1 /* 2 * fs/f2fs/node.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/mpage.h> 14 #include <linux/backing-dev.h> 15 #include <linux/blkdev.h> 16 #include <linux/pagevec.h> 17 #include <linux/swap.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "trace.h" 23 #include <trace/events/f2fs.h> 24 25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock) 26 27 static struct kmem_cache *nat_entry_slab; 28 static struct kmem_cache *free_nid_slab; 29 static struct kmem_cache *nat_entry_set_slab; 30 31 bool available_free_memory(struct f2fs_sb_info *sbi, int type) 32 { 33 struct f2fs_nm_info *nm_i = NM_I(sbi); 34 struct sysinfo val; 35 unsigned long avail_ram; 36 unsigned long mem_size = 0; 37 bool res = false; 38 39 si_meminfo(&val); 40 41 /* only uses low memory */ 42 avail_ram = val.totalram - val.totalhigh; 43 44 /* 45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively 46 */ 47 if (type == FREE_NIDS) { 48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 49 PAGE_SHIFT; 50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 51 } else if (type == NAT_ENTRIES) { 52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 53 PAGE_SHIFT; 54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 55 } else if (type == DIRTY_DENTS) { 56 if (sbi->sb->s_bdi->wb.dirty_exceeded) 57 return false; 58 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 59 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 60 } else if (type == INO_ENTRIES) { 61 int i; 62 63 for (i = 0; i <= UPDATE_INO; i++) 64 mem_size += (sbi->im[i].ino_num * 65 sizeof(struct ino_entry)) >> PAGE_SHIFT; 66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 67 } else if (type == EXTENT_CACHE) { 68 mem_size = (atomic_read(&sbi->total_ext_tree) * 69 sizeof(struct extent_tree) + 70 atomic_read(&sbi->total_ext_node) * 71 sizeof(struct extent_node)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 73 } else { 74 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 75 return true; 76 } 77 return res; 78 } 79 80 static void clear_node_page_dirty(struct page *page) 81 { 82 struct address_space *mapping = page->mapping; 83 unsigned int long flags; 84 85 if (PageDirty(page)) { 86 spin_lock_irqsave(&mapping->tree_lock, flags); 87 radix_tree_tag_clear(&mapping->page_tree, 88 page_index(page), 89 PAGECACHE_TAG_DIRTY); 90 spin_unlock_irqrestore(&mapping->tree_lock, flags); 91 92 clear_page_dirty_for_io(page); 93 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 94 } 95 ClearPageUptodate(page); 96 } 97 98 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 99 { 100 pgoff_t index = current_nat_addr(sbi, nid); 101 return get_meta_page(sbi, index); 102 } 103 104 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 105 { 106 struct page *src_page; 107 struct page *dst_page; 108 pgoff_t src_off; 109 pgoff_t dst_off; 110 void *src_addr; 111 void *dst_addr; 112 struct f2fs_nm_info *nm_i = NM_I(sbi); 113 114 src_off = current_nat_addr(sbi, nid); 115 dst_off = next_nat_addr(sbi, src_off); 116 117 /* get current nat block page with lock */ 118 src_page = get_meta_page(sbi, src_off); 119 dst_page = grab_meta_page(sbi, dst_off); 120 f2fs_bug_on(sbi, PageDirty(src_page)); 121 122 src_addr = page_address(src_page); 123 dst_addr = page_address(dst_page); 124 memcpy(dst_addr, src_addr, PAGE_SIZE); 125 set_page_dirty(dst_page); 126 f2fs_put_page(src_page, 1); 127 128 set_to_next_nat(nm_i, nid); 129 130 return dst_page; 131 } 132 133 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 134 { 135 return radix_tree_lookup(&nm_i->nat_root, n); 136 } 137 138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 139 nid_t start, unsigned int nr, struct nat_entry **ep) 140 { 141 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 142 } 143 144 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 145 { 146 list_del(&e->list); 147 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 148 nm_i->nat_cnt--; 149 kmem_cache_free(nat_entry_slab, e); 150 } 151 152 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 153 struct nat_entry *ne) 154 { 155 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 156 struct nat_entry_set *head; 157 158 if (get_nat_flag(ne, IS_DIRTY)) 159 return; 160 161 head = radix_tree_lookup(&nm_i->nat_set_root, set); 162 if (!head) { 163 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); 164 165 INIT_LIST_HEAD(&head->entry_list); 166 INIT_LIST_HEAD(&head->set_list); 167 head->set = set; 168 head->entry_cnt = 0; 169 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 170 } 171 list_move_tail(&ne->list, &head->entry_list); 172 nm_i->dirty_nat_cnt++; 173 head->entry_cnt++; 174 set_nat_flag(ne, IS_DIRTY, true); 175 } 176 177 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 178 struct nat_entry *ne) 179 { 180 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 181 struct nat_entry_set *head; 182 183 head = radix_tree_lookup(&nm_i->nat_set_root, set); 184 if (head) { 185 list_move_tail(&ne->list, &nm_i->nat_entries); 186 set_nat_flag(ne, IS_DIRTY, false); 187 head->entry_cnt--; 188 nm_i->dirty_nat_cnt--; 189 } 190 } 191 192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 193 nid_t start, unsigned int nr, struct nat_entry_set **ep) 194 { 195 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 196 start, nr); 197 } 198 199 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 200 { 201 struct f2fs_nm_info *nm_i = NM_I(sbi); 202 struct nat_entry *e; 203 bool need = false; 204 205 down_read(&nm_i->nat_tree_lock); 206 e = __lookup_nat_cache(nm_i, nid); 207 if (e) { 208 if (!get_nat_flag(e, IS_CHECKPOINTED) && 209 !get_nat_flag(e, HAS_FSYNCED_INODE)) 210 need = true; 211 } 212 up_read(&nm_i->nat_tree_lock); 213 return need; 214 } 215 216 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 217 { 218 struct f2fs_nm_info *nm_i = NM_I(sbi); 219 struct nat_entry *e; 220 bool is_cp = true; 221 222 down_read(&nm_i->nat_tree_lock); 223 e = __lookup_nat_cache(nm_i, nid); 224 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 225 is_cp = false; 226 up_read(&nm_i->nat_tree_lock); 227 return is_cp; 228 } 229 230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 231 { 232 struct f2fs_nm_info *nm_i = NM_I(sbi); 233 struct nat_entry *e; 234 bool need_update = true; 235 236 down_read(&nm_i->nat_tree_lock); 237 e = __lookup_nat_cache(nm_i, ino); 238 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 239 (get_nat_flag(e, IS_CHECKPOINTED) || 240 get_nat_flag(e, HAS_FSYNCED_INODE))) 241 need_update = false; 242 up_read(&nm_i->nat_tree_lock); 243 return need_update; 244 } 245 246 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid) 247 { 248 struct nat_entry *new; 249 250 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS); 251 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new); 252 memset(new, 0, sizeof(struct nat_entry)); 253 nat_set_nid(new, nid); 254 nat_reset_flag(new); 255 list_add_tail(&new->list, &nm_i->nat_entries); 256 nm_i->nat_cnt++; 257 return new; 258 } 259 260 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 261 struct f2fs_nat_entry *ne) 262 { 263 struct f2fs_nm_info *nm_i = NM_I(sbi); 264 struct nat_entry *e; 265 266 e = __lookup_nat_cache(nm_i, nid); 267 if (!e) { 268 e = grab_nat_entry(nm_i, nid); 269 node_info_from_raw_nat(&e->ni, ne); 270 } else { 271 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino || 272 nat_get_blkaddr(e) != ne->block_addr || 273 nat_get_version(e) != ne->version); 274 } 275 } 276 277 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 278 block_t new_blkaddr, bool fsync_done) 279 { 280 struct f2fs_nm_info *nm_i = NM_I(sbi); 281 struct nat_entry *e; 282 283 down_write(&nm_i->nat_tree_lock); 284 e = __lookup_nat_cache(nm_i, ni->nid); 285 if (!e) { 286 e = grab_nat_entry(nm_i, ni->nid); 287 copy_node_info(&e->ni, ni); 288 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 289 } else if (new_blkaddr == NEW_ADDR) { 290 /* 291 * when nid is reallocated, 292 * previous nat entry can be remained in nat cache. 