xref: /linux/fs/f2fs/node.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24 
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26 
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30 
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 	struct f2fs_nm_info *nm_i = NM_I(sbi);
34 	struct sysinfo val;
35 	unsigned long avail_ram;
36 	unsigned long mem_size = 0;
37 	bool res = false;
38 
39 	si_meminfo(&val);
40 
41 	/* only uses low memory */
42 	avail_ram = val.totalram - val.totalhigh;
43 
44 	/*
45 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 	 */
47 	if (type == FREE_NIDS) {
48 		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 							PAGE_SHIFT;
50 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 	} else if (type == NAT_ENTRIES) {
52 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 							PAGE_SHIFT;
54 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 	} else if (type == DIRTY_DENTS) {
56 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
57 			return false;
58 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60 	} else if (type == INO_ENTRIES) {
61 		int i;
62 
63 		for (i = 0; i <= UPDATE_INO; i++)
64 			mem_size += (sbi->im[i].ino_num *
65 				sizeof(struct ino_entry)) >> PAGE_SHIFT;
66 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67 	} else if (type == EXTENT_CACHE) {
68 		mem_size = (atomic_read(&sbi->total_ext_tree) *
69 				sizeof(struct extent_tree) +
70 				atomic_read(&sbi->total_ext_node) *
71 				sizeof(struct extent_node)) >> PAGE_SHIFT;
72 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
73 	} else {
74 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
75 			return true;
76 	}
77 	return res;
78 }
79 
80 static void clear_node_page_dirty(struct page *page)
81 {
82 	struct address_space *mapping = page->mapping;
83 	unsigned int long flags;
84 
85 	if (PageDirty(page)) {
86 		spin_lock_irqsave(&mapping->tree_lock, flags);
87 		radix_tree_tag_clear(&mapping->page_tree,
88 				page_index(page),
89 				PAGECACHE_TAG_DIRTY);
90 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
91 
92 		clear_page_dirty_for_io(page);
93 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
94 	}
95 	ClearPageUptodate(page);
96 }
97 
98 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
99 {
100 	pgoff_t index = current_nat_addr(sbi, nid);
101 	return get_meta_page(sbi, index);
102 }
103 
104 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
105 {
106 	struct page *src_page;
107 	struct page *dst_page;
108 	pgoff_t src_off;
109 	pgoff_t dst_off;
110 	void *src_addr;
111 	void *dst_addr;
112 	struct f2fs_nm_info *nm_i = NM_I(sbi);
113 
114 	src_off = current_nat_addr(sbi, nid);
115 	dst_off = next_nat_addr(sbi, src_off);
116 
117 	/* get current nat block page with lock */
118 	src_page = get_meta_page(sbi, src_off);
119 	dst_page = grab_meta_page(sbi, dst_off);
120 	f2fs_bug_on(sbi, PageDirty(src_page));
121 
122 	src_addr = page_address(src_page);
123 	dst_addr = page_address(dst_page);
124 	memcpy(dst_addr, src_addr, PAGE_SIZE);
125 	set_page_dirty(dst_page);
126 	f2fs_put_page(src_page, 1);
127 
128 	set_to_next_nat(nm_i, nid);
129 
130 	return dst_page;
131 }
132 
133 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
134 {
135 	return radix_tree_lookup(&nm_i->nat_root, n);
136 }
137 
138 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
139 		nid_t start, unsigned int nr, struct nat_entry **ep)
140 {
141 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
142 }
143 
144 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
145 {
146 	list_del(&e->list);
147 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
148 	nm_i->nat_cnt--;
149 	kmem_cache_free(nat_entry_slab, e);
150 }
151 
152 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
153 						struct nat_entry *ne)
154 {
155 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
156 	struct nat_entry_set *head;
157 
158 	if (get_nat_flag(ne, IS_DIRTY))
159 		return;
160 
161 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
162 	if (!head) {
163 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
164 
165 		INIT_LIST_HEAD(&head->entry_list);
166 		INIT_LIST_HEAD(&head->set_list);
167 		head->set = set;
168 		head->entry_cnt = 0;
169 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
170 	}
171 	list_move_tail(&ne->list, &head->entry_list);
172 	nm_i->dirty_nat_cnt++;
173 	head->entry_cnt++;
174 	set_nat_flag(ne, IS_DIRTY, true);
175 }
176 
177 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
178 						struct nat_entry *ne)
179 {
180 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
181 	struct nat_entry_set *head;
182 
183 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
184 	if (head) {
185 		list_move_tail(&ne->list, &nm_i->nat_entries);
186 		set_nat_flag(ne, IS_DIRTY, false);
187 		head->entry_cnt--;
188 		nm_i->dirty_nat_cnt--;
189 	}
190 }
191 
192 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
193 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
194 {
195 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
196 							start, nr);
197 }
198 
199 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
200 {
201 	struct f2fs_nm_info *nm_i = NM_I(sbi);
202 	struct nat_entry *e;
203 	bool need = false;
204 
205 	down_read(&nm_i->nat_tree_lock);
206 	e = __lookup_nat_cache(nm_i, nid);
207 	if (e) {
208 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
209 				!get_nat_flag(e, HAS_FSYNCED_INODE))
210 			need = true;
211 	}
212 	up_read(&nm_i->nat_tree_lock);
213 	return need;
214 }
215 
216 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
217 {
218 	struct f2fs_nm_info *nm_i = NM_I(sbi);
219 	struct nat_entry *e;
220 	bool is_cp = true;
221 
222 	down_read(&nm_i->nat_tree_lock);
223 	e = __lookup_nat_cache(nm_i, nid);
224 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
225 		is_cp = false;
226 	up_read(&nm_i->nat_tree_lock);
227 	return is_cp;
228 }
229 
230 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
231 {
232 	struct f2fs_nm_info *nm_i = NM_I(sbi);
233 	struct nat_entry *e;
234 	bool need_update = true;
235 
236 	down_read(&nm_i->nat_tree_lock);
237 	e = __lookup_nat_cache(nm_i, ino);
238 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
239 			(get_nat_flag(e, IS_CHECKPOINTED) ||
240 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
241 		need_update = false;
242 	up_read(&nm_i->nat_tree_lock);
243 	return need_update;
244 }
245 
246 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
247 {
248 	struct nat_entry *new;
249 
250 	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
251 	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
252 	memset(new, 0, sizeof(struct nat_entry));
253 	nat_set_nid(new, nid);
254 	nat_reset_flag(new);
255 	list_add_tail(&new->list, &nm_i->nat_entries);
256 	nm_i->nat_cnt++;
257 	return new;
258 }
259 
260 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
261 						struct f2fs_nat_entry *ne)
262 {
263 	struct f2fs_nm_info *nm_i = NM_I(sbi);
264 	struct nat_entry *e;
265 
266 	e = __lookup_nat_cache(nm_i, nid);
267 	if (!e) {
268 		e = grab_nat_entry(nm_i, nid);
269 		node_info_from_raw_nat(&e->ni, ne);
270 	} else {
271 		f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
272 				nat_get_blkaddr(e) != ne->block_addr ||
273 				nat_get_version(e) != ne->version);
274 	}
275 }
276 
277 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
278 			block_t new_blkaddr, bool fsync_done)
279 {
280 	struct f2fs_nm_info *nm_i = NM_I(sbi);
281 	struct nat_entry *e;
282 
283 	down_write(&nm_i->nat_tree_lock);
284 	e = __lookup_nat_cache(nm_i, ni->nid);
285 	if (!e) {
286 		e = grab_nat_entry(nm_i, ni->nid);
287 		copy_node_info(&e->ni, ni);
288 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
289 	} else if (new_blkaddr == NEW_ADDR) {
290 		/*
291 		 * when nid is reallocated,
292 		 * previous nat entry can be remained in nat cache.
293 		 * So, reinitialize it with new information.
