1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/node.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/mpage.h> 11 #include <linux/sched/mm.h> 12 #include <linux/blkdev.h> 13 #include <linux/pagevec.h> 14 #include <linux/swap.h> 15 16 #include "f2fs.h" 17 #include "node.h" 18 #include "segment.h" 19 #include "xattr.h" 20 #include "iostat.h" 21 #include <trace/events/f2fs.h> 22 23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) 24 25 static struct kmem_cache *nat_entry_slab; 26 static struct kmem_cache *free_nid_slab; 27 static struct kmem_cache *nat_entry_set_slab; 28 static struct kmem_cache *fsync_node_entry_slab; 29 30 /* 31 * Check whether the given nid is within node id range. 32 */ 33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 34 { 35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { 36 set_sbi_flag(sbi, SBI_NEED_FSCK); 37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", 38 __func__, nid); 39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE); 40 return -EFSCORRUPTED; 41 } 42 return 0; 43 } 44 45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) 46 { 47 struct f2fs_nm_info *nm_i = NM_I(sbi); 48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 49 struct sysinfo val; 50 unsigned long avail_ram; 51 unsigned long mem_size = 0; 52 bool res = false; 53 54 if (!nm_i) 55 return true; 56 57 si_meminfo(&val); 58 59 /* only uses low memory */ 60 avail_ram = val.totalram - val.totalhigh; 61 62 /* 63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively 64 */ 65 if (type == FREE_NIDS) { 66 mem_size = (nm_i->nid_cnt[FREE_NID] * 67 sizeof(struct free_nid)) >> PAGE_SHIFT; 68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 69 } else if (type == NAT_ENTRIES) { 70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] * 71 sizeof(struct nat_entry)) >> PAGE_SHIFT; 72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 73 if (excess_cached_nats(sbi)) 74 res = false; 75 } else if (type == DIRTY_DENTS) { 76 if (sbi->sb->s_bdi->wb.dirty_exceeded) 77 return false; 78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); 79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 80 } else if (type == INO_ENTRIES) { 81 int i; 82 83 for (i = 0; i < MAX_INO_ENTRY; i++) 84 mem_size += sbi->im[i].ino_num * 85 sizeof(struct ino_entry); 86 mem_size >>= PAGE_SHIFT; 87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); 88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) { 89 enum extent_type etype = type == READ_EXTENT_CACHE ? 90 EX_READ : EX_BLOCK_AGE; 91 struct extent_tree_info *eti = &sbi->extent_tree[etype]; 92 93 mem_size = (atomic_read(&eti->total_ext_tree) * 94 sizeof(struct extent_tree) + 95 atomic_read(&eti->total_ext_node) * 96 sizeof(struct extent_node)) >> PAGE_SHIFT; 97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); 98 } else if (type == DISCARD_CACHE) { 99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) * 100 sizeof(struct discard_cmd)) >> PAGE_SHIFT; 101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100); 102 } else if (type == COMPRESS_PAGE) { 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 unsigned long free_ram = val.freeram; 105 106 /* 107 * free memory is lower than watermark or cached page count 108 * exceed threshold, deny caching compress page. 109 */ 110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) && 111 (COMPRESS_MAPPING(sbi)->nrpages < 112 free_ram * sbi->compress_percent / 100); 113 #else 114 res = false; 115 #endif 116 } else { 117 if (!sbi->sb->s_bdi->wb.dirty_exceeded) 118 return true; 119 } 120 return res; 121 } 122 123 static void clear_node_page_dirty(struct page *page) 124 { 125 if (PageDirty(page)) { 126 f2fs_clear_page_cache_dirty_tag(page); 127 clear_page_dirty_for_io(page); 128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); 129 } 130 ClearPageUptodate(page); 131 } 132 133 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 134 { 135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid)); 136 } 137 138 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) 139 { 140 struct page *src_page; 141 struct page *dst_page; 142 pgoff_t dst_off; 143 void *src_addr; 144 void *dst_addr; 145 struct f2fs_nm_info *nm_i = NM_I(sbi); 146 147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); 148 149 /* get current nat block page with lock */ 150 src_page = get_current_nat_page(sbi, nid); 151 if (IS_ERR(src_page)) 152 return src_page; 153 dst_page = f2fs_grab_meta_page(sbi, dst_off); 154 f2fs_bug_on(sbi, PageDirty(src_page)); 155 156 src_addr = page_address(src_page); 157 dst_addr = page_address(dst_page); 158 memcpy(dst_addr, src_addr, PAGE_SIZE); 159 set_page_dirty(dst_page); 160 f2fs_put_page(src_page, 1); 161 162 set_to_next_nat(nm_i, nid); 163 164 return dst_page; 165 } 166 167 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi, 168 nid_t nid, bool no_fail) 169 { 170 struct nat_entry *new; 171 172 new = f2fs_kmem_cache_alloc(nat_entry_slab, 173 GFP_F2FS_ZERO, no_fail, sbi); 174 if (new) { 175 nat_set_nid(new, nid); 176 nat_reset_flag(new); 177 } 178 return new; 179 } 180 181 static void __free_nat_entry(struct nat_entry *e) 182 { 183 kmem_cache_free(nat_entry_slab, e); 184 } 185 186 /* must be locked by nat_tree_lock */ 187 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, 188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) 189 { 190 if (no_fail) 191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); 192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) 193 return NULL; 194 195 if (raw_ne) 196 node_info_from_raw_nat(&ne->ni, raw_ne); 197 198 spin_lock(&nm_i->nat_list_lock); 199 list_add_tail(&ne->list, &nm_i->nat_entries); 200 spin_unlock(&nm_i->nat_list_lock); 201 202 nm_i->nat_cnt[TOTAL_NAT]++; 203 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 204 return ne; 205 } 206 207 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) 208 { 209 struct nat_entry *ne; 210 211 ne = radix_tree_lookup(&nm_i->nat_root, n); 212 213 /* for recent accessed nat entry, move it to tail of lru list */ 214 if (ne && !get_nat_flag(ne, IS_DIRTY)) { 215 spin_lock(&nm_i->nat_list_lock); 216 if (!list_empty(&ne->list)) 217 list_move_tail(&ne->list, &nm_i->nat_entries); 218 spin_unlock(&nm_i->nat_list_lock); 219 } 220 221 return ne; 222 } 223 224 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, 225 nid_t start, unsigned int nr, struct nat_entry **ep) 226 { 227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); 228 } 229 230 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) 231 { 232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); 233 nm_i->nat_cnt[TOTAL_NAT]--; 234 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 235 __free_nat_entry(e); 236 } 237 238 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, 239 struct nat_entry *ne) 240 { 241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); 242 struct nat_entry_set *head; 243 244 head = radix_tree_lookup(&nm_i->nat_set_root, set); 245 if (!head) { 246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, 247 GFP_NOFS, true, NULL); 248 249 INIT_LIST_HEAD(&head->entry_list); 250 INIT_LIST_HEAD(&head->set_list); 251 head->set = set; 252 head->entry_cnt = 0; 253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); 254 } 255 return head; 256 } 257 258 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, 259 struct nat_entry *ne) 260 { 261 struct nat_entry_set *head; 262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; 263 264 if (!new_ne) 265 head = __grab_nat_entry_set(nm_i, ne); 266 267 /* 268 * update entry_cnt in below condition: 269 * 1. update NEW_ADDR to valid block address; 270 * 2. update old block address to new one; 271 */ 272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || 273 !get_nat_flag(ne, IS_DIRTY))) 274 head->entry_cnt++; 275 276 set_nat_flag(ne, IS_PREALLOC, new_ne); 277 278 if (get_nat_flag(ne, IS_DIRTY)) 279 goto refresh_list; 280 281 nm_i->nat_cnt[DIRTY_NAT]++; 282 nm_i->nat_cnt[RECLAIMABLE_NAT]--; 283 set_nat_flag(ne, IS_DIRTY, true); 284 refresh_list: 285 spin_lock(&nm_i->nat_list_lock); 286 if (new_ne) 287 list_del_init(&ne->list); 288 else 289 list_move_tail(&ne->list, &head->entry_list); 290 spin_unlock(&nm_i->nat_list_lock); 291 } 292 293 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, 294 struct nat_entry_set *set, struct nat_entry *ne) 295 { 296 spin_lock(&nm_i->nat_list_lock); 297 list_move_tail(&ne->list, &nm_i->nat_entries); 298 spin_unlock(&nm_i->nat_list_lock); 299 300 set_nat_flag(ne, IS_DIRTY, false); 301 set->entry_cnt--; 302 nm_i->nat_cnt[DIRTY_NAT]--; 303 nm_i->nat_cnt[RECLAIMABLE_NAT]++; 304 } 305 306 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, 307 nid_t start, unsigned int nr, struct nat_entry_set **ep) 308 { 309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, 310 start, nr); 311 } 312 313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) 314 { 315 return NODE_MAPPING(sbi) == page->mapping && 316 IS_DNODE(page) && is_cold_node(page); 317 } 318 319 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) 320 { 321 spin_lock_init(&sbi->fsync_node_lock); 322 INIT_LIST_HEAD(&sbi->fsync_node_list); 323 sbi->fsync_seg_id = 0; 324 sbi->fsync_node_num = 0; 325 } 326 327 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, 328 struct page *page) 329 { 330 struct fsync_node_entry *fn; 331 unsigned long flags; 332 unsigned int seq_id; 333 334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, 335 GFP_NOFS, true, NULL); 336 337 get_page(page); 338 fn->page = page; 339 INIT_LIST_HEAD(&fn->list); 340 341 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 342 list_add_tail(&fn->list, &sbi->fsync_node_list); 343 fn->seq_id = sbi->fsync_seg_id++; 344 seq_id = fn->seq_id; 345 sbi->fsync_node_num++; 346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 347 348 return seq_id; 349 } 350 351 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) 352 { 353 struct fsync_node_entry *fn; 354 unsigned long flags; 355 356 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 357 list_for_each_entry(fn, &sbi->fsync_node_list, list) { 358 if (fn->page == page) { 359 list_del(&fn->list); 360 sbi->fsync_node_num--; 361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 362 kmem_cache_free(fsync_node_entry_slab, fn); 363 put_page(page); 364 return; 365 } 366 } 367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 368 f2fs_bug_on(sbi, 1); 369 } 370 371 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) 372 { 373 unsigned long flags; 374 375 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 376 sbi->fsync_seg_id = 0; 377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 378 } 379 380 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) 381 { 382 struct f2fs_nm_info *nm_i = NM_I(sbi); 383 struct nat_entry *e; 384 bool need = false; 385 386 f2fs_down_read(&nm_i->nat_tree_lock); 387 e = __lookup_nat_cache(nm_i, nid); 388 if (e) { 389 if (!get_nat_flag(e, IS_CHECKPOINTED) && 390 !get_nat_flag(e, HAS_FSYNCED_INODE)) 391 need = true; 392 } 393 f2fs_up_read(&nm_i->nat_tree_lock); 394 return need; 395 } 396 397 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) 398 { 399 struct f2fs_nm_info *nm_i = NM_I(sbi); 400 struct nat_entry *e; 401 bool is_cp = true; 402 403 f2fs_down_read(&nm_i->nat_tree_lock); 404 e = __lookup_nat_cache(nm_i, nid); 405 if (e && !get_nat_flag(e, IS_CHECKPOINTED)) 406 is_cp = false; 407 f2fs_up_read(&nm_i->nat_tree_lock); 408 return is_cp; 409 } 410 411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) 412 { 413 struct f2fs_nm_info *nm_i = NM_I(sbi); 414 struct nat_entry *e; 415 bool need_update = true; 416 417 