293 * So, reinitialize it with new information. 294 */ 295 copy_node_info(&e->ni, ni); 296 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 297 } 298 299 /* sanity check */ 300 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 301 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 302 new_blkaddr == NULL_ADDR); 303 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 304 new_blkaddr == NEW_ADDR); 305 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR && 306 nat_get_blkaddr(e) != NULL_ADDR && 307 new_blkaddr == NEW_ADDR); 308 309 /* increment version no as node is removed */ 310 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 311 unsigned char version = nat_get_version(e); 312 nat_set_version(e, inc_node_version(version)); 313 314 /* in order to reuse the nid */ 315 if (nm_i->next_scan_nid > ni->nid) 316 nm_i->next_scan_nid = ni->nid; 317 } 318 319 /* change address */ 320 nat_set_blkaddr(e, new_blkaddr); 321 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR) 322 set_nat_flag(e, IS_CHECKPOINTED, false); 323 __set_nat_cache_dirty(nm_i, e); 324 325 /* update fsync_mark if its inode nat entry is still alive */ 326 if (ni->nid != ni->ino) 327 e = __lookup_nat_cache(nm_i, ni->ino); 328 if (e) { 329 if (fsync_done && ni->nid == ni->ino) 330 set_nat_flag(e, HAS_FSYNCED_INODE, true); 331 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 332 } 333 up_write(&nm_i->nat_tree_lock); 334 } 335 336 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 337 { 338 struct f2fs_nm_info *nm_i = NM_I(sbi); 339 int nr = nr_shrink; 340 341 if (!down_write_trylock(&nm_i->nat_tree_lock)) 342 return 0; 343 344 while (nr_shrink && !list_empty(&nm_i->nat_entries)) { 345 struct nat_entry *ne; 346 ne = list_first_entry(&nm_i->nat_entries, 347 struct nat_entry, list); 348 __del_from_nat_cache(nm_i, ne); 349 nr_shrink--; 350 } 351 up_write(&nm_i->nat_tree_lock); 352 return nr - nr_shrink; 353 } 354 355 /* 356 * This function always returns success 357 */ 358 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni) 359 { 360 struct f2fs_nm_info *nm_i = NM_I(sbi); 361 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 362 struct f2fs_journal *journal = curseg->journal; 363 nid_t start_nid = START_NID(nid); 364 struct f2fs_nat_block *nat_blk; 365 struct page *page = NULL; 366 struct f2fs_nat_entry ne; 367 struct nat_entry *e; 368 int i; 369 370 ni->nid = nid; 371 372 /* Check nat cache */ 373 down_read(&nm_i->nat_tree_lock); 374 e = __lookup_nat_cache(nm_i, nid); 375 if (e) { 376 ni->ino = nat_get_ino(e); 377 ni->blk_addr = nat_get_blkaddr(e); 378 ni->version = nat_get_version(e); 379 up_read(&nm_i->nat_tree_lock); 380 return; 381 } 382 383 memset(&ne, 0, sizeof(struct f2fs_nat_entry)); 384 385 /* Check current segment summary */ 386 down_read(&curseg->journal_rwsem); 387 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 388 if (i >= 0) { 389 ne = nat_in_journal(journal, i); 390 node_info_from_raw_nat(ni, &ne); 391 } 392 up_read(&curseg->journal_rwsem); 393 if (i >= 0) 394 goto cache; 395 396 /* Fill node_info from nat page */ 397 page = get_current_nat_page(sbi, start_nid); 398 nat_blk = (struct f2fs_nat_block *)page_address(page); 399 ne = nat_blk->entries[nid - start_nid]; 400 node_info_from_raw_nat(ni, &ne); 401 f2fs_put_page(page, 1); 402 cache: 403 up_read(&nm_i->nat_tree_lock); 404 /* cache nat entry */ 405 down_write(&nm_i->nat_tree_lock); 406 cache_nat_entry(sbi, nid, &ne); 407 up_write(&nm_i->nat_tree_lock); 408 } 409 410 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 411 { 412 const long direct_index = ADDRS_PER_INODE(dn->inode); 413 const long direct_blks = ADDRS_PER_BLOCK; 414 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 415 unsigned int skipped_unit = ADDRS_PER_BLOCK; 416 int cur_level = dn->cur_level; 417 int max_level = dn->max_level; 418 pgoff_t base = 0; 419 420 if (!dn->max_level) 421 return pgofs + 1; 422 423 while (max_level-- > cur_level) 424 skipped_unit *= NIDS_PER_BLOCK; 425 426 switch (dn->max_level) { 427 case 3: 428 base += 2 * indirect_blks; 429 case 2: 430 base += 2 * direct_blks; 431 case 1: 432 base += direct_index; 433 break; 434 default: 435 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 436 } 437 438 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 439 } 440 441 /* 442 * The maximum depth is four. 443 * Offset[0] will have raw inode offset. 444 */ 445 static int get_node_path(struct inode *inode, long block, 446 int offset[4], unsigned int noffset[4]) 447 { 448 const long direct_index = ADDRS_PER_INODE(inode); 449 const long direct_blks = ADDRS_PER_BLOCK; 450 const long dptrs_per_blk = NIDS_PER_BLOCK; 451 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK; 452 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 453 int n = 0; 454 int level = 0; 455 456 noffset[0] = 0; 457 458 if (block < direct_index) { 459 offset[n] = block; 460 goto got; 461 } 462 block -= direct_index; 463 if (block < direct_blks) { 464 offset[n++] = NODE_DIR1_BLOCK; 465 noffset[n] = 1; 466 offset[n] = block; 467 level = 1; 468 goto got; 469 } 470 block -= direct_blks; 471 if (block < direct_blks) { 472 offset[n++] = NODE_DIR2_BLOCK; 473 noffset[n] = 2; 474 offset[n] = block; 475 level = 1; 476 goto got; 477 } 478 block -= direct_blks; 479 if (block < indirect_blks) { 480 offset[n++] = NODE_IND1_BLOCK; 481 noffset[n] = 3; 482 offset[n++] = block / direct_blks; 483 noffset[n] = 4 + offset[n - 1]; 484 offset[n] = block % direct_blks; 485 level = 2; 486 goto got; 487 } 488 block -= indirect_blks; 489 if (block < indirect_blks) { 490 offset[n++] = NODE_IND2_BLOCK; 491 noffset[n] = 4 + dptrs_per_blk; 492 offset[n++] = block / direct_blks; 493 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 494 offset[n] = block % direct_blks; 495 level = 2; 496 goto got; 497 } 498 block -= indirect_blks; 499 if (block < dindirect_blks) { 500 offset[n++] = NODE_DIND_BLOCK; 501 noffset[n] = 5 + (dptrs_per_blk * 2); 502 offset[n++] = block / indirect_blks; 503 noffset[n] = 6 + (dptrs_per_blk * 2) + 504 offset[n - 1] * (dptrs_per_blk + 1); 505 offset[n++] = (block / direct_blks) % dptrs_per_blk; 506 noffset[n] = 7 + (dptrs_per_blk * 2) + 507 offset[n - 2] * (dptrs_per_blk + 1) + 508 offset[n - 1]; 509 offset[n] = block % direct_blks; 510 level = 3; 511 goto got; 512 } else { 513 BUG(); 514 } 515 got: 516 return level; 517 } 518 519 /* 520 * Caller should call f2fs_put_dnode(dn). 521 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 522 * f2fs_unlock_op() only if ro is not set RDONLY_NODE. 523 * In the case of RDONLY_NODE, we don't need to care about mutex. 