294 		 */
295 		copy_node_info(&e->ni, ni);
296 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
297 	}
298 
299 	/* sanity check */
300 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
301 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
302 			new_blkaddr == NULL_ADDR);
303 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
304 			new_blkaddr == NEW_ADDR);
305 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
306 			nat_get_blkaddr(e) != NULL_ADDR &&
307 			new_blkaddr == NEW_ADDR);
308 
309 	/* increment version no as node is removed */
310 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
311 		unsigned char version = nat_get_version(e);
312 		nat_set_version(e, inc_node_version(version));
313 
314 		/* in order to reuse the nid */
315 		if (nm_i->next_scan_nid > ni->nid)
316 			nm_i->next_scan_nid = ni->nid;
317 	}
318 
319 	/* change address */
320 	nat_set_blkaddr(e, new_blkaddr);
321 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
322 		set_nat_flag(e, IS_CHECKPOINTED, false);
323 	__set_nat_cache_dirty(nm_i, e);
324 
325 	/* update fsync_mark if its inode nat entry is still alive */
326 	if (ni->nid != ni->ino)
327 		e = __lookup_nat_cache(nm_i, ni->ino);
328 	if (e) {
329 		if (fsync_done && ni->nid == ni->ino)
330 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
331 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
332 	}
333 	up_write(&nm_i->nat_tree_lock);
334 }
335 
336 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
337 {
338 	struct f2fs_nm_info *nm_i = NM_I(sbi);
339 	int nr = nr_shrink;
340 
341 	if (!down_write_trylock(&nm_i->nat_tree_lock))
342 		return 0;
343 
344 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
345 		struct nat_entry *ne;
346 		ne = list_first_entry(&nm_i->nat_entries,
347 					struct nat_entry, list);
348 		__del_from_nat_cache(nm_i, ne);
349 		nr_shrink--;
350 	}
351 	up_write(&nm_i->nat_tree_lock);
352 	return nr - nr_shrink;
353 }
354 
355 /*
356  * This function always returns success
357  */
358 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
359 {
360 	struct f2fs_nm_info *nm_i = NM_I(sbi);
361 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
362 	struct f2fs_journal *journal = curseg->journal;
363 	nid_t start_nid = START_NID(nid);
364 	struct f2fs_nat_block *nat_blk;
365 	struct page *page = NULL;
366 	struct f2fs_nat_entry ne;
367 	struct nat_entry *e;
368 	int i;
369 
370 	ni->nid = nid;
371 
372 	/* Check nat cache */
373 	down_read(&nm_i->nat_tree_lock);
374 	e = __lookup_nat_cache(nm_i, nid);
375 	if (e) {
376 		ni->ino = nat_get_ino(e);
377 		ni->blk_addr = nat_get_blkaddr(e);
378 		ni->version = nat_get_version(e);
379 		up_read(&nm_i->nat_tree_lock);
380 		return;
381 	}
382 
383 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
384 
385 	/* Check current segment summary */
386 	down_read(&curseg->journal_rwsem);
387 	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
388 	if (i >= 0) {
389 		ne = nat_in_journal(journal, i);
390 		node_info_from_raw_nat(ni, &ne);
391 	}
392 	up_read(&curseg->journal_rwsem);
393 	if (i >= 0)
394 		goto cache;
395 
396 	/* Fill node_info from nat page */
397 	page = get_current_nat_page(sbi, start_nid);
398 	nat_blk = (struct f2fs_nat_block *)page_address(page);
399 	ne = nat_blk->entries[nid - start_nid];
400 	node_info_from_raw_nat(ni, &ne);
401 	f2fs_put_page(page, 1);
402 cache:
403 	up_read(&nm_i->nat_tree_lock);
404 	/* cache nat entry */
405 	down_write(&nm_i->nat_tree_lock);
406 	cache_nat_entry(sbi, nid, &ne);
407 	up_write(&nm_i->nat_tree_lock);
408 }
409 
410 /*
411  * readahead MAX_RA_NODE number of node pages.
412  */
413 static void ra_node_pages(struct page *parent, int start, int n)
414 {
415 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
416 	struct blk_plug plug;
417 	int i, end;
418 	nid_t nid;
419 
420 	blk_start_plug(&plug);
421 
422 	/* Then, try readahead for siblings of the desired node */
423 	end = start + n;
424 	end = min(end, NIDS_PER_BLOCK);
425 	for (i = start; i < end; i++) {
426 		nid = get_nid(parent, i, false);
427 		ra_node_page(sbi, nid);
428 	}
429 
430 	blk_finish_plug(&plug);
431 }
432 
433 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
434 {
435 	const long direct_index = ADDRS_PER_INODE(dn->inode);
436 	const long direct_blks = ADDRS_PER_BLOCK;
437 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
438 	unsigned int skipped_unit = ADDRS_PER_BLOCK;
439 	int cur_level = dn->cur_level;
440 	int max_level = dn->max_level;
441 	pgoff_t base = 0;
442 
443 	if (!dn->max_level)
444 		return pgofs + 1;
445 
446 	while (max_level-- > cur_level)
447 		skipped_unit *= NIDS_PER_BLOCK;
448 
449 	switch (dn->max_level) {
450 	case 3:
451 		base += 2 * indirect_blks;
452 	case 2:
453 		base += 2 * direct_blks;
454 	case 1:
455 		base += direct_index;
456 		break;
457 	default:
458 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
459 	}
460 
461 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
462 }
463 
464 /*
465  * The maximum depth is four.
466  * Offset[0] will have raw inode offset.
467  */
468 static int get_node_path(struct inode *inode, long block,
469 				int offset[4], unsigned int noffset[4])
470 {
471 	const long direct_index = ADDRS_PER_INODE(inode);
472 	const long direct_blks = ADDRS_PER_BLOCK;
473 	const long dptrs_per_blk = NIDS_PER_BLOCK;
474 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
475 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
476 	int n = 0;
477 	int level = 0;
478 
479 	noffset[0] = 0;
480 
481 	if (block < direct_index) {
482 		offset[n] = block;
483 		goto got;
484 	}
485 	block -= direct_index;
486 	if (block < direct_blks) {
487 		offset[n++] = NODE_DIR1_BLOCK;
488 		noffset[n] = 1;
489 		offset[n] = block;
490 		level = 1;
491 		goto got;
492 	}
493 	block -= direct_blks;
494 	if (block < direct_blks) {
495 		offset[n++] = NODE_DIR2_BLOCK;
496 		noffset[n] = 2;
497 		offset[n] = block;
498 		level = 1;
499 		goto got;
500 	}
501 	block -= direct_blks;
502 	if (block < indirect_blks) {
503 		offset[n++] = NODE_IND1_BLOCK;
504 		noffset[n] = 3;
505 		offset[n++] = block / direct_blks;
506 		noffset[n] = 4 + offset[n - 1];
507 		offset[n] = block % direct_blks;
508 		level = 2;
509 		goto got;
510 	}
511 	block -= indirect_blks;
512 	if (block < indirect_blks) {
513 		offset[n++] = NODE_IND2_BLOCK;
514 		noffset[n] = 4 + dptrs_per_blk;
515 		offset[n++] = block / direct_blks;
516 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
517 		offset[n] = block % direct_blks;
518 		level = 2;
519 		goto got;
520 	}
521 	block -= indirect_blks;
522 	if (block < dindirect_blks) {
523 		offset[n++] = NODE_DIND_BLOCK;
524 		noffset[n] = 5 + (dptrs_per_blk * 2);
525 		offset[n++] = block / indirect_blks;
526 		noffset[n] = 6 + (dptrs_per_blk * 2) +
527 			      offset[n - 1] * (dptrs_per_blk + 1);
528 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
529 		noffset[n] = 7 + (dptrs_per_blk * 2) +
530 			      offset[n - 2] * (dptrs_per_blk + 1) +
531 			      offset[n - 1];
532 		offset[n] = block % direct_blks;
533 		level = 3;
534 		goto got;
535 	} else {
536 		BUG();
537 	}
538 got:
539 	return level;
540 }
541 
542 /*
543  * Caller should call f2fs_put_dnode(dn).
544  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
545  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
546  * In the case of RDONLY_NODE, we don't need to care about mutex.