f2fs_down_read(&nm_i->nat_tree_lock); 418 e = __lookup_nat_cache(nm_i, ino); 419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) && 420 (get_nat_flag(e, IS_CHECKPOINTED) || 421 get_nat_flag(e, HAS_FSYNCED_INODE))) 422 need_update = false; 423 f2fs_up_read(&nm_i->nat_tree_lock); 424 return need_update; 425 } 426 427 /* must be locked by nat_tree_lock */ 428 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, 429 struct f2fs_nat_entry *ne) 430 { 431 struct f2fs_nm_info *nm_i = NM_I(sbi); 432 struct nat_entry *new, *e; 433 434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */ 435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem)) 436 return; 437 438 new = __alloc_nat_entry(sbi, nid, false); 439 if (!new) 440 return; 441 442 f2fs_down_write(&nm_i->nat_tree_lock); 443 e = __lookup_nat_cache(nm_i, nid); 444 if (!e) 445 e = __init_nat_entry(nm_i, new, ne, false); 446 else 447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || 448 nat_get_blkaddr(e) != 449 le32_to_cpu(ne->block_addr) || 450 nat_get_version(e) != ne->version); 451 f2fs_up_write(&nm_i->nat_tree_lock); 452 if (e != new) 453 __free_nat_entry(new); 454 } 455 456 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, 457 block_t new_blkaddr, bool fsync_done) 458 { 459 struct f2fs_nm_info *nm_i = NM_I(sbi); 460 struct nat_entry *e; 461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true); 462 463 f2fs_down_write(&nm_i->nat_tree_lock); 464 e = __lookup_nat_cache(nm_i, ni->nid); 465 if (!e) { 466 e = __init_nat_entry(nm_i, new, NULL, true); 467 copy_node_info(&e->ni, ni); 468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); 469 } else if (new_blkaddr == NEW_ADDR) { 470 /* 471 * when nid is reallocated, 472 * previous nat entry can be remained in nat cache. 473 * So, reinitialize it with new information. 474 */ 475 copy_node_info(&e->ni, ni); 476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); 477 } 478 /* let's free early to reduce memory consumption */ 479 if (e != new) 480 __free_nat_entry(new); 481 482 /* sanity check */ 483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); 484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && 485 new_blkaddr == NULL_ADDR); 486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && 487 new_blkaddr == NEW_ADDR); 488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && 489 new_blkaddr == NEW_ADDR); 490 491 /* increment version no as node is removed */ 492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { 493 unsigned char version = nat_get_version(e); 494 495 nat_set_version(e, inc_node_version(version)); 496 } 497 498 /* change address */ 499 nat_set_blkaddr(e, new_blkaddr); 500 if (!__is_valid_data_blkaddr(new_blkaddr)) 501 set_nat_flag(e, IS_CHECKPOINTED, false); 502 __set_nat_cache_dirty(nm_i, e); 503 504 /* update fsync_mark if its inode nat entry is still alive */ 505 if (ni->nid != ni->ino) 506 e = __lookup_nat_cache(nm_i, ni->ino); 507 if (e) { 508 if (fsync_done && ni->nid == ni->ino) 509 set_nat_flag(e, HAS_FSYNCED_INODE, true); 510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); 511 } 512 f2fs_up_write(&nm_i->nat_tree_lock); 513 } 514 515 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) 516 { 517 struct f2fs_nm_info *nm_i = NM_I(sbi); 518 int nr = nr_shrink; 519 520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock)) 521 return 0; 522 523 spin_lock(&nm_i->nat_list_lock); 524 while (nr_shrink) { 525 struct nat_entry *ne; 526 527 if (list_empty(&nm_i->nat_entries)) 528 break; 529 530 ne = list_first_entry(&nm_i->nat_entries, 531 struct nat_entry, list); 532 list_del(&ne->list); 533 spin_unlock(&nm_i->nat_list_lock); 534 535 __del_from_nat_cache(nm_i, ne); 536 nr_shrink--; 537 538 spin_lock(&nm_i->nat_list_lock); 539 } 540 spin_unlock(&nm_i->nat_list_lock); 541 542 f2fs_up_write(&nm_i->nat_tree_lock); 543 return nr - nr_shrink; 544 } 545 546 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 547 struct node_info *ni, bool checkpoint_context) 548 { 549 struct f2fs_nm_info *nm_i = NM_I(sbi); 550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 551 struct f2fs_journal *journal = curseg->journal; 552 nid_t start_nid = START_NID(nid); 553 struct f2fs_nat_block *nat_blk; 554 struct page *page = NULL; 555 struct f2fs_nat_entry ne; 556 struct nat_entry *e; 557 pgoff_t index; 558 block_t blkaddr; 559 int i; 560 561 ni->nid = nid; 562 retry: 563 /* Check nat cache */ 564 f2fs_down_read(&nm_i->nat_tree_lock); 565 e = __lookup_nat_cache(nm_i, nid); 566 if (e) { 567 ni->ino = nat_get_ino(e); 568 ni->blk_addr = nat_get_blkaddr(e); 569 ni->version = nat_get_version(e); 570 f2fs_up_read(&nm_i->nat_tree_lock); 571 return 0; 572 } 573 574 /* 575 * Check current segment summary by trying to grab journal_rwsem first. 576 * This sem is on the critical path on the checkpoint requiring the above 577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here 578 * while not bothering checkpoint. 579 */ 580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) { 581 down_read(&curseg->journal_rwsem); 582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) || 583 !down_read_trylock(&curseg->journal_rwsem)) { 584 f2fs_up_read(&nm_i->nat_tree_lock); 585 goto retry; 586 } 587 588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); 589 if (i >= 0) { 590 ne = nat_in_journal(journal, i); 591 node_info_from_raw_nat(ni, &ne); 592 } 593 up_read(&curseg->journal_rwsem); 594 if (i >= 0) { 595 f2fs_up_read(&nm_i->nat_tree_lock); 596 goto cache; 597 } 598 599 /* Fill node_info from nat page */ 600 index = current_nat_addr(sbi, nid); 601 f2fs_up_read(&nm_i->nat_tree_lock); 602 603 page = f2fs_get_meta_page(sbi, index); 604 if (IS_ERR(page)) 605 return PTR_ERR(page); 606 607 nat_blk = (struct f2fs_nat_block *)page_address(page); 608 ne = nat_blk->entries[nid - start_nid]; 609 node_info_from_raw_nat(ni, &ne); 610 f2fs_put_page(page, 1); 611 cache: 612 blkaddr = le32_to_cpu(ne.block_addr); 613 if (__is_valid_data_blkaddr(blkaddr) && 614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 615 return -EFAULT; 616 617 /* cache nat entry */ 618 cache_nat_entry(sbi, nid, &ne); 619 return 0; 620 } 621 622 /* 623 * readahead MAX_RA_NODE number of node pages. 624 */ 625 static void f2fs_ra_node_pages(struct page *parent, int start, int n) 626 { 627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 628 struct blk_plug plug; 629 int i, end; 630 nid_t nid; 631 632 blk_start_plug(&plug); 633 634 /* Then, try readahead for siblings of the desired node */ 635 end = start + n; 636 end = min(end, NIDS_PER_BLOCK); 637 for (i = start; i < end; i++) { 638 nid = get_nid(parent, i, false); 639 f2fs_ra_node_page(sbi, nid); 640 } 641 642 blk_finish_plug(&plug); 643 } 644 645 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) 646 { 647 const long direct_index = ADDRS_PER_INODE(dn->inode); 648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode); 649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; 650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); 651 int cur_level = dn->cur_level; 652 int max_level = dn->max_level; 653 pgoff_t base = 0; 654 655 if (!dn->max_level) 656 return pgofs + 1; 657 658 while (max_level-- > cur_level) 659 skipped_unit *= NIDS_PER_BLOCK; 660 661 switch (dn->max_level) { 662 case 3: 663 base += 2 * indirect_blks; 664 fallthrough; 665 case 2: 666 base += 2 * direct_blks; 667 fallthrough; 668 case 1: 669 base += direct_index; 670 break; 671 default: 672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1); 673 } 674 675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; 676 } 677 678 /* 679 * The maximum depth is four. 680 * Offset[0] will have raw inode offset. 681 */ 682 static int get_node_path(struct inode *inode, long block, 683 int offset[4], unsigned int noffset[4]) 684 { 685 const long direct_index = ADDRS_PER_INODE(inode); 686 const long direct_blks = ADDRS_PER_BLOCK(inode); 687 const long dptrs_per_blk = NIDS_PER_BLOCK; 688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; 689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; 690 int n = 0; 691 int level = 0; 692 693 noffset[0] = 0; 694 695 if (block < direct_index) { 696 offset[n] = block; 697 goto got; 698 } 699 block -= direct_index; 700 if (block < direct_blks) { 701 offset[n++] = NODE_DIR1_BLOCK; 702 noffset[n] = 1; 703 offset[n] = block; 704 level = 1; 705 goto got; 706 } 707 block -= direct_blks; 708 if (block < direct_blks) { 709 offset[n++] = NODE_DIR2_BLOCK; 710 noffset[n] = 2; 711 offset[n] = block; 712 level = 1; 713 goto got; 714 } 715 block -= direct_blks; 716 if (block < indirect_blks) { 717 offset[n++] = NODE_IND1_BLOCK; 718 noffset[n] = 3; 719 offset[n++] = block / direct_blks; 720 noffset[n] = 4 + offset[n - 1]; 721 offset[n] = block % direct_blks; 722 level = 2; 723 goto got; 724 } 725 block -= indirect_blks; 726 if (block < indirect_blks) { 727 offset[n++] = NODE_IND2_BLOCK; 728 noffset[n] = 4 + dptrs_per_blk; 729 offset[n++] = block / direct_blks; 730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; 731 offset[n] = block % direct_blks; 732 level = 2; 733 goto got; 734 } 735 block -= indirect_blks; 736 if (block < dindirect_blks) { 737 offset[n++] = NODE_DIND_BLOCK; 738 noffset[n] = 5 + (dptrs_per_blk * 2); 739 offset[n++] = block / indirect_blks; 740 noffset[n] = 6 + (dptrs_per_blk * 2) + 741 offset[n - 1] * (dptrs_per_blk + 1); 742 offset[n++] = (block / direct_blks) % dptrs_per_blk; 743 noffset[n] = 7 + (dptrs_per_blk * 2) + 744 offset[n - 2] * (dptrs_per_blk + 1) + 745 offset[n - 1]; 746 offset[n] = block % direct_blks; 747 level = 3; 748 goto got; 749 } else { 750 return -E2BIG; 751 } 752 got: 753 return level; 754 } 755 756 /* 757 * Caller should call f2fs_put_dnode(dn). 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE. 760 */ 761 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) 762 { 763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 764 struct page *npage[4]; 765 struct page *parent = NULL; 766 int offset[4]; 767 unsigned int noffset[4]; 768 nid_t nids[4]; 769 int level, i = 0; 770 int err = 0; 771 772 level = get_node_path(dn->inode, index, offset, noffset); 773 if (level < 0) 774 return level; 775 776 nids[0] = dn->inode->i_ino; 777 npage[0] = dn->inode_page; 778 779 if (!npage[0]) { 780 npage[0] = f2fs_get_node_page(sbi, nids[0]); 781 if (IS_ERR(npage[0])) 782 return PTR_ERR(npage[0]); 783 } 784 785 /* if inline_data is set, should not report any block indices */ 786 if (f2fs_has_inline_data(dn->inode) && index) { 787 err = -ENOENT; 788 f2fs_put_page(npage[0], 1); 789 goto release_out; 790 } 791 792 parent = npage[0]; 793 if (level != 0) 794 nids[1] = get_nid(parent, offset[0], true); 795 dn->inode_page = npage[0]; 796 dn->inode_page_locked = true; 797 798 /* get indirect or direct nodes */ 799 for (i = 1; i <= level; i++) { 800 bool done = false; 801 802 if (!nids[i] && mode == ALLOC_NODE) { 803 /* alloc new node */ 804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) { 805 err = -ENOSPC; 806 goto release_pages; 807 } 808 809 dn->nid = nids[i]; 810 npage[i] = f2fs_new_node_page(dn, noffset[i]); 811 if (IS_ERR(npage[i])) { 812 f2fs_alloc_nid_failed(sbi, nids[i]); 813 err = PTR_ERR(npage[i]); 814 goto release_pages; 815 } 816 817 set_nid(parent, offset[i - 1], nids[i], i == 1); 818 f2fs_alloc_nid_done(sbi, nids[i]); 819 done = true; 820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { 821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); 822 if (IS_ERR(npage[i])) { 823 err = PTR_ERR(npage[i]); 824 goto release_pages; 825 } 826 done = true; 827 } 828 if (i == 1) { 829 dn->inode_page_locked = false; 830 unlock_page(parent); 831 } else { 832 f2fs_put_page(parent, 1); 833 } 834 835 if (!done) { 836 npage[i] = f2fs_get_node_page(sbi, nids[i]); 837 if (IS_ERR(npage[i])) { 838 err = PTR_ERR(npage[i]); 839 f2fs_put_page(npage[0], 0); 840 goto release_out; 841 } 842 } 843 if (i < level) { 844 parent = npage[i]; 845 nids[i + 1] = get_nid(parent, offset[i], false); 846 } 847 } 848 dn->nid = nids[level]; 849 dn->ofs_in_node = offset[level]; 850 dn->node_page = npage[level]; 851 dn->data_blkaddr = f2fs_data_blkaddr(dn); 852 853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) && 854 f2fs_sb_has_readonly(sbi)) { 855 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn); 856 block_t blkaddr; 857 858 if (!c_len) 859 goto out; 860 861 blkaddr = f2fs_data_blkaddr(dn); 862 if (blkaddr == COMPRESS_ADDR) 863 blkaddr = data_blkaddr(dn->inode, dn->node_page, 864 dn->ofs_in_node + 1); 865 866 f2fs_update_read_extent_tree_range_compressed(dn->inode, 867 index, blkaddr, 868 F2FS_I(dn->inode)->i_cluster_size, 869 c_len); 870 } 871 out: 872 return 0; 873 874 release_pages: 875 f2fs_put_page(parent, 1); 876 if (i > 1) 877 f2fs_put_page(npage[0], 0); 878 release_out: 879 dn->inode_page = NULL; 880 dn->node_page = NULL; 881 if (err == -ENOENT) { 882 dn->cur_level = i; 883 dn->max_level = level; 884 dn->ofs_in_node = offset[level]; 885 } 886 return err; 887 } 888 889 static int truncate_node(struct dnode_of_data *dn) 890 { 891 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 892 struct node_info ni; 893 int err; 894 pgoff_t index; 895 896 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 897 if (err) 898 return err; 899 900 /* Deallocate node address */ 901 f2fs_invalidate_blocks(sbi, ni.blk_addr); 902 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); 903 set_node_addr(sbi, &ni, NULL_ADDR, false); 904 905 if (dn->nid == dn->inode->i_ino) { 906 f2fs_remove_orphan_inode(sbi, dn->nid); 907 dec_valid_inode_count(sbi); 908 f2fs_inode_synced(dn->inode); 909 } 910 911 clear_node_page_dirty(dn->node_page); 912 set_sbi_flag(sbi, SBI_IS_DIRTY); 913 914 index = dn->node_page->index; 915 f2fs_put_page(dn->node_page, 1); 916 917 invalidate_mapping_pages(NODE_MAPPING(sbi), 918 index, index); 919 920 dn->node_page = NULL; 921 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); 922 923 return 0; 924 } 925 926 static int truncate_dnode(struct dnode_of_data *dn) 927 { 928 struct page *page; 929 int err; 930 931 if (dn->nid == 0) 932 return 1; 933 934 /* get direct node */ 935 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 936 if (PTR_ERR(page) == -ENOENT) 937 return 1; 938 else if (IS_ERR(page)) 939 return PTR_ERR(page); 940 941 /* Make dnode_of_data for parameter */ 942 dn->node_page = page; 943 dn->ofs_in_node = 0; 944 f2fs_truncate_data_blocks(dn); 945 err = truncate_node(dn); 946 if (err) 947 return err; 948 949 return 1; 950 } 951 952 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, 953 int ofs, int depth) 954 { 955 struct dnode_of_data rdn = *dn; 956 struct page *page; 957 struct f2fs_node *rn; 958 nid_t child_nid; 959 unsigned int child_nofs; 960 int freed = 0; 961 int i, ret; 962 963 if (dn->nid == 0) 964 return NIDS_PER_BLOCK + 1; 965 966 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); 967 968 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); 969 if (IS_ERR(page)) { 970 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); 971 return PTR_ERR(page); 972 } 973 974 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); 975 976 rn = F2FS_NODE(page); 977 if (depth < 3) { 978 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { 979 child_nid = le32_to_cpu(rn->in.nid[i]); 980 if (child_nid == 0) 981 continue; 982 rdn.nid = child_nid; 983 ret = truncate_dnode(&rdn); 984 if (ret < 0) 985 goto out_err; 986 if (set_nid(page, i, 0, false)) 987 dn->node_changed = true; 988 } 989 } else { 990 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; 991 for (i = ofs; i < NIDS_PER_BLOCK; i++) { 992 child_nid = le32_to_cpu(rn->in.nid[i]); 993 if (child_nid == 0) { 994 child_nofs += NIDS_PER_BLOCK + 1; 995 continue; 996 } 997 rdn.nid = child_nid; 998 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); 999 if (ret == (NIDS_PER_BLOCK + 1)) { 1000 if (set_nid(page, i, 0, false)) 1001 dn->node_changed = true; 1002 child_nofs += ret; 1003 } else if (ret < 0 && ret != -ENOENT) { 1004 goto out_err; 1005 } 1006 } 1007 freed = child_nofs; 1008 } 1009 1010 if (!ofs) { 1011 /* remove current indirect node */ 1012 dn->node_page = page; 1013 ret = truncate_node(dn); 1014 if (ret) 1015 goto out_err; 1016 freed++; 1017 } else { 1018 f2fs_put_page(page, 1); 1019 } 1020 trace_f2fs_truncate_nodes_exit(dn->inode, freed); 1021 return freed; 1022 1023 out_err: 1024 f2fs_put_page(page, 1); 1025 trace_f2fs_truncate_nodes_exit(dn->inode, ret); 1026 return ret; 1027 } 1028 1029 static int truncate_partial_nodes(struct dnode_of_data *dn, 1030 struct f2fs_inode *ri, int *offset, int depth) 1031 { 1032 struct page *pages[2]; 1033 nid_t nid[3]; 1034 nid_t child_nid; 1035 int err = 0; 1036 int i; 1037 int idx = depth - 2; 1038 1039 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1040 if (!nid[0]) 1041 return 0; 1042 1043 /* get indirect nodes in the path */ 1044 for (i = 0; i < idx + 1; i++) { 1045 /* reference count'll be increased */ 1046 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); 1047 if (IS_ERR(pages[i])) { 1048 err = PTR_ERR(pages[i]); 1049 idx = i - 1; 1050 goto fail; 1051 } 1052 nid[i + 1] = get_nid(pages[i], offset[i + 1], false); 1053 } 1054 1055 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); 1056 1057 /* free direct nodes linked to a partial indirect node */ 1058 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { 1059 child_nid = get_nid(pages[idx], i, false); 1060 if (!child_nid) 1061 continue; 1062 dn->nid = child_nid; 1063 err = truncate_dnode(dn); 1064 if (err < 0) 1065 goto fail; 1066 if (set_nid(pages[idx], i, 0, false)) 1067 dn->node_changed = true; 1068 } 1069 1070 if (offset[idx + 1] == 0) { 1071 dn->node_page = pages[idx]; 1072 dn->nid = nid[idx]; 1073 err = truncate_node(dn); 1074 if (err) 1075 goto fail; 1076 } else { 1077 f2fs_put_page(pages[idx], 1); 1078 } 1079 offset[idx]++; 1080 offset[idx + 1] = 0; 1081 idx--; 1082 fail: 1083 for (i = idx; i >= 0; i--) 1084 f2fs_put_page(pages[i], 1); 1085 1086 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); 1087 1088 return err; 1089 } 1090 1091 /* 1092 * All the block addresses of data and nodes should be nullified. 1093 */ 1094 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) 1095 { 1096 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1097 int err = 0, cont = 1; 1098 int level, offset[4], noffset[4]; 1099 unsigned int nofs = 0; 1100 struct f2fs_inode *ri; 1101 struct dnode_of_data dn; 1102 struct page *page; 1103 1104 trace_f2fs_truncate_inode_blocks_enter(inode, from); 1105 1106 level = get_node_path(inode, from, offset, noffset); 1107 if (level < 0) { 1108 trace_f2fs_truncate_inode_blocks_exit(inode, level); 1109 return level; 1110 } 1111 1112 page = f2fs_get_node_page(sbi, inode->i_ino); 1113 if (IS_ERR(page)) { 1114 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); 1115 return PTR_ERR(page); 1116 } 1117 1118 set_new_dnode(&dn, inode, page, NULL, 0); 1119 unlock_page(page); 1120 1121 ri = F2FS_INODE(page); 1122 switch (level) { 1123 case 0: 1124 case 1: 1125 nofs = noffset[1]; 1126 break; 1127 case 2: 1128 nofs = noffset[1]; 1129 if (!offset[level - 1]) 1130 goto skip_partial; 1131 err = truncate_partial_nodes(&dn, ri, offset, level); 1132 if (err < 0 && err != -ENOENT) 1133 goto fail; 1134 nofs += 1 + NIDS_PER_BLOCK; 1135 break; 1136 case 3: 1137 nofs = 5 + 2 * NIDS_PER_BLOCK; 1138 if (!offset[level - 1]) 1139 goto skip_partial; 1140 err = truncate_partial_nodes(&dn, ri, offset, level); 1141 if (err < 0 && err != -ENOENT) 1142 goto fail; 1143 break; 1144 default: 1145 BUG(); 1146 } 1147 1148 skip_partial: 1149 while (cont) { 1150 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); 1151 switch (offset[0]) { 1152 case NODE_DIR1_BLOCK: 1153 case NODE_DIR2_BLOCK: 1154 err = truncate_dnode(&dn); 1155 break; 1156 1157 case NODE_IND1_BLOCK: 1158 case NODE_IND2_BLOCK: 1159 err = truncate_nodes(&dn, nofs, offset[1], 2); 1160 break; 1161 1162 case NODE_DIND_BLOCK: 1163 err = truncate_nodes(&dn, nofs, offset[1], 3); 1164 cont = 0; 1165 break; 1166 1167 default: 1168 BUG(); 1169 } 1170 if (err < 0 && err != -ENOENT) 1171 goto fail; 1172 if (offset[1] == 0 && 1173 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { 1174 lock_page(page); 1175 BUG_ON(page->mapping != NODE_MAPPING(sbi)); 1176 f2fs_wait_on_page_writeback(page, NODE, true, true); 1177 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; 1178 set_page_dirty(page); 1179 unlock_page(page); 1180 } 1181 offset[1] = 0; 1182 offset[0]++; 1183 nofs += err; 1184 } 1185 fail: 1186 f2fs_put_page(page, 0); 1187 trace_f2fs_truncate_inode_blocks_exit(inode, err); 1188 return err > 0 ? 0 : err; 1189 } 1190 1191 /* caller must lock inode page */ 1192 int f2fs_truncate_xattr_node(struct inode *inode) 1193 { 1194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1195 nid_t nid = F2FS_I(inode)->i_xattr_nid; 1196 struct dnode_of_data dn; 1197 struct page *npage; 1198 int err; 1199 1200 if (!nid) 1201 return 0; 1202 1203 npage = f2fs_get_node_page(sbi, nid); 1204 if (IS_ERR(npage)) 1205 return PTR_ERR(npage); 1206 1207 set_new_dnode(&dn, inode, NULL, npage, nid); 1208 err = truncate_node(&dn); 1209 if (err) { 1210 f2fs_put_page(npage, 1); 1211 return err; 1212 } 1213 1214 f2fs_i_xnid_write(inode, 0); 1215 1216 return 0; 1217 } 1218 1219 /* 1220 * Caller should grab and release a rwsem by calling f2fs_lock_op() and 1221 * f2fs_unlock_op(). 1222 */ 1223 int f2fs_remove_inode_page(struct inode *inode) 1224 { 1225 struct dnode_of_data dn; 1226 int err; 1227 1228 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1229 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 1230 if (err) 1231 return err; 1232 1233 err = f2fs_truncate_xattr_node(inode); 1234 if (err) { 1235 f2fs_put_dnode(&dn); 1236 return err; 1237 } 1238 1239 /* remove potential inline_data blocks */ 1240 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1241 S_ISLNK(inode->i_mode)) 1242 f2fs_truncate_data_blocks_range(&dn, 1); 1243 1244 /* 0 is possible, after f2fs_new_inode() has failed */ 1245 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 1246 f2fs_put_dnode(&dn); 1247 return -EIO; 1248 } 1249 1250 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { 1251 f2fs_warn(F2FS_I_SB(inode), 1252 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu", 1253 inode->i_ino, (unsigned long long)inode->i_blocks); 1254 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); 1255 } 1256 1257 /* will put inode & node pages */ 1258 err = truncate_node(&dn); 1259 if (err) { 1260 f2fs_put_dnode(&dn); 1261 return err; 1262 } 1263 return 0; 1264 } 1265 1266 struct page *f2fs_new_inode_page(struct inode *inode) 1267 { 1268 struct dnode_of_data dn; 1269 1270 /* allocate inode page for new inode */ 1271 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); 1272 1273 /* caller should f2fs_put_page(page, 1); */ 1274 return f2fs_new_node_page(&dn, 0); 1275 } 1276 1277 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) 1278 { 1279 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1280 struct node_info new_ni; 1281 struct page *page; 1282 int err; 1283 1284 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1285 return ERR_PTR(-EPERM); 1286 1287 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); 1288 if (!page) 1289 return ERR_PTR(-ENOMEM); 1290 1291 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) 1292 goto fail; 1293 1294 #ifdef CONFIG_F2FS_CHECK_FS 1295 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false); 1296 if (err) { 1297 dec_valid_node_count(sbi, dn->inode, !ofs); 1298 goto fail; 1299 } 1300 if (unlikely(new_ni.blk_addr != NULL_ADDR)) { 1301 err = -EFSCORRUPTED; 1302 set_sbi_flag(sbi, SBI_NEED_FSCK); 1303 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1304 goto fail; 1305 } 1306 #endif 1307 new_ni.nid = dn->nid; 1308 new_ni.ino = dn->inode->i_ino; 1309 new_ni.blk_addr = NULL_ADDR; 1310 new_ni.flag = 0; 1311 new_ni.version = 0; 1312 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 1313 1314 f2fs_wait_on_page_writeback(page, NODE, true, true); 1315 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); 1316 set_cold_node(page, S_ISDIR(dn->inode->i_mode)); 1317 if (!PageUptodate(page)) 1318 SetPageUptodate(page); 1319 if (set_page_dirty(page)) 1320 dn->node_changed = true; 1321 1322 if (f2fs_has_xattr_block(ofs)) 1323 f2fs_i_xnid_write(dn->inode, dn->nid); 1324 1325 if (ofs == 0) 1326 inc_valid_inode_count(sbi); 1327 return page; 1328 1329 fail: 1330 clear_node_page_dirty(page); 1331 f2fs_put_page(page, 1); 1332 return ERR_PTR(err); 1333 } 1334 1335 /* 1336 * Caller should do after getting the following values. 