = NM_I(sbi);
372 	struct nat_entry *e;
373 	bool is_cp = true;
374 
375 	down_read(&nm_i->nat_tree_lock);
376 	e = __lookup_nat_cache(nm_i, nid);
377 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378 		is_cp = false;
379 	up_read(&nm_i->nat_tree_lock);
380 	return is_cp;
381 }
382 
383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384 {
385 	struct f2fs_nm_info *nm_i = NM_I(sbi);
386 	struct nat_entry *e;
387 	bool need_update = true;
388 
389 	down_read(&nm_i->nat_tree_lock);
390 	e = __lookup_nat_cache(nm_i, ino);
391 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392 			(get_nat_flag(e, IS_CHECKPOINTED) ||
393 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
394 		need_update = false;
395 	up_read(&nm_i->nat_tree_lock);
396 	return need_update;
397 }
398 
399 /* must be locked by nat_tree_lock */
400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401 						struct f2fs_nat_entry *ne)
402 {
403 	struct f2fs_nm_info *nm_i = NM_I(sbi);
404 	struct nat_entry *new, *e;
405 
406 	new = __alloc_nat_entry(nid, false);
407 	if (!new)
408 		return;
409 
410 	down_write(&nm_i->nat_tree_lock);
411 	e = __lookup_nat_cache(nm_i, nid);
412 	if (!e)
413 		e = __init_nat_entry(nm_i, new, ne, false);
414 	else
415 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416 				nat_get_blkaddr(e) !=
417 					le32_to_cpu(ne->block_addr) ||
418 				nat_get_version(e) != ne->version);
419 	up_write(&nm_i->nat_tree_lock);
420 	if (e != new)
421 		__free_nat_entry(new);
422 }
423 
424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425 			block_t new_blkaddr, bool fsync_done)
426 {
427 	struct f2fs_nm_info *nm_i = NM_I(sbi);
428 	struct nat_entry *e;
429 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430 
431 	down_write(&nm_i->nat_tree_lock);
432 	e = __lookup_nat_cache(nm_i, ni->nid);
433 	if (!e) {
434 		e = __init_nat_entry(nm_i, new, NULL, true);
435 		copy_node_info(&e->ni, ni);
436 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437 	} else if (new_blkaddr == NEW_ADDR) {
438 		/*
439 		 * when nid is reallocated,
440 		 * previous nat entry can be remained in nat cache.
441 		 * So, reinitialize it with new information.
442 		 */
443 		copy_node_info(&e->ni, ni);
444 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445 	}
446 	/* let's free early to reduce memory consumption */
447 	if (e != new)
448 		__free_nat_entry(new);
449 
450 	/* sanity check */
451 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453 			new_blkaddr == NULL_ADDR);
454 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455 			new_blkaddr == NEW_ADDR);
456 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457 			new_blkaddr == NEW_ADDR);
458 
459 	/* increment version no as node is removed */
460 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461 		unsigned char version = nat_get_version(e);
462 		nat_set_version(e, inc_node_version(version));
463 	}
464 
465 	/* change address */
466 	nat_set_blkaddr(e, new_blkaddr);
467 	if (!__is_valid_data_blkaddr(new_blkaddr))
468 		set_nat_flag(e, IS_CHECKPOINTED, false);
469 	__set_nat_cache_dirty(nm_i, e);
470 
471 	/* update fsync_mark if its inode nat entry is still alive */
472 	if (ni->nid != ni->ino)
473 		e = __lookup_nat_cache(nm_i, ni->ino);
474 	if (e) {
475 		if (fsync_done && ni->nid == ni->ino)
476 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
477 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478 	}
479 	up_write(&nm_i->nat_tree_lock);
480 }
481 
482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483 {
484 	struct f2fs_nm_info *nm_i = NM_I(sbi);
485 	int nr = nr_shrink;
486 
487 	if (!down_write_trylock(&nm_i->nat_tree_lock))
488 		return 0;
489 
490 	spin_lock(&nm_i->nat_list_lock);
491 	while (nr_shrink) {
492 		struct nat_entry *ne;
493 
494 		if (list_empty(&nm_i->nat_entries))
495 			break;
496 
497 		ne = list_first_entry(&nm_i->nat_entries,
498 					struct nat_entry, list);
499 		list_del(&ne->list);
500 		spin_unlock(&nm_i->nat_list_lock);
501 
502 		__del_from_nat_cache(nm_i, ne);
503 		nr_shrink--;
504 
505 		spin_lock(&nm_i->nat_list_lock);
506 	}
507 	spin_unlock(&nm_i->nat_list_lock);
508 
509 	up_write(&nm_i->nat_tree_lock);
510 	return nr - nr_shrink;
511 }
512 
513 /*
514  * This function always returns success
515  */
516 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
517 						struct node_info *ni)
518 {
519 	struct f2fs_nm_info *nm_i = NM_I(sbi);
520 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
521 	struct f2fs_journal *journal = curseg->journal;
522 	nid_t start_nid = START_NID(nid);
523 	struct f2fs_nat_block *nat_blk;
524 	struct page *page = NULL;
525 	struct f2fs_nat_entry ne;
526 	struct nat_entry *e;
527 	pgoff_t index;
528 	block_t blkaddr;
529 	int i;
530 
531 	ni->nid = nid;
532 
533 	/* Check nat cache */
534 	down_read(&nm_i->nat_tree_lock);
535 	e = __lookup_nat_cache(nm_i, nid);
536 	if (e) {
537 		ni->ino = nat_get_ino(e);
538 		ni->blk_addr = nat_get_blkaddr(e);
539 		ni->version = nat_get_version(e);
540 		up_read(&nm_i->nat_tree_lock);
541 		return 0;
542 	}
543 
544 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545 
546 	/* Check current segment summary */
547 	down_read(&curseg->journal_rwsem);
548 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549 	if (i >= 0) {
550 		ne = nat_in_journal(journal, i);
551 		node_info_from_raw_nat(ni, &ne);
552 	}
553 	up_read(&curseg->journal_rwsem);
554 	if (i >= 0) {
555 		up_read(&nm_i->nat_tree_lock);
556 		goto cache;
557 	}
558 
559 	/* Fill node_info from nat page */
560 	index = current_nat_addr(sbi, nid);
561 	up_read(&nm_i->nat_tree_lock);
562 
563 	page = f2fs_get_meta_page(sbi, index);
564 	if (IS_ERR(page))
565 		return PTR_ERR(page);
566 
567 	nat_blk = (struct f2fs_nat_block *)page_address(page);
568 	ne = nat_blk->entries[nid - start_nid];
569 	node_info_from_raw_nat(ni, &ne);
570 	f2fs_put_page(page, 1);
571 cache:
572 	blkaddr = le32_to_cpu(ne.block_addr);
573 	if (__is_valid_data_blkaddr(blkaddr) &&
574 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
575 		return -EFAULT;
576 
577 	/* cache nat entry */
578 	cache_nat_entry(sbi, nid, &ne);
579 	return 0;
580 }
581 
582 /*
583  * readahead MAX_RA_NODE number of node pages.
584  */
585 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
586 {
587 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
588 	struct blk_plug plug;
589 	int i, end;
590 	nid_t nid;
591 
592 	blk_start_plug(&plug);
593 
594 	/* Then, try readahead for siblings of the desired node */
595 	end = start + n;
596 	end = min(end, NIDS_PER_BLOCK);
597 	for (i = start; i < end; i++) {
598 		nid = get_nid(parent, i, false);
599 		f2fs_ra_node_page(sbi, nid);
600 	}
601 
602 	blk_finish_plug(&plug);
603 }
604 
605 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
606 {
607 	const long direct_index = ADDRS_PER_INODE(dn->inode);
608 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
609 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
610 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
611 	int cur_level = dn->cur_level;
612 	int max_level = dn->max_level;
613 	pgoff_t base = 0;
614 
615 	if (!dn->max_level)
616 		return pgofs + 1;
617 
618 	while (max_level-- > cur_level)
619 		skipped_unit *= NIDS_PER_BLOCK;
620 
621 	switch (dn->max_level) {
622 	case 3:
623 		base += 2 * indirect_blks;
624 		/* fall through */
625 	case 2:
626 		base += 2 * direct_blks;
627 		/* fall through */
628 	case 1:
629 		base += direct_index;
630 		break;
631 	default:
632 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
633 	}
634 
635 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
636 }
637 
638 /*
639  * The maximum depth is four.
640  * Offset[0] will have raw inode offset.
641  */
642 static int get_node_path(struct inode *inode, long block,
643 				int offset[4], unsigned int noffset[4])
644 {
645 	const long direct_index = ADDRS_PER_INODE(inode);
646 	const long direct_blks = ADDRS_PER_BLOCK(inode);
647 	const long dptrs_per_blk = NIDS_PER_BLOCK;
648 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
649 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
650 	int n = 0;
651 	int level = 0;
652 
653 	noffset[0] = 0;
654 
655 	if (block < direct_index) {
656 		offset[n] = block;
657 		goto got;
658 	}
659 	block -= direct_index;
660 	if (block < direct_blks) {
661 		offset[n++] = NODE_DIR1_BLOCK;
662 		noffset[n] = 1;
663 		offset[n] = block;
664 		level = 1;
665 		goto got;
666 	}
667 	block -= direct_blks;
668 	if (block < direct_blks) {
669 		offset[n++] = NODE_DIR2_BLOCK;
670 		noffset[n] = 2;
671 		offset[n] = block;
672 		level = 1;
673 		goto got;
674 	}
675 	block -= direct_blks;
676 	if (block < indirect_blks) {
677 		offset[n++] = NODE_IND1_BLOCK;
678 		noffset[n] = 3;
679 		offset[n++] = block / direct_blks;
680 		noffset[n] = 4 + offset[n - 1];
681 		offset[n] = block % direct_blks;
682 		level = 2;
683 		goto got;
684 	}
685 	block -= indirect_blks;
686 	if (block < indirect_blks) {
687 		offset[n++] = NODE_IND2_BLOCK;
688 		noffset[n] = 4 + dptrs_per_blk;
689 		offset[n++] = block / direct_blks;
690 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
691 		offset[n] = block % direct_blks;
692 		level = 2;
693 		goto got;
694 	}
695 	block -= indirect_blks;
696 	if (block < dindirect_blks) {
697 		offset[n++] = NODE_DIND_BLOCK;
698 		noffset[n] = 5 + (dptrs_per_blk * 2);
699 		offset[n++] = block / indirect_blks;
700 		noffset[n] = 6 + (dptrs_per_blk * 2) +
701 			      offset[n - 1] * (dptrs_per_blk + 1);
702 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
703 		noffset[n] = 7 + (dptrs_per_blk * 2) +
704 			      offset[n - 2] * (dptrs_per_blk + 1) +
705 			      offset[n - 1];
706 		offset[n] = block % direct_blks;
707 		level = 3;
708 		goto got;
709 	} else {
710 		return -E2BIG;
711 	}
712 got:
713 	return level;
714 }
715 
716 /*
717  * Caller should call f2fs_put_dnode(dn).