547  */
548 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
549 {
550 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
551 	struct page *npage[4];
552 	struct page *parent = NULL;
553 	int offset[4];
554 	unsigned int noffset[4];
555 	nid_t nids[4];
556 	int level, i = 0;
557 	int err = 0;
558 
559 	level = get_node_path(dn->inode, index, offset, noffset);
560 
561 	nids[0] = dn->inode->i_ino;
562 	npage[0] = dn->inode_page;
563 
564 	if (!npage[0]) {
565 		npage[0] = get_node_page(sbi, nids[0]);
566 		if (IS_ERR(npage[0]))
567 			return PTR_ERR(npage[0]);
568 	}
569 
570 	/* if inline_data is set, should not report any block indices */
571 	if (f2fs_has_inline_data(dn->inode) && index) {
572 		err = -ENOENT;
573 		f2fs_put_page(npage[0], 1);
574 		goto release_out;
575 	}
576 
577 	parent = npage[0];
578 	if (level != 0)
579 		nids[1] = get_nid(parent, offset[0], true);
580 	dn->inode_page = npage[0];
581 	dn->inode_page_locked = true;
582 
583 	/* get indirect or direct nodes */
584 	for (i = 1; i <= level; i++) {
585 		bool done = false;
586 
587 		if (!nids[i] && mode == ALLOC_NODE) {
588 			/* alloc new node */
589 			if (!alloc_nid(sbi, &(nids[i]))) {
590 				err = -ENOSPC;
591 				goto release_pages;
592 			}
593 
594 			dn->nid = nids[i];
595 			npage[i] = new_node_page(dn, noffset[i], NULL);
596 			if (IS_ERR(npage[i])) {
597 				alloc_nid_failed(sbi, nids[i]);
598 				err = PTR_ERR(npage[i]);
599 				goto release_pages;
600 			}
601 
602 			set_nid(parent, offset[i - 1], nids[i], i == 1);
603 			alloc_nid_done(sbi, nids[i]);
604 			done = true;
605 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
606 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
607 			if (IS_ERR(npage[i])) {
608 				err = PTR_ERR(npage[i]);
609 				goto release_pages;
610 			}
611 			done = true;
612 		}
613 		if (i == 1) {
614 			dn->inode_page_locked = false;
615 			unlock_page(parent);
616 		} else {
617 			f2fs_put_page(parent, 1);
618 		}
619 
620 		if (!done) {
621 			npage[i] = get_node_page(sbi, nids[i]);
622 			if (IS_ERR(npage[i])) {
623 				err = PTR_ERR(npage[i]);
624 				f2fs_put_page(npage[0], 0);
625 				goto release_out;
626 			}
627 		}
628 		if (i < level) {
629 			parent = npage[i];
630 			nids[i + 1] = get_nid(parent, offset[i], false);
631 		}
632 	}
633 	dn->nid = nids[level];
634 	dn->ofs_in_node = offset[level];
635 	dn->node_page = npage[level];
636 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
637 	return 0;
638 
639 release_pages:
640 	f2fs_put_page(parent, 1);
641 	if (i > 1)
642 		f2fs_put_page(npage[0], 0);
643 release_out:
644 	dn->inode_page = NULL;
645 	dn->node_page = NULL;
646 	if (err == -ENOENT) {
647 		dn->cur_level = i;
648 		dn->max_level = level;
649 	}
650 	return err;
651 }
652 
653 static void truncate_node(struct dnode_of_data *dn)
654 {
655 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
656 	struct node_info ni;
657 
658 	get_node_info(sbi, dn->nid, &ni);
659 	if (dn->inode->i_blocks == 0) {
660 		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
661 		goto invalidate;
662 	}
663 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
664 
665 	/* Deallocate node address */
666 	invalidate_blocks(sbi, ni.blk_addr);
667 	dec_valid_node_count(sbi, dn->inode);
668 	set_node_addr(sbi, &ni, NULL_ADDR, false);
669 
670 	if (dn->nid == dn->inode->i_ino) {
671 		remove_orphan_inode(sbi, dn->nid);
672 		dec_valid_inode_count(sbi);
673 	} else {
674 		sync_inode_page(dn);
675 	}
676 invalidate:
677 	clear_node_page_dirty(dn->node_page);
678 	set_sbi_flag(sbi, SBI_IS_DIRTY);
679 
680 	f2fs_put_page(dn->node_page, 1);
681 
682 	invalidate_mapping_pages(NODE_MAPPING(sbi),
683 			dn->node_page->index, dn->node_page->index);
684 
685 	dn->node_page = NULL;
686 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
687 }
688 
689 static int truncate_dnode(struct dnode_of_data *dn)
690 {
691 	struct page *page;
692 
693 	if (dn->nid == 0)
694 		return 1;
695 
696 	/* get direct node */
697 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
698 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
699 		return 1;
700 	else if (IS_ERR(page))
701 		return PTR_ERR(page);
702 
703 	/* Make dnode_of_data for parameter */
704 	dn->node_page = page;
705 	dn->ofs_in_node = 0;
706 	truncate_data_blocks(dn);
707 	truncate_node(dn);
708 	return 1;
709 }
710 
711 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
712 						int ofs, int depth)
713 {
714 	struct dnode_of_data rdn = *dn;
715 	struct page *page;
716 	struct f2fs_node *rn;
717 	nid_t child_nid;
718 	unsigned int child_nofs;
719 	int freed = 0;
720 	int i, ret;
721 
722 	if (dn->nid == 0)
723 		return NIDS_PER_BLOCK + 1;
724 
725 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
726 
727 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
728 	if (IS_ERR(page)) {
729 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
730 		return PTR_ERR(page);
731 	}
732 
733 	ra_node_pages(page, ofs, NIDS_PER_BLOCK);
734 
735 	rn = F2FS_NODE(page);
736 	if (depth < 3) {
737 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
738 			child_nid = le32_to_cpu(rn->in.nid[i]);
739 			if (child_nid == 0)
740 				continue;
741 			rdn.nid = child_nid;
742 			ret = truncate_dnode(&rdn);
743 			if (ret < 0)
744 				goto out_err;
745 			if (set_nid(page, i, 0, false))
746 				dn->node_changed = true;
747 		}
748 	} else {
749 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
750 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
751 			child_nid = le32_to_cpu(rn->in.nid[i]);
752 			if (child_nid == 0) {
753 				child_nofs += NIDS_PER_BLOCK + 1;
754 				continue;
755 			}
756 			rdn.nid = child_nid;
757 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
758 			if (ret == (NIDS_PER_BLOCK + 1)) {
759 				if (set_nid(page, i, 0, false))
760 					dn->node_changed = true;
761 				child_nofs += ret;
762 			} else if (ret < 0 && ret != -ENOENT) {
763 				goto out_err;
764 			}
765 		}
766 		freed = child_nofs;
767 	}
768 
769 	if (!ofs) {
770 		/* remove current indirect node */
771 		dn->node_page = page;
772 		truncate_node(dn);
773 		freed++;
774 	} else {
775 		f2fs_put_page(page, 1);
776 	}
777 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
778 	return freed;
779 
780 out_err:
781 	f2fs_put_page(page, 1);
782 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
783 	return ret;
784 }
785 
786 static int truncate_partial_nodes(struct dnode_of_data *dn,
787 			struct f2fs_inode *ri, int *offset, int depth)
788 {
789 	struct page *pages[2];
790 	nid_t nid[3];
791 	nid_t child_nid;
792 	int err = 0;
793 	int i;
794 	int idx = depth - 2;
795 
796 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
797 	if (!nid[0])
798 		return 0;
799 
800 	/* get indirect nodes in the path */
801 	for (i = 0; i < idx + 1; i++) {
802 		/* reference count'll be increased */
803 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
804 		if (IS_ERR(pages[i])) {
805 			err = PTR_ERR(pages[i]);
806 			idx = i - 1;
807 			goto fail;
808 		}
809 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
810 	}
811 
812 	ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
813 
814 	/* free direct nodes linked to a partial indirect node */
815 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
816 		child_nid = get_nid(pages[idx], i, false);
817 		if (!child_nid)
818 			continue;
819 		dn->nid = child_nid;
820 		err = truncate_dnode(dn);
821 		if (err < 0)
822 			goto fail;
823 		if (set_nid(pages[idx], i, 0, false))
824 			dn->node_changed = true;
825 	}
826 
827 	if (offset[idx + 1] == 0) {
828 		dn->node_page = pages[idx];
829 		dn->nid = nid[idx];
830 		truncate_node(dn);
831 	} else {
832 		f2fs_put_page(pages[idx], 1);
833 	}
834 	offset[idx]++;
835 	offset[idx + 1] = 0;
836 	idx--;
837 fail:
838 	for (i = idx; i >= 0; i--)
839 		f2fs_put_page(pages[i], 1);
840 
841 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
842 
843 	return err;
844 }
845 
846 /*
847  * All the block addresses of data and nodes should be nullified.