1337 * 0: f2fs_put_page(page, 0) 1338 * LOCKED_PAGE or error: f2fs_put_page(page, 1) 1339 */ 1340 static int read_node_page(struct page *page, blk_opf_t op_flags) 1341 { 1342 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1343 struct node_info ni; 1344 struct f2fs_io_info fio = { 1345 .sbi = sbi, 1346 .type = NODE, 1347 .op = REQ_OP_READ, 1348 .op_flags = op_flags, 1349 .page = page, 1350 .encrypted_page = NULL, 1351 }; 1352 int err; 1353 1354 if (PageUptodate(page)) { 1355 if (!f2fs_inode_chksum_verify(sbi, page)) { 1356 ClearPageUptodate(page); 1357 return -EFSBADCRC; 1358 } 1359 return LOCKED_PAGE; 1360 } 1361 1362 err = f2fs_get_node_info(sbi, page->index, &ni, false); 1363 if (err) 1364 return err; 1365 1366 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */ 1367 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) { 1368 ClearPageUptodate(page); 1369 return -ENOENT; 1370 } 1371 1372 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; 1373 1374 err = f2fs_submit_page_bio(&fio); 1375 1376 if (!err) 1377 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE); 1378 1379 return err; 1380 } 1381 1382 /* 1383 * Readahead a node page 1384 */ 1385 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) 1386 { 1387 struct page *apage; 1388 int err; 1389 1390 if (!nid) 1391 return; 1392 if (f2fs_check_nid_range(sbi, nid)) 1393 return; 1394 1395 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid); 1396 if (apage) 1397 return; 1398 1399 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1400 if (!apage) 1401 return; 1402 1403 err = read_node_page(apage, REQ_RAHEAD); 1404 f2fs_put_page(apage, err ? 1 : 0); 1405 } 1406 1407 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, 1408 struct page *parent, int start) 1409 { 1410 struct page *page; 1411 int err; 1412 1413 if (!nid) 1414 return ERR_PTR(-ENOENT); 1415 if (f2fs_check_nid_range(sbi, nid)) 1416 return ERR_PTR(-EINVAL); 1417 repeat: 1418 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); 1419 if (!page) 1420 return ERR_PTR(-ENOMEM); 1421 1422 err = read_node_page(page, 0); 1423 if (err < 0) { 1424 goto out_put_err; 1425 } else if (err == LOCKED_PAGE) { 1426 err = 0; 1427 goto page_hit; 1428 } 1429 1430 if (parent) 1431 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); 1432 1433 lock_page(page); 1434 1435 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1436 f2fs_put_page(page, 1); 1437 goto repeat; 1438 } 1439 1440 if (unlikely(!PageUptodate(page))) { 1441 err = -EIO; 1442 goto out_err; 1443 } 1444 1445 if (!f2fs_inode_chksum_verify(sbi, page)) { 1446 err = -EFSBADCRC; 1447 goto out_err; 1448 } 1449 page_hit: 1450 if (likely(nid == nid_of_node(page))) 1451 return page; 1452 1453 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", 1454 nid, nid_of_node(page), ino_of_node(page), 1455 ofs_of_node(page), cpver_of_node(page), 1456 next_blkaddr_of_node(page)); 1457 set_sbi_flag(sbi, SBI_NEED_FSCK); 1458 err = -EINVAL; 1459 out_err: 1460 ClearPageUptodate(page); 1461 out_put_err: 1462 /* ENOENT comes from read_node_page which is not an error. */ 1463 if (err != -ENOENT) 1464 f2fs_handle_page_eio(sbi, page->index, NODE); 1465 f2fs_put_page(page, 1); 1466 return ERR_PTR(err); 1467 } 1468 1469 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) 1470 { 1471 return __get_node_page(sbi, nid, NULL, 0); 1472 } 1473 1474 struct page *f2fs_get_node_page_ra(struct page *parent, int start) 1475 { 1476 struct f2fs_sb_info *sbi = F2FS_P_SB(parent); 1477 nid_t nid = get_nid(parent, start, false); 1478 1479 return __get_node_page(sbi, nid, parent, start); 1480 } 1481 1482 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) 1483 { 1484 struct inode *inode; 1485 struct page *page; 1486 int ret; 1487 1488 /* should flush inline_data before evict_inode */ 1489 inode = ilookup(sbi->sb, ino); 1490 if (!inode) 1491 return; 1492 1493 page = f2fs_pagecache_get_page(inode->i_mapping, 0, 1494 FGP_LOCK|FGP_NOWAIT, 0); 1495 if (!page) 1496 goto iput_out; 1497 1498 if (!PageUptodate(page)) 1499 goto page_out; 1500 1501 if (!PageDirty(page)) 1502 goto page_out; 1503 1504 if (!clear_page_dirty_for_io(page)) 1505 goto page_out; 1506 1507 ret = f2fs_write_inline_data(inode, page); 1508 inode_dec_dirty_pages(inode); 1509 f2fs_remove_dirty_inode(inode); 1510 if (ret) 1511 set_page_dirty(page); 1512 page_out: 1513 f2fs_put_page(page, 1); 1514 iput_out: 1515 iput(inode); 1516 } 1517 1518 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) 1519 { 1520 pgoff_t index; 1521 struct pagevec pvec; 1522 struct page *last_page = NULL; 1523 int nr_pages; 1524 1525 pagevec_init(&pvec); 1526 index = 0; 1527 1528 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1529 PAGECACHE_TAG_DIRTY))) { 1530 int i; 1531 1532 for (i = 0; i < nr_pages; i++) { 1533 struct page *page = pvec.pages[i]; 1534 1535 if (unlikely(f2fs_cp_error(sbi))) { 1536 f2fs_put_page(last_page, 0); 1537 pagevec_release(&pvec); 1538 return ERR_PTR(-EIO); 1539 } 1540 1541 if (!IS_DNODE(page) || !is_cold_node(page)) 1542 continue; 1543 if (ino_of_node(page) != ino) 1544 continue; 1545 1546 lock_page(page); 1547 1548 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1549 continue_unlock: 1550 unlock_page(page); 1551 continue; 1552 } 1553 if (ino_of_node(page) != ino) 1554 goto continue_unlock; 1555 1556 if (!PageDirty(page)) { 1557 /* someone wrote it for us */ 1558 goto continue_unlock; 1559 } 1560 1561 if (last_page) 1562 f2fs_put_page(last_page, 0); 1563 1564 get_page(page); 1565 last_page = page; 1566 unlock_page(page); 1567 } 1568 pagevec_release(&pvec); 1569 cond_resched(); 1570 } 1571 return last_page; 1572 } 1573 1574 static int __write_node_page(struct page *page, bool atomic, bool *submitted, 1575 struct writeback_control *wbc, bool do_balance, 1576 enum iostat_type io_type, unsigned int *seq_id) 1577 { 1578 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1579 nid_t nid; 1580 struct node_info ni; 1581 struct f2fs_io_info fio = { 1582 .sbi = sbi, 1583 .ino = ino_of_node(page), 1584 .type = NODE, 1585 .op = REQ_OP_WRITE, 1586 .op_flags = wbc_to_write_flags(wbc), 1587 .page = page, 1588 .encrypted_page = NULL, 1589 .submitted = false, 1590 .io_type = io_type, 1591 .io_wbc = wbc, 1592 }; 1593 unsigned int seq; 1594 1595 trace_f2fs_writepage(page, NODE); 1596 1597 if (unlikely(f2fs_cp_error(sbi))) { 1598 ClearPageUptodate(page); 1599 dec_page_count(sbi, F2FS_DIRTY_NODES); 1600 unlock_page(page); 1601 return 0; 1602 } 1603 1604 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1605 goto redirty_out; 1606 1607 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 1608 wbc->sync_mode == WB_SYNC_NONE && 1609 IS_DNODE(page) && is_cold_node(page)) 1610 goto redirty_out; 1611 1612 /* get old block addr of this node page */ 1613 nid = nid_of_node(page); 1614 f2fs_bug_on(sbi, page->index != nid); 1615 1616 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance)) 1617 goto redirty_out; 1618 1619 if (wbc->for_reclaim) { 1620 if (!f2fs_down_read_trylock(&sbi->node_write)) 1621 goto redirty_out; 1622 } else { 1623 f2fs_down_read(&sbi->node_write); 1624 } 1625 1626 /* This page is already truncated */ 1627 if (unlikely(ni.blk_addr == NULL_ADDR)) { 1628 ClearPageUptodate(page); 1629 dec_page_count(sbi, F2FS_DIRTY_NODES); 1630 f2fs_up_read(&sbi->node_write); 1631 unlock_page(page); 1632 return 0; 1633 } 1634 1635 if (__is_valid_data_blkaddr(ni.blk_addr) && 1636 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, 1637 DATA_GENERIC_ENHANCE)) { 1638 f2fs_up_read(&sbi->node_write); 1639 goto redirty_out; 1640 } 1641 1642 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi)) 1643 fio.op_flags |= REQ_PREFLUSH | REQ_FUA; 1644 1645 /* should add to global list before clearing PAGECACHE status */ 1646 if (f2fs_in_warm_node_list(sbi, page)) { 1647 seq = f2fs_add_fsync_node_entry(sbi, page); 1648 if (seq_id) 1649 *seq_id = seq; 1650 } 1651 1652 set_page_writeback(page); 1653 ClearPageError(page); 1654 1655 fio.old_blkaddr = ni.blk_addr; 1656 f2fs_do_write_node_page(nid, &fio); 1657 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); 1658 dec_page_count(sbi, F2FS_DIRTY_NODES); 1659 f2fs_up_read(&sbi->node_write); 1660 1661 if (wbc->for_reclaim) { 1662 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); 1663 submitted = NULL; 1664 } 1665 1666 unlock_page(page); 1667 1668 if (unlikely(f2fs_cp_error(sbi))) { 1669 f2fs_submit_merged_write(sbi, NODE); 1670 submitted = NULL; 1671 } 1672 if (submitted) 1673 *submitted = fio.submitted; 1674 1675 if (do_balance) 1676 f2fs_balance_fs(sbi, false); 1677 return 0; 1678 1679 redirty_out: 1680 redirty_page_for_writepage(wbc, page); 1681 return AOP_WRITEPAGE_ACTIVATE; 1682 } 1683 1684 int f2fs_move_node_page(struct page *node_page, int gc_type) 1685 { 1686 int err = 0; 1687 1688 if (gc_type == FG_GC) { 1689 struct writeback_control wbc = { 1690 .sync_mode = WB_SYNC_ALL, 1691 .nr_to_write = 1, 1692 .for_reclaim = 0, 1693 }; 1694 1695 f2fs_wait_on_page_writeback(node_page, NODE, true, true); 1696 1697 set_page_dirty(node_page); 1698 1699 if (!clear_page_dirty_for_io(node_page)) { 1700 err = -EAGAIN; 1701 goto out_page; 1702 } 1703 1704 if (__write_node_page(node_page, false, NULL, 1705 &wbc, false, FS_GC_NODE_IO, NULL)) { 1706 err = -EAGAIN; 1707 unlock_page(node_page); 1708 } 1709 goto release_page; 1710 } else { 1711 /* set page dirty and write it */ 1712 if (!PageWriteback(node_page)) 1713 set_page_dirty(node_page); 1714 } 1715 out_page: 1716 unlock_page(node_page); 1717 release_page: 1718 f2fs_put_page(node_page, 0); 1719 return err; 1720 } 1721 1722 static int f2fs_write_node_page(struct page *page, 1723 struct writeback_control *wbc) 1724 { 1725 return __write_node_page(page, false, NULL, wbc, false, 1726 FS_NODE_IO, NULL); 1727 } 1728 1729 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 1730 struct writeback_control *wbc, bool atomic, 1731 unsigned int *seq_id) 1732 { 1733 pgoff_t index; 1734 struct pagevec pvec; 1735 int ret = 0; 1736 struct page *last_page = NULL; 1737 bool marked = false; 1738 nid_t ino = inode->i_ino; 1739 int nr_pages; 1740 int nwritten = 0; 1741 1742 if (atomic) { 1743 last_page = last_fsync_dnode(sbi, ino); 1744 if (IS_ERR_OR_NULL(last_page)) 1745 return PTR_ERR_OR_ZERO(last_page); 1746 } 1747 retry: 1748 pagevec_init(&pvec); 1749 index = 0; 