718  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
719  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
720  * In the case of RDONLY_NODE, we don't need to care about mutex.
721  */
722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 	struct page *npage[4];
726 	struct page *parent = NULL;
727 	int offset[4];
728 	unsigned int noffset[4];
729 	nid_t nids[4];
730 	int level, i = 0;
731 	int err = 0;
732 
733 	level = get_node_path(dn->inode, index, offset, noffset);
734 	if (level < 0)
735 		return level;
736 
737 	nids[0] = dn->inode->i_ino;
738 	npage[0] = dn->inode_page;
739 
740 	if (!npage[0]) {
741 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 		if (IS_ERR(npage[0]))
743 			return PTR_ERR(npage[0]);
744 	}
745 
746 	/* if inline_data is set, should not report any block indices */
747 	if (f2fs_has_inline_data(dn->inode) && index) {
748 		err = -ENOENT;
749 		f2fs_put_page(npage[0], 1);
750 		goto release_out;
751 	}
752 
753 	parent = npage[0];
754 	if (level != 0)
755 		nids[1] = get_nid(parent, offset[0], true);
756 	dn->inode_page = npage[0];
757 	dn->inode_page_locked = true;
758 
759 	/* get indirect or direct nodes */
760 	for (i = 1; i <= level; i++) {
761 		bool done = false;
762 
763 		if (!nids[i] && mode == ALLOC_NODE) {
764 			/* alloc new node */
765 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 				err = -ENOSPC;
767 				goto release_pages;
768 			}
769 
770 			dn->nid = nids[i];
771 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 			if (IS_ERR(npage[i])) {
773 				f2fs_alloc_nid_failed(sbi, nids[i]);
774 				err = PTR_ERR(npage[i]);
775 				goto release_pages;
776 			}
777 
778 			set_nid(parent, offset[i - 1], nids[i], i == 1);
779 			f2fs_alloc_nid_done(sbi, nids[i]);
780 			done = true;
781 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 			if (IS_ERR(npage[i])) {
784 				err = PTR_ERR(npage[i]);
785 				goto release_pages;
786 			}
787 			done = true;
788 		}
789 		if (i == 1) {
790 			dn->inode_page_locked = false;
791 			unlock_page(parent);
792 		} else {
793 			f2fs_put_page(parent, 1);
794 		}
795 
796 		if (!done) {
797 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 			if (IS_ERR(npage[i])) {
799 				err = PTR_ERR(npage[i]);
800 				f2fs_put_page(npage[0], 0);
801 				goto release_out;
802 			}
803 		}
804 		if (i < level) {
805 			parent = npage[i];
806 			nids[i + 1] = get_nid(parent, offset[i], false);
807 		}
808 	}
809 	dn->nid = nids[level];
810 	dn->ofs_in_node = offset[level];
811 	dn->node_page = npage[level];
812 	dn->data_blkaddr = datablock_addr(dn->inode,
813 				dn->node_page, dn->ofs_in_node);
814 	return 0;
815 
816 release_pages:
817 	f2fs_put_page(parent, 1);
818 	if (i > 1)
819 		f2fs_put_page(npage[0], 0);
820 release_out:
821 	dn->inode_page = NULL;
822 	dn->node_page = NULL;
823 	if (err == -ENOENT) {
824 		dn->cur_level = i;
825 		dn->max_level = level;
826 		dn->ofs_in_node = offset[level];
827 	}
828 	return err;
829 }
830 
831 static int truncate_node(struct dnode_of_data *dn)
832 {
833 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
834 	struct node_info ni;
835 	int err;
836 	pgoff_t index;
837 
838 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
839 	if (err)
840 		return err;
841 
842 	/* Deallocate node address */
843 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
844 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
845 	set_node_addr(sbi, &ni, NULL_ADDR, false);
846 
847 	if (dn->nid == dn->inode->i_ino) {
848 		f2fs_remove_orphan_inode(sbi, dn->nid);
849 		dec_valid_inode_count(sbi);
850 		f2fs_inode_synced(dn->inode);
851 	}
852 
853 	clear_node_page_dirty(dn->node_page);
854 	set_sbi_flag(sbi, SBI_IS_DIRTY);
855 
856 	index = dn->node_page->index;
857 	f2fs_put_page(dn->node_page, 1);
858 
859 	invalidate_mapping_pages(NODE_MAPPING(sbi),
860 			index, index);
861 
862 	dn->node_page = NULL;
863 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
864 
865 	return 0;
866 }
867 
868 static int truncate_dnode(struct dnode_of_data *dn)
869 {
870 	struct page *page;
871 	int err;
872 
873 	if (dn->nid == 0)
874 		return 1;
875 
876 	/* get direct node */
877 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
878 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
879 		return 1;
880 	else if (IS_ERR(page))
881 		return PTR_ERR(page);
882 
883 	/* Make dnode_of_data for parameter */
884 	dn->node_page = page;
885 	dn->ofs_in_node = 0;
886 	f2fs_truncate_data_blocks(dn);
887 	err = truncate_node(dn);
888 	if (err)
889 		return err;
890 
891 	return 1;
892 }
893 
894 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
895 						int ofs, int depth)
896 {
897 	struct dnode_of_data rdn = *dn;
898 	struct page *page;
899 	struct f2fs_node *rn;
900 	nid_t child_nid;
901 	unsigned int child_nofs;
902 	int freed = 0;
903 	int i, ret;
904 
905 	if (dn->nid == 0)
906 		return NIDS_PER_BLOCK + 1;
907 
908 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
909 
910 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
911 	if (IS_ERR(page)) {
912 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
913 		return PTR_ERR(page);
914 	}
915 
916 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
917 
918 	rn = F2FS_NODE(page);
919 	if (depth < 3) {
920 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
921 			child_nid = le32_to_cpu(rn->in.nid[i]);
922 			if (child_nid == 0)
923 				continue;
924 			rdn.nid = child_nid;
925 			ret = truncate_dnode(&rdn);
926 			if (ret < 0)
927 				goto out_err;
928 			if (set_nid(page, i, 0, false))
929 				dn->node_changed = true;
930 		}
931 	} else {
932 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
933 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
934 			child_nid = le32_to_cpu(rn->in.nid[i]);
935 			if (child_nid == 0) {
936 				child_nofs += NIDS_PER_BLOCK + 1;
937 				continue;
938 			}
939 			rdn.nid = child_nid;
940 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
941 			if (ret == (NIDS_PER_BLOCK + 1)) {
942 				if (set_nid(page, i, 0, false))
943 					dn->node_changed = true;
944 				child_nofs += ret;
945 			} else if (ret < 0 && ret != -ENOENT) {
946 				goto out_err;
947 			}
948 		}
949 		freed = child_nofs;
950 	}
951 
952 	if (!ofs) {
953 		/* remove current indirect node */
954 		dn->node_page = page;
955 		ret = truncate_node(dn);
956 		if (ret)
957 			goto out_err;
958 		freed++;
959 	} else {
960 		f2fs_put_page(page, 1);
961 	}
962 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
963 	return freed;
964 
965 out_err:
966 	f2fs_put_page(page, 1);
967 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
968 	return ret;
969 }
970 
971 static int truncate_partial_nodes(struct dnode_of_data *dn,
972 			struct f2fs_inode *ri, int *offset, int depth)
973 {
974 	struct page *pages[2];
975 	nid_t nid[3];
976 	nid_t child_nid;
977 	int err = 0;
978 	int i;
979 	int idx = depth - 2;
980 
981 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
982 	if (!nid[0])
983 		return 0;
984 
985 	/* get indirect nodes in the path */
986 	for (i = 0; i < idx + 1; i++) {
987 		/* reference count'll be increased */
988 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
989 		if (IS_ERR(pages[i])) {
990 			err = PTR_ERR(pages[i]);
991 			idx = i - 1;
992 			goto fail;
993 		}
994 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
995 	}
996 
997 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
998 
999 	/* free direct nodes linked to a partial indirect node */
1000 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1001 		child_nid = get_nid(pages[idx], i, false);
1002 		if (!child_nid)
1003 			continue;
1004 		dn->nid = child_nid;
1005 		err = truncate_dnode(dn);
1006 		if (err < 0)
1007 			goto fail;
1008 		if (set_nid(pages[idx], i, 0, false))
1009 			dn->node_changed = true;
1010 	}
1011 
1012 	if (offset[idx + 1] == 0) {
1013 		dn->node_page = pages[idx];
1014 		dn->nid = nid[idx];
1015 		err = truncate_node(dn);
1016 		if (err)
1017 			goto fail;
1018 	} else {
1019 		f2fs_put_page(pages[idx], 1);
1020 	}
1021 	offset[idx]++;
1022 	offset[idx + 1] = 0;
1023 	idx--;
1024 fail:
1025 	for (i = idx; i >= 0; i--)
1026 		f2fs_put_page(pages[i], 1);
1027 
1028 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1029 
1030 	return err;
1031 }
1032 
1033 /*
1034  * All the block addresses of data and nodes should be nullified.