524 */ 525 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 526 { 527 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 528 struct page *npage[4]; 529 struct page *parent = NULL; 530 int offset[4]; 531 unsigned int noffset[4]; 532 nid_t nids[4]; 533 int level, i = 0; 534 int err = 0; 535 536 level = get_node_path(dn->inode, index, offset, noffset); 537 538 nids[0] = dn->inode->i_ino; 539 npage[0] = dn->inode_page; 540 541 if (!npage[0]) { 542 npage[0] = get_node_page(sbi, nids[0]); 543 if (IS_ERR(npage[0])) 544 return PTR_ERR(npage[0]); 545 } 546 547 /* if inline_data is set, should not report any block indices */ 548 if (f2fs_has_inline_data(dn->inode) && index) { 549 err = -ENOENT; 550 f2fs_put_page(npage[0], 1); 551 goto release_out; 552 } 553 554 parent = npage[0]; 555 if (level != 0) 556 nids[1] = get_nid(parent, offset[0], true); 557 dn->inode_page = npage[0]; 558 dn->inode_page_locked = true; 559 560 /* get indirect or direct nodes */ 561 for (i = 1; i <= level; i++) { 562 bool done = false; 563 564 if (!nids[i] && mode == ALLOC_NODE) { 565 /* alloc new node */ 566 if (!alloc_nid(sbi, &(nids[i]))) { 567 err = -ENOSPC; 568 goto release_pages; 569 } 570 571 dn->nid = nids[i]; 572 npage[i] = new_node_page(dn, noffset[i], NULL); 573 if (IS_ERR(npage[i])) { 574 alloc_nid_failed(sbi, nids[i]); 575 err = PTR_ERR(npage[i]); 576 goto release_pages; 577 } 578 579 set_nid(parent, offset[i - 1], nids[i], i == 1); 580 alloc_nid_done(sbi, nids[i]); 581 done = true; 582 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 583 npage[i] = get_node_page_ra(parent, offset[i - 1]); 584 if (IS_ERR(npage[i])) { 585 err = PTR_ERR(npage[i]); 586 goto release_pages; 587 } 588 done = true; 589 } 590 if (i == 1) { 591 dn->inode_page_locked = false; 592 unlock_page(parent); 593 } else { 594 f2fs_put_page(parent, 1); 595 } 596 597 if (!done) { 598 npage[i] = get_node_page(sbi, nids[i]); 599 if (IS_ERR(npage[i])) { 600 err = PTR_ERR(npage[i]); 601 f2fs_put_page(npage[0], 0); 602 goto release_out; 603 } 604 } 605 if (i < level) { 606 parent = npage[i]; 607 nids[i + 1] = get_nid(parent, offset[i], false); 608 } 609 } 610 dn->nid = nids[level]; 611 dn->ofs_in_node = offset[level]; 612 dn->node_page = npage[level]; 613 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 614 return 0; 615 616 release_pages: 617 f2fs_put_page(parent, 1); 618 if (i > 1) 619 f2fs_put_page(npage[0], 0); 620 release_out: 621 dn->inode_page = NULL; 622 dn->node_page = NULL; 623 if (err == -ENOENT) { 624 dn->cur_level = i; 625 dn->max_level = level; 626 } 627 return err; 628 } 629 630 static void truncate_node(struct dnode_of_data *dn) 631 { 632 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 633 struct node_info ni; 634 635 get_node_info(sbi, dn->nid, &ni); 636 if (dn->inode->i_blocks == 0) { 637 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR); 638 goto invalidate; 639 } 640 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 641 642 /* Deallocate node address */ 643 invalidate_blocks(sbi, ni.blk_addr); 644 dec_valid_node_count(sbi, dn->inode); 645 set_node_addr(sbi, &ni, NULL_ADDR, false); 646 647 if (dn->nid == dn->inode->i_ino) { 648 remove_orphan_inode(sbi, dn->nid); 649 dec_valid_inode_count(sbi); 650 } else { 651 sync_inode_page(dn); 652 } 653 invalidate: 654 clear_node_page_dirty(dn->node_page); 655 set_sbi_flag(sbi, SBI_IS_DIRTY); 656 657 f2fs_put_page(dn->node_page, 1); 658 659 invalidate_mapping_pages(NODE_MAPPING(sbi), 660 dn->node_page->index, dn->node_page->index); 661 662 dn->node_page = NULL; 663 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 664 } 665 666 static int truncate_dnode(struct dnode_of_data *dn) 667 { 668 struct page *page; 669 670 if (dn->nid == 0) 671 return 1; 672 673 /* get direct node */ 674 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 675 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) 676 return 1; 677 else if (IS_ERR(page)) 678 return PTR_ERR(page); 679 680 /* Make dnode_of_data for parameter */ 681 dn->node_page = page; 682 dn->ofs_in_node = 0; 683 truncate_data_blocks(dn); 684 truncate_node(dn); 685 return 1; 686 } 687 688 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 689 int ofs, int depth) 690 { 691 struct dnode_of_data rdn = *dn; 692 struct page *page; 693 struct f2fs_node *rn; 694 nid_t child_nid; 695 unsigned int child_nofs; 696 int freed = 0; 697 int i, ret; 698 699 if (dn->nid == 0) 700 return NIDS_PER_BLOCK + 1; 701 702 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 703 704 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid); 705 if (IS_ERR(page)) { 706 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 707 return PTR_ERR(page); 708 } 709 710 rn = F2FS_NODE(page); 711 if (depth < 3) { 712 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 713 child_nid = le32_to_cpu(rn->in.nid[i]); 714 if (child_nid == 0) 715 continue; 716 rdn.nid = child_nid; 717 ret = truncate_dnode(&rdn); 718 if (ret < 0) 719 goto out_err; 720 if (set_nid(page, i, 0, false)) 721 dn->node_changed = true; 722 } 723 } else { 724 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 725 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 726 child_nid = le32_to_cpu(rn->in.nid[i]); 727 if (child_nid == 0) { 728 child_nofs += NIDS_PER_BLOCK + 1; 729 continue; 730 } 731 rdn.nid = child_nid; 732 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 733 if (ret == (NIDS_PER_BLOCK + 1)) { 734 if (set_nid(page, i, 0, false)) 735 dn->node_changed = true; 736 child_nofs += ret; 737 } else if (ret < 0 && ret != -ENOENT) { 738 goto out_err; 739 } 740 } 741 freed = child_nofs; 742 } 743 744 if (!ofs) { 745 /* remove current indirect node */ 746 dn->node_page = page; 747 truncate_node(dn); 748 freed++; 749 } else { 750 f2fs_put_page(page, 1); 751 } 752 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 753 return freed; 754 755 out_err: 756 f2fs_put_page(page, 1); 757 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 758 return ret; 759 } 760 761 static int truncate_partial_nodes(struct dnode_of_data *dn, 762 struct f2fs_inode *ri, int *offset, int depth) 763 { 764 struct page *pages[2]; 765 nid_t nid[3]; 766 nid_t child_nid; 767 int err = 0; 768 int i; 769 int idx = depth - 2; 770 771 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 772 if (!nid[0]) 773 return 0; 774 775 /* get indirect nodes in the path */ 776 for (i = 0; i < idx + 1; i++) { 777 /* reference count'll be increased */ 778 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]); 779 if (IS_ERR(pages[i])) { 780 err = PTR_ERR(pages[i]); 781 idx = i - 1; 782 goto fail; 783 } 784 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 785 } 786 787 /* free direct nodes linked to a partial indirect node */ 788 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 789 child_nid = get_nid(pages[idx], i, false); 790 if (!child_nid) 791 continue; 792 dn->nid = child_nid; 793 err = truncate_dnode(dn); 794 if (err < 0) 795 goto fail; 796 if (set_nid(pages[idx], i, 0, false)) 797 dn->node_changed = true; 798 } 799 800 if (offset[idx + 1] == 0) { 801 dn->node_page = pages[idx]; 802 dn->nid = nid[idx]; 803 truncate_node(dn); 804 } else { 805 f2fs_put_page(pages[idx], 1); 806 } 807 offset[idx]++; 808 offset[idx + 1] = 0; 809 idx--; 810 fail: 811 for (i = idx; i >= 0; i--) 812 f2fs_put_page(pages[i], 1); 813 814 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 815 816 return err; 817 } 818 819 /* 820 * All the block addresses of data and nodes should be nullified. 