1750 1751 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, 1752 PAGECACHE_TAG_DIRTY))) { 1753 int i; 1754 1755 for (i = 0; i < nr_pages; i++) { 1756 struct page *page = pvec.pages[i]; 1757 bool submitted = false; 1758 1759 if (unlikely(f2fs_cp_error(sbi))) { 1760 f2fs_put_page(last_page, 0); 1761 pagevec_release(&pvec); 1762 ret = -EIO; 1763 goto out; 1764 } 1765 1766 if (!IS_DNODE(page) || !is_cold_node(page)) 1767 continue; 1768 if (ino_of_node(page) != ino) 1769 continue; 1770 1771 lock_page(page); 1772 1773 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1774 continue_unlock: 1775 unlock_page(page); 1776 continue; 1777 } 1778 if (ino_of_node(page) != ino) 1779 goto continue_unlock; 1780 1781 if (!PageDirty(page) && page != last_page) { 1782 /* someone wrote it for us */ 1783 goto continue_unlock; 1784 } 1785 1786 f2fs_wait_on_page_writeback(page, NODE, true, true); 1787 1788 set_fsync_mark(page, 0); 1789 set_dentry_mark(page, 0); 1790 1791 if (!atomic || page == last_page) { 1792 set_fsync_mark(page, 1); 1793 percpu_counter_inc(&sbi->rf_node_block_count); 1794 if (IS_INODE(page)) { 1795 if (is_inode_flag_set(inode, 1796 FI_DIRTY_INODE)) 1797 f2fs_update_inode(inode, page); 1798 set_dentry_mark(page, 1799 f2fs_need_dentry_mark(sbi, ino)); 1800 } 1801 /* may be written by other thread */ 1802 if (!PageDirty(page)) 1803 set_page_dirty(page); 1804 } 1805 1806 if (!clear_page_dirty_for_io(page)) 1807 goto continue_unlock; 1808 1809 ret = __write_node_page(page, atomic && 1810 page == last_page, 1811 &submitted, wbc, true, 1812 FS_NODE_IO, seq_id); 1813 if (ret) { 1814 unlock_page(page); 1815 f2fs_put_page(last_page, 0); 1816 break; 1817 } else if (submitted) { 1818 nwritten++; 1819 } 1820 1821 if (page == last_page) { 1822 f2fs_put_page(page, 0); 1823 marked = true; 1824 break; 1825 } 1826 } 1827 pagevec_release(&pvec); 1828 cond_resched(); 1829 1830 if (ret || marked) 1831 break; 1832 } 1833 if (!ret && atomic && !marked) { 1834 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", 1835 ino, last_page->index); 1836 lock_page(last_page); 1837 f2fs_wait_on_page_writeback(last_page, NODE, true, true); 1838 set_page_dirty(last_page); 1839 unlock_page(last_page); 1840 goto retry; 1841 } 1842 out: 1843 if (nwritten) 1844 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); 1845 return ret ? -EIO : 0; 1846 } 1847 1848 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) 1849 { 1850 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1851 bool clean; 1852 1853 if (inode->i_ino != ino) 1854 return 0; 1855 1856 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) 1857 return 0; 1858 1859 spin_lock(&sbi->inode_lock[DIRTY_META]); 1860 clean = list_empty(&F2FS_I(inode)->gdirty_list); 1861 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1862 1863 if (clean) 1864 return 0; 1865 1866 inode = igrab(inode); 1867 if (!inode) 1868 return 0; 1869 return 1; 1870 } 1871 1872 static bool flush_dirty_inode(struct page *page) 1873 { 1874 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1875 struct inode *inode; 1876 nid_t ino = ino_of_node(page); 1877 1878 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); 1879 if (!inode) 1880 return false; 1881 1882 f2fs_update_inode(inode, page); 1883 unlock_page(page); 1884 1885 iput(inode); 1886 return true; 1887 } 1888 1889 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi) 1890 { 1891 pgoff_t index = 0; 1892 struct pagevec pvec; 1893 int nr_pages; 1894 1895 pagevec_init(&pvec); 1896 1897 while ((nr_pages = pagevec_lookup_tag(&pvec, 1898 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1899 int i; 1900 1901 for (i = 0; i < nr_pages; i++) { 1902 struct page *page = pvec.pages[i]; 1903 1904 if (!IS_DNODE(page)) 1905 continue; 1906 1907 lock_page(page); 1908 1909 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1910 continue_unlock: 1911 unlock_page(page); 1912 continue; 1913 } 1914 1915 if (!PageDirty(page)) { 1916 /* someone wrote it for us */ 1917 goto continue_unlock; 1918 } 1919 1920 /* flush inline_data, if it's async context. */ 1921 if (page_private_inline(page)) { 1922 clear_page_private_inline(page); 1923 unlock_page(page); 1924 flush_inline_data(sbi, ino_of_node(page)); 1925 continue; 1926 } 1927 unlock_page(page); 1928 } 1929 pagevec_release(&pvec); 1930 cond_resched(); 1931 } 1932 } 1933 1934 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 1935 struct writeback_control *wbc, 1936 bool do_balance, enum iostat_type io_type) 1937 { 1938 pgoff_t index; 1939 struct pagevec pvec; 1940 int step = 0; 1941 int nwritten = 0; 1942 int ret = 0; 1943 int nr_pages, done = 0; 1944 1945 pagevec_init(&pvec); 1946 1947 next_step: 1948 index = 0; 1949 1950 while (!done && (nr_pages = pagevec_lookup_tag(&pvec, 1951 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { 1952 int i; 1953 1954 for (i = 0; i < nr_pages; i++) { 1955 struct page *page = pvec.pages[i]; 1956 bool submitted = false; 1957 1958 /* give a priority to WB_SYNC threads */ 1959 if (atomic_read(&sbi->wb_sync_req[NODE]) && 1960 wbc->sync_mode == WB_SYNC_NONE) { 1961 done = 1; 1962 break; 1963 } 1964 1965 /* 1966 * flushing sequence with step: 1967 * 0. indirect nodes 1968 * 1. dentry dnodes 1969 * 2. file dnodes 1970 */ 1971 if (step == 0 && IS_DNODE(page)) 1972 continue; 1973 if (step == 1 && (!IS_DNODE(page) || 1974 is_cold_node(page))) 1975 continue; 1976 if (step == 2 && (!IS_DNODE(page) || 1977 !is_cold_node(page))) 1978 continue; 1979 lock_node: 1980 if (wbc->sync_mode == WB_SYNC_ALL) 1981 lock_page(page); 1982 else if (!trylock_page(page)) 1983 continue; 1984 1985 if (unlikely(page->mapping != NODE_MAPPING(sbi))) { 1986 continue_unlock: 1987 unlock_page(page); 1988 continue; 1989 } 1990 1991 if (!PageDirty(page)) { 1992 /* someone wrote it for us */ 1993 goto continue_unlock; 1994 } 1995 1996 /* flush inline_data/inode, if it's async context. */ 1997 if (!do_balance) 1998 goto write_node; 1999 2000 /* flush inline_data */ 2001 if (page_private_inline(page)) { 2002 clear_page_private_inline(page); 2003 unlock_page(page); 2004 flush_inline_data(sbi, ino_of_node(page)); 2005 goto lock_node; 2006 } 2007 2008 /* flush dirty inode */ 2009 if (IS_INODE(page) && flush_dirty_inode(page)) 2010 goto lock_node; 2011 write_node: 2012 f2fs_wait_on_page_writeback(page, NODE, true, true); 2013 2014 if (!clear_page_dirty_for_io(page)) 2015 goto continue_unlock; 2016 2017 set_fsync_mark(page, 0); 2018 set_dentry_mark(page, 0); 2019 2020 ret = __write_node_page(page, false, &submitted, 2021 wbc, do_balance, io_type, NULL); 2022 if (ret) 2023 unlock_page(page); 2024 else if (submitted) 2025 nwritten++; 2026 2027 if (--wbc->nr_to_write == 0) 2028 break; 2029 } 2030 pagevec_release(&pvec); 2031 cond_resched(); 2032 2033 if (wbc->nr_to_write == 0) { 2034 step = 2; 2035 break; 2036 } 2037 } 2038 2039 if (step < 2) { 2040 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2041 wbc->sync_mode == WB_SYNC_NONE && step == 1) 2042 goto out; 2043 step++; 2044 goto next_step; 2045 } 2046 out: 2047 if (nwritten) 2048 f2fs_submit_merged_write(sbi, NODE); 2049 2050 if (unlikely(f2fs_cp_error(sbi))) 2051 return -EIO; 2052 return ret; 2053 } 2054 2055 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2056 unsigned int seq_id) 2057 { 2058 struct fsync_node_entry *fn; 2059 struct page *page; 2060 struct list_head *head = &sbi->fsync_node_list; 2061 unsigned long flags; 2062 unsigned int cur_seq_id = 0; 2063 int ret2, ret = 0; 2064 2065 while (seq_id && cur_seq_id < seq_id) { 2066 spin_lock_irqsave(&sbi->fsync_node_lock, flags); 2067 if (list_empty(head)) { 2068 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2069 break; 2070 } 2071 fn = list_first_entry(head, struct fsync_node_entry, list); 2072 if (fn->seq_id > seq_id) { 2073 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2074 break; 2075 } 2076 cur_seq_id = fn->seq_id; 2077 page = fn->page; 2078 get_page(page); 2079 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); 2080 2081 f2fs_wait_on_page_writeback(page, NODE, true, false); 2082 if (TestClearPageError(page)) 2083 ret = -EIO; 2084 2085 put_page(page); 2086 2087 if (ret) 2088 break; 2089 } 2090 2091 ret2 = filemap_check_errors(NODE_MAPPING(sbi)); 2092 if (!ret) 2093 ret = ret2; 2094 2095 return ret; 2096 } 2097 2098 static int f2fs_write_node_pages(struct address_space *mapping, 2099 struct writeback_control *wbc) 2100 { 2101 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2102 struct blk_plug plug; 2103 long diff; 2104 2105 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2106 goto skip_write; 2107 2108 /* balancing f2fs's metadata in background */ 2109 f2fs_balance_fs_bg(sbi, true); 2110 2111 /* collect a number of dirty node pages and write together */ 2112 if (wbc->sync_mode != WB_SYNC_ALL && 2113 get_pages(sbi, F2FS_DIRTY_NODES) < 2114 nr_pages_to_skip(sbi, NODE)) 2115 goto skip_write; 2116 2117 if (wbc->sync_mode == WB_SYNC_ALL) 2118 atomic_inc(&sbi->wb_sync_req[NODE]); 2119 else if (atomic_read(&sbi->wb_sync_req[NODE])) { 2120 /* to avoid potential deadlock */ 2121 if (current->plug) 2122 blk_finish_plug(current->plug); 2123 goto skip_write; 2124 } 2125 2126 trace_f2fs_writepages(mapping->host, wbc, NODE); 2127 2128 diff = nr_pages_to_write(sbi, NODE, wbc); 2129 blk_start_plug(&plug); 2130 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); 2131 blk_finish_plug(&plug); 2132 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); 2133 2134 if (wbc->sync_mode == WB_SYNC_ALL) 2135 atomic_dec(&sbi->wb_sync_req[NODE]); 2136 return 0; 2137 2138 skip_write: 2139 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); 2140 trace_f2fs_writepages(mapping->host, wbc, NODE); 2141 return 0; 2142 } 2143 2144 static bool f2fs_dirty_node_folio(struct address_space *mapping, 2145 struct folio *folio) 2146 { 2147 trace_f2fs_set_page_dirty(&folio->page, NODE); 2148 2149 if (!folio_test_uptodate(folio)) 2150 folio_mark_uptodate(folio); 2151 #ifdef CONFIG_F2FS_CHECK_FS 2152 if (IS_INODE(&folio->page)) 2153 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page); 2154 #endif 2155 if (filemap_dirty_folio(mapping, folio)) { 2156 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES); 2157 set_page_private_reference(&folio->page); 2158 return true; 2159 } 2160 return false; 2161 } 2162 2163 /* 2164 * Structure of the f2fs node operations 2165 */ 2166 const struct address_space_operations f2fs_node_aops = { 2167 .writepage = f2fs_write_node_page, 2168 .writepages = f2fs_write_node_pages, 2169 .dirty_folio = f2fs_dirty_node_folio, 2170 .invalidate_folio = f2fs_invalidate_folio, 2171 .release_folio = f2fs_release_folio, 2172 .migrate_folio = filemap_migrate_folio, 2173 }; 2174 2175 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, 2176 nid_t n) 2177 { 2178 return radix_tree_lookup(&nm_i->free_nid_root, n); 2179 } 2180 2181 static int __insert_free_nid(struct f2fs_sb_info *sbi, 2182 struct free_nid *i) 2183 { 2184 struct f2fs_nm_info *nm_i = NM_I(sbi); 2185 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); 2186 2187 if (err) 2188 return err; 2189 2190 nm_i->nid_cnt[FREE_NID]++; 2191 list_add_tail(&i->list, &nm_i->free_nid_list); 2192 return 0; 2193 } 2194 2195 static void __remove_free_nid(struct f2fs_sb_info *sbi, 2196 struct free_nid *i, enum nid_state state) 2197 { 2198 struct f2fs_nm_info *nm_i = NM_I(sbi); 2199 2200 f2fs_bug_on(sbi, state != i->state); 2201 nm_i->nid_cnt[state]--; 2202 if (state == FREE_NID) 2203 list_del(&i->list); 2204 radix_tree_delete(&nm_i->free_nid_root, i->nid); 2205 } 2206 2207 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, 2208 enum nid_state org_state, enum