1035  */
1036 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1037 {
1038 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039 	int err = 0, cont = 1;
1040 	int level, offset[4], noffset[4];
1041 	unsigned int nofs = 0;
1042 	struct f2fs_inode *ri;
1043 	struct dnode_of_data dn;
1044 	struct page *page;
1045 
1046 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1047 
1048 	level = get_node_path(inode, from, offset, noffset);
1049 	if (level < 0)
1050 		return level;
1051 
1052 	page = f2fs_get_node_page(sbi, inode->i_ino);
1053 	if (IS_ERR(page)) {
1054 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055 		return PTR_ERR(page);
1056 	}
1057 
1058 	set_new_dnode(&dn, inode, page, NULL, 0);
1059 	unlock_page(page);
1060 
1061 	ri = F2FS_INODE(page);
1062 	switch (level) {
1063 	case 0:
1064 	case 1:
1065 		nofs = noffset[1];
1066 		break;
1067 	case 2:
1068 		nofs = noffset[1];
1069 		if (!offset[level - 1])
1070 			goto skip_partial;
1071 		err = truncate_partial_nodes(&dn, ri, offset, level);
1072 		if (err < 0 && err != -ENOENT)
1073 			goto fail;
1074 		nofs += 1 + NIDS_PER_BLOCK;
1075 		break;
1076 	case 3:
1077 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1078 		if (!offset[level - 1])
1079 			goto skip_partial;
1080 		err = truncate_partial_nodes(&dn, ri, offset, level);
1081 		if (err < 0 && err != -ENOENT)
1082 			goto fail;
1083 		break;
1084 	default:
1085 		BUG();
1086 	}
1087 
1088 skip_partial:
1089 	while (cont) {
1090 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091 		switch (offset[0]) {
1092 		case NODE_DIR1_BLOCK:
1093 		case NODE_DIR2_BLOCK:
1094 			err = truncate_dnode(&dn);
1095 			break;
1096 
1097 		case NODE_IND1_BLOCK:
1098 		case NODE_IND2_BLOCK:
1099 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1100 			break;
1101 
1102 		case NODE_DIND_BLOCK:
1103 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1104 			cont = 0;
1105 			break;
1106 
1107 		default:
1108 			BUG();
1109 		}
1110 		if (err < 0 && err != -ENOENT)
1111 			goto fail;
1112 		if (offset[1] == 0 &&
1113 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114 			lock_page(page);
1115 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1117 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118 			set_page_dirty(page);
1119 			unlock_page(page);
1120 		}
1121 		offset[1] = 0;
1122 		offset[0]++;
1123 		nofs += err;
1124 	}
1125 fail:
1126 	f2fs_put_page(page, 0);
1127 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128 	return err > 0 ? 0 : err;
1129 }
1130 
1131 /* caller must lock inode page */
1132 int f2fs_truncate_xattr_node(struct inode *inode)
1133 {
1134 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136 	struct dnode_of_data dn;
1137 	struct page *npage;
1138 	int err;
1139 
1140 	if (!nid)
1141 		return 0;
1142 
1143 	npage = f2fs_get_node_page(sbi, nid);
1144 	if (IS_ERR(npage))
1145 		return PTR_ERR(npage);
1146 
1147 	set_new_dnode(&dn, inode, NULL, npage, nid);
1148 	err = truncate_node(&dn);
1149 	if (err) {
1150 		f2fs_put_page(npage, 1);
1151 		return err;
1152 	}
1153 
1154 	f2fs_i_xnid_write(inode, 0);
1155 
1156 	return 0;
1157 }
1158 
1159 /*
1160  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161  * f2fs_unlock_op().
1162  */
1163 int f2fs_remove_inode_page(struct inode *inode)
1164 {
1165 	struct dnode_of_data dn;
1166 	int err;
1167 
1168 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170 	if (err)
1171 		return err;
1172 
1173 	err = f2fs_truncate_xattr_node(inode);
1174 	if (err) {
1175 		f2fs_put_dnode(&dn);
1176 		return err;
1177 	}
1178 
1179 	/* remove potential inline_data blocks */
1180 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181 				S_ISLNK(inode->i_mode))
1182 		f2fs_truncate_data_blocks_range(&dn, 1);
1183 
1184 	/* 0 is possible, after f2fs_new_inode() has failed */
1185 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186 		f2fs_put_dnode(&dn);
1187 		return -EIO;
1188 	}
1189 
1190 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191 		f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192 			  inode->i_ino, (unsigned long long)inode->i_blocks);
1193 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1194 	}
1195 
1196 	/* will put inode & node pages */
1197 	err = truncate_node(&dn);
1198 	if (err) {
1199 		f2fs_put_dnode(&dn);
1200 		return err;
1201 	}
1202 	return 0;
1203 }
1204 
1205 struct page *f2fs_new_inode_page(struct inode *inode)
1206 {
1207 	struct dnode_of_data dn;
1208 
1209 	/* allocate inode page for new inode */
1210 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1211 
1212 	/* caller should f2fs_put_page(page, 1); */
1213 	return f2fs_new_node_page(&dn, 0);
1214 }
1215 
1216 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1217 {
1218 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1219 	struct node_info new_ni;
1220 	struct page *page;
1221 	int err;
1222 
1223 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224 		return ERR_PTR(-EPERM);
1225 
1226 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1227 	if (!page)
1228 		return ERR_PTR(-ENOMEM);
1229 
1230 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231 		goto fail;
1232 
1233 #ifdef CONFIG_F2FS_CHECK_FS
1234 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1235 	if (err) {
1236 		dec_valid_node_count(sbi, dn->inode, !ofs);
1237 		goto fail;
1238 	}
1239 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1240 #endif
1241 	new_ni.nid = dn->nid;
1242 	new_ni.ino = dn->inode->i_ino;
1243 	new_ni.blk_addr = NULL_ADDR;
1244 	new_ni.flag = 0;
1245 	new_ni.version = 0;
1246 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1247 
1248 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1249 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1250 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1251 	if (!PageUptodate(page))
1252 		SetPageUptodate(page);
1253 	if (set_page_dirty(page))
1254 		dn->node_changed = true;
1255 
1256 	if (f2fs_has_xattr_block(ofs))
1257 		f2fs_i_xnid_write(dn->inode, dn->nid);
1258 
1259 	if (ofs == 0)
1260 		inc_valid_inode_count(sbi);
1261 	return page;
1262 
1263 fail:
1264 	clear_node_page_dirty(page);
1265 	f2fs_put_page(page, 1);
1266 	return ERR_PTR(err);
1267 }
1268 
1269 /*
1270  * Caller should do after getting the following values.
1271  * 0: f2fs_put_page(page, 0)
1272  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1273  */
1274 static int read_node_page(struct page *page, int op_flags)
1275 {
1276 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1277 	struct node_info ni;
1278 	struct f2fs_io_info fio = {
1279 		.sbi = sbi,
1280 		.type = NODE,
1281 		.op = REQ_OP_READ,
1282 		.op_flags = op_flags,
1283 		.page = page,
1284 		.encrypted_page = NULL,
1285 	};
1286 	int err;
1287 
1288 	if (PageUptodate(page)) {
1289 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1290 			ClearPageUptodate(page);
1291 			return -EFSBADCRC;
1292 		}
1293 		return LOCKED_PAGE;
1294 	}
1295 
1296 	err = f2fs_get_node_info(sbi, page->index, &ni);
1297 	if (err)
1298 		return err;
1299 
1300 	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1301 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1302 		ClearPageUptodate(page);
1303 		return -ENOENT;
1304 	}
1305 
1306 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1307 	return f2fs_submit_page_bio(&fio);
1308 }
1309 
1310 /*
1311  * Readahead a node page
1312  */
1313 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1314 {
1315 	struct page *apage;
1316 	int err;
1317 
1318 	if (!nid)
1319 		return;
1320 	if (f2fs_check_nid_range(sbi, nid))
1321 		return;
1322 
1323 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1324 	if (apage)
1325 		return;
1326 
1327 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328 	if (!apage)
1329 		return;
1330 
1331 	err = read_node_page(apage, REQ_RAHEAD);
1332 	f2fs_put_page(apage, err ? 1 : 0);
1333 }
1334 
1335 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336 					struct page *parent, int start)
1337 {
1338 	struct page *page;
1339 	int err;
1340 
1341 	if (!nid)
1342 		return ERR_PTR(-ENOENT);
1343 	if (f2fs_check_nid_range(sbi, nid))
1344 		return ERR_PTR(-EINVAL);
1345 repeat:
1346 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1347 	if (!page)
1348 		return ERR_PTR(-ENOMEM);
1349 
1350 	err = read_node_page(page, 0);
1351 	if (err < 0) {
1352 		f2fs_put_page(page, 1);
1353 		return ERR_PTR(err);
1354 	} else if (err == LOCKED_PAGE) {
1355 		err = 0;
1356 		goto page_hit;
1357 	}
1358 
1359 	if (parent)
1360 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1361 
1362 	lock_page(page);
1363 
1364 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365 		f2fs_put_page(page, 1);
1366 		goto repeat;
1367 	}
1368 
1369 	if (unlikely(!PageUptodate(page))) {
1370 		err = -EIO;
1371 		goto out_err;
1372 	}
1373 
1374 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1375 		err = -EFSBADCRC;
1376 		goto out_err;
1377 	}
1378 page_hit:
1379 	if(unlikely(nid != nid_of_node(page))) {
1380 		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381 			  nid, nid_of_node(page), ino_of_node(page),
1382 			  ofs_of_node(page), cpver_of_node(page),
1383 			  next_blkaddr_of_node(page));
1384 		err = -EINVAL;
1385 out_err:
1386 		ClearPageUptodate(page);
1387 		f2fs_put_page(page, 1);
1388 		return ERR_PTR(err);
1389 	}
1390 	return page;
1391 }
1392 
1393 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1394 {
1395 	return __get_node_page(sbi, nid, NULL, 0);
1396 }
1397 
1398 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1399 {
1400 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401 	nid_t nid = get_nid(parent, start, false);