821 */ 822 int truncate_inode_blocks(struct inode *inode, pgoff_t from) 823 { 824 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 825 int err = 0, cont = 1; 826 int level, offset[4], noffset[4]; 827 unsigned int nofs = 0; 828 struct f2fs_inode *ri; 829 struct dnode_of_data dn; 830 struct page *page; 831 832 trace_f2fs_truncate_inode_blocks_enter(inode, from); 833 834 level = get_node_path(inode, from, offset, noffset); 835 restart: 836 page = get_node_page(sbi, inode->i_ino); 837 if (IS_ERR(page)) { 838 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 839 return PTR_ERR(page); 840 } 841 842 set_new_dnode(&dn, inode, page, NULL, 0); 843 unlock_page(page); 844 845 ri = F2FS_INODE(page); 846 switch (level) { 847 case 0: 848 case 1: 849 nofs = noffset[1]; 850 break; 851 case 2: 852 nofs = noffset[1]; 853 if (!offset[level - 1]) 854 goto skip_partial; 855 err = truncate_partial_nodes(&dn, ri, offset, level); 856 if (err < 0 && err != -ENOENT) 857 goto fail; 858 nofs += 1 + NIDS_PER_BLOCK; 859 break; 860 case 3: 861 nofs = 5 + 2 * NIDS_PER_BLOCK; 862 if (!offset[level - 1]) 863 goto skip_partial; 864 err = truncate_partial_nodes(&dn, ri, offset, level); 865 if (err < 0 && err != -ENOENT) 866 goto fail; 867 break; 868 default: 869 BUG(); 870 } 871 872 skip_partial: 873 while (cont) { 874 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 875 switch (offset[0]) { 876 case NODE_DIR1_BLOCK: 877 case NODE_DIR2_BLOCK: 878 err = truncate_dnode(&dn); 879 break; 880 881 case NODE_IND1_BLOCK: 882 case NODE_IND2_BLOCK: 883 err = truncate_nodes(&dn, nofs, offset[1], 2); 884 break; 885 886 case NODE_DIND_BLOCK: 887 err = truncate_nodes(&dn, nofs, offset[1], 3); 888 cont = 0; 889 break; 890 891 default: 892 BUG(); 893 } 894 if (err < 0 && err != -ENOENT) 895 goto fail; 896 if (offset[1] == 0 && 897 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 898 lock_page(page); 899 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 900 f2fs_put_page(page, 1); 901 goto restart; 902 } 903 f2fs_wait_on_page_writeback(page, NODE, true); 904 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 905 set_page_dirty(page); 906 unlock_page(page); 907 } 908 offset[1] = 0; 909 offset[0]++; 910 nofs += err; 911 } 912 fail: 913 f2fs_put_page(page, 0); 914 trace_f2fs_truncate_inode_blocks_exit(inode, err); 915 return err > 0 ? 0 : err; 916 } 917 918 int truncate_xattr_node(struct inode *inode, struct page *page) 919 { 920 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 921 nid_t nid = F2FS_I(inode)->i_xattr_nid; 922 struct dnode_of_data dn; 923 struct page *npage; 924 925 if (!nid) 926 return 0; 927 928 npage = get_node_page(sbi, nid); 929 if (IS_ERR(npage)) 930 return PTR_ERR(npage); 931 932 F2FS_I(inode)->i_xattr_nid = 0; 933 934 /* need to do checkpoint during fsync */ 935 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); 936 937 set_new_dnode(&dn, inode, page, npage, nid); 938 939 if (page) 940 dn.inode_page_locked = true; 941 truncate_node(&dn); 942 return 0; 943 } 944 945 /* 946 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 947 * f2fs_unlock_op(). 948 */ 949 int remove_inode_page(struct inode *inode) 950 { 951 struct dnode_of_data dn; 952 int err; 953 954 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 955 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); 956 if (err) 957 return err; 958 959 err = truncate_xattr_node(inode, dn.inode_page); 960 if (err) { 961 f2fs_put_dnode(&dn); 962 return err; 963 } 964 965 /* remove potential inline_data blocks */ 966 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 967 S_ISLNK(inode->i_mode)) 968 truncate_data_blocks_range(&dn, 1); 969 970 /* 0 is possible, after f2fs_new_inode() has failed */ 971 f2fs_bug_on(F2FS_I_SB(inode), 972 inode->i_blocks != 0 && inode->i_blocks != 1); 973 974 /* will put inode & node pages */ 975 truncate_node(&dn); 976 return 0; 977 } 978 979 struct page *new_inode_page(struct inode *inode) 980 { 981 struct dnode_of_data dn; 982 983 /* allocate inode page for new inode */ 984 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 985 986 /* caller should f2fs_put_page(page, 1); */ 987 return new_node_page(&dn, 0, NULL); 988 } 989 990 struct page *new_node_page(struct dnode_of_data *dn, 991 unsigned int ofs, struct page *ipage) 992 { 993 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 994 struct node_info old_ni, new_ni; 995 struct page *page; 996 int err; 997 998 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))) 999 return ERR_PTR(-EPERM); 1000 1001 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid); 1002 if (!page) 1003 return ERR_PTR(-ENOMEM); 1004 1005 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) { 1006 err = -ENOSPC; 1007 goto fail; 1008 } 1009 1010 get_node_info(sbi, dn->nid, &old_ni); 1011 1012 /* Reinitialize old_ni with new node page */ 1013 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR); 1014 new_ni = old_ni; 1015 new_ni.ino = dn->inode->i_ino; 1016 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1017 1018 f2fs_wait_on_page_writeback(page, NODE, true); 1019 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1020 set_cold_node(dn->inode, page); 1021 SetPageUptodate(page); 1022 if (set_page_dirty(page)) 1023 dn->node_changed = true; 1024 1025 if (f2fs_has_xattr_block(ofs)) 1026 F2FS_I(dn->inode)->i_xattr_nid = dn->nid; 1027 1028 dn->node_page = page; 1029 if (ipage) 1030 update_inode(dn->inode, ipage); 1031 else 1032 sync_inode_page(dn); 1033 if (ofs == 0) 1034 inc_valid_inode_count(sbi); 1035 1036 return page; 1037 1038 fail: 1039 clear_node_page_dirty(page); 1040 f2fs_put_page(page, 1); 1041 return ERR_PTR(err); 1042 } 1043 1044 /* 1045 * Caller should do after getting the following values. 1046 * 0: f2fs_put_page(page, 0) 1047 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1048 */ 1049 static int read_node_page(struct page *page, int rw) 1050 { 1051 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1052 struct node_info ni; 1053 struct f2fs_io_info fio = { 1054 .sbi = sbi, 1055 .type = NODE, 1056 .rw = rw, 1057 .page = page, 1058 .encrypted_page = NULL, 1059 }; 1060 1061 get_node_info(sbi, page->index, &ni); 1062 1063 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1064 ClearPageUptodate(page); 1065 return -ENOENT; 1066 } 1067 1068 if (PageUptodate(page)) 1069 return LOCKED_PAGE; 1070 1071 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1072 return f2fs_submit_page_bio(&fio); 1073 } 1074 1075 /* 1076 * Readahead a node page 1077 */ 1078 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1079 { 1080 struct page *apage; 1081 int err; 1082 1083 if (!nid) 1084 return; 1085 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1086 1087 rcu_read_lock(); 1088 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid); 1089 rcu_read_unlock(); 1090 if (apage) 1091 return; 1092 1093 apage = grab_cache_page(NODE_MAPPING(sbi), nid); 1094 if (!apage) 1095 return; 1096 1097 err = read_node_page(apage, READA); 1098 f2fs_put_page(apage, err ? 1 : 0); 1099 } 1100 1101 /* 1102 * readahead MAX_RA_NODE number of node pages. 