848  */
849 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
850 {
851 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
852 	int err = 0, cont = 1;
853 	int level, offset[4], noffset[4];
854 	unsigned int nofs = 0;
855 	struct f2fs_inode *ri;
856 	struct dnode_of_data dn;
857 	struct page *page;
858 
859 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
860 
861 	level = get_node_path(inode, from, offset, noffset);
862 
863 	page = get_node_page(sbi, inode->i_ino);
864 	if (IS_ERR(page)) {
865 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
866 		return PTR_ERR(page);
867 	}
868 
869 	set_new_dnode(&dn, inode, page, NULL, 0);
870 	unlock_page(page);
871 
872 	ri = F2FS_INODE(page);
873 	switch (level) {
874 	case 0:
875 	case 1:
876 		nofs = noffset[1];
877 		break;
878 	case 2:
879 		nofs = noffset[1];
880 		if (!offset[level - 1])
881 			goto skip_partial;
882 		err = truncate_partial_nodes(&dn, ri, offset, level);
883 		if (err < 0 && err != -ENOENT)
884 			goto fail;
885 		nofs += 1 + NIDS_PER_BLOCK;
886 		break;
887 	case 3:
888 		nofs = 5 + 2 * NIDS_PER_BLOCK;
889 		if (!offset[level - 1])
890 			goto skip_partial;
891 		err = truncate_partial_nodes(&dn, ri, offset, level);
892 		if (err < 0 && err != -ENOENT)
893 			goto fail;
894 		break;
895 	default:
896 		BUG();
897 	}
898 
899 skip_partial:
900 	while (cont) {
901 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
902 		switch (offset[0]) {
903 		case NODE_DIR1_BLOCK:
904 		case NODE_DIR2_BLOCK:
905 			err = truncate_dnode(&dn);
906 			break;
907 
908 		case NODE_IND1_BLOCK:
909 		case NODE_IND2_BLOCK:
910 			err = truncate_nodes(&dn, nofs, offset[1], 2);
911 			break;
912 
913 		case NODE_DIND_BLOCK:
914 			err = truncate_nodes(&dn, nofs, offset[1], 3);
915 			cont = 0;
916 			break;
917 
918 		default:
919 			BUG();
920 		}
921 		if (err < 0 && err != -ENOENT)
922 			goto fail;
923 		if (offset[1] == 0 &&
924 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
925 			lock_page(page);
926 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
927 			f2fs_wait_on_page_writeback(page, NODE, true);
928 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
929 			set_page_dirty(page);
930 			unlock_page(page);
931 		}
932 		offset[1] = 0;
933 		offset[0]++;
934 		nofs += err;
935 	}
936 fail:
937 	f2fs_put_page(page, 0);
938 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
939 	return err > 0 ? 0 : err;
940 }
941 
942 int truncate_xattr_node(struct inode *inode, struct page *page)
943 {
944 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
945 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
946 	struct dnode_of_data dn;
947 	struct page *npage;
948 
949 	if (!nid)
950 		return 0;
951 
952 	npage = get_node_page(sbi, nid);
953 	if (IS_ERR(npage))
954 		return PTR_ERR(npage);
955 
956 	F2FS_I(inode)->i_xattr_nid = 0;
957 
958 	/* need to do checkpoint during fsync */
959 	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
960 
961 	set_new_dnode(&dn, inode, page, npage, nid);
962 
963 	if (page)
964 		dn.inode_page_locked = true;
965 	truncate_node(&dn);
966 	return 0;
967 }
968 
969 /*
970  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
971  * f2fs_unlock_op().
972  */
973 int remove_inode_page(struct inode *inode)
974 {
975 	struct dnode_of_data dn;
976 	int err;
977 
978 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
979 	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
980 	if (err)
981 		return err;
982 
983 	err = truncate_xattr_node(inode, dn.inode_page);
984 	if (err) {
985 		f2fs_put_dnode(&dn);
986 		return err;
987 	}
988 
989 	/* remove potential inline_data blocks */
990 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
991 				S_ISLNK(inode->i_mode))
992 		truncate_data_blocks_range(&dn, 1);
993 
994 	/* 0 is possible, after f2fs_new_inode() has failed */
995 	f2fs_bug_on(F2FS_I_SB(inode),
996 			inode->i_blocks != 0 && inode->i_blocks != 1);
997 
998 	/* will put inode & node pages */
999 	truncate_node(&dn);
1000 	return 0;
1001 }
1002 
1003 struct page *new_inode_page(struct inode *inode)
1004 {
1005 	struct dnode_of_data dn;
1006 
1007 	/* allocate inode page for new inode */
1008 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1009 
1010 	/* caller should f2fs_put_page(page, 1); */
1011 	return new_node_page(&dn, 0, NULL);
1012 }
1013 
1014 struct page *new_node_page(struct dnode_of_data *dn,
1015 				unsigned int ofs, struct page *ipage)
1016 {
1017 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1018 	struct node_info old_ni, new_ni;
1019 	struct page *page;
1020 	int err;
1021 
1022 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1023 		return ERR_PTR(-EPERM);
1024 
1025 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1026 	if (!page)
1027 		return ERR_PTR(-ENOMEM);
1028 
1029 	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1030 		err = -ENOSPC;
1031 		goto fail;
1032 	}
1033 
1034 	get_node_info(sbi, dn->nid, &old_ni);
1035 
1036 	/* Reinitialize old_ni with new node page */
1037 	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1038 	new_ni = old_ni;
1039 	new_ni.ino = dn->inode->i_ino;
1040 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1041 
1042 	f2fs_wait_on_page_writeback(page, NODE, true);
1043 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1044 	set_cold_node(dn->inode, page);
1045 	SetPageUptodate(page);
1046 	if (set_page_dirty(page))
1047 		dn->node_changed = true;
1048 
1049 	if (f2fs_has_xattr_block(ofs))
1050 		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1051 
1052 	dn->node_page = page;
1053 	if (ipage)
1054 		update_inode(dn->inode, ipage);
1055 	else
1056 		sync_inode_page(dn);
1057 	if (ofs == 0)
1058 		inc_valid_inode_count(sbi);
1059 
1060 	return page;
1061 
1062 fail:
1063 	clear_node_page_dirty(page);
1064 	f2fs_put_page(page, 1);
1065 	return ERR_PTR(err);
1066 }
1067 
1068 /*
1069  * Caller should do after getting the following values.