nid_state dst_state) 2209 { 2210 struct f2fs_nm_info *nm_i = NM_I(sbi); 2211 2212 f2fs_bug_on(sbi, org_state != i->state); 2213 i->state = dst_state; 2214 nm_i->nid_cnt[org_state]--; 2215 nm_i->nid_cnt[dst_state]++; 2216 2217 switch (dst_state) { 2218 case PREALLOC_NID: 2219 list_del(&i->list); 2220 break; 2221 case FREE_NID: 2222 list_add_tail(&i->list, &nm_i->free_nid_list); 2223 break; 2224 default: 2225 BUG_ON(1); 2226 } 2227 } 2228 2229 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi) 2230 { 2231 struct f2fs_nm_info *nm_i = NM_I(sbi); 2232 unsigned int i; 2233 bool ret = true; 2234 2235 f2fs_down_read(&nm_i->nat_tree_lock); 2236 for (i = 0; i < nm_i->nat_blocks; i++) { 2237 if (!test_bit_le(i, nm_i->nat_block_bitmap)) { 2238 ret = false; 2239 break; 2240 } 2241 } 2242 f2fs_up_read(&nm_i->nat_tree_lock); 2243 2244 return ret; 2245 } 2246 2247 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, 2248 bool set, bool build) 2249 { 2250 struct f2fs_nm_info *nm_i = NM_I(sbi); 2251 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); 2252 unsigned int nid_ofs = nid - START_NID(nid); 2253 2254 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) 2255 return; 2256 2257 if (set) { 2258 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2259 return; 2260 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2261 nm_i->free_nid_count[nat_ofs]++; 2262 } else { 2263 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) 2264 return; 2265 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); 2266 if (!build) 2267 nm_i->free_nid_count[nat_ofs]--; 2268 } 2269 } 2270 2271 /* return if the nid is recognized as free */ 2272 static bool add_free_nid(struct f2fs_sb_info *sbi, 2273 nid_t nid, bool build, bool update) 2274 { 2275 struct f2fs_nm_info *nm_i = NM_I(sbi); 2276 struct free_nid *i, *e; 2277 struct nat_entry *ne; 2278 int err = -EINVAL; 2279 bool ret = false; 2280 2281 /* 0 nid should not be used */ 2282 if (unlikely(nid == 0)) 2283 return false; 2284 2285 if (unlikely(f2fs_check_nid_range(sbi, nid))) 2286 return false; 2287 2288 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL); 2289 i->nid = nid; 2290 i->state = FREE_NID; 2291 2292 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); 2293 2294 spin_lock(&nm_i->nid_list_lock); 2295 2296 if (build) { 2297 /* 2298 * Thread A Thread B 2299 * - f2fs_create 2300 * - f2fs_new_inode 2301 * - f2fs_alloc_nid 2302 * - __insert_nid_to_list(PREALLOC_NID) 2303 * - f2fs_balance_fs_bg 2304 * - f2fs_build_free_nids 2305 * - __f2fs_build_free_nids 2306 * - scan_nat_page 2307 * - add_free_nid 2308 * - __lookup_nat_cache 2309 * - f2fs_add_link 2310 * - f2fs_init_inode_metadata 2311 * - f2fs_new_inode_page 2312 * - f2fs_new_node_page 2313 * - set_node_addr 2314 * - f2fs_alloc_nid_done 2315 * - __remove_nid_from_list(PREALLOC_NID) 2316 * - __insert_nid_to_list(FREE_NID) 2317 */ 2318 ne = __lookup_nat_cache(nm_i, nid); 2319 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || 2320 nat_get_blkaddr(ne) != NULL_ADDR)) 2321 goto err_out; 2322 2323 e = __lookup_free_nid_list(nm_i, nid); 2324 if (e) { 2325 if (e->state == FREE_NID) 2326 ret = true; 2327 goto err_out; 2328 } 2329 } 2330 ret = true; 2331 err = __insert_free_nid(sbi, i); 2332 err_out: 2333 if (update) { 2334 update_free_nid_bitmap(sbi, nid, ret, build); 2335 if (!build) 2336 nm_i->available_nids++; 2337 } 2338 spin_unlock(&nm_i->nid_list_lock); 2339 radix_tree_preload_end(); 2340 2341 if (err) 2342 kmem_cache_free(free_nid_slab, i); 2343 return ret; 2344 } 2345 2346 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) 2347 { 2348 struct f2fs_nm_info *nm_i = NM_I(sbi); 2349 struct free_nid *i; 2350 bool need_free = false; 2351 2352 spin_lock(&nm_i->nid_list_lock); 2353 i = __lookup_free_nid_list(nm_i, nid); 2354 if (i && i->state == FREE_NID) { 2355 __remove_free_nid(sbi, i, FREE_NID); 2356 need_free = true; 2357 } 2358 spin_unlock(&nm_i->nid_list_lock); 2359 2360 if (need_free) 2361 kmem_cache_free(free_nid_slab, i); 2362 } 2363 2364 static int scan_nat_page(struct f2fs_sb_info *sbi, 2365 struct page *nat_page, nid_t start_nid) 2366 { 2367 struct f2fs_nm_info *nm_i = NM_I(sbi); 2368 struct f2fs_nat_block *nat_blk = page_address(nat_page); 2369 block_t blk_addr; 2370 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); 2371 int i; 2372 2373 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap); 2374 2375 i = start_nid % NAT_ENTRY_PER_BLOCK; 2376 2377 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { 2378 if (unlikely(start_nid >= nm_i->max_nid)) 2379 break; 2380 2381 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); 2382 2383 if (blk_addr == NEW_ADDR) 2384 return -EINVAL; 2385 2386 if (blk_addr == NULL_ADDR) { 2387 add_free_nid(sbi, start_nid, true, true); 2388 } else { 2389 spin_lock(&NM_I(sbi)->nid_list_lock); 2390 update_free_nid_bitmap(sbi, start_nid, false, true); 2391 spin_unlock(&NM_I(sbi)->nid_list_lock); 2392 } 2393 } 2394 2395 return 0; 2396 } 2397 2398 static void scan_curseg_cache(struct f2fs_sb_info *sbi) 2399 { 2400 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2401 struct f2fs_journal *journal = curseg->journal; 2402 int i; 2403 2404 down_read(&curseg->journal_rwsem); 2405 for (i = 0; i < nats_in_cursum(journal); i++) { 2406 block_t addr; 2407 nid_t nid; 2408 2409 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); 2410 nid = le32_to_cpu(nid_in_journal(journal, i)); 2411 if (addr == NULL_ADDR) 2412 add_free_nid(sbi, nid, true, false); 2413 else 2414 remove_free_nid(sbi, nid); 2415 } 2416 up_read(&curseg->journal_rwsem); 2417 } 2418 2419 static void scan_free_nid_bits(struct f2fs_sb_info *sbi) 2420 { 2421 struct f2fs_nm_info *nm_i = NM_I(sbi); 2422 unsigned int i, idx; 2423 nid_t nid; 2424 2425 f2fs_down_read(&nm_i->nat_tree_lock); 2426 2427 for (i = 0; i < nm_i->nat_blocks; i++) { 2428 if (!test_bit_le(i, nm_i->nat_block_bitmap)) 2429 continue; 2430 if (!nm_i->free_nid_count[i]) 2431 continue; 2432 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { 2433 idx = find_next_bit_le(nm_i->free_nid_bitmap[i], 2434 NAT_ENTRY_PER_BLOCK, idx); 2435 if (idx >= NAT_ENTRY_PER_BLOCK) 2436 break; 2437 2438 nid = i * NAT_ENTRY_PER_BLOCK + idx; 2439 add_free_nid(sbi, nid, true, false); 2440 2441 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) 2442 goto out; 2443 } 2444 } 2445 out: 2446 scan_curseg_cache(sbi); 2447 2448 f2fs_up_read(&nm_i->nat_tree_lock); 2449 } 2450 2451 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, 2452 bool sync, bool mount) 2453 { 2454 struct f2fs_nm_info *nm_i = NM_I(sbi); 2455 int i = 0, ret; 2456 nid_t nid = nm_i->next_scan_nid; 2457 2458 if (unlikely(nid >= nm_i->max_nid)) 2459 nid = 0; 2460 2461 if (unlikely(nid % NAT_ENTRY_PER_BLOCK)) 2462 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK; 2463 2464 /* Enough entries */ 2465 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2466 return 0; 2467 2468 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) 2469 return 0; 2470 2471 if (!mount) { 2472 /* try to find free nids in free_nid_bitmap */ 2473 scan_free_nid_bits(sbi); 2474 2475 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) 2476 return 0; 2477 } 2478 2479 /* readahead nat pages to be scanned */ 2480 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, 2481 META_NAT, true); 2482 2483 f2fs_down_read(&nm_i->nat_tree_lock); 2484 2485 while (1) { 2486 if (!test_bit_le(NAT_BLOCK_OFFSET(nid), 2487 nm_i->nat_block_bitmap)) { 2488 struct page *page = get_current_nat_page(sbi, nid); 2489 2490 if (IS_ERR(page)) { 2491 ret = PTR_ERR(page); 2492 } else { 2493 ret = scan_nat_page(sbi, page, nid); 2494 f2fs_put_page(page, 1); 2495 } 2496 2497 if (ret) { 2498 f2fs_up_read(&nm_i->nat_tree_lock); 2499 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); 2500 return ret; 2501 } 2502 } 2503 2504 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); 2505 if (unlikely(nid >= nm_i->max_nid)) 2506 nid = 0; 2507 2508 if (++i >= FREE_NID_PAGES) 2509 break; 2510 } 2511 2512 /* go to the next free nat pages to find free nids abundantly */ 2513 nm_i->next_scan_nid = nid; 2514 2515 /* find free nids from current sum_pages */ 2516 scan_curseg_cache(sbi); 2517 2518 f2fs_up_read(&nm_i->nat_tree_lock); 2519 2520 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), 2521 nm_i->ra_nid_pages, META_NAT, false); 2522 2523 return 0; 2524 } 2525 2526 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) 2527 { 2528 int ret; 2529 2530 mutex_lock(&NM_I(sbi)->build_lock); 2531 ret = __f2fs_build_free_nids(sbi, sync, mount); 2532 mutex_unlock(&NM_I(sbi)->build_lock); 2533 2534 return ret; 2535 } 2536 2537 /* 2538 * If this function returns success, caller can obtain a new nid 2539 * from second parameter of this function. 2540 * The returned nid could be used ino as well as nid when inode is created. 2541 */ 2542 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) 2543 { 2544 struct f2fs_nm_info *nm_i = NM_I(sbi); 2545 struct free_nid *i = NULL; 2546 retry: 2547 if (time_to_inject(sbi, FAULT_ALLOC_NID)) { 2548 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID); 2549 return false; 2550 } 2551 2552 spin_lock(&nm_i->nid_list_lock); 2553 2554 if (unlikely(nm_i->available_nids == 0)) { 2555 spin_unlock(&nm_i->nid_list_lock); 2556 return false; 2557 } 2558 2559 /* We should not use stale free nids created by f2fs_build_free_nids */ 2560 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { 2561 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); 2562 i = list_first_entry(&nm_i->free_nid_list, 2563 struct free_nid, list); 2564 *nid = i->nid; 2565 2566 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); 2567 nm_i->available_nids--; 2568 2569 update_free_nid_bitmap(sbi, *nid, false, false); 2570 2571 spin_unlock(&nm_i->nid_list_lock); 2572 return true; 2573 } 2574 spin_unlock(&nm_i->nid_list_lock); 2575 2576 /* Let's scan nat pages and its caches to get free nids */ 2577 if (!f2fs_build_free_nids(sbi, true, false)) 2578 goto retry; 2579 return false; 2580 } 2581 2582 /* 2583 * f2fs_alloc_nid() should be called prior to this function. 2584 */ 2585 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) 2586 { 2587 struct f2fs_nm_info *nm_i = NM_I(sbi); 2588 struct free_nid *i; 2589 2590 spin_lock(&nm_i->nid_list_lock); 2591 i = __lookup_free_nid_list(nm_i, nid); 2592 f2fs_bug_on(sbi, !i); 2593 __remove_free_nid(sbi, i, PREALLOC_NID); 2594 spin_unlock(&nm_i->nid_list_lock); 2595 2596 kmem_cache_free(free_nid_slab, i); 2597 } 2598 2599 /* 2600 * f2fs_alloc_nid() should be called prior to this function. 