1402 
1403 	return __get_node_page(sbi, nid, parent, start);
1404 }
1405 
1406 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1407 {
1408 	struct inode *inode;
1409 	struct page *page;
1410 	int ret;
1411 
1412 	/* should flush inline_data before evict_inode */
1413 	inode = ilookup(sbi->sb, ino);
1414 	if (!inode)
1415 		return;
1416 
1417 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418 					FGP_LOCK|FGP_NOWAIT, 0);
1419 	if (!page)
1420 		goto iput_out;
1421 
1422 	if (!PageUptodate(page))
1423 		goto page_out;
1424 
1425 	if (!PageDirty(page))
1426 		goto page_out;
1427 
1428 	if (!clear_page_dirty_for_io(page))
1429 		goto page_out;
1430 
1431 	ret = f2fs_write_inline_data(inode, page);
1432 	inode_dec_dirty_pages(inode);
1433 	f2fs_remove_dirty_inode(inode);
1434 	if (ret)
1435 		set_page_dirty(page);
1436 page_out:
1437 	f2fs_put_page(page, 1);
1438 iput_out:
1439 	iput(inode);
1440 }
1441 
1442 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1443 {
1444 	pgoff_t index;
1445 	struct pagevec pvec;
1446 	struct page *last_page = NULL;
1447 	int nr_pages;
1448 
1449 	pagevec_init(&pvec);
1450 	index = 0;
1451 
1452 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453 				PAGECACHE_TAG_DIRTY))) {
1454 		int i;
1455 
1456 		for (i = 0; i < nr_pages; i++) {
1457 			struct page *page = pvec.pages[i];
1458 
1459 			if (unlikely(f2fs_cp_error(sbi))) {
1460 				f2fs_put_page(last_page, 0);
1461 				pagevec_release(&pvec);
1462 				return ERR_PTR(-EIO);
1463 			}
1464 
1465 			if (!IS_DNODE(page) || !is_cold_node(page))
1466 				continue;
1467 			if (ino_of_node(page) != ino)
1468 				continue;
1469 
1470 			lock_page(page);
1471 
1472 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473 continue_unlock:
1474 				unlock_page(page);
1475 				continue;
1476 			}
1477 			if (ino_of_node(page) != ino)
1478 				goto continue_unlock;
1479 
1480 			if (!PageDirty(page)) {
1481 				/* someone wrote it for us */
1482 				goto continue_unlock;
1483 			}
1484 
1485 			if (last_page)
1486 				f2fs_put_page(last_page, 0);
1487 
1488 			get_page(page);
1489 			last_page = page;
1490 			unlock_page(page);
1491 		}
1492 		pagevec_release(&pvec);
1493 		cond_resched();
1494 	}
1495 	return last_page;
1496 }
1497 
1498 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499 				struct writeback_control *wbc, bool do_balance,
1500 				enum iostat_type io_type, unsigned int *seq_id)
1501 {
1502 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503 	nid_t nid;
1504 	struct node_info ni;
1505 	struct f2fs_io_info fio = {
1506 		.sbi = sbi,
1507 		.ino = ino_of_node(page),
1508 		.type = NODE,
1509 		.op = REQ_OP_WRITE,
1510 		.op_flags = wbc_to_write_flags(wbc),
1511 		.page = page,
1512 		.encrypted_page = NULL,
1513 		.submitted = false,
1514 		.io_type = io_type,
1515 		.io_wbc = wbc,
1516 	};
1517 	unsigned int seq;
1518 
1519 	trace_f2fs_writepage(page, NODE);
1520 
1521 	if (unlikely(f2fs_cp_error(sbi)))
1522 		goto redirty_out;
1523 
1524 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525 		goto redirty_out;
1526 
1527 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1528 			wbc->sync_mode == WB_SYNC_NONE &&
1529 			IS_DNODE(page) && is_cold_node(page))
1530 		goto redirty_out;
1531 
1532 	/* get old block addr of this node page */
1533 	nid = nid_of_node(page);
1534 	f2fs_bug_on(sbi, page->index != nid);
1535 
1536 	if (f2fs_get_node_info(sbi, nid, &ni))
1537 		goto redirty_out;
1538 
1539 	if (wbc->for_reclaim) {
1540 		if (!down_read_trylock(&sbi->node_write))
1541 			goto redirty_out;
1542 	} else {
1543 		down_read(&sbi->node_write);
1544 	}
1545 
1546 	/* This page is already truncated */
1547 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1548 		ClearPageUptodate(page);
1549 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1550 		up_read(&sbi->node_write);
1551 		unlock_page(page);
1552 		return 0;
1553 	}
1554 
1555 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1556 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1557 					DATA_GENERIC_ENHANCE)) {
1558 		up_read(&sbi->node_write);
1559 		goto redirty_out;
1560 	}
1561 
1562 	if (atomic && !test_opt(sbi, NOBARRIER))
1563 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1564 
1565 	set_page_writeback(page);
1566 	ClearPageError(page);
1567 
1568 	if (f2fs_in_warm_node_list(sbi, page)) {
1569 		seq = f2fs_add_fsync_node_entry(sbi, page);
1570 		if (seq_id)
1571 			*seq_id = seq;
1572 	}
1573 
1574 	fio.old_blkaddr = ni.blk_addr;
1575 	f2fs_do_write_node_page(nid, &fio);
1576 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1577 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1578 	up_read(&sbi->node_write);
1579 
1580 	if (wbc->for_reclaim) {
1581 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1582 		submitted = NULL;
1583 	}
1584 
1585 	unlock_page(page);
1586 
1587 	if (unlikely(f2fs_cp_error(sbi))) {
1588 		f2fs_submit_merged_write(sbi, NODE);
1589 		submitted = NULL;
1590 	}
1591 	if (submitted)
1592 		*submitted = fio.submitted;
1593 
1594 	if (do_balance)
1595 		f2fs_balance_fs(sbi, false);
1596 	return 0;
1597 
1598 redirty_out:
1599 	redirty_page_for_writepage(wbc, page);
1600 	return AOP_WRITEPAGE_ACTIVATE;
1601 }
1602 
1603 int f2fs_move_node_page(struct page *node_page, int gc_type)
1604 {
1605 	int err = 0;
1606 
1607 	if (gc_type == FG_GC) {
1608 		struct writeback_control wbc = {
1609 			.sync_mode = WB_SYNC_ALL,
1610 			.nr_to_write = 1,
1611 			.for_reclaim = 0,
1612 		};
1613 
1614 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1615 
1616 		set_page_dirty(node_page);
1617 
1618 		if (!clear_page_dirty_for_io(node_page)) {
1619 			err = -EAGAIN;
1620 			goto out_page;
1621 		}
1622 
1623 		if (__write_node_page(node_page, false, NULL,
1624 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1625 			err = -EAGAIN;
1626 			unlock_page(node_page);
1627 		}
1628 		goto release_page;
1629 	} else {
1630 		/* set page dirty and write it */
1631 		if (!PageWriteback(node_page))
1632 			set_page_dirty(node_page);
1633 	}
1634 out_page:
1635 	unlock_page(node_page);
1636 release_page:
1637 	f2fs_put_page(node_page, 0);
1638 	return err;
1639 }
1640 
1641 static int f2fs_write_node_page(struct page *page,
1642 				struct writeback_control *wbc)
1643 {
1644 	return __write_node_page(page, false, NULL, wbc, false,
1645 						FS_NODE_IO, NULL);
1646 }
1647 
1648 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1649 			struct writeback_control *wbc, bool atomic,
1650 			unsigned int *seq_id)
1651 {
1652 	pgoff_t index;
1653 	struct pagevec pvec;
1654 	int ret = 0;
1655 	struct page *last_page = NULL;
1656 	bool marked = false;
1657 	nid_t ino = inode->i_ino;
1658 	int nr_pages;
1659 	int nwritten = 0;
1660 
1661 	if (atomic) {
1662 		last_page = last_fsync_dnode(sbi, ino);
1663 		if (IS_ERR_OR_NULL(last_page))
1664 			return PTR_ERR_OR_ZERO(last_page);
1665 	}
1666 retry:
1667 	pagevec_init(&pvec);
1668 	index = 0;
1669 
1670 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1671 				PAGECACHE_TAG_DIRTY))) {
1672 		int i;
1673 
1674 		for (i = 0; i < nr_pages; i++) {
1675 			struct page *page = pvec.pages[i];
1676 			bool submitted = false;
1677 
1678 			if (unlikely(f2fs_cp_error(sbi))) {
1679 				f2fs_put_page(last_page, 0);
1680 				pagevec_release(&pvec);
1681 				ret = -EIO;
1682 				goto out;
1683 			}
1684 
1685 			if (!IS_DNODE(page) || !is_cold_node(page))
1686 				continue;
1687 			if (ino_of_node(page) != ino)
1688 				continue;
1689 
1690 			lock_page(page);
1691 
1692 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1693 continue_unlock:
1694 				unlock_page(page);
1695 				continue;
1696 			}
1697 			if (ino_of_node(page) != ino)
1698 				goto continue_unlock;
1699 
1700 			if (!PageDirty(page) && page != last_page) {
1701 				/* someone wrote it for us */
1702 				goto continue_unlock;
1703 			}
1704 
1705 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1706 
1707 			set_fsync_mark(page, 0);
1708 			set_dentry_mark(page, 0);
1709 
1710 			if (!atomic || page == last_page) {
1711 				set_fsync_mark(page, 1);
1712 				if (IS_INODE(page)) {
1713 					if (is_inode_flag_set(inode,
1714 								FI_DIRTY_INODE))
1715 						f2fs_update_inode(inode, page);
1716 					set_dentry_mark(page,
1717 						f2fs_need_dentry_mark(sbi, ino));
1718 				}
1719 				/*  may be written by other thread */
1720 				if (!PageDirty(page))
1721 					set_page_dirty(page);
1722 			}
1723 
1724 			if (!clear_page_dirty_for_io(page))
1725 				goto continue_unlock;
1726 
1727 			ret = __write_node_page(page, atomic &&
1728 						page == last_page,
1729 						&submitted, wbc, true,
1730 						FS_NODE_IO, seq_id);
1731 			if (ret) {
1732 				unlock_page(page);
1733 				f2fs_put_page(last_page, 0);
1734 				break;
1735 			} else if (submitted) {
1736 				nwritten++;
1737 			}
1738 
1739 			if (page == last_page) {
1740 				f2fs_put_page(page, 0);
1741 				marked = true;
1742 				break;
1743 			}
1744 		}
1745 		pagevec_release(&pvec);
1746 		cond_resched();
1747 
1748 		if (ret || marked)
1749 			break;
1750 	}
1751 	if (!ret && atomic && !marked) {
1752 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1753 			   ino, last_page->index);
1754 		lock_page(last_page);
1755 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1756 		set_page_dirty(last_page);
1757 		unlock_page(last_page);
1758 		goto retry;
1759 	}
1760 out:
1761 	if (nwritten)
1762 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1763 	return ret ? -EIO: 0;
1764 }
1765 
1766 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1767 {
1768 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1769 	bool clean;
1770 