1070  * 0: f2fs_put_page(page, 0)
1071  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1072  */
1073 static int read_node_page(struct page *page, int rw)
1074 {
1075 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1076 	struct node_info ni;
1077 	struct f2fs_io_info fio = {
1078 		.sbi = sbi,
1079 		.type = NODE,
1080 		.rw = rw,
1081 		.page = page,
1082 		.encrypted_page = NULL,
1083 	};
1084 
1085 	get_node_info(sbi, page->index, &ni);
1086 
1087 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1088 		ClearPageUptodate(page);
1089 		return -ENOENT;
1090 	}
1091 
1092 	if (PageUptodate(page))
1093 		return LOCKED_PAGE;
1094 
1095 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1096 	return f2fs_submit_page_bio(&fio);
1097 }
1098 
1099 /*
1100  * Readahead a node page
1101  */
1102 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1103 {
1104 	struct page *apage;
1105 	int err;
1106 
1107 	if (!nid)
1108 		return;
1109 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1110 
1111 	rcu_read_lock();
1112 	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1113 	rcu_read_unlock();
1114 	if (apage)
1115 		return;
1116 
1117 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1118 	if (!apage)
1119 		return;
1120 
1121 	err = read_node_page(apage, READA);
1122 	f2fs_put_page(apage, err ? 1 : 0);
1123 }
1124 
1125 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1126 					struct page *parent, int start)
1127 {
1128 	struct page *page;
1129 	int err;
1130 
1131 	if (!nid)
1132 		return ERR_PTR(-ENOENT);
1133 	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1134 repeat:
1135 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1136 	if (!page)
1137 		return ERR_PTR(-ENOMEM);
1138 
1139 	err = read_node_page(page, READ_SYNC);
1140 	if (err < 0) {
1141 		f2fs_put_page(page, 1);
1142 		return ERR_PTR(err);
1143 	} else if (err == LOCKED_PAGE) {
1144 		goto page_hit;
1145 	}
1146 
1147 	if (parent)
1148 		ra_node_pages(parent, start + 1, MAX_RA_NODE);
1149 
1150 	lock_page(page);
1151 
1152 	if (unlikely(!PageUptodate(page))) {
1153 		f2fs_put_page(page, 1);
1154 		return ERR_PTR(-EIO);
1155 	}
1156 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1157 		f2fs_put_page(page, 1);
1158 		goto repeat;
1159 	}
1160 page_hit:
1161 	f2fs_bug_on(sbi, nid != nid_of_node(page));
1162 	return page;
1163 }
1164 
1165 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1166 {
1167 	return __get_node_page(sbi, nid, NULL, 0);
1168 }
1169 
1170 struct page *get_node_page_ra(struct page *parent, int start)
1171 {
1172 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1173 	nid_t nid = get_nid(parent, start, false);
1174 
1175 	return __get_node_page(sbi, nid, parent, start);
1176 }
1177 
1178 void sync_inode_page(struct dnode_of_data *dn)
1179 {
1180 	int ret = 0;
1181 
1182 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1183 		ret = update_inode(dn->inode, dn->node_page);
1184 	} else if (dn->inode_page) {
1185 		if (!dn->inode_page_locked)
1186 			lock_page(dn->inode_page);
1187 		ret = update_inode(dn->inode, dn->inode_page);
1188 		if (!dn->inode_page_locked)
1189 			unlock_page(dn->inode_page);
1190 	} else {
1191 		ret = update_inode_page(dn->inode);
1192 	}
1193 	dn->node_changed = ret ? true: false;
1194 }
1195 
1196 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1197 {
1198 	struct inode *inode;
1199 	struct page *page;
1200 	int ret;
1201 
1202 	/* should flush inline_data before evict_inode */
1203 	inode = ilookup(sbi->sb, ino);
1204 	if (!inode)
1205 		return;
1206 
1207 	page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1208 	if (!page)
1209 		goto iput_out;
1210 
1211 	if (!PageUptodate(page))
1212 		goto page_out;
1213 
1214 	if (!PageDirty(page))
1215 		goto page_out;
1216 
1217 	if (!clear_page_dirty_for_io(page))
1218 		goto page_out;
1219 
1220 	ret = f2fs_write_inline_data(inode, page);
1221 	inode_dec_dirty_pages(inode);
1222 	if (ret)
1223 		set_page_dirty(page);
1224 page_out:
1225 	f2fs_put_page(page, 1);
1226 iput_out:
1227 	iput(inode);
1228 }
1229 
1230 void move_node_page(struct page *node_page, int gc_type)
1231 {
1232 	if (gc_type == FG_GC) {
1233 		struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1234 		struct writeback_control wbc = {
1235 			.sync_mode = WB_SYNC_ALL,
1236 			.nr_to_write = 1,
1237 			.for_reclaim = 0,
1238 		};
1239 
1240 		set_page_dirty(node_page);
1241 		f2fs_wait_on_page_writeback(node_page, NODE, true);
1242 
1243 		f2fs_bug_on(sbi, PageWriteback(node_page));
1244 		if (!clear_page_dirty_for_io(node_page))
1245 			goto out_page;
1246 
1247 		if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1248 			unlock_page(node_page);
1249 		goto release_page;
1250 	} else {
1251 		/* set page dirty and write it */
1252 		if (!PageWriteback(node_page))
1253 			set_page_dirty(node_page);
1254 	}
1255 out_page:
1256 	unlock_page(node_page);
1257 release_page:
1258 	f2fs_put_page(node_page, 0);
1259 }
1260 
1261 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1262 {
1263 	pgoff_t index, end;
1264 	struct pagevec pvec;
1265 	struct page *last_page = NULL;
1266 
1267 	pagevec_init(&pvec, 0);
1268 	index = 0;
1269 	end = ULONG_MAX;
1270 
1271 	while (index <= end) {
1272 		int i, nr_pages;
1273 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1274 				PAGECACHE_TAG_DIRTY,
1275 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1276 		if (nr_pages == 0)
1277 			break;
1278 
1279 		for (i = 0; i < nr_pages; i++) {
1280 			struct page *page = pvec.pages[i];
1281 
1282 			if (unlikely(f2fs_cp_error(sbi))) {
1283 				f2fs_put_page(last_page, 0);
1284 				pagevec_release(&pvec);
1285 				return ERR_PTR(-EIO);
1286 			}
1287 
1288 			if (!IS_DNODE(page) || !is_cold_node(page))
1289 				continue;
1290 			if (ino_of_node(page) != ino)
1291 				continue;
1292 
1293 			lock_page(page);
1294 
1295 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1296 continue_unlock:
1297 				unlock_page(page);
1298 				continue;
1299 			}
1300 			if (ino_of_node(page) != ino)
1301 				goto continue_unlock;
1302 
1303 			if (!PageDirty(page)) {
1304 				/* someone wrote it for us */
1305 				goto continue_unlock;
1306 			}
1307 
1308 			if (last_page)
1309 				f2fs_put_page(last_page, 0);
1310 
1311 			get_page(page);
1312 			last_page = page;
1313 			unlock_page(page);
1314 		}
1315 		pagevec_release(&pvec);
1316 		cond_resched();
1317 	}
1318 	return last_page;
1319 }
1320 
1321 int fsync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1322 			struct writeback_control *wbc, bool atomic)
1323 {
1324 	pgoff_t index, end;
1325 	struct pagevec pvec;
1326 	int ret = 0;
1327 	struct page *last_page = NULL;
1328 	bool marked = false;
1329 
1330 	if (atomic) {
1331 		last_page = last_fsync_dnode(sbi, ino);
1332 		if (IS_ERR_OR_NULL(last_page))
1333 			return PTR_ERR_OR_ZERO(last_page);
1334 	}
1335 retry:
1336 	pagevec_init(&pvec, 0);
1337 	index = 0;
1338 	end = ULONG_MAX;
1339 
1340 	while (index <= end) {
1341 		int i, nr_pages;
1342 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1343 				PAGECACHE_TAG_DIRTY,
1344 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1345 		if (nr_pages == 0)
1346 			break;
1347 
1348 		for (i = 0; i < nr_pages; i++) {
1349 			struct page *page = pvec.pages[i];
1350 
1351 			if (unlikely(f2fs_cp_error(sbi))) {
1352 				f2fs_put_page(last_page, 0);
1353 				pagevec_release(&pvec);
1354 				return -EIO;
1355 			}
1356 
1357 			if (!IS_DNODE(page) || !is_cold_node(page))