1103 */ 1104 static void ra_node_pages(struct page *parent, int start) 1105 { 1106 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1107 struct blk_plug plug; 1108 int i, end; 1109 nid_t nid; 1110 1111 blk_start_plug(&plug); 1112 1113 /* Then, try readahead for siblings of the desired node */ 1114 end = start + MAX_RA_NODE; 1115 end = min(end, NIDS_PER_BLOCK); 1116 for (i = start; i < end; i++) { 1117 nid = get_nid(parent, i, false); 1118 ra_node_page(sbi, nid); 1119 } 1120 1121 blk_finish_plug(&plug); 1122 } 1123 1124 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1125 struct page *parent, int start) 1126 { 1127 struct page *page; 1128 int err; 1129 1130 if (!nid) 1131 return ERR_PTR(-ENOENT); 1132 f2fs_bug_on(sbi, check_nid_range(sbi, nid)); 1133 repeat: 1134 page = grab_cache_page(NODE_MAPPING(sbi), nid); 1135 if (!page) 1136 return ERR_PTR(-ENOMEM); 1137 1138 err = read_node_page(page, READ_SYNC); 1139 if (err < 0) { 1140 f2fs_put_page(page, 1); 1141 return ERR_PTR(err); 1142 } else if (err == LOCKED_PAGE) { 1143 goto page_hit; 1144 } 1145 1146 if (parent) 1147 ra_node_pages(parent, start + 1); 1148 1149 lock_page(page); 1150 1151 if (unlikely(!PageUptodate(page))) { 1152 f2fs_put_page(page, 1); 1153 return ERR_PTR(-EIO); 1154 } 1155 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1156 f2fs_put_page(page, 1); 1157 goto repeat; 1158 } 1159 page_hit: 1160 f2fs_bug_on(sbi, nid != nid_of_node(page)); 1161 return page; 1162 } 1163 1164 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1165 { 1166 return __get_node_page(sbi, nid, NULL, 0); 1167 } 1168 1169 struct page *get_node_page_ra(struct page *parent, int start) 1170 { 1171 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1172 nid_t nid = get_nid(parent, start, false); 1173 1174 return __get_node_page(sbi, nid, parent, start); 1175 } 1176 1177 void sync_inode_page(struct dnode_of_data *dn) 1178 { 1179 int ret = 0; 1180 1181 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) { 1182 ret = update_inode(dn->inode, dn->node_page); 1183 } else if (dn->inode_page) { 1184 if (!dn->inode_page_locked) 1185 lock_page(dn->inode_page); 1186 ret = update_inode(dn->inode, dn->inode_page); 1187 if (!dn->inode_page_locked) 1188 unlock_page(dn->inode_page); 1189 } else { 1190 ret = update_inode_page(dn->inode); 1191 } 1192 dn->node_changed = ret ? true: false; 1193 } 1194 1195 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1196 { 1197 struct inode *inode; 1198 struct page *page; 1199 1200 /* should flush inline_data before evict_inode */ 1201 inode = ilookup(sbi->sb, ino); 1202 if (!inode) 1203 return; 1204 1205 page = pagecache_get_page(inode->i_mapping, 0, FGP_NOWAIT, 0); 1206 if (!page) 1207 goto iput_out; 1208 1209 if (!trylock_page(page)) 1210 goto release_out; 1211 1212 if (!PageUptodate(page)) 1213 goto page_out; 1214 1215 if (!PageDirty(page)) 1216 goto page_out; 1217 1218 if (!clear_page_dirty_for_io(page)) 1219 goto page_out; 1220 1221 if (!f2fs_write_inline_data(inode, page)) 1222 inode_dec_dirty_pages(inode); 1223 else 1224 set_page_dirty(page); 1225 page_out: 1226 unlock_page(page); 1227 release_out: 1228 f2fs_put_page(page, 0); 1229 iput_out: 1230 iput(inode); 1231 } 1232 1233 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino, 1234 struct writeback_control *wbc) 1235 { 1236 pgoff_t index, end; 1237 struct pagevec pvec; 1238 int step = ino ? 2 : 0; 1239 int nwritten = 0; 1240 1241 pagevec_init(&pvec, 0); 1242 1243 next_step: 1244 index = 0; 1245 end = ULONG_MAX; 1246 1247 while (index <= end) { 1248 int i, nr_pages; 1249 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1250 PAGECACHE_TAG_DIRTY, 1251 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1252 if (nr_pages == 0) 1253 break; 1254 1255 for (i = 0; i < nr_pages; i++) { 1256 struct page *page = pvec.pages[i]; 1257 1258 if (unlikely(f2fs_cp_error(sbi))) { 1259 pagevec_release(&pvec); 1260 return -EIO; 1261 } 1262 1263 /* 1264 * flushing sequence with step: 1265 * 0. indirect nodes 1266 * 1. dentry dnodes 1267 * 2. file dnodes 1268 */ 1269 if (step == 0 && IS_DNODE(page)) 1270 continue; 1271 if (step == 1 && (!IS_DNODE(page) || 1272 is_cold_node(page))) 1273 continue; 1274 if (step == 2 && (!IS_DNODE(page) || 1275 !is_cold_node(page))) 1276 continue; 1277 1278 /* 1279 * If an fsync mode, 1280 * we should not skip writing node pages. 1281 */ 1282 lock_node: 1283 if (ino && ino_of_node(page) == ino) 1284 lock_page(page); 1285 else if (!trylock_page(page)) 1286 continue; 1287 1288 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1289 continue_unlock: 1290 unlock_page(page); 1291 continue; 1292 } 1293 if (ino && ino_of_node(page) != ino) 1294 goto continue_unlock; 1295 1296 if (!PageDirty(page)) { 1297 /* someone wrote it for us */ 1298 goto continue_unlock; 1299 } 1300 1301 /* flush inline_data */ 1302 if (!ino && is_inline_node(page)) { 1303 clear_inline_node(page); 1304 unlock_page(page); 1305 flush_inline_data(sbi, ino_of_node(page)); 1306 goto lock_node; 1307 } 1308 1309 f2fs_wait_on_page_writeback(page, NODE, true); 1310 1311 BUG_ON(PageWriteback(page)); 1312 if (!clear_page_dirty_for_io(page)) 1313 goto continue_unlock; 1314 1315 /* called by fsync() */ 1316 if (ino && IS_DNODE(page)) { 1317 set_fsync_mark(page, 1); 1318 if (IS_INODE(page)) 1319 set_dentry_mark(page, 1320 need_dentry_mark(sbi, ino)); 1321 nwritten++; 1322 } else { 1323 set_fsync_mark(page, 0); 1324 set_dentry_mark(page, 0); 1325 } 1326 1327 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc)) 1328 unlock_page(page); 1329 1330 if (--wbc->nr_to_write == 0) 1331 break; 1332 } 1333 pagevec_release(&pvec); 1334 cond_resched(); 1335 1336 if (wbc->nr_to_write == 0) { 1337 step = 2; 1338 break; 1339 } 1340 } 1341 1342 if (step < 2) { 1343 step++; 1344 goto next_step; 1345 } 1346 return nwritten; 1347 } 1348 1349 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino) 1350 { 1351 pgoff_t index = 0, end = ULONG_MAX; 1352 struct pagevec pvec; 1353 int ret2 = 0, ret = 0; 1354 1355 pagevec_init(&pvec, 0); 1356 1357 while (index <= end) { 1358 int i, nr_pages; 1359 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1360 PAGECACHE_TAG_WRITEBACK, 1361 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1362 if (nr_pages == 0) 1363 break; 1364 1365 for (i = 0; i < nr_pages; i++) { 1366 struct page *page = pvec.pages[i]; 1367 1368 /* until radix tree lookup accepts end_index */ 1369 if (unlikely(page->index > end)) 1370 continue; 1371 1372 if (ino && ino_of_node(page) == ino) { 1373 f2fs_wait_on_page_writeback(page, NODE, true); 1374 if (TestClearPageError(page)) 1375 ret = -EIO; 1376 } 1377 } 1378 pagevec_release(&pvec); 1379 cond_resched(); 1380 } 1381 1382 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags))) 1383 ret2 = -ENOSPC; 1384 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags))) 1385 ret2 = -EIO; 1386 if (!ret) 1387 ret = ret2; 1388 return ret; 1389 } 1390 1391 static int f2fs_write_node_page(struct page *page, 1392 struct writeback_control *wbc) 1393 { 1394 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1395 nid_t nid; 1396 struct node_info ni; 1397 struct f2fs_io_info fio = { 1398 .sbi = sbi, 1399 .type = NODE, 1400 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE, 1401 .page = page, 1402 .encrypted_page = NULL, 1403 }; 1404 1405 trace_f2fs_writepage(page, NODE); 1406 1407 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1408 goto redirty_out; 1409 if (unlikely(f2fs_cp_error(sbi))) 1410 goto redirty_out; 1411 1412 /* get old block addr of this node page */ 1413 nid = nid_of_node(page); 1414 f2fs_bug_on(sbi, page->index != nid); 1415 1416 if (wbc->for_reclaim) { 1417 if (!down_read_trylock(&sbi->node_write)) 1418 goto redirty_out; 1419 } else { 1420 down_read(&sbi->node_write); 1421 } 1422 1423 get_node_info(sbi, nid, &ni); 1424 1425 /* This page is already truncated */ 1426 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1427 ClearPageUptodate(page); 1428 dec_page_count(sbi, F2FS_DIRTY_NODES); 1429 up_read(&sbi->node_write); 1430 unlock_page(page); 1431 return 0; 1432 } 1433 1434 set_page_writeback(page); 1435 fio.old_blkaddr = ni.blk_addr; 1436 write_node_page(nid, &fio); 1437 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1438 dec_page_count(sbi, F2FS_DIRTY_NODES); 1439 up_read(&sbi->node_write); 1440 1441 if (wbc->for_reclaim) 1442 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE); 1443 1444 unlock_page(page); 1445 1446 if (unlikely(f2fs_cp_error(sbi))) 1447 