1771 	if (inode->i_ino != ino)
1772 		return 0;
1773 
1774 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1775 		return 0;
1776 
1777 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1778 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1779 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1780 
1781 	if (clean)
1782 		return 0;
1783 
1784 	inode = igrab(inode);
1785 	if (!inode)
1786 		return 0;
1787 	return 1;
1788 }
1789 
1790 static bool flush_dirty_inode(struct page *page)
1791 {
1792 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1793 	struct inode *inode;
1794 	nid_t ino = ino_of_node(page);
1795 
1796 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1797 	if (!inode)
1798 		return false;
1799 
1800 	f2fs_update_inode(inode, page);
1801 	unlock_page(page);
1802 
1803 	iput(inode);
1804 	return true;
1805 }
1806 
1807 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1808 				struct writeback_control *wbc,
1809 				bool do_balance, enum iostat_type io_type)
1810 {
1811 	pgoff_t index;
1812 	struct pagevec pvec;
1813 	int step = 0;
1814 	int nwritten = 0;
1815 	int ret = 0;
1816 	int nr_pages, done = 0;
1817 
1818 	pagevec_init(&pvec);
1819 
1820 next_step:
1821 	index = 0;
1822 
1823 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1824 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1825 		int i;
1826 
1827 		for (i = 0; i < nr_pages; i++) {
1828 			struct page *page = pvec.pages[i];
1829 			bool submitted = false;
1830 			bool may_dirty = true;
1831 
1832 			/* give a priority to WB_SYNC threads */
1833 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1834 					wbc->sync_mode == WB_SYNC_NONE) {
1835 				done = 1;
1836 				break;
1837 			}
1838 
1839 			/*
1840 			 * flushing sequence with step:
1841 			 * 0. indirect nodes
1842 			 * 1. dentry dnodes
1843 			 * 2. file dnodes
1844 			 */
1845 			if (step == 0 && IS_DNODE(page))
1846 				continue;
1847 			if (step == 1 && (!IS_DNODE(page) ||
1848 						is_cold_node(page)))
1849 				continue;
1850 			if (step == 2 && (!IS_DNODE(page) ||
1851 						!is_cold_node(page)))
1852 				continue;
1853 lock_node:
1854 			if (wbc->sync_mode == WB_SYNC_ALL)
1855 				lock_page(page);
1856 			else if (!trylock_page(page))
1857 				continue;
1858 
1859 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1860 continue_unlock:
1861 				unlock_page(page);
1862 				continue;
1863 			}
1864 
1865 			if (!PageDirty(page)) {
1866 				/* someone wrote it for us */
1867 				goto continue_unlock;
1868 			}
1869 
1870 			/* flush inline_data */
1871 			if (is_inline_node(page)) {
1872 				clear_inline_node(page);
1873 				unlock_page(page);
1874 				flush_inline_data(sbi, ino_of_node(page));
1875 				goto lock_node;
1876 			}
1877 
1878 			/* flush dirty inode */
1879 			if (IS_INODE(page) && may_dirty) {
1880 				may_dirty = false;
1881 				if (flush_dirty_inode(page))
1882 					goto lock_node;
1883 			}
1884 
1885 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1886 
1887 			if (!clear_page_dirty_for_io(page))
1888 				goto continue_unlock;
1889 
1890 			set_fsync_mark(page, 0);
1891 			set_dentry_mark(page, 0);
1892 
1893 			ret = __write_node_page(page, false, &submitted,
1894 						wbc, do_balance, io_type, NULL);
1895 			if (ret)
1896 				unlock_page(page);
1897 			else if (submitted)
1898 				nwritten++;
1899 
1900 			if (--wbc->nr_to_write == 0)
1901 				break;
1902 		}
1903 		pagevec_release(&pvec);
1904 		cond_resched();
1905 
1906 		if (wbc->nr_to_write == 0) {
1907 			step = 2;
1908 			break;
1909 		}
1910 	}
1911 
1912 	if (step < 2) {
1913 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1914 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
1915 			goto out;
1916 		step++;
1917 		goto next_step;
1918 	}
1919 out:
1920 	if (nwritten)
1921 		f2fs_submit_merged_write(sbi, NODE);
1922 
1923 	if (unlikely(f2fs_cp_error(sbi)))
1924 		return -EIO;
1925 	return ret;
1926 }
1927 
1928 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1929 						unsigned int seq_id)
1930 {
1931 	struct fsync_node_entry *fn;
1932 	struct page *page;
1933 	struct list_head *head = &sbi->fsync_node_list;
1934 	unsigned long flags;
1935 	unsigned int cur_seq_id = 0;
1936 	int ret2, ret = 0;
1937 
1938 	while (seq_id && cur_seq_id < seq_id) {
1939 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1940 		if (list_empty(head)) {
1941 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1942 			break;
1943 		}
1944 		fn = list_first_entry(head, struct fsync_node_entry, list);
1945 		if (fn->seq_id > seq_id) {
1946 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1947 			break;
1948 		}
1949 		cur_seq_id = fn->seq_id;
1950 		page = fn->page;
1951 		get_page(page);
1952 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1953 
1954 		f2fs_wait_on_page_writeback(page, NODE, true, false);
1955 		if (TestClearPageError(page))
1956 			ret = -EIO;
1957 
1958 		put_page(page);
1959 
1960 		if (ret)
1961 			break;
1962 	}
1963 
1964 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1965 	if (!ret)
1966 		ret = ret2;
1967 
1968 	return ret;
1969 }
1970 
1971 static int f2fs_write_node_pages(struct address_space *mapping,
1972 			    struct writeback_control *wbc)
1973 {
1974 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1975 	struct blk_plug plug;
1976 	long diff;
1977 
1978 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1979 		goto skip_write;
1980 
1981 	/* balancing f2fs's metadata in background */
1982 	f2fs_balance_fs_bg(sbi);
1983 
1984 	/* collect a number of dirty node pages and write together */
1985 	if (wbc->sync_mode != WB_SYNC_ALL &&
1986 			get_pages(sbi, F2FS_DIRTY_NODES) <
1987 					nr_pages_to_skip(sbi, NODE))
1988 		goto skip_write;
1989 
1990 	if (wbc->sync_mode == WB_SYNC_ALL)
1991 		atomic_inc(&sbi->wb_sync_req[NODE]);
1992 	else if (atomic_read(&sbi->wb_sync_req[NODE]))
1993 		goto skip_write;
1994 
1995 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1996 
1997 	diff = nr_pages_to_write(sbi, NODE, wbc);
1998 	blk_start_plug(&plug);
1999 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2000 	blk_finish_plug(&plug);
2001 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2002 
2003 	if (wbc->sync_mode == WB_SYNC_ALL)
2004 		atomic_dec(&sbi->wb_sync_req[NODE]);
2005 	return 0;
2006 
2007 skip_write:
2008 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2009 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2010 	return 0;
2011 }
2012 
2013 static int f2fs_set_node_page_dirty(struct page *page)
2014 {
2015 	trace_f2fs_set_page_dirty(page, NODE);
2016 
2017 	if (!PageUptodate(page))
2018 		SetPageUptodate(page);
2019 #ifdef CONFIG_F2FS_CHECK_FS
2020 	if (IS_INODE(page))
2021 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2022 #endif
2023 	if (!PageDirty(page)) {
2024 		__set_page_dirty_nobuffers(page);
2025 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2026 		f2fs_set_page_private(page, 0);
2027 		f2fs_trace_pid(page);
2028 		return 1;
2029 	}
2030 	return 0;
2031 }
2032 
2033 /*
2034  * Structure of the f2fs node operations
2035  */
2036 const struct address_space_operations f2fs_node_aops = {
2037 	.writepage	= f2fs_write_node_page,
2038 	.writepages	= f2fs_write_node_pages,
2039 	.set_page_dirty	= f2fs_set_node_page_dirty,
2040 	.invalidatepage	= f2fs_invalidate_page,
2041 	.releasepage	= f2fs_release_page,
2042 #ifdef CONFIG_MIGRATION
2043 	.migratepage    = f2fs_migrate_page,
2044 #endif
2045 };
2046 
2047 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2048 						nid_t n)
2049 {
2050 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2051 }
2052 
2053 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2054 			struct free_nid *i, enum nid_state state)
2055 {
2056 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2057 
2058 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2059 	if (err)
2060 		return err;
2061 
2062 	f2fs_bug_on(sbi, state != i->state);
2063 	nm_i->nid_cnt[state]++;
2064 	if (state == FREE_NID)
2065 		list_add_tail(&i->list, &nm_i->free_nid_list);
2066 	return 0;
2067 }
2068 
2069 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2070 			struct free_nid *i, enum nid_state state)
2071 {
2072 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2073 
2074 	f2fs_bug_on(sbi, state != i->state);
2075 	nm_i->nid_cnt[state]--;
2076 	if (state == FREE_NID)
2077 		list_del(&i->list);
2078 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2079 }
2080 
2081 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2082 			enum nid_state org_state, enum nid_state dst_state)
2083 {
2084 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2085 
2086 	f2fs_bug_on(sbi, org_state != i->state);
2087 	i->state = dst_state;
2088 	nm_i->nid_cnt[org_state]--;
2089 	nm_i->nid_cnt[dst_state]++;
2090 
2091 	switch (dst_state) {
2092 	case PREALLOC_NID:
2093 		list_del(&i->list);
2094 		break;
2095 	case FREE_NID:
2096 		list_add_tail(&i->list, &nm_i->free_nid_list);
2097 		break;
2098 	default:
2099 		BUG_ON(1);
2100 	}
2101 }
2102 
2103 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2104 							bool set, bool build)
2105 {
2106 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2107 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2108 	unsigned int nid_ofs = nid - START_NID(nid);
2109 
2110 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2111 		return;
2112 
2113 	if (set) {
2114 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2115 			return;
2116 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2117 		nm_i->free_nid_count[nat_ofs]++;
2118 	} else {
2119 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2120 			return;