1358 				continue;
1359 			if (ino_of_node(page) != ino)
1360 				continue;
1361 
1362 			lock_page(page);
1363 
1364 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365 continue_unlock:
1366 				unlock_page(page);
1367 				continue;
1368 			}
1369 			if (ino_of_node(page) != ino)
1370 				goto continue_unlock;
1371 
1372 			if (!PageDirty(page) && page != last_page) {
1373 				/* someone wrote it for us */
1374 				goto continue_unlock;
1375 			}
1376 
1377 			f2fs_wait_on_page_writeback(page, NODE, true);
1378 			BUG_ON(PageWriteback(page));
1379 
1380 			if (!atomic || page == last_page) {
1381 				set_fsync_mark(page, 1);
1382 				if (IS_INODE(page))
1383 					set_dentry_mark(page,
1384 						need_dentry_mark(sbi, ino));
1385 				/*  may be written by other thread */
1386 				if (!PageDirty(page))
1387 					set_page_dirty(page);
1388 			}
1389 
1390 			if (!clear_page_dirty_for_io(page))
1391 				goto continue_unlock;
1392 
1393 			ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1394 			if (ret) {
1395 				unlock_page(page);
1396 				f2fs_put_page(last_page, 0);
1397 				break;
1398 			}
1399 			if (page == last_page) {
1400 				f2fs_put_page(page, 0);
1401 				marked = true;
1402 				break;
1403 			}
1404 		}
1405 		pagevec_release(&pvec);
1406 		cond_resched();
1407 
1408 		if (ret || marked)
1409 			break;
1410 	}
1411 	if (!ret && atomic && !marked) {
1412 		f2fs_msg(sbi->sb, KERN_DEBUG,
1413 			"Retry to write fsync mark: ino=%u, idx=%lx",
1414 					ino, last_page->index);
1415 		lock_page(last_page);
1416 		set_page_dirty(last_page);
1417 		unlock_page(last_page);
1418 		goto retry;
1419 	}
1420 	return ret ? -EIO: 0;
1421 }
1422 
1423 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1424 {
1425 	pgoff_t index, end;
1426 	struct pagevec pvec;
1427 	int step = 0;
1428 	int nwritten = 0;
1429 
1430 	pagevec_init(&pvec, 0);
1431 
1432 next_step:
1433 	index = 0;
1434 	end = ULONG_MAX;
1435 
1436 	while (index <= end) {
1437 		int i, nr_pages;
1438 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1439 				PAGECACHE_TAG_DIRTY,
1440 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1441 		if (nr_pages == 0)
1442 			break;
1443 
1444 		for (i = 0; i < nr_pages; i++) {
1445 			struct page *page = pvec.pages[i];
1446 
1447 			if (unlikely(f2fs_cp_error(sbi))) {
1448 				pagevec_release(&pvec);
1449 				return -EIO;
1450 			}
1451 
1452 			/*
1453 			 * flushing sequence with step:
1454 			 * 0. indirect nodes
1455 			 * 1. dentry dnodes
1456 			 * 2. file dnodes
1457 			 */
1458 			if (step == 0 && IS_DNODE(page))
1459 				continue;
1460 			if (step == 1 && (!IS_DNODE(page) ||
1461 						is_cold_node(page)))
1462 				continue;
1463 			if (step == 2 && (!IS_DNODE(page) ||
1464 						!is_cold_node(page)))
1465 				continue;
1466 lock_node:
1467 			if (!trylock_page(page))
1468 				continue;
1469 
1470 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1471 continue_unlock:
1472 				unlock_page(page);
1473 				continue;
1474 			}
1475 
1476 			if (!PageDirty(page)) {
1477 				/* someone wrote it for us */
1478 				goto continue_unlock;
1479 			}
1480 
1481 			/* flush inline_data */
1482 			if (is_inline_node(page)) {
1483 				clear_inline_node(page);
1484 				unlock_page(page);
1485 				flush_inline_data(sbi, ino_of_node(page));
1486 				goto lock_node;
1487 			}
1488 
1489 			f2fs_wait_on_page_writeback(page, NODE, true);
1490 
1491 			BUG_ON(PageWriteback(page));
1492 			if (!clear_page_dirty_for_io(page))
1493 				goto continue_unlock;
1494 
1495 			set_fsync_mark(page, 0);
1496 			set_dentry_mark(page, 0);
1497 
1498 			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1499 				unlock_page(page);
1500 
1501 			if (--wbc->nr_to_write == 0)
1502 				break;
1503 		}
1504 		pagevec_release(&pvec);
1505 		cond_resched();
1506 
1507 		if (wbc->nr_to_write == 0) {
1508 			step = 2;
1509 			break;
1510 		}
1511 	}
1512 
1513 	if (step < 2) {
1514 		step++;
1515 		goto next_step;
1516 	}
1517 	return nwritten;
1518 }
1519 
1520 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1521 {
1522 	pgoff_t index = 0, end = ULONG_MAX;
1523 	struct pagevec pvec;
1524 	int ret2 = 0, ret = 0;
1525 
1526 	pagevec_init(&pvec, 0);
1527 
1528 	while (index <= end) {
1529 		int i, nr_pages;
1530 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1531 				PAGECACHE_TAG_WRITEBACK,
1532 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1533 		if (nr_pages == 0)
1534 			break;
1535 
1536 		for (i = 0; i < nr_pages; i++) {
1537 			struct page *page = pvec.pages[i];
1538 
1539 			/* until radix tree lookup accepts end_index */
1540 			if (unlikely(page->index > end))
1541 				continue;
1542 
1543 			if (ino && ino_of_node(page) == ino) {
1544 				f2fs_wait_on_page_writeback(page, NODE, true);
1545 				if (TestClearPageError(page))
1546 					ret = -EIO;
1547 			}
1548 		}
1549 		pagevec_release(&pvec);
1550 		cond_resched();
1551 	}
1552 
1553 	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1554 		ret2 = -ENOSPC;
1555 	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1556 		ret2 = -EIO;
1557 	if (!ret)
1558 		ret = ret2;
1559 	return ret;
1560 }
1561 
1562 static int f2fs_write_node_page(struct page *page,
1563 				struct writeback_control *wbc)
1564 {
1565 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1566 	nid_t nid;
1567 	struct node_info ni;
1568 	struct f2fs_io_info fio = {
1569 		.sbi = sbi,
1570 		.type = NODE,
1571 		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1572 		.page = page,
1573 		.encrypted_page = NULL,
1574 	};
1575 
1576 	trace_f2fs_writepage(page, NODE);
1577 
1578 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1579 		goto redirty_out;
1580 	if (unlikely(f2fs_cp_error(sbi)))
1581 		goto redirty_out;
1582 
1583 	/* get old block addr of this node page */
1584 	nid = nid_of_node(page);
1585 	f2fs_bug_on(sbi, page->index != nid);
1586 
1587 	if (wbc->for_reclaim) {
1588 		if (!down_read_trylock(&sbi->node_write))
1589 			goto redirty_out;
1590 	} else {
1591 		down_read(&sbi->node_write);
1592 	}
1593 
1594 	get_node_info(sbi, nid, &ni);
1595 
1596 	/* This page is already truncated */
1597 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1598 		ClearPageUptodate(page);
1599 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1600 		up_read(&sbi->node_write);
1601 		unlock_page(page);
1602 		return 0;
1603 	}
1604 
1605 	set_page_writeback(page);
1606 	fio.old_blkaddr = ni.blk_addr;
1607 	write_node_page(nid, &fio);
1608 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1609 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1610 	up_read(&sbi->node_write);
1611 
1612 	if (wbc->for_reclaim)
1613 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1614 
1615 	unlock_page(page);
1616 
1617 	if (unlikely(f2fs_cp_error(sbi)))
1618 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1619 
1620 	return 0;
1621 
1622 redirty_out:
1623 	redirty_page_for_writepage(wbc, page);
1624 	return AOP_WRITEPAGE_ACTIVATE;
1625 }
1626 
1627 static int f2fs_write_node_pages(struct address_space *mapping,
1628 			    struct writeback_control *wbc)
1629 {
1630 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1631 	long diff;
1632 
1633 	/* balancing f2fs's metadata in background */
1634 	f2fs_balance_fs_bg(sbi);
1635 
1636 	/* collect a number of dirty node pages and write together */
1637 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1638 		goto skip_write;
1639 
1640 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1641 