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1448 1449 return 0; 1450 1451 redirty_out: 1452 redirty_page_for_writepage(wbc, page); 1453 return AOP_WRITEPAGE_ACTIVATE; 1454 } 1455 1456 static int f2fs_write_node_pages(struct address_space *mapping, 1457 struct writeback_control *wbc) 1458 { 1459 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 1460 long diff; 1461 1462 /* balancing f2fs's metadata in background */ 1463 f2fs_balance_fs_bg(sbi); 1464 1465 /* collect a number of dirty node pages and write together */ 1466 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE)) 1467 goto skip_write; 1468 1469 trace_f2fs_writepages(mapping->host, wbc, NODE); 1470 1471 diff = nr_pages_to_write(sbi, NODE, wbc); 1472 wbc->sync_mode = WB_SYNC_NONE; 1473 sync_node_pages(sbi, 0, wbc); 1474 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 1475 return 0; 1476 1477 skip_write: 1478 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 1479 trace_f2fs_writepages(mapping->host, wbc, NODE); 1480 return 0; 1481 } 1482 1483 static int f2fs_set_node_page_dirty(struct page *page) 1484 { 1485 trace_f2fs_set_page_dirty(page, NODE); 1486 1487 SetPageUptodate(page); 1488 if (!PageDirty(page)) { 1489 __set_page_dirty_nobuffers(page); 1490 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 1491 SetPagePrivate(page); 1492 f2fs_trace_pid(page); 1493 return 1; 1494 } 1495 return 0; 1496 } 1497 1498 /* 1499 * Structure of the f2fs node operations 1500 */ 1501 const struct address_space_operations f2fs_node_aops = { 1502 .writepage = f2fs_write_node_page, 1503 .writepages = f2fs_write_node_pages, 1504 .set_page_dirty = f2fs_set_node_page_dirty, 1505 .invalidatepage = f2fs_invalidate_page, 1506 .releasepage = f2fs_release_page, 1507 }; 1508 1509 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 1510 nid_t n) 1511 { 1512 return radix_tree_lookup(&nm_i->free_nid_root, n); 1513 } 1514 1515 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i, 1516 struct free_nid *i) 1517 { 1518 list_del(&i->list); 1519 radix_tree_delete(&nm_i->free_nid_root, i->nid); 1520 } 1521 1522 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) 1523 { 1524 struct f2fs_nm_info *nm_i = NM_I(sbi); 1525 struct free_nid *i; 1526 struct nat_entry *ne; 1527 bool allocated = false; 1528 1529 if (!available_free_memory(sbi, FREE_NIDS)) 1530 return -1; 1531 1532 /* 0 nid should not be used */ 1533 if (unlikely(nid == 0)) 1534 return 0; 1535 1536 if (build) { 1537 /* do not add allocated nids */ 1538 ne = __lookup_nat_cache(nm_i, nid); 1539 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 1540 nat_get_blkaddr(ne) != NULL_ADDR)) 1541 allocated = true; 1542 if (allocated) 1543 return 0; 1544 } 1545 1546 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); 1547 i->nid = nid; 1548 i->state = NID_NEW; 1549 1550 if (radix_tree_preload(GFP_NOFS)) { 1551 kmem_cache_free(free_nid_slab, i); 1552 return 0; 1553 } 1554 1555 spin_lock(&nm_i->free_nid_list_lock); 1556 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) { 1557 spin_unlock(&nm_i->free_nid_list_lock); 1558 radix_tree_preload_end(); 1559 kmem_cache_free(free_nid_slab, i); 1560 return 0; 1561 } 1562 list_add_tail(&i->list, &nm_i->free_nid_list); 1563 nm_i->fcnt++; 1564 spin_unlock(&nm_i->free_nid_list_lock); 1565 radix_tree_preload_end(); 1566 return 1; 1567 } 1568 1569 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid) 1570 { 1571 struct free_nid *i; 1572 bool need_free = false; 1573 1574 spin_lock(&nm_i->free_nid_list_lock); 1575 i = __lookup_free_nid_list(nm_i, nid); 1576 if (i && i->state == NID_NEW) { 1577 __del_from_free_nid_list(nm_i, i); 1578 nm_i->fcnt--; 1579 need_free = true; 1580 } 1581 spin_unlock(&nm_i->free_nid_list_lock); 1582 1583 if (need_free) 1584 kmem_cache_free(free_nid_slab, i); 1585 } 1586 1587 static void scan_nat_page(struct f2fs_sb_info *sbi, 1588 struct page *nat_page, nid_t start_nid) 1589 { 1590 struct f2fs_nm_info *nm_i = NM_I(sbi); 1591 struct f2fs_nat_block *nat_blk = page_address(nat_page); 1592 block_t blk_addr; 1593 int i; 1594 1595 i = start_nid % NAT_ENTRY_PER_BLOCK; 1596 1597 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 1598 1599 if (unlikely(start_nid >= nm_i->max_nid)) 1600 break; 1601 1602 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 1603 f2fs_bug_on(sbi, blk_addr == NEW_ADDR); 1604 if (blk_addr == NULL_ADDR) { 1605 if (add_free_nid(sbi, start_nid, true) < 0) 1606 break; 1607 } 1608 } 1609 } 1610 1611 static void build_free_nids(struct f2fs_sb_info *sbi) 1612 { 1613 struct f2fs_nm_info *nm_i = NM_I(sbi); 1614 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1615 struct f2fs_journal *journal = curseg->journal; 1616 int i = 0; 1617 nid_t nid = nm_i->next_scan_nid; 1618 1619 /* Enough entries */ 1620 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK) 1621 return; 1622 1623 /* readahead nat pages to be scanned */ 1624 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 1625 META_NAT, true); 1626 1627 down_read(&nm_i->nat_tree_lock); 1628 1629 while (1) { 1630 struct page *page = get_current_nat_page(sbi, nid); 1631 1632 scan_nat_page(sbi, page, nid); 1633 f2fs_put_page(page, 1); 1634 1635 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 1636 if (unlikely(nid >= nm_i->max_nid)) 1637 nid = 0; 1638 1639 if (++i >= FREE_NID_PAGES) 1640 break; 1641 } 1642 1643 /* go to the next free nat pages to find free nids abundantly */ 1644 nm_i->next_scan_nid = nid; 1645 1646 /* find free nids from current sum_pages */ 1647 down_read(&curseg->journal_rwsem); 1648 for (i = 0; i < nats_in_cursum(journal); i++) { 1649 block_t addr; 1650 1651 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 1652 nid = le32_to_cpu(nid_in_journal(journal, i)); 1653 if (addr == NULL_ADDR) 1654 add_free_nid(sbi, nid, true); 1655 else 1656 remove_free_nid(nm_i, nid); 1657 } 1658 up_read(&curseg->journal_rwsem); 1659 up_read(&nm_i->nat_tree_lock); 1660 1661 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 1662 nm_i->ra_nid_pages, META_NAT, false); 1663 } 1664 1665 /* 1666 * If this function returns success, caller can obtain a new nid 1667 * from second parameter of this function. 1668 * The returned nid could be used ino as well as nid when inode is created. 1669 */ 1670 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 1671 { 1672 struct f2fs_nm_info *nm_i = NM_I(sbi); 1673 struct free_nid *i = NULL; 1674 retry: 1675 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids)) 1676 return false; 1677 1678 spin_lock(&nm_i->free_nid_list_lock); 1679 1680 /* We should not use stale free nids created by build_free_nids */ 1681 if (nm_i->fcnt && !on_build_free_nids(nm_i)) { 1682 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 1683 list_for_each_entry(i, &nm_i->free_nid_list, list) 1684 if (i->state == NID_NEW) 1685 break; 1686 1687 f2fs_bug_on(sbi, i->state != NID_NEW); 1688 *nid = i->nid; 1689 i->state = NID_ALLOC; 1690 nm_i->fcnt--; 1691 spin_unlock(&nm_i->free_nid_list_lock); 1692 return true; 1693 } 1694 spin_unlock(&nm_i->free_nid_list_lock); 1695 1696 /* Let's scan nat pages and its caches to get free nids */ 1697 mutex_lock(&nm_i->build_lock); 1698 build_free_nids(sbi); 1699 mutex_unlock(&nm_i->build_lock); 1700 goto retry; 1701 } 1702 1703 /* 1704 * alloc_nid() should be called prior to this function. 