2601 */ 2602 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) 2603 { 2604 struct f2fs_nm_info *nm_i = NM_I(sbi); 2605 struct free_nid *i; 2606 bool need_free = false; 2607 2608 if (!nid) 2609 return; 2610 2611 spin_lock(&nm_i->nid_list_lock); 2612 i = __lookup_free_nid_list(nm_i, nid); 2613 f2fs_bug_on(sbi, !i); 2614 2615 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { 2616 __remove_free_nid(sbi, i, PREALLOC_NID); 2617 need_free = true; 2618 } else { 2619 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); 2620 } 2621 2622 nm_i->available_nids++; 2623 2624 update_free_nid_bitmap(sbi, nid, true, false); 2625 2626 spin_unlock(&nm_i->nid_list_lock); 2627 2628 if (need_free) 2629 kmem_cache_free(free_nid_slab, i); 2630 } 2631 2632 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) 2633 { 2634 struct f2fs_nm_info *nm_i = NM_I(sbi); 2635 int nr = nr_shrink; 2636 2637 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2638 return 0; 2639 2640 if (!mutex_trylock(&nm_i->build_lock)) 2641 return 0; 2642 2643 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) { 2644 struct free_nid *i, *next; 2645 unsigned int batch = SHRINK_NID_BATCH_SIZE; 2646 2647 spin_lock(&nm_i->nid_list_lock); 2648 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { 2649 if (!nr_shrink || !batch || 2650 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) 2651 break; 2652 __remove_free_nid(sbi, i, FREE_NID); 2653 kmem_cache_free(free_nid_slab, i); 2654 nr_shrink--; 2655 batch--; 2656 } 2657 spin_unlock(&nm_i->nid_list_lock); 2658 } 2659 2660 mutex_unlock(&nm_i->build_lock); 2661 2662 return nr - nr_shrink; 2663 } 2664 2665 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page) 2666 { 2667 void *src_addr, *dst_addr; 2668 size_t inline_size; 2669 struct page *ipage; 2670 struct f2fs_inode *ri; 2671 2672 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 2673 if (IS_ERR(ipage)) 2674 return PTR_ERR(ipage); 2675 2676 ri = F2FS_INODE(page); 2677 if (ri->i_inline & F2FS_INLINE_XATTR) { 2678 if (!f2fs_has_inline_xattr(inode)) { 2679 set_inode_flag(inode, FI_INLINE_XATTR); 2680 stat_inc_inline_xattr(inode); 2681 } 2682 } else { 2683 if (f2fs_has_inline_xattr(inode)) { 2684 stat_dec_inline_xattr(inode); 2685 clear_inode_flag(inode, FI_INLINE_XATTR); 2686 } 2687 goto update_inode; 2688 } 2689 2690 dst_addr = inline_xattr_addr(inode, ipage); 2691 src_addr = inline_xattr_addr(inode, page); 2692 inline_size = inline_xattr_size(inode); 2693 2694 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 2695 memcpy(dst_addr, src_addr, inline_size); 2696 update_inode: 2697 f2fs_update_inode(inode, ipage); 2698 f2fs_put_page(ipage, 1); 2699 return 0; 2700 } 2701 2702 int f2fs_recover_xattr_data(struct inode *inode, struct page *page) 2703 { 2704 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2705 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; 2706 nid_t new_xnid; 2707 struct dnode_of_data dn; 2708 struct node_info ni; 2709 struct page *xpage; 2710 int err; 2711 2712 if (!prev_xnid) 2713 goto recover_xnid; 2714 2715 /* 1: invalidate the previous xattr nid */ 2716 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false); 2717 if (err) 2718 return err; 2719 2720 f2fs_invalidate_blocks(sbi, ni.blk_addr); 2721 dec_valid_node_count(sbi, inode, false); 2722 set_node_addr(sbi, &ni, NULL_ADDR, false); 2723 2724 recover_xnid: 2725 /* 2: update xattr nid in inode */ 2726 if (!f2fs_alloc_nid(sbi, &new_xnid)) 2727 return -ENOSPC; 2728 2729 set_new_dnode(&dn, inode, NULL, NULL, new_xnid); 2730 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 2731 if (IS_ERR(xpage)) { 2732 f2fs_alloc_nid_failed(sbi, new_xnid); 2733 return PTR_ERR(xpage); 2734 } 2735 2736 f2fs_alloc_nid_done(sbi, new_xnid); 2737 f2fs_update_inode_page(inode); 2738 2739 /* 3: update and set xattr node page dirty */ 2740 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); 2741 2742 set_page_dirty(xpage); 2743 f2fs_put_page(xpage, 1); 2744 2745 return 0; 2746 } 2747 2748 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) 2749 { 2750 struct f2fs_inode *src, *dst; 2751 nid_t ino = ino_of_node(page); 2752 struct node_info old_ni, new_ni; 2753 struct page *ipage; 2754 int err; 2755 2756 err = f2fs_get_node_info(sbi, ino, &old_ni, false); 2757 if (err) 2758 return err; 2759 2760 if (unlikely(old_ni.blk_addr != NULL_ADDR)) 2761 return -EINVAL; 2762 retry: 2763 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); 2764 if (!ipage) { 2765 memalloc_retry_wait(GFP_NOFS); 2766 goto retry; 2767 } 2768 2769 /* Should not use this inode from free nid list */ 2770 remove_free_nid(sbi, ino); 2771 2772 if (!PageUptodate(ipage)) 2773 SetPageUptodate(ipage); 2774 fill_node_footer(ipage, ino, ino, 0, true); 2775 set_cold_node(ipage, false); 2776 2777 src = F2FS_INODE(page); 2778 dst = F2FS_INODE(ipage); 2779 2780 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext)); 2781 dst->i_size = 0; 2782 dst->i_blocks = cpu_to_le64(1); 2783 dst->i_links = cpu_to_le32(1); 2784 dst->i_xattr_nid = 0; 2785 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); 2786 if (dst->i_inline & F2FS_EXTRA_ATTR) { 2787 dst->i_extra_isize = src->i_extra_isize; 2788 2789 if (f2fs_sb_has_flexible_inline_xattr(sbi) && 2790 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2791 i_inline_xattr_size)) 2792 dst->i_inline_xattr_size = src->i_inline_xattr_size; 2793 2794 if (f2fs_sb_has_project_quota(sbi) && 2795 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2796 i_projid)) 2797 dst->i_projid = src->i_projid; 2798 2799 if (f2fs_sb_has_inode_crtime(sbi) && 2800 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), 2801 i_crtime_nsec)) { 2802 dst->i_crtime = src->i_crtime; 2803 dst->i_crtime_nsec = src->i_crtime_nsec; 2804 } 2805 } 2806 2807 new_ni = old_ni; 2808 new_ni.ino = ino; 2809 2810 if (unlikely(inc_valid_node_count(sbi, NULL, true))) 2811 WARN_ON(1); 2812 set_node_addr(sbi, &new_ni, NEW_ADDR, false); 2813 inc_valid_inode_count(sbi); 2814 set_page_dirty(ipage); 2815 f2fs_put_page(ipage, 1); 2816 return 0; 2817 } 2818 2819 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2820 unsigned int segno, struct f2fs_summary_block *sum) 2821 { 2822 struct f2fs_node *rn; 2823 struct f2fs_summary *sum_entry; 2824 block_t addr; 2825 int i, idx, last_offset, nrpages; 2826 2827 /* scan the node segment */ 2828 last_offset = sbi->blocks_per_seg; 2829 addr = START_BLOCK(sbi, segno); 2830 sum_entry = &sum->entries[0]; 2831 2832 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { 2833 nrpages = bio_max_segs(last_offset - i); 2834 2835 /* readahead node pages */ 2836 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); 2837 2838 for (idx = addr; idx < addr + nrpages; idx++) { 2839 struct page *page = f2fs_get_tmp_page(sbi, idx); 2840 2841 if (IS_ERR(page)) 2842 return PTR_ERR(page); 2843 2844 rn = F2FS_NODE(page); 2845 sum_entry->nid = rn->footer.nid; 2846 sum_entry->version = 0; 2847 sum_entry->ofs_in_node = 0; 2848 sum_entry++; 2849 f2fs_put_page(page, 1); 2850 } 2851 2852 invalidate_mapping_pages(META_MAPPING(sbi), addr, 2853 addr + nrpages); 2854 } 2855 return 0; 2856 } 2857 2858 static void remove_nats_in_journal(struct f2fs_sb_info *sbi) 2859 { 2860 struct f2fs_nm_info *nm_i = NM_I(sbi); 2861 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2862 struct f2fs_journal *journal = curseg->journal; 2863 int i; 2864 2865 down_write(&curseg->journal_rwsem); 2866 for (i = 0; i < nats_in_cursum(journal); i++) { 2867 struct nat_entry *ne; 2868 struct f2fs_nat_entry raw_ne; 2869 nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); 2870 2871 if (f2fs_check_nid_range(sbi, nid)) 2872 continue; 2873 2874 raw_ne = nat_in_journal(journal, i); 2875 2876 ne = __lookup_nat_cache(nm_i, nid); 2877 if (!ne) { 2878 ne = __alloc_nat_entry(sbi, nid, true); 2879 __init_nat_entry(nm_i, ne, &raw_ne, true); 2880 } 2881 2882 /* 2883 * if a free nat in journal has not been used after last 2884 * checkpoint, we should remove it from available nids, 2885 * since later we will add it again. 2886 */ 2887 if (!get_nat_flag(ne, IS_DIRTY) && 2888 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { 2889 spin_lock(&nm_i->nid_list_lock); 2890 nm_i->available_nids--; 2891 spin_unlock(&nm_i->nid_list_lock); 2892 } 2893 2894 __set_nat_cache_dirty(nm_i, ne); 2895 } 2896 update_nats_in_cursum(journal, -i); 2897 up_write(&curseg->journal_rwsem); 2898 } 2899 2900 static void __adjust_nat_entry_set(struct nat_entry_set *nes, 2901 struct list_head *head, int max) 2902 { 2903 struct nat_entry_set *cur; 2904 2905 if (nes->entry_cnt >= max) 2906 goto add_out; 2907 2908 list_for_each_entry(cur, head, set_list) { 2909 if (cur->entry_cnt >= nes->entry_cnt) { 2910 list_add(&nes->set_list, cur->set_list.prev); 2911 return; 2912 } 2913 } 2914 add_out: 2915 list_add_tail(&nes->set_list, head); 2916 } 2917 2918 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs, 2919 unsigned int valid) 2920 { 2921 if (valid == 0) { 2922 __set_bit_le(nat_ofs, nm_i->empty_nat_bits); 2923 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2924 return; 2925 } 2926 2927 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits); 2928 if (valid == NAT_ENTRY_PER_BLOCK) 2929 __set_bit_le(nat_ofs, nm_i->full_nat_bits); 2930 else 2931 __clear_bit_le(nat_ofs, nm_i->full_nat_bits); 2932 } 2933 2934 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, 2935 struct page *page) 2936 { 2937 struct f2fs_nm_info *nm_i = NM_I(sbi); 2938 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; 2939 struct f2fs_nat_block *nat_blk = page_address(page); 2940 int valid = 0; 2941 int i = 0; 2942 2943 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 2944 return; 2945 2946 if (nat_index == 0) { 2947 valid = 1; 2948 i = 1; 2949 } 2950 for (; i < NAT_ENTRY_PER_BLOCK; i++) { 2951 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) 2952 valid++; 2953 } 2954 2955 __update_nat_bits(nm_i, nat_index, valid); 2956 } 2957 2958 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi) 2959 { 2960 struct f2fs_nm_info *nm_i = NM_I(sbi); 2961 unsigned int nat_ofs; 2962 2963 f2fs_down_read(&nm_i->nat_tree_lock); 2964 2965 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) { 2966 unsigned int valid = 0, nid_ofs = 0; 2967 2968 /* handle nid zero due to it should never be used */ 2969 if (unlikely(nat_ofs == 0)) { 2970 valid = 1; 2971 nid_ofs = 1; 2972 } 2973 2974 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) { 2975 if (!test_bit_le(nid_ofs, 2976 nm_i->free_nid_bitmap[nat_ofs])) 2977 valid++; 2978 } 2979 2980 __update_nat_bits(nm_i, nat_ofs, valid); 2981 } 2982 2983 f2fs_up_read(&nm_i->nat_tree_lock); 2984 } 2985 2986 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, 2987 struct nat_entry_set *set, struct cp_control *cpc) 2988 { 2989 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 2990 struct f2fs_journal *journal = curseg->journal; 2991 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; 2992 bool to_journal = true; 2993 struct f2fs_nat_block *nat_blk; 2994 struct nat_entry *ne, *cur; 2995 struct page *page = NULL; 2996 2997 /* 2998 * there are two steps to flush nat entries: 2999 * #1, flush nat entries to journal in current hot data summary block. 3000 * #2, flush nat entries to nat page. 3001 */ 3002 if ((cpc->reason & CP_UMOUNT) || 3003 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) 3004 to_journal = false; 3005 3006 if (to_journal) { 3007 down_write(&curseg->journal_rwsem); 3008 } else { 3009 page = get_next_nat_page(sbi, start_nid); 3010 if (IS_ERR(page)) 3011 return PTR_ERR(page); 3012 3013 nat_blk = page_address(page); 3014 f2fs_bug_on(sbi, !nat_blk); 3015 } 3016 3017 /* flush dirty nats in nat entry set */ 3018 list_for_each_entry_safe(ne, cur, &set->entry_list, list) { 3019 struct f2fs_nat_entry *raw_ne; 3020 nid_t nid = nat_get_nid(ne); 3021 int offset; 3022 3023 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); 3024 3025 if (to_journal) { 3026 offset = f2fs_lookup_journal_in_cursum(journal, 3027 NAT_JOURNAL, nid, 1); 3028 f2fs_bug_on(sbi, offset < 0); 3029 raw_ne = &nat_in_journal(journal, offset); 3030 nid_in_journal(journal, offset) = cpu_to_le32(nid); 3031 } else { 3032 raw_ne = &nat_blk->entries[nid - start_nid]; 3033 } 3034 raw_nat_from_node_info(raw_ne, &ne->ni); 3035 nat_reset_flag(ne); 3036 __clear_nat_cache_dirty(NM_I(sbi), set, ne); 3037 if (nat_get_blkaddr(ne) == NULL_ADDR) { 3038 add_free_nid(sbi, nid, false, true); 3039 } else { 3040 spin_lock(&NM_I(sbi)->nid_list_lock); 3041 update_free_nid_bitmap(sbi, nid, false, false); 3042 spin_unlock(&NM_I(sbi)->nid_list_lock); 3043 } 3044 } 3045 3046 if (to_journal) { 3047 up_write(&curseg->journal_rwsem); 3048 } else { 3049 update_nat_bits(sbi, start_nid, page); 3050 f2fs_put_page(page, 1); 3051 } 3052 3053 /* Allow dirty nats by node block allocation in write_begin */ 3054 if (!set->entry_cnt) { 3055 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); 3056 kmem_cache_free(nat_entry_set_slab, set); 3057 } 3058 return 0; 3059 } 3060 3061 /* 3062 * This function is called during the checkpointing process. 