1642 	diff = nr_pages_to_write(sbi, NODE, wbc);
1643 	wbc->sync_mode = WB_SYNC_NONE;
1644 	sync_node_pages(sbi, wbc);
1645 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1646 	return 0;
1647 
1648 skip_write:
1649 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1650 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1651 	return 0;
1652 }
1653 
1654 static int f2fs_set_node_page_dirty(struct page *page)
1655 {
1656 	trace_f2fs_set_page_dirty(page, NODE);
1657 
1658 	SetPageUptodate(page);
1659 	if (!PageDirty(page)) {
1660 		__set_page_dirty_nobuffers(page);
1661 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1662 		SetPagePrivate(page);
1663 		f2fs_trace_pid(page);
1664 		return 1;
1665 	}
1666 	return 0;
1667 }
1668 
1669 /*
1670  * Structure of the f2fs node operations
1671  */
1672 const struct address_space_operations f2fs_node_aops = {
1673 	.writepage	= f2fs_write_node_page,
1674 	.writepages	= f2fs_write_node_pages,
1675 	.set_page_dirty	= f2fs_set_node_page_dirty,
1676 	.invalidatepage	= f2fs_invalidate_page,
1677 	.releasepage	= f2fs_release_page,
1678 };
1679 
1680 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1681 						nid_t n)
1682 {
1683 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1684 }
1685 
1686 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1687 						struct free_nid *i)
1688 {
1689 	list_del(&i->list);
1690 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1691 }
1692 
1693 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1694 {
1695 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1696 	struct free_nid *i;
1697 	struct nat_entry *ne;
1698 
1699 	if (!available_free_memory(sbi, FREE_NIDS))
1700 		return -1;
1701 
1702 	/* 0 nid should not be used */
1703 	if (unlikely(nid == 0))
1704 		return 0;
1705 
1706 	if (build) {
1707 		/* do not add allocated nids */
1708 		ne = __lookup_nat_cache(nm_i, nid);
1709 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1710 				nat_get_blkaddr(ne) != NULL_ADDR))
1711 			return 0;
1712 	}
1713 
1714 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1715 	i->nid = nid;
1716 	i->state = NID_NEW;
1717 
1718 	if (radix_tree_preload(GFP_NOFS)) {
1719 		kmem_cache_free(free_nid_slab, i);
1720 		return 0;
1721 	}
1722 
1723 	spin_lock(&nm_i->free_nid_list_lock);
1724 	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1725 		spin_unlock(&nm_i->free_nid_list_lock);
1726 		radix_tree_preload_end();
1727 		kmem_cache_free(free_nid_slab, i);
1728 		return 0;
1729 	}
1730 	list_add_tail(&i->list, &nm_i->free_nid_list);
1731 	nm_i->fcnt++;
1732 	spin_unlock(&nm_i->free_nid_list_lock);
1733 	radix_tree_preload_end();
1734 	return 1;
1735 }
1736 
1737 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1738 {
1739 	struct free_nid *i;
1740 	bool need_free = false;
1741 
1742 	spin_lock(&nm_i->free_nid_list_lock);
1743 	i = __lookup_free_nid_list(nm_i, nid);
1744 	if (i && i->state == NID_NEW) {
1745 		__del_from_free_nid_list(nm_i, i);
1746 		nm_i->fcnt--;
1747 		need_free = true;
1748 	}
1749 	spin_unlock(&nm_i->free_nid_list_lock);
1750 
1751 	if (need_free)
1752 		kmem_cache_free(free_nid_slab, i);
1753 }
1754 
1755 static void scan_nat_page(struct f2fs_sb_info *sbi,
1756 			struct page *nat_page, nid_t start_nid)
1757 {
1758 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1759 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1760 	block_t blk_addr;
1761 	int i;
1762 
1763 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1764 
1765 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1766 
1767 		if (unlikely(start_nid >= nm_i->max_nid))
1768 			break;
1769 
1770 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1771 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1772 		if (blk_addr == NULL_ADDR) {
1773 			if (add_free_nid(sbi, start_nid, true) < 0)
1774 				break;
1775 		}
1776 	}
1777 }
1778 
1779 static void build_free_nids(struct f2fs_sb_info *sbi)
1780 {
1781 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1782 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1783 	struct f2fs_journal *journal = curseg->journal;
1784 	int i = 0;
1785 	nid_t nid = nm_i->next_scan_nid;
1786 
1787 	/* Enough entries */
1788 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1789 		return;
1790 
1791 	/* readahead nat pages to be scanned */
1792 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1793 							META_NAT, true);
1794 
1795 	down_read(&nm_i->nat_tree_lock);
1796 
1797 	while (1) {
1798 		struct page *page = get_current_nat_page(sbi, nid);
1799 
1800 		scan_nat_page(sbi, page, nid);
1801 		f2fs_put_page(page, 1);
1802 
1803 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1804 		if (unlikely(nid >= nm_i->max_nid))
1805 			nid = 0;
1806 
1807 		if (++i >= FREE_NID_PAGES)
1808 			break;
1809 	}
1810 
1811 	/* go to the next free nat pages to find free nids abundantly */
1812 	nm_i->next_scan_nid = nid;
1813 
1814 	/* find free nids from current sum_pages */
1815 	down_read(&curseg->journal_rwsem);
1816 	for (i = 0; i < nats_in_cursum(journal); i++) {
1817 		block_t addr;
1818 
1819 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1820 		nid = le32_to_cpu(nid_in_journal(journal, i));
1821 		if (addr == NULL_ADDR)
1822 			add_free_nid(sbi, nid, true);
1823 		else
1824 			remove_free_nid(nm_i, nid);
1825 	}
1826 	up_read(&curseg->journal_rwsem);
1827 	up_read(&nm_i->nat_tree_lock);
1828 
1829 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1830 					nm_i->ra_nid_pages, META_NAT, false);
1831 }
1832 
1833 /*
1834  * If this function returns success, caller can obtain a new nid
1835  * from second parameter of this function.
1836  * The returned nid could be used ino as well as nid when inode is created.
1837  */
1838 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1839 {
1840 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1841 	struct free_nid *i = NULL;
1842 retry:
1843 #ifdef CONFIG_F2FS_FAULT_INJECTION
1844 	if (time_to_inject(FAULT_ALLOC_NID))
1845 		return false;
1846 #endif
1847 	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1848 		return false;
1849 
1850 	spin_lock(&nm_i->free_nid_list_lock);
1851 
1852 	/* We should not use stale free nids created by build_free_nids */
1853 	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1854 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1855 		list_for_each_entry(i, &nm_i->free_nid_list, list)
1856 			if (i->state == NID_NEW)
1857 				break;
1858 
1859 		f2fs_bug_on(sbi, i->state != NID_NEW);
1860 		*nid = i->nid;
1861 		i->state = NID_ALLOC;
1862 		nm_i->fcnt--;
1863 		spin_unlock(&nm_i->free_nid_list_lock);
1864 		return true;
1865 	}
1866 	spin_unlock(&nm_i->free_nid_list_lock);
1867 
1868 	/* Let's scan nat pages and its caches to get free nids */
1869 	mutex_lock(&nm_i->build_lock);
1870 	build_free_nids(sbi);
1871 	mutex_unlock(&nm_i->build_lock);
1872 	goto retry;
1873 }
1874 
1875 /*
1876  * alloc_nid() should be called prior to this function.
1877  */
1878 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1879 {
1880 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1881 	struct free_nid *i;
1882 
1883 	spin_lock(&nm_i->free_nid_list_lock);
1884 	i = __lookup_free_nid_list(nm_i, nid);
1885 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1886 	__del_from_free_nid_list(nm_i, i);
1887 	spin_unlock(&nm_i->free_nid_list_lock);
1888 
1889 	kmem_cache_free(free_nid_slab, i);
1890 }
1891 
1892 /*
1893  * alloc_nid() should be called prior to this function.