2121 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2122 		if (!build)
2123 			nm_i->free_nid_count[nat_ofs]--;
2124 	}
2125 }
2126 
2127 /* return if the nid is recognized as free */
2128 static bool add_free_nid(struct f2fs_sb_info *sbi,
2129 				nid_t nid, bool build, bool update)
2130 {
2131 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2132 	struct free_nid *i, *e;
2133 	struct nat_entry *ne;
2134 	int err = -EINVAL;
2135 	bool ret = false;
2136 
2137 	/* 0 nid should not be used */
2138 	if (unlikely(nid == 0))
2139 		return false;
2140 
2141 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2142 		return false;
2143 
2144 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2145 	i->nid = nid;
2146 	i->state = FREE_NID;
2147 
2148 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2149 
2150 	spin_lock(&nm_i->nid_list_lock);
2151 
2152 	if (build) {
2153 		/*
2154 		 *   Thread A             Thread B
2155 		 *  - f2fs_create
2156 		 *   - f2fs_new_inode
2157 		 *    - f2fs_alloc_nid
2158 		 *     - __insert_nid_to_list(PREALLOC_NID)
2159 		 *                     - f2fs_balance_fs_bg
2160 		 *                      - f2fs_build_free_nids
2161 		 *                       - __f2fs_build_free_nids
2162 		 *                        - scan_nat_page
2163 		 *                         - add_free_nid
2164 		 *                          - __lookup_nat_cache
2165 		 *  - f2fs_add_link
2166 		 *   - f2fs_init_inode_metadata
2167 		 *    - f2fs_new_inode_page
2168 		 *     - f2fs_new_node_page
2169 		 *      - set_node_addr
2170 		 *  - f2fs_alloc_nid_done
2171 		 *   - __remove_nid_from_list(PREALLOC_NID)
2172 		 *                         - __insert_nid_to_list(FREE_NID)
2173 		 */
2174 		ne = __lookup_nat_cache(nm_i, nid);
2175 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2176 				nat_get_blkaddr(ne) != NULL_ADDR))
2177 			goto err_out;
2178 
2179 		e = __lookup_free_nid_list(nm_i, nid);
2180 		if (e) {
2181 			if (e->state == FREE_NID)
2182 				ret = true;
2183 			goto err_out;
2184 		}
2185 	}
2186 	ret = true;
2187 	err = __insert_free_nid(sbi, i, FREE_NID);
2188 err_out:
2189 	if (update) {
2190 		update_free_nid_bitmap(sbi, nid, ret, build);
2191 		if (!build)
2192 			nm_i->available_nids++;
2193 	}
2194 	spin_unlock(&nm_i->nid_list_lock);
2195 	radix_tree_preload_end();
2196 
2197 	if (err)
2198 		kmem_cache_free(free_nid_slab, i);
2199 	return ret;
2200 }
2201 
2202 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2203 {
2204 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2205 	struct free_nid *i;
2206 	bool need_free = false;
2207 
2208 	spin_lock(&nm_i->nid_list_lock);
2209 	i = __lookup_free_nid_list(nm_i, nid);
2210 	if (i && i->state == FREE_NID) {
2211 		__remove_free_nid(sbi, i, FREE_NID);
2212 		need_free = true;
2213 	}
2214 	spin_unlock(&nm_i->nid_list_lock);
2215 
2216 	if (need_free)
2217 		kmem_cache_free(free_nid_slab, i);
2218 }
2219 
2220 static int scan_nat_page(struct f2fs_sb_info *sbi,
2221 			struct page *nat_page, nid_t start_nid)
2222 {
2223 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2224 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2225 	block_t blk_addr;
2226 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2227 	int i;
2228 
2229 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2230 
2231 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2232 
2233 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2234 		if (unlikely(start_nid >= nm_i->max_nid))
2235 			break;
2236 
2237 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2238 
2239 		if (blk_addr == NEW_ADDR)
2240 			return -EINVAL;
2241 
2242 		if (blk_addr == NULL_ADDR) {
2243 			add_free_nid(sbi, start_nid, true, true);
2244 		} else {
2245 			spin_lock(&NM_I(sbi)->nid_list_lock);
2246 			update_free_nid_bitmap(sbi, start_nid, false, true);
2247 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2248 		}
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2255 {
2256 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2257 	struct f2fs_journal *journal = curseg->journal;
2258 	int i;
2259 
2260 	down_read(&curseg->journal_rwsem);
2261 	for (i = 0; i < nats_in_cursum(journal); i++) {
2262 		block_t addr;
2263 		nid_t nid;
2264 
2265 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2266 		nid = le32_to_cpu(nid_in_journal(journal, i));
2267 		if (addr == NULL_ADDR)
2268 			add_free_nid(sbi, nid, true, false);
2269 		else
2270 			remove_free_nid(sbi, nid);
2271 	}
2272 	up_read(&curseg->journal_rwsem);
2273 }
2274 
2275 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2276 {
2277 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2278 	unsigned int i, idx;
2279 	nid_t nid;
2280 
2281 	down_read(&nm_i->nat_tree_lock);
2282 
2283 	for (i = 0; i < nm_i->nat_blocks; i++) {
2284 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2285 			continue;
2286 		if (!nm_i->free_nid_count[i])
2287 			continue;
2288 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2289 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2290 						NAT_ENTRY_PER_BLOCK, idx);
2291 			if (idx >= NAT_ENTRY_PER_BLOCK)
2292 				break;
2293 
2294 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2295 			add_free_nid(sbi, nid, true, false);
2296 
2297 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2298 				goto out;
2299 		}
2300 	}
2301 out:
2302 	scan_curseg_cache(sbi);
2303 
2304 	up_read(&nm_i->nat_tree_lock);
2305 }
2306 
2307 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2308 						bool sync, bool mount)
2309 {
2310 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2311 	int i = 0, ret;
2312 	nid_t nid = nm_i->next_scan_nid;
2313 
2314 	if (unlikely(nid >= nm_i->max_nid))
2315 		nid = 0;
2316 
2317 	/* Enough entries */
2318 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2319 		return 0;
2320 
2321 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2322 		return 0;
2323 
2324 	if (!mount) {
2325 		/* try to find free nids in free_nid_bitmap */
2326 		scan_free_nid_bits(sbi);
2327 
2328 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2329 			return 0;
2330 	}
2331 
2332 	/* readahead nat pages to be scanned */
2333 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2334 							META_NAT, true);
2335 
2336 	down_read(&nm_i->nat_tree_lock);
2337 
2338 	while (1) {
2339 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2340 						nm_i->nat_block_bitmap)) {
2341 			struct page *page = get_current_nat_page(sbi, nid);
2342 
2343 			if (IS_ERR(page)) {
2344 				ret = PTR_ERR(page);
2345 			} else {
2346 				ret = scan_nat_page(sbi, page, nid);
2347 				f2fs_put_page(page, 1);
2348 			}
2349 
2350 			if (ret) {
2351 				up_read(&nm_i->nat_tree_lock);
2352 				f2fs_bug_on(sbi, !mount);
2353 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2354 				return ret;
2355 			}
2356 		}
2357 
2358 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2359 		if (unlikely(nid >= nm_i->max_nid))
2360 			nid = 0;
2361 
2362 		if (++i >= FREE_NID_PAGES)
2363 			break;
2364 	}
2365 
2366 	/* go to the next free nat pages to find free nids abundantly */
2367 	nm_i->next_scan_nid = nid;
2368 
2369 	/* find free nids from current sum_pages */
2370 	scan_curseg_cache(sbi);
2371 
2372 	up_read(&nm_i->nat_tree_lock);
2373 
2374 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2375 					nm_i->ra_nid_pages, META_NAT, false);
2376 
2377 	return 0;
2378 }
2379 
2380 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2381 {
2382 	int ret;
2383 
2384 	mutex_lock(&NM_I(sbi)->build_lock);
2385 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2386 	mutex_unlock(&NM_I(sbi)->build_lock);
2387 
2388 	return ret;
2389 }
2390 
2391 /*
2392  * If this function returns success, caller can obtain a new nid
2393  * from second parameter of this function.
2394  * The returned nid could be used ino as well as nid when inode is created.
2395  */
2396 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2397 {
2398 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2399 	struct free_nid *i = NULL;
2400 retry:
2401 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2402 		f2fs_show_injection_info(FAULT_ALLOC_NID);
2403 		return false;
2404 	}
2405 
2406 	spin_lock(&nm_i->nid_list_lock);
2407 
2408 	if (unlikely(nm_i->available_nids == 0)) {
2409 		spin_unlock(&nm_i->nid_list_lock);
2410 		return false;
2411 	}
2412 
2413 	/* We should not use stale free nids created by f2fs_build_free_nids */
2414 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2415 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2416 		i = list_first_entry(&nm_i->free_nid_list,
2417 					struct free_nid, list);
2418 		*nid = i->nid;
2419 
2420 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2421 		nm_i->available_nids--;
2422 
2423 		update_free_nid_bitmap(sbi, *nid, false, false);
2424 
2425 		spin_unlock(&nm_i->nid_list_lock);
2426 		return true;
2427 	}
2428 	spin_unlock(&nm_i->nid_list_lock);
2429 
2430 	/* Let's scan nat pages and its caches to get free nids */
2431 	if (!f2fs_build_free_nids(sbi, true, false))
2432 		goto retry;
2433 	return false;
2434 }
2435 
2436 /*
2437  * f2fs_alloc_nid() should be called prior to this function.
2438  */
2439 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2440 {
2441 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2442 	struct free_nid *i;
2443 
2444 	spin_lock(&nm_i->nid_list_lock);
2445 	i = __lookup_free_nid_list(nm_i, nid);
2446 	f2fs_bug_on(sbi, !i);
2447 	__remove_free_nid(sbi, i, PREALLOC_NID);
2448 	spin_unlock(&nm_i->nid_list_lock);
2449 
2450 	kmem_cache_free(free_nid_slab, i);
2451 }
2452 
2453 /*
2454  * f2fs_alloc_nid() should be called prior to this function.