1705 */ 1706 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 1707 { 1708 struct f2fs_nm_info *nm_i = NM_I(sbi); 1709 struct free_nid *i; 1710 1711 spin_lock(&nm_i->free_nid_list_lock); 1712 i = __lookup_free_nid_list(nm_i, nid); 1713 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); 1714 __del_from_free_nid_list(nm_i, i); 1715 spin_unlock(&nm_i->free_nid_list_lock); 1716 1717 kmem_cache_free(free_nid_slab, i); 1718 } 1719 1720 /* 1721 * alloc_nid() should be called prior to this function. 1722 */ 1723 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 1724 { 1725 struct f2fs_nm_info *nm_i = NM_I(sbi); 1726 struct free_nid *i; 1727 bool need_free = false; 1728 1729 if (!nid) 1730 return; 1731 1732 spin_lock(&nm_i->free_nid_list_lock); 1733 i = __lookup_free_nid_list(nm_i, nid); 1734 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC); 1735 if (!available_free_memory(sbi, FREE_NIDS)) { 1736 __del_from_free_nid_list(nm_i, i); 1737 need_free = true; 1738 } else { 1739 i->state = NID_NEW; 1740 nm_i->fcnt++; 1741 } 1742 spin_unlock(&nm_i->free_nid_list_lock); 1743 1744 if (need_free) 1745 kmem_cache_free(free_nid_slab, i); 1746 } 1747 1748 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 1749 { 1750 struct f2fs_nm_info *nm_i = NM_I(sbi); 1751 struct free_nid *i, *next; 1752 int nr = nr_shrink; 1753 1754 if (!mutex_trylock(&nm_i->build_lock)) 1755 return 0; 1756 1757 spin_lock(&nm_i->free_nid_list_lock); 1758 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 1759 if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK) 1760 break; 1761 if (i->state == NID_ALLOC) 1762 continue; 1763 __del_from_free_nid_list(nm_i, i); 1764 kmem_cache_free(free_nid_slab, i); 1765 nm_i->fcnt--; 1766 nr_shrink--; 1767 } 1768 spin_unlock(&nm_i->free_nid_list_lock); 1769 mutex_unlock(&nm_i->build_lock); 1770 1771 return nr - nr_shrink; 1772 } 1773 1774 void recover_inline_xattr(struct inode *inode, struct page *page) 1775 { 1776 void *src_addr, *dst_addr; 1777 size_t inline_size; 1778 struct page *ipage; 1779 struct f2fs_inode *ri; 1780 1781 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino); 1782 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); 1783 1784 ri = F2FS_INODE(page); 1785 if (!(ri->i_inline & F2FS_INLINE_XATTR)) { 1786 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR); 1787 goto update_inode; 1788 } 1789 1790 dst_addr = inline_xattr_addr(ipage); 1791 src_addr = inline_xattr_addr(page); 1792 inline_size = inline_xattr_size(inode); 1793 1794 f2fs_wait_on_page_writeback(ipage, NODE, true); 1795 memcpy(dst_addr, src_addr, inline_size); 1796 update_inode: 1797 update_inode(inode, ipage); 1798 f2fs_put_page(ipage, 1); 1799 } 1800 1801 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr) 1802 { 1803 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1804 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 1805 nid_t new_xnid = nid_of_node(page); 1806 struct node_info ni; 1807 1808 /* 1: invalidate the previous xattr nid */ 1809 if (!prev_xnid) 1810 goto recover_xnid; 1811 1812 /* Deallocate node address */ 1813 get_node_info(sbi, prev_xnid, &ni); 1814 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR); 1815 invalidate_blocks(sbi, ni.blk_addr); 1816 dec_valid_node_count(sbi, inode); 1817 set_node_addr(sbi, &ni, NULL_ADDR, false); 1818 1819 recover_xnid: 1820 /* 2: allocate new xattr nid */ 1821 if (unlikely(!inc_valid_node_count(sbi, inode))) 1822 f2fs_bug_on(sbi, 1); 1823 1824 remove_free_nid(NM_I(sbi), new_xnid); 1825 get_node_info(sbi, new_xnid, &ni); 1826 ni.ino = inode->i_ino; 1827 set_node_addr(sbi, &ni, NEW_ADDR, false); 1828 F2FS_I(inode)->i_xattr_nid = new_xnid; 1829 1830 /* 3: update xattr blkaddr */ 1831 refresh_sit_entry(sbi, NEW_ADDR, blkaddr); 1832 set_node_addr(sbi, &ni, blkaddr, false); 1833 1834 update_inode_page(inode); 1835 } 1836 1837 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 1838 { 1839 struct f2fs_inode *src, *dst; 1840 nid_t ino = ino_of_node(page); 1841 struct node_info old_ni, new_ni; 1842 struct page *ipage; 1843 1844 get_node_info(sbi, ino, &old_ni); 1845 1846 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 1847 return -EINVAL; 1848 1849 ipage = grab_cache_page(NODE_MAPPING(sbi), ino); 1850 if (!ipage) 1851 return -ENOMEM; 1852 1853 /* Should not use this inode from free nid list */ 1854 remove_free_nid(NM_I(sbi), ino); 1855 1856 SetPageUptodate(ipage); 1857 fill_node_footer(ipage, ino, ino, 0, true); 1858 1859 src = F2FS_INODE(page); 1860 dst = F2FS_INODE(ipage); 1861 1862 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); 1863 dst->i_size = 0; 1864 dst->i_blocks = cpu_to_le64(1); 1865 dst->i_links = cpu_to_le32(1); 1866 dst->i_xattr_nid = 0; 1867 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR; 1868 1869 new_ni = old_ni; 1870 new_ni.ino = ino; 1871 1872 if (unlikely(!inc_valid_node_count(sbi, NULL))) 1873 WARN_ON(1); 1874 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1875 inc_valid_inode_count(sbi); 1876 set_page_dirty(ipage); 1877 f2fs_put_page(ipage, 1); 1878 return 0; 1879 } 1880 1881 int restore_node_summary(struct f2fs_sb_info *sbi, 1882 unsigned int segno, struct f2fs_summary_block *sum) 1883 { 1884 struct f2fs_node *rn; 1885 struct f2fs_summary *sum_entry; 1886 block_t addr; 1887 int bio_blocks = MAX_BIO_BLOCKS(sbi); 1888 int i, idx, last_offset, nrpages; 1889 1890 /* scan the node segment */ 1891 last_offset = sbi->blocks_per_seg; 1892 addr = START_BLOCK(sbi, segno); 1893 sum_entry = &sum->entries[0]; 1894 1895 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 1896 nrpages = min(last_offset - i, bio_blocks); 1897 1898 /* readahead node pages */ 1899 ra_meta_pages(sbi, addr, nrpages, META_POR, true); 1900 1901 for (idx = addr; idx < addr + nrpages; idx++) { 1902 struct page *page = get_tmp_page(sbi, idx); 1903 1904 rn = F2FS_NODE(page); 1905 sum_entry->nid = rn->footer.nid; 1906 sum_entry->version = 0; 1907 sum_entry->ofs_in_node = 0; 1908 sum_entry++; 1909 f2fs_put_page(page, 1); 1910 } 1911 1912 invalidate_mapping_pages(META_MAPPING(sbi), addr, 1913 addr + nrpages); 1914 } 1915 return 0; 1916 } 1917 1918 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 1919 { 1920 struct f2fs_nm_info *nm_i = NM_I(sbi); 1921 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1922 struct f2fs_journal *journal = curseg->journal; 1923 int i; 1924 1925 down_write(&curseg->journal_rwsem); 1926 for (i = 0; i < nats_in_cursum(journal); i++) { 1927 struct nat_entry *ne; 1928 struct f2fs_nat_entry raw_ne; 1929 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 1930 1931 raw_ne = nat_in_journal(journal, i); 1932 1933 ne = __lookup_nat_cache(nm_i, nid); 1934 if (!ne) { 1935 ne = grab_nat_entry(nm_i, nid); 1936 node_info_from_raw_nat(&ne->ni, &raw_ne); 1937 } 1938 __set_nat_cache_dirty(nm_i, ne); 1939 } 1940 update_nats_in_cursum(journal, -i); 1941 up_write(&curseg->journal_rwsem); 1942 } 1943 1944 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 1945 struct list_head *head, int max) 1946 { 1947 struct nat_entry_set *cur; 1948 1949 if (nes->entry_cnt >= max) 1950 goto add_out; 1951 1952 list_for_each_entry(cur, head, set_list) { 1953 if (cur->entry_cnt >= nes->entry_cnt) { 1954 list_add(&nes->set_list, cur->set_list.prev); 1955 return; 1956 } 1957 } 1958 add_out: 1959 list_add_tail(&nes->set_list, head); 1960 } 1961 1962 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi, 1963 struct nat_entry_set *set) 1964 { 1965 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 1966 struct f2fs_journal *journal = curseg->journal; 1967 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 1968 bool to_journal = true; 1969 struct f2fs_nat_block *nat_blk; 1970 struct nat_entry *ne, *cur; 1971 struct page *page = NULL; 1972 1973 /* 1974 * there are two steps to flush nat entries: 1975 * #1, flush nat entries to journal in current hot data summary block. 