3063 */ 3064 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3065 { 3066 struct f2fs_nm_info *nm_i = NM_I(sbi); 3067 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); 3068 struct f2fs_journal *journal = curseg->journal; 3069 struct nat_entry_set *setvec[SETVEC_SIZE]; 3070 struct nat_entry_set *set, *tmp; 3071 unsigned int found; 3072 nid_t set_idx = 0; 3073 LIST_HEAD(sets); 3074 int err = 0; 3075 3076 /* 3077 * during unmount, let's flush nat_bits before checking 3078 * nat_cnt[DIRTY_NAT]. 3079 */ 3080 if (cpc->reason & CP_UMOUNT) { 3081 f2fs_down_write(&nm_i->nat_tree_lock); 3082 remove_nats_in_journal(sbi); 3083 f2fs_up_write(&nm_i->nat_tree_lock); 3084 } 3085 3086 if (!nm_i->nat_cnt[DIRTY_NAT]) 3087 return 0; 3088 3089 f2fs_down_write(&nm_i->nat_tree_lock); 3090 3091 /* 3092 * if there are no enough space in journal to store dirty nat 3093 * entries, remove all entries from journal and merge them 3094 * into nat entry set. 3095 */ 3096 if (cpc->reason & CP_UMOUNT || 3097 !__has_cursum_space(journal, 3098 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL)) 3099 remove_nats_in_journal(sbi); 3100 3101 while ((found = __gang_lookup_nat_set(nm_i, 3102 set_idx, SETVEC_SIZE, setvec))) { 3103 unsigned idx; 3104 3105 set_idx = setvec[found - 1]->set + 1; 3106 for (idx = 0; idx < found; idx++) 3107 __adjust_nat_entry_set(setvec[idx], &sets, 3108 MAX_NAT_JENTRIES(journal)); 3109 } 3110 3111 /* flush dirty nats in nat entry set */ 3112 list_for_each_entry_safe(set, tmp, &sets, set_list) { 3113 err = __flush_nat_entry_set(sbi, set, cpc); 3114 if (err) 3115 break; 3116 } 3117 3118 f2fs_up_write(&nm_i->nat_tree_lock); 3119 /* Allow dirty nats by node block allocation in write_begin */ 3120 3121 return err; 3122 } 3123 3124 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) 3125 { 3126 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3127 struct f2fs_nm_info *nm_i = NM_I(sbi); 3128 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; 3129 unsigned int i; 3130 __u64 cp_ver = cur_cp_version(ckpt); 3131 block_t nat_bits_addr; 3132 3133 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3134 nm_i->nat_bits = f2fs_kvzalloc(sbi, 3135 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); 3136 if (!nm_i->nat_bits) 3137 return -ENOMEM; 3138 3139 nm_i->full_nat_bits = nm_i->nat_bits + 8; 3140 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; 3141 3142 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3143 return 0; 3144 3145 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - 3146 nm_i->nat_bits_blocks; 3147 for (i = 0; i < nm_i->nat_bits_blocks; i++) { 3148 struct page *page; 3149 3150 page = f2fs_get_meta_page(sbi, nat_bits_addr++); 3151 if (IS_ERR(page)) 3152 return PTR_ERR(page); 3153 3154 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), 3155 page_address(page), F2FS_BLKSIZE); 3156 f2fs_put_page(page, 1); 3157 } 3158 3159 cp_ver |= (cur_cp_crc(ckpt) << 32); 3160 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { 3161 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 3162 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)", 3163 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits)); 3164 return 0; 3165 } 3166 3167 f2fs_notice(sbi, "Found nat_bits in checkpoint"); 3168 return 0; 3169 } 3170 3171 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) 3172 { 3173 struct f2fs_nm_info *nm_i = NM_I(sbi); 3174 unsigned int i = 0; 3175 nid_t nid, last_nid; 3176 3177 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) 3178 return; 3179 3180 for (i = 0; i < nm_i->nat_blocks; i++) { 3181 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); 3182 if (i >= nm_i->nat_blocks) 3183 break; 3184 3185 __set_bit_le(i, nm_i->nat_block_bitmap); 3186 3187 nid = i * NAT_ENTRY_PER_BLOCK; 3188 last_nid = nid + NAT_ENTRY_PER_BLOCK; 3189 3190 spin_lock(&NM_I(sbi)->nid_list_lock); 3191 for (; nid < last_nid; nid++) 3192 update_free_nid_bitmap(sbi, nid, true, true); 3193 spin_unlock(&NM_I(sbi)->nid_list_lock); 3194 } 3195 3196 for (i = 0; i < nm_i->nat_blocks; i++) { 3197 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); 3198 if (i >= nm_i->nat_blocks) 3199 break; 3200 3201 __set_bit_le(i, nm_i->nat_block_bitmap); 3202 } 3203 } 3204 3205 static int init_node_manager(struct f2fs_sb_info *sbi) 3206 { 3207 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); 3208 struct f2fs_nm_info *nm_i = NM_I(sbi); 3209 unsigned char *version_bitmap; 3210 unsigned int nat_segs; 3211 int err; 3212 3213 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); 3214 3215 /* segment_count_nat includes pair segment so divide to 2. */ 3216 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; 3217 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); 3218 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; 3219 3220 /* not used nids: 0, node, meta, (and root counted as valid node) */ 3221 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - 3222 F2FS_RESERVED_NODE_NUM; 3223 nm_i->nid_cnt[FREE_NID] = 0; 3224 nm_i->nid_cnt[PREALLOC_NID] = 0; 3225 nm_i->ram_thresh = DEF_RAM_THRESHOLD; 3226 nm_i->ra_nid_pages = DEF_RA_NID_PAGES; 3227 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; 3228 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS; 3229 3230 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); 3231 INIT_LIST_HEAD(&nm_i->free_nid_list); 3232 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); 3233 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); 3234 INIT_LIST_HEAD(&nm_i->nat_entries); 3235 spin_lock_init(&nm_i->nat_list_lock); 3236 3237 mutex_init(&nm_i->build_lock); 3238 spin_lock_init(&nm_i->nid_list_lock); 3239 init_f2fs_rwsem(&nm_i->nat_tree_lock); 3240 3241 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); 3242 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); 3243 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); 3244 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, 3245 GFP_KERNEL); 3246 if (!nm_i->nat_bitmap) 3247 return -ENOMEM; 3248 3249 err = __get_nat_bitmaps(sbi); 3250 if (err) 3251 return err; 3252 3253 #ifdef CONFIG_F2FS_CHECK_FS 3254 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, 3255 GFP_KERNEL); 3256 if (!nm_i->nat_bitmap_mir) 3257 return -ENOMEM; 3258 #endif 3259 3260 return 0; 3261 } 3262 3263 static int init_free_nid_cache(struct f2fs_sb_info *sbi) 3264 { 3265 struct f2fs_nm_info *nm_i = NM_I(sbi); 3266 int i; 3267 3268 nm_i->free_nid_bitmap = 3269 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *), 3270 nm_i->nat_blocks), 3271 GFP_KERNEL); 3272 if (!nm_i->free_nid_bitmap) 3273 return -ENOMEM; 3274 3275 for (i = 0; i < nm_i->nat_blocks; i++) { 3276 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, 3277 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); 3278 if (!nm_i->free_nid_bitmap[i]) 3279 return -ENOMEM; 3280 } 3281 3282 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, 3283 GFP_KERNEL); 3284 if (!nm_i->nat_block_bitmap) 3285 return -ENOMEM; 3286 3287 nm_i->free_nid_count = 3288 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), 3289 nm_i->nat_blocks), 3290 GFP_KERNEL); 3291 if (!nm_i->free_nid_count) 3292 return -ENOMEM; 3293 return 0; 3294 } 3295 3296 int f2fs_build_node_manager(struct f2fs_sb_info *sbi) 3297 { 3298 int err; 3299 3300 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), 3301 GFP_KERNEL); 3302 if (!sbi->nm_info) 3303 return -ENOMEM; 3304 3305 err = init_node_manager(sbi); 3306 if (err) 3307 return err; 3308 3309 err = init_free_nid_cache(sbi); 3310 if (err) 3311 return err; 3312 3313 /* load free nid status from nat_bits table */ 3314 load_free_nid_bitmap(sbi); 3315 3316 return f2fs_build_free_nids(sbi, true, true); 3317 } 3318 3319 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) 3320 { 3321 struct f2fs_nm_info *nm_i = NM_I(sbi); 3322 struct free_nid *i, *next_i; 3323 struct nat_entry *natvec[NATVEC_SIZE]; 3324 struct nat_entry_set *setvec[SETVEC_SIZE]; 3325 nid_t nid = 0; 3326 unsigned int found; 3327 3328 if (!nm_i) 3329 return; 3330 3331 /* destroy free nid list */ 3332 spin_lock(&nm_i->nid_list_lock); 3333 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { 3334 __remove_free_nid(sbi, i, FREE_NID); 3335 spin_unlock(&nm_i->nid_list_lock); 3336 kmem_cache_free(free_nid_slab, i); 3337 spin_lock(&nm_i->nid_list_lock); 3338 } 3339 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); 3340 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); 3341 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); 3342 spin_unlock(&nm_i->nid_list_lock); 3343 3344 /* destroy nat cache */ 3345 f2fs_down_write(&nm_i->nat_tree_lock); 3346 while ((found = __gang_lookup_nat_cache(nm_i, 3347 nid, NATVEC_SIZE, natvec))) { 3348 unsigned idx; 3349 3350 nid = nat_get_nid(natvec[found - 1]) + 1; 3351 for (idx = 0; idx < found; idx++) { 3352 spin_lock(&nm_i->nat_list_lock); 3353 list_del(&natvec[idx]->list); 3354 spin_unlock(&nm_i->nat_list_lock); 3355 3356 __del_from_nat_cache(nm_i, natvec[idx]); 3357 } 3358 } 3359 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]); 3360 3361 /* destroy nat set cache */ 3362 nid = 0; 3363 while ((found = __gang_lookup_nat_set(nm_i, 3364 nid, SETVEC_SIZE, setvec))) { 3365 unsigned idx; 3366 3367 nid = setvec[found - 1]->set + 1; 3368 for (idx = 0; idx < found; idx++) { 3369 /* entry_cnt is not zero, when cp_error was occurred */ 3370 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); 3371 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); 3372 kmem_cache_free(nat_entry_set_slab, setvec[idx]); 3373 } 3374 } 3375 f2fs_up_write(&nm_i->nat_tree_lock); 3376 3377 kvfree(nm_i->nat_block_bitmap); 3378 if (nm_i->free_nid_bitmap) { 3379 int i; 3380 3381 for (i = 0; i < nm_i->nat_blocks; i++) 3382 kvfree(nm_i->free_nid_bitmap[i]); 3383 kvfree(nm_i->free_nid_bitmap); 3384 } 3385 kvfree(nm_i->free_nid_count); 3386 3387 kvfree(nm_i->nat_bitmap); 3388 kvfree(nm_i->nat_bits); 3389 #ifdef CONFIG_F2FS_CHECK_FS 3390 kvfree(nm_i->nat_bitmap_mir); 3391 #endif 3392 sbi->nm_info = NULL; 3393 kfree(nm_i); 3394 } 3395 3396 int __init f2fs_create_node_manager_caches(void) 3397 { 3398 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry", 3399 sizeof(struct nat_entry)); 3400 if (!nat_entry_slab) 3401 goto fail; 3402 3403 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid", 3404 sizeof(struct free_nid)); 3405 if (!free_nid_slab) 3406 goto destroy_nat_entry; 3407 3408 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set", 3409 sizeof(struct nat_entry_set)); 3410 if (!nat_entry_set_slab) 3411 goto destroy_free_nid; 3412 3413 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry", 3414 sizeof(struct fsync_node_entry)); 3415 if (!fsync_node_entry_slab) 3416 goto destroy_nat_entry_set; 3417 return 0; 3418 3419 destroy_nat_entry_set: 3420 kmem_cache_destroy(nat_entry_set_slab); 3421 destroy_free_nid: 3422 kmem_cache_destroy(free_nid_slab); 3423 destroy_nat_entry: 3424 kmem_cache_destroy(nat_entry_slab); 3425 fail: 3426 return -ENOMEM; 3427 } 3428 3429 void f2fs_destroy_node_manager_caches(void) 3430 { 3431 kmem_cache_destroy(fsync_node_entry_slab); 3432 kmem_cache_destroy(nat_entry_set_slab); 3433 kmem_cache_destroy(free_nid_slab); 3434 kmem_cache_destroy(nat_entry_slab); 3435 } 3436