2455  */
2456 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2457 {
2458 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2459 	struct free_nid *i;
2460 	bool need_free = false;
2461 
2462 	if (!nid)
2463 		return;
2464 
2465 	spin_lock(&nm_i->nid_list_lock);
2466 	i = __lookup_free_nid_list(nm_i, nid);
2467 	f2fs_bug_on(sbi, !i);
2468 
2469 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2470 		__remove_free_nid(sbi, i, PREALLOC_NID);
2471 		need_free = true;
2472 	} else {
2473 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2474 	}
2475 
2476 	nm_i->available_nids++;
2477 
2478 	update_free_nid_bitmap(sbi, nid, true, false);
2479 
2480 	spin_unlock(&nm_i->nid_list_lock);
2481 
2482 	if (need_free)
2483 		kmem_cache_free(free_nid_slab, i);
2484 }
2485 
2486 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2487 {
2488 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2489 	struct free_nid *i, *next;
2490 	int nr = nr_shrink;
2491 
2492 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2493 		return 0;
2494 
2495 	if (!mutex_trylock(&nm_i->build_lock))
2496 		return 0;
2497 
2498 	spin_lock(&nm_i->nid_list_lock);
2499 	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2500 		if (nr_shrink <= 0 ||
2501 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2502 			break;
2503 
2504 		__remove_free_nid(sbi, i, FREE_NID);
2505 		kmem_cache_free(free_nid_slab, i);
2506 		nr_shrink--;
2507 	}
2508 	spin_unlock(&nm_i->nid_list_lock);
2509 	mutex_unlock(&nm_i->build_lock);
2510 
2511 	return nr - nr_shrink;
2512 }
2513 
2514 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2515 {
2516 	void *src_addr, *dst_addr;
2517 	size_t inline_size;
2518 	struct page *ipage;
2519 	struct f2fs_inode *ri;
2520 
2521 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2522 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2523 
2524 	ri = F2FS_INODE(page);
2525 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2526 		set_inode_flag(inode, FI_INLINE_XATTR);
2527 	} else {
2528 		clear_inode_flag(inode, FI_INLINE_XATTR);
2529 		goto update_inode;
2530 	}
2531 
2532 	dst_addr = inline_xattr_addr(inode, ipage);
2533 	src_addr = inline_xattr_addr(inode, page);
2534 	inline_size = inline_xattr_size(inode);
2535 
2536 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2537 	memcpy(dst_addr, src_addr, inline_size);
2538 update_inode:
2539 	f2fs_update_inode(inode, ipage);
2540 	f2fs_put_page(ipage, 1);
2541 }
2542 
2543 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2544 {
2545 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2546 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2547 	nid_t new_xnid;
2548 	struct dnode_of_data dn;
2549 	struct node_info ni;
2550 	struct page *xpage;
2551 	int err;
2552 
2553 	if (!prev_xnid)
2554 		goto recover_xnid;
2555 
2556 	/* 1: invalidate the previous xattr nid */
2557 	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2558 	if (err)
2559 		return err;
2560 
2561 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2562 	dec_valid_node_count(sbi, inode, false);
2563 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2564 
2565 recover_xnid:
2566 	/* 2: update xattr nid in inode */
2567 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2568 		return -ENOSPC;
2569 
2570 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2571 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2572 	if (IS_ERR(xpage)) {
2573 		f2fs_alloc_nid_failed(sbi, new_xnid);
2574 		return PTR_ERR(xpage);
2575 	}
2576 
2577 	f2fs_alloc_nid_done(sbi, new_xnid);
2578 	f2fs_update_inode_page(inode);
2579 
2580 	/* 3: update and set xattr node page dirty */
2581 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2582 
2583 	set_page_dirty(xpage);
2584 	f2fs_put_page(xpage, 1);
2585 
2586 	return 0;
2587 }
2588 
2589 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2590 {
2591 	struct f2fs_inode *src, *dst;
2592 	nid_t ino = ino_of_node(page);
2593 	struct node_info old_ni, new_ni;
2594 	struct page *ipage;
2595 	int err;
2596 
2597 	err = f2fs_get_node_info(sbi, ino, &old_ni);
2598 	if (err)
2599 		return err;
2600 
2601 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2602 		return -EINVAL;
2603 retry:
2604 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2605 	if (!ipage) {
2606 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2607 		goto retry;
2608 	}
2609 
2610 	/* Should not use this inode from free nid list */
2611 	remove_free_nid(sbi, ino);
2612 
2613 	if (!PageUptodate(ipage))
2614 		SetPageUptodate(ipage);
2615 	fill_node_footer(ipage, ino, ino, 0, true);
2616 	set_cold_node(ipage, false);
2617 
2618 	src = F2FS_INODE(page);
2619 	dst = F2FS_INODE(ipage);
2620 
2621 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2622 	dst->i_size = 0;
2623 	dst->i_blocks = cpu_to_le64(1);
2624 	dst->i_links = cpu_to_le32(1);
2625 	dst->i_xattr_nid = 0;
2626 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2627 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2628 		dst->i_extra_isize = src->i_extra_isize;
2629 
2630 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2631 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2632 							i_inline_xattr_size))
2633 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2634 
2635 		if (f2fs_sb_has_project_quota(sbi) &&
2636 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2637 								i_projid))
2638 			dst->i_projid = src->i_projid;
2639 
2640 		if (f2fs_sb_has_inode_crtime(sbi) &&
2641 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2642 							i_crtime_nsec)) {
2643 			dst->i_crtime = src->i_crtime;
2644 			dst->i_crtime_nsec = src->i_crtime_nsec;
2645 		}
2646 	}
2647 
2648 	new_ni = old_ni;
2649 	new_ni.ino = ino;
2650 
2651 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2652 		WARN_ON(1);
2653 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2654 	inc_valid_inode_count(sbi);
2655 	set_page_dirty(ipage);
2656 	f2fs_put_page(ipage, 1);
2657 	return 0;
2658 }
2659 
2660 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2661 			unsigned int segno, struct f2fs_summary_block *sum)
2662 {
2663 	struct f2fs_node *rn;
2664 	struct f2fs_summary *sum_entry;
2665 	block_t addr;
2666 	int i, idx, last_offset, nrpages;
2667 
2668 	/* scan the node segment */
2669 	last_offset = sbi->blocks_per_seg;
2670 	addr = START_BLOCK(sbi, segno);
2671 	sum_entry = &sum->entries[0];
2672 
2673 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2674 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2675 
2676 		/* readahead node pages */
2677 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2678 
2679 		for (idx = addr; idx < addr + nrpages; idx++) {
2680 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2681 
2682 			if (IS_ERR(page))
2683 				return PTR_ERR(page);
2684 
2685 			rn = F2FS_NODE(page);
2686 			sum_entry->nid = rn->footer.nid;
2687 			sum_entry->version = 0;
2688 			sum_entry->ofs_in_node = 0;
2689 			sum_entry++;
2690 			f2fs_put_page(page, 1);
2691 		}
2692 
2693 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2694 							addr + nrpages);
2695 	}
2696 	return 0;
2697 }
2698 
2699 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2700 {
2701 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2702 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2703 	struct f2fs_journal *journal = curseg->journal;
2704 	int i;
2705 
2706 	down_write(&curseg->journal_rwsem);
2707 	for (i = 0; i < nats_in_cursum(journal); i++) {
2708 		struct nat_entry *ne;
2709 		struct f2fs_nat_entry raw_ne;
2710 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2711 
2712 		raw_ne = nat_in_journal(journal, i);
2713 
2714 		ne = __lookup_nat_cache(nm_i, nid);
2715 		if (!ne) {
2716 			ne = __alloc_nat_entry(nid, true);
2717 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2718 		}
2719 
2720 		/*
2721 		 * if a free nat in journal has not been used after last
2722 		 * checkpoint, we should remove it from available nids,
2723 		 * since later we will add it again.
2724 		 */
2725 		if (!get_nat_flag(ne, IS_DIRTY) &&
2726 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2727 			spin_lock(&nm_i->nid_list_lock);
2728 			nm_i->available_nids--;
2729 			spin_unlock(&nm_i->nid_list_lock);
2730 		}
2731 
2732 		__set_nat_cache_dirty(nm_i, ne);
2733 	}
2734 	update_nats_in_cursum(journal, -i);
2735 	up_write(&curseg->journal_rwsem);
2736 }
2737 
2738 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2739 						struct list_head *head, int max)
2740 {
2741 	struct nat_entry_set *cur;
2742 
2743 	if (nes->entry_cnt >= max)
2744 		goto add_out;
2745 
2746 	list_for_each_entry(cur, head, set_list) {
2747 		if (cur->entry_cnt >= nes->entry_cnt) {
2748 			list_add(&nes->set_list, cur->set_list.prev);
2749 			return;
2750 		}
2751 	}
2752 add_out:
2753 	list_add_tail(&nes->set_list, head);
2754 }
2755 
2756 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2757 						struct page *page)
2758 {
2759 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2760 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2761 	struct f2fs_nat_block *nat_blk = page_address(page);
2762 	int valid = 0;
2763 	int i = 0;
2764 
2765 	if (!enabled_nat_bits(sbi, NULL))
2766 		return;
2767 
2768 	if (nat_index == 0) {
2769 		valid = 1;
2770 		i = 1;
2771 	}
2772 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2773 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2774 			valid++;
2775 	}
2776 	if (valid == 0) {
2777 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2778 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2779 		return;
2780 	}
2781 
2782 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2783 	if (valid == NAT_ENTRY_PER_BLOCK)
2784 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2785 	else
2786 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2787 }
2788 
2789 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2790 		struct nat_entry_set *set, struct cp_control *cpc)
2791 {
2792 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2793 	struct f2fs_journal *journal = curseg->journal;
2794 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2795 	bool to_journal = true;
2796 	struct f2fs_nat_block *nat_blk;
2797 	struct nat_entry *ne, *cur;
2798 	struct page *page = NULL;
2799 
2800 	/*
2801 	 * there are two steps to flush nat entries:
2802 	 * #1, flush nat entries to journal in current hot data summary block.
2803 	 * #2, flush nat entries to nat page.
2804 	 */
2805 	if (enabled_nat_bits(sbi, cpc) ||
2806 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2807 		to_journal = false;
2808 
2809 	if (to_journal) {
2810 		down_write(&curseg->journal_rwsem);
2811 	} else {
2812 		page = get_next_nat_page(sbi, start_nid);
2813 		if (IS_ERR(page))
2814 			return PTR_ERR(page);
2815 
2816 		nat_blk = page_address(page);
2817 		f2fs_bug_on(sbi, !nat_blk);
2818 	}
2819 
2820 	/* flush dirty nats in nat entry set */
2821 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2822 		struct f2fs_nat_entry *raw_ne;
2823 		nid_t nid = nat_get_nid(ne);
2824 		int offset;
2825 
2826 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2827 
2828 		if (to_journal) {
2829 			offset = f2fs_lookup_journal_in_cursum(journal,
2830 							NAT_JOURNAL, nid, 1);
2831 			f2fs_bug_on(sbi, offset < 0);
2832 			raw_ne = &nat_in_journal(journal, offset);
2833 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2834 		} else {
2835 			raw_ne = &nat_blk->entries[nid - start_nid];
2836 		}
2837 		raw_nat_from_node_info(raw_ne, &ne->ni);
2838 		nat_reset_flag(ne);
2839 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2840 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2841 			add_free_nid(sbi, nid, false, true);
2842 		} else {
2843 			spin_lock(&NM_I(sbi)->nid_list_lock);
2844 			update_free_nid_bitmap(sbi, nid, false, false);
2845 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2846 		}
2847 	}
2848 
2849 	if (to_journal) {
2850 		up_write(&curseg->journal_rwsem);
2851 	} else {
2852 		__update_nat_bits(sbi, start_nid, page);
2853 		f2fs_put_page(page, 1);
2854 	}
2855 
2856 	/* Allow dirty nats by node block allocation in write_begin */
2857 	if (!set->entry_cnt) {
2858 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2859 		kmem_cache_free(nat_entry_set_slab, set);
2860 	}
2861 	return 0;
2862 }
2863 
2864 /*
2865  * This function is called during the checkpointing process.
2866  */
2867 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2868 {
2869 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2870 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2871 	struct f2fs_journal *journal = curseg->journal;
2872 	struct nat_entry_set *setvec[SETVEC_SIZE];
2873 	struct nat_entry_set *set, *tmp;
2874 	unsigned int found;
2875 	nid_t set_idx = 0;
2876 	LIST_HEAD(sets);
2877 	int err = 0;
2878 
2879 	/* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2880 	if (enabled_nat_bits(sbi, cpc)) {
2881 		down_write(&nm_i->nat_tree_lock);
2882 		remove_nats_in_journal(sbi);
2883 		up_write(&nm_i->nat_tree_lock);
2884 	}
2885 
2886 	if (!nm_i->dirty_nat_cnt)
2887 		return 0;
2888 
2889 	down_write(&nm_i->nat_tree_lock);
2890 
2891 	/*
2892 	 * if there are no enough space in journal to store dirty nat
2893 	 * entries, remove all entries from journal and merge them
2894 	 * into nat entry set.