1976 * #2, flush nat entries to nat page. 1977 */ 1978 if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 1979 to_journal = false; 1980 1981 if (to_journal) { 1982 down_write(&curseg->journal_rwsem); 1983 } else { 1984 page = get_next_nat_page(sbi, start_nid); 1985 nat_blk = page_address(page); 1986 f2fs_bug_on(sbi, !nat_blk); 1987 } 1988 1989 /* flush dirty nats in nat entry set */ 1990 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 1991 struct f2fs_nat_entry *raw_ne; 1992 nid_t nid = nat_get_nid(ne); 1993 int offset; 1994 1995 if (nat_get_blkaddr(ne) == NEW_ADDR) 1996 continue; 1997 1998 if (to_journal) { 1999 offset = lookup_journal_in_cursum(journal, 2000 NAT_JOURNAL, nid, 1); 2001 f2fs_bug_on(sbi, offset < 0); 2002 raw_ne = &nat_in_journal(journal, offset); 2003 nid_in_journal(journal, offset) = cpu_to_le32(nid); 2004 } else { 2005 raw_ne = &nat_blk->entries[nid - start_nid]; 2006 } 2007 raw_nat_from_node_info(raw_ne, &ne->ni); 2008 nat_reset_flag(ne); 2009 __clear_nat_cache_dirty(NM_I(sbi), ne); 2010 if (nat_get_blkaddr(ne) == NULL_ADDR) 2011 add_free_nid(sbi, nid, false); 2012 } 2013 2014 if (to_journal) 2015 up_write(&curseg->journal_rwsem); 2016 else 2017 f2fs_put_page(page, 1); 2018 2019 f2fs_bug_on(sbi, set->entry_cnt); 2020 2021 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 2022 kmem_cache_free(nat_entry_set_slab, set); 2023 } 2024 2025 /* 2026 * This function is called during the checkpointing process. 2027 */ 2028 void flush_nat_entries(struct f2fs_sb_info *sbi) 2029 { 2030 struct f2fs_nm_info *nm_i = NM_I(sbi); 2031 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2032 struct f2fs_journal *journal = curseg->journal; 2033 struct nat_entry_set *setvec[SETVEC_SIZE]; 2034 struct nat_entry_set *set, *tmp; 2035 unsigned int found; 2036 nid_t set_idx = 0; 2037 LIST_HEAD(sets); 2038 2039 if (!nm_i->dirty_nat_cnt) 2040 return; 2041 2042 down_write(&nm_i->nat_tree_lock); 2043 2044 /* 2045 * if there are no enough space in journal to store dirty nat 2046 * entries, remove all entries from journal and merge them 2047 * into nat entry set. 2048 */ 2049 if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) 2050 remove_nats_in_journal(sbi); 2051 2052 while ((found = __gang_lookup_nat_set(nm_i, 2053 set_idx, SETVEC_SIZE, setvec))) { 2054 unsigned idx; 2055 set_idx = setvec[found - 1]->set + 1; 2056 for (idx = 0; idx < found; idx++) 2057 __adjust_nat_entry_set(setvec[idx], &sets, 2058 MAX_NAT_JENTRIES(journal)); 2059 } 2060 2061 /* flush dirty nats in nat entry set */ 2062 list_for_each_entry_safe(set, tmp, &sets, set_list) 2063 __flush_nat_entry_set(sbi, set); 2064 2065 up_write(&nm_i->nat_tree_lock); 2066 2067 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt); 2068 } 2069 2070 static int init_node_manager(struct f2fs_sb_info *sbi) 2071 { 2072 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 2073 struct f2fs_nm_info *nm_i = NM_I(sbi); 2074 unsigned char *version_bitmap; 2075 unsigned int nat_segs, nat_blocks; 2076 2077 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 2078 2079 /* segment_count_nat includes pair segment so divide to 2. */ 2080 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 2081 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 2082 2083 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks; 2084 2085 /* not used nids: 0, node, meta, (and root counted as valid node) */ 2086 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM; 2087 nm_i->fcnt = 0; 2088 nm_i->nat_cnt = 0; 2089 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 2090 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 2091 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 2092 2093 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 2094 INIT_LIST_HEAD(&nm_i->free_nid_list); 2095 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 2096 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 2097 INIT_LIST_HEAD(&nm_i->nat_entries); 2098 2099 mutex_init(&nm_i->build_lock); 2100 spin_lock_init(&nm_i->free_nid_list_lock); 2101 init_rwsem(&nm_i->nat_tree_lock); 2102 2103 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 2104 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 2105 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 2106 if (!version_bitmap) 2107 return -EFAULT; 2108 2109 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 2110 GFP_KERNEL); 2111 if (!nm_i->nat_bitmap) 2112 return -ENOMEM; 2113 return 0; 2114 } 2115 2116 int build_node_manager(struct f2fs_sb_info *sbi) 2117 { 2118 int err; 2119 2120 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL); 2121 if (!sbi->nm_info) 2122 return -ENOMEM; 2123 2124 err = init_node_manager(sbi); 2125 if (err) 2126 return err; 2127 2128 build_free_nids(sbi); 2129 return 0; 2130 } 2131 2132 void destroy_node_manager(struct f2fs_sb_info *sbi) 2133 { 2134 struct f2fs_nm_info *nm_i = NM_I(sbi); 2135 struct free_nid *i, *next_i; 2136 struct nat_entry *natvec[NATVEC_SIZE]; 2137 struct nat_entry_set *setvec[SETVEC_SIZE]; 2138 nid_t nid = 0; 2139 unsigned int found; 2140 2141 if (!nm_i) 2142 return; 2143 2144 /* destroy free nid list */ 2145 spin_lock(&nm_i->free_nid_list_lock); 2146 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 2147 f2fs_bug_on(sbi, i->state == NID_ALLOC); 2148 __del_from_free_nid_list(nm_i, i); 2149 nm_i->fcnt--; 2150 spin_unlock(&nm_i->free_nid_list_lock); 2151 kmem_cache_free(free_nid_slab, i); 2152 spin_lock(&nm_i->free_nid_list_lock); 2153 } 2154 f2fs_bug_on(sbi, nm_i->fcnt); 2155 spin_unlock(&nm_i->free_nid_list_lock); 2156 2157 /* destroy nat cache */ 2158 down_write(&nm_i->nat_tree_lock); 2159 while ((found = __gang_lookup_nat_cache(nm_i, 2160 nid, NATVEC_SIZE, natvec))) { 2161 unsigned idx; 2162 2163 nid = nat_get_nid(natvec[found - 1]) + 1; 2164 for (idx = 0; idx < found; idx++) 2165 __del_from_nat_cache(nm_i, natvec[idx]); 2166 } 2167 f2fs_bug_on(sbi, nm_i->nat_cnt); 2168 2169 /* destroy nat set cache */ 2170 nid = 0; 2171 while ((found = __gang_lookup_nat_set(nm_i, 2172 nid, SETVEC_SIZE, setvec))) { 2173 unsigned idx; 2174 2175 nid = setvec[found - 1]->set + 1; 2176 for (idx = 0; idx < found; idx++) { 2177 /* entry_cnt is not zero, when cp_error was occurred */ 2178 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 2179 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 2180 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 2181 } 2182 } 2183 up_write(&nm_i->nat_tree_lock); 2184 2185 kfree(nm_i->nat_bitmap); 2186 sbi->nm_info = NULL; 2187 kfree(nm_i); 2188 } 2189 2190 int __init create_node_manager_caches(void) 2191 { 2192 nat_entry_slab = f2fs_kmem_cache_create("nat_entry", 2193 sizeof(struct nat_entry)); 2194 if (!nat_entry_slab) 2195 goto fail; 2196 2197 free_nid_slab = f2fs_kmem_cache_create("free_nid", 2198 sizeof(struct free_nid)); 2199 if (!free_nid_slab) 2200 goto destroy_nat_entry; 2201 2202 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", 2203 sizeof(struct nat_entry_set)); 2204 if (!nat_entry_set_slab) 2205 goto destroy_free_nid; 2206 return 0; 2207 2208 destroy_free_nid: 2209 kmem_cache_destroy(free_nid_slab); 2210 destroy_nat_entry: 2211 kmem_cache_destroy(nat_entry_slab); 2212 fail: 2213 return -ENOMEM; 2214 } 2215 2216 void destroy_node_manager_caches(void) 2217 { 2218 kmem_cache_destroy(nat_entry_set_slab); 2219 kmem_cache_destroy(free_nid_slab); 2220 kmem_cache_destroy(nat_entry_slab); 2221 } 2222