2895 	 */
2896 	if (enabled_nat_bits(sbi, cpc) ||
2897 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2898 		remove_nats_in_journal(sbi);
2899 
2900 	while ((found = __gang_lookup_nat_set(nm_i,
2901 					set_idx, SETVEC_SIZE, setvec))) {
2902 		unsigned idx;
2903 		set_idx = setvec[found - 1]->set + 1;
2904 		for (idx = 0; idx < found; idx++)
2905 			__adjust_nat_entry_set(setvec[idx], &sets,
2906 						MAX_NAT_JENTRIES(journal));
2907 	}
2908 
2909 	/* flush dirty nats in nat entry set */
2910 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
2911 		err = __flush_nat_entry_set(sbi, set, cpc);
2912 		if (err)
2913 			break;
2914 	}
2915 
2916 	up_write(&nm_i->nat_tree_lock);
2917 	/* Allow dirty nats by node block allocation in write_begin */
2918 
2919 	return err;
2920 }
2921 
2922 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2923 {
2924 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2925 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2926 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2927 	unsigned int i;
2928 	__u64 cp_ver = cur_cp_version(ckpt);
2929 	block_t nat_bits_addr;
2930 
2931 	if (!enabled_nat_bits(sbi, NULL))
2932 		return 0;
2933 
2934 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2935 	nm_i->nat_bits = f2fs_kzalloc(sbi,
2936 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2937 	if (!nm_i->nat_bits)
2938 		return -ENOMEM;
2939 
2940 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2941 						nm_i->nat_bits_blocks;
2942 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2943 		struct page *page;
2944 
2945 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2946 		if (IS_ERR(page))
2947 			return PTR_ERR(page);
2948 
2949 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2950 					page_address(page), F2FS_BLKSIZE);
2951 		f2fs_put_page(page, 1);
2952 	}
2953 
2954 	cp_ver |= (cur_cp_crc(ckpt) << 32);
2955 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2956 		disable_nat_bits(sbi, true);
2957 		return 0;
2958 	}
2959 
2960 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
2961 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2962 
2963 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
2964 	return 0;
2965 }
2966 
2967 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2968 {
2969 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2970 	unsigned int i = 0;
2971 	nid_t nid, last_nid;
2972 
2973 	if (!enabled_nat_bits(sbi, NULL))
2974 		return;
2975 
2976 	for (i = 0; i < nm_i->nat_blocks; i++) {
2977 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2978 		if (i >= nm_i->nat_blocks)
2979 			break;
2980 
2981 		__set_bit_le(i, nm_i->nat_block_bitmap);
2982 
2983 		nid = i * NAT_ENTRY_PER_BLOCK;
2984 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
2985 
2986 		spin_lock(&NM_I(sbi)->nid_list_lock);
2987 		for (; nid < last_nid; nid++)
2988 			update_free_nid_bitmap(sbi, nid, true, true);
2989 		spin_unlock(&NM_I(sbi)->nid_list_lock);
2990 	}
2991 
2992 	for (i = 0; i < nm_i->nat_blocks; i++) {
2993 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2994 		if (i >= nm_i->nat_blocks)
2995 			break;
2996 
2997 		__set_bit_le(i, nm_i->nat_block_bitmap);
2998 	}
2999 }
3000 
3001 static int init_node_manager(struct f2fs_sb_info *sbi)
3002 {
3003 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3004 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3005 	unsigned char *version_bitmap;
3006 	unsigned int nat_segs;
3007 	int err;
3008 
3009 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3010 
3011 	/* segment_count_nat includes pair segment so divide to 2. */
3012 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3013 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3014 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3015 
3016 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3017 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3018 						F2FS_RESERVED_NODE_NUM;
3019 	nm_i->nid_cnt[FREE_NID] = 0;
3020 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3021 	nm_i->nat_cnt = 0;
3022 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3023 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3024 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3025 
3026 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3027 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3028 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3029 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3030 	INIT_LIST_HEAD(&nm_i->nat_entries);
3031 	spin_lock_init(&nm_i->nat_list_lock);
3032 
3033 	mutex_init(&nm_i->build_lock);
3034 	spin_lock_init(&nm_i->nid_list_lock);
3035 	init_rwsem(&nm_i->nat_tree_lock);
3036 
3037 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3038 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3039 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3040 	if (!version_bitmap)
3041 		return -EFAULT;
3042 
3043 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3044 					GFP_KERNEL);
3045 	if (!nm_i->nat_bitmap)
3046 		return -ENOMEM;
3047 
3048 	err = __get_nat_bitmaps(sbi);
3049 	if (err)
3050 		return err;
3051 
3052 #ifdef CONFIG_F2FS_CHECK_FS
3053 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3054 					GFP_KERNEL);
3055 	if (!nm_i->nat_bitmap_mir)
3056 		return -ENOMEM;
3057 #endif
3058 
3059 	return 0;
3060 }
3061 
3062 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3063 {
3064 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3065 	int i;
3066 
3067 	nm_i->free_nid_bitmap =
3068 		f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3069 					     nm_i->nat_blocks),
3070 			     GFP_KERNEL);
3071 	if (!nm_i->free_nid_bitmap)
3072 		return -ENOMEM;
3073 
3074 	for (i = 0; i < nm_i->nat_blocks; i++) {
3075 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3076 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3077 		if (!nm_i->free_nid_bitmap[i])
3078 			return -ENOMEM;
3079 	}
3080 
3081 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3082 								GFP_KERNEL);
3083 	if (!nm_i->nat_block_bitmap)
3084 		return -ENOMEM;
3085 
3086 	nm_i->free_nid_count =
3087 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3088 					      nm_i->nat_blocks),
3089 			      GFP_KERNEL);
3090 	if (!nm_i->free_nid_count)
3091 		return -ENOMEM;
3092 	return 0;
3093 }
3094 
3095 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3096 {
3097 	int err;
3098 
3099 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3100 							GFP_KERNEL);
3101 	if (!sbi->nm_info)
3102 		return -ENOMEM;
3103 
3104 	err = init_node_manager(sbi);
3105 	if (err)
3106 		return err;
3107 
3108 	err = init_free_nid_cache(sbi);
3109 	if (err)
3110 		return err;
3111 
3112 	/* load free nid status from nat_bits table */
3113 	load_free_nid_bitmap(sbi);
3114 
3115 	return f2fs_build_free_nids(sbi, true, true);
3116 }
3117 
3118 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3119 {
3120 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3121 	struct free_nid *i, *next_i;
3122 	struct nat_entry *natvec[NATVEC_SIZE];
3123 	struct nat_entry_set *setvec[SETVEC_SIZE];
3124 	nid_t nid = 0;
3125 	unsigned int found;
3126 
3127 	if (!nm_i)
3128 		return;
3129 
3130 	/* destroy free nid list */
3131 	spin_lock(&nm_i->nid_list_lock);
3132 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3133 		__remove_free_nid(sbi, i, FREE_NID);
3134 		spin_unlock(&nm_i->nid_list_lock);
3135 		kmem_cache_free(free_nid_slab, i);
3136 		spin_lock(&nm_i->nid_list_lock);
3137 	}
3138 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3139 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3140 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3141 	spin_unlock(&nm_i->nid_list_lock);
3142 
3143 	/* destroy nat cache */
3144 	down_write(&nm_i->nat_tree_lock);
3145 	while ((found = __gang_lookup_nat_cache(nm_i,
3146 					nid, NATVEC_SIZE, natvec))) {
3147 		unsigned idx;
3148 
3149 		nid = nat_get_nid(natvec[found - 1]) + 1;
3150 		for (idx = 0; idx < found; idx++) {
3151 			spin_lock(&nm_i->nat_list_lock);
3152 			list_del(&natvec[idx]->list);
3153 			spin_unlock(&nm_i->nat_list_lock);
3154 
3155 			__del_from_nat_cache(nm_i, natvec[idx]);
3156 		}
3157 	}
3158 	f2fs_bug_on(sbi, nm_i->nat_cnt);
3159 
3160 	/* destroy nat set cache */
3161 	nid = 0;
3162 	while ((found = __gang_lookup_nat_set(nm_i,
3163 					nid, SETVEC_SIZE, setvec))) {
3164 		unsigned idx;
3165 
3166 		nid = setvec[found - 1]->set + 1;
3167 		for (idx = 0; idx < found; idx++) {
3168 			/* entry_cnt is not zero, when cp_error was occurred */
3169 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3170 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3171 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3172 		}
3173 	}
3174 	up_write(&nm_i->nat_tree_lock);
3175 
3176 	kvfree(nm_i->nat_block_bitmap);
3177 	if (nm_i->free_nid_bitmap) {
3178 		int i;
3179 
3180 		for (i = 0; i < nm_i->nat_blocks; i++)
3181 			kvfree(nm_i->free_nid_bitmap[i]);
3182 		kvfree(nm_i->free_nid_bitmap);
3183 	}
3184 	kvfree(nm_i->free_nid_count);
3185 
3186 	kvfree(nm_i->nat_bitmap);
3187 	kvfree(nm_i->nat_bits);
3188 #ifdef CONFIG_F2FS_CHECK_FS
3189 	kvfree(nm_i->nat_bitmap_mir);
3190 #endif
3191 	sbi->nm_info = NULL;
3192 	kvfree(nm_i);
3193 }
3194 
3195 int __init f2fs_create_node_manager_caches(void)
3196 {
3197 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3198 			sizeof(struct nat_entry));
3199 	if (!nat_entry_slab)
3200 		goto fail;
3201 
3202 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
3203 			sizeof(struct free_nid));
3204 	if (!free_nid_slab)
3205 		goto destroy_nat_entry;
3206 
3207 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3208 			sizeof(struct nat_entry_set));
3209 	if (!nat_entry_set_slab)
3210 		goto destroy_free_nid;
3211 
3212 	fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3213 			sizeof(struct fsync_node_entry));
3214 	if (!fsync_node_entry_slab)
3215 		goto destroy_nat_entry_set;
3216 	return 0;
3217 
3218 destroy_nat_entry_set:
3219 	kmem_cache_destroy(nat_entry_set_slab);
3220 destroy_free_nid:
3221 	kmem_cache_destroy(free_nid_slab);
3222 destroy_nat_entry:
3223 	kmem_cache_destroy(nat_entry_slab);
3224 fail:
3225 	return -ENOMEM;
3226 }
3227 
3228 void f2fs_destroy_node_manager_caches(void)
3229 {
3230 	kmem_cache_destroy(fsync_node_entry_slab);
3231 	kmem_cache_destroy(nat_entry_set_slab);
3232 	kmem_cache_destroy(free_nid_slab);
3233 	kmem_cache_destroy(nat_entry_slab);
3234 }
3235