1894  */
1895 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1896 {
1897 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1898 	struct free_nid *i;
1899 	bool need_free = false;
1900 
1901 	if (!nid)
1902 		return;
1903 
1904 	spin_lock(&nm_i->free_nid_list_lock);
1905 	i = __lookup_free_nid_list(nm_i, nid);
1906 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1907 	if (!available_free_memory(sbi, FREE_NIDS)) {
1908 		__del_from_free_nid_list(nm_i, i);
1909 		need_free = true;
1910 	} else {
1911 		i->state = NID_NEW;
1912 		nm_i->fcnt++;
1913 	}
1914 	spin_unlock(&nm_i->free_nid_list_lock);
1915 
1916 	if (need_free)
1917 		kmem_cache_free(free_nid_slab, i);
1918 }
1919 
1920 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1921 {
1922 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1923 	struct free_nid *i, *next;
1924 	int nr = nr_shrink;
1925 
1926 	if (!mutex_trylock(&nm_i->build_lock))
1927 		return 0;
1928 
1929 	spin_lock(&nm_i->free_nid_list_lock);
1930 	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1931 		if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1932 			break;
1933 		if (i->state == NID_ALLOC)
1934 			continue;
1935 		__del_from_free_nid_list(nm_i, i);
1936 		kmem_cache_free(free_nid_slab, i);
1937 		nm_i->fcnt--;
1938 		nr_shrink--;
1939 	}
1940 	spin_unlock(&nm_i->free_nid_list_lock);
1941 	mutex_unlock(&nm_i->build_lock);
1942 
1943 	return nr - nr_shrink;
1944 }
1945 
1946 void recover_inline_xattr(struct inode *inode, struct page *page)
1947 {
1948 	void *src_addr, *dst_addr;
1949 	size_t inline_size;
1950 	struct page *ipage;
1951 	struct f2fs_inode *ri;
1952 
1953 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1954 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1955 
1956 	ri = F2FS_INODE(page);
1957 	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1958 		clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1959 		goto update_inode;
1960 	}
1961 
1962 	dst_addr = inline_xattr_addr(ipage);
1963 	src_addr = inline_xattr_addr(page);
1964 	inline_size = inline_xattr_size(inode);
1965 
1966 	f2fs_wait_on_page_writeback(ipage, NODE, true);
1967 	memcpy(dst_addr, src_addr, inline_size);
1968 update_inode:
1969 	update_inode(inode, ipage);
1970 	f2fs_put_page(ipage, 1);
1971 }
1972 
1973 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1974 {
1975 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1976 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1977 	nid_t new_xnid = nid_of_node(page);
1978 	struct node_info ni;
1979 
1980 	/* 1: invalidate the previous xattr nid */
1981 	if (!prev_xnid)
1982 		goto recover_xnid;
1983 
1984 	/* Deallocate node address */
1985 	get_node_info(sbi, prev_xnid, &ni);
1986 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1987 	invalidate_blocks(sbi, ni.blk_addr);
1988 	dec_valid_node_count(sbi, inode);
1989 	set_node_addr(sbi, &ni, NULL_ADDR, false);
1990 
1991 recover_xnid:
1992 	/* 2: allocate new xattr nid */
1993 	if (unlikely(!inc_valid_node_count(sbi, inode)))
1994 		f2fs_bug_on(sbi, 1);
1995 
1996 	remove_free_nid(NM_I(sbi), new_xnid);
1997 	get_node_info(sbi, new_xnid, &ni);
1998 	ni.ino = inode->i_ino;
1999 	set_node_addr(sbi, &ni, NEW_ADDR, false);
2000 	F2FS_I(inode)->i_xattr_nid = new_xnid;
2001 
2002 	/* 3: update xattr blkaddr */
2003 	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2004 	set_node_addr(sbi, &ni, blkaddr, false);
2005 
2006 	update_inode_page(inode);
2007 }
2008 
2009 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2010 {
2011 	struct f2fs_inode *src, *dst;
2012 	nid_t ino = ino_of_node(page);
2013 	struct node_info old_ni, new_ni;
2014 	struct page *ipage;
2015 
2016 	get_node_info(sbi, ino, &old_ni);
2017 
2018 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2019 		return -EINVAL;
2020 
2021 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2022 	if (!ipage)
2023 		return -ENOMEM;
2024 
2025 	/* Should not use this inode from free nid list */
2026 	remove_free_nid(NM_I(sbi), ino);
2027 
2028 	SetPageUptodate(ipage);
2029 	fill_node_footer(ipage, ino, ino, 0, true);
2030 
2031 	src = F2FS_INODE(page);
2032 	dst = F2FS_INODE(ipage);
2033 
2034 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2035 	dst->i_size = 0;
2036 	dst->i_blocks = cpu_to_le64(1);
2037 	dst->i_links = cpu_to_le32(1);
2038 	dst->i_xattr_nid = 0;
2039 	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2040 
2041 	new_ni = old_ni;
2042 	new_ni.ino = ino;
2043 
2044 	if (unlikely(!inc_valid_node_count(sbi, NULL)))
2045 		WARN_ON(1);
2046 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2047 	inc_valid_inode_count(sbi);
2048 	set_page_dirty(ipage);
2049 	f2fs_put_page(ipage, 1);
2050 	return 0;
2051 }
2052 
2053 int restore_node_summary(struct f2fs_sb_info *sbi,
2054 			unsigned int segno, struct f2fs_summary_block *sum)
2055 {
2056 	struct f2fs_node *rn;
2057 	struct f2fs_summary *sum_entry;
2058 	block_t addr;
2059 	int bio_blocks = MAX_BIO_BLOCKS(sbi);
2060 	int i, idx, last_offset, nrpages;
2061 
2062 	/* scan the node segment */
2063 	last_offset = sbi->blocks_per_seg;
2064 	addr = START_BLOCK(sbi, segno);
2065 	sum_entry = &sum->entries[0];
2066 
2067 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2068 		nrpages = min(last_offset - i, bio_blocks);
2069 
2070 		/* readahead node pages */
2071 		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2072 
2073 		for (idx = addr; idx < addr + nrpages; idx++) {
2074 			struct page *page = get_tmp_page(sbi, idx);
2075 
2076 			rn = F2FS_NODE(page);
2077 			sum_entry->nid = rn->footer.nid;
2078 			sum_entry->version = 0;
2079 			sum_entry->ofs_in_node = 0;
2080 			sum_entry++;
2081 			f2fs_put_page(page, 1);
2082 		}
2083 
2084 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2085 							addr + nrpages);
2086 	}
2087 	return 0;
2088 }
2089 
2090 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2091 {
2092 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2093 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2094 	struct f2fs_journal *journal = curseg->journal;
2095 	int i;
2096 
2097 	down_write(&curseg->journal_rwsem);
2098 	for (i = 0; i < nats_in_cursum(journal); i++) {
2099 		struct nat_entry *ne;
2100 		struct f2fs_nat_entry raw_ne;
2101 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2102 
2103 		raw_ne = nat_in_journal(journal, i);
2104 
2105 		ne = __lookup_nat_cache(nm_i, nid);
2106 		if (!ne) {
2107 			ne = grab_nat_entry(nm_i, nid);
2108 			node_info_from_raw_nat(&ne->ni, &raw_ne);
2109 		}
2110 		__set_nat_cache_dirty(nm_i, ne);
2111 	}
2112 	update_nats_in_cursum(journal, -i);
2113 	up_write(&curseg->journal_rwsem);
2114 }
2115 
2116 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2117 						struct list_head *head, int max)
2118 {
2119 	struct nat_entry_set *cur;
2120 
2121 	if (nes->entry_cnt >= max)
2122 		goto add_out;
2123 
2124 	list_for_each_entry(cur, head, set_list) {
2125 		if (cur->entry_cnt >= nes->entry_cnt) {
2126 			list_add(&nes->set_list, cur->set_list.prev);
2127 			return;
2128 		}
2129 	}
2130 add_out:
2131 	list_add_tail(&nes->set_list, head);
2132 }
2133 
2134 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2135 					struct nat_entry_set *set)
2136 {
2137 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2138 	struct f2fs_journal *journal = curseg->journal;
2139 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2140 	bool to_journal = true;
2141 	struct f2fs_nat_block *nat_blk;
2142 	struct nat_entry *ne, *cur;
2143 	struct page *page = NULL;
2144 
2145 	/*
2146 	 * there are two steps to flush nat entries:
2147 	 * #1, flush nat entries to journal in current hot data summary block.
2148 	 * #2, flush nat entries to nat page.
2149 	 */
2150 	if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2151 		to_journal = false;
2152 
2153 	if (to_journal) {
2154 		down_write(&curseg->journal_rwsem);
2155 	} else {
2156 		page = get_next_nat_page(sbi, start_nid);
2157 		nat_blk = page_address(page);
2158 		f2fs_bug_on(sbi, !nat_blk);
2159 	}
2160 
2161 	/* flush dirty nats in nat entry set */
2162 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2163 		struct f2fs_nat_entry *raw_ne;
2164 		nid_t nid = nat_get_nid(ne);
2165 		int offset;
2166 
2167 		if (nat_get_blkaddr(ne) == NEW_ADDR)
2168 			continue;
2169 
2170 		if (to_journal) {
2171 			offset = lookup_journal_in_cursum(journal,
2172 							NAT_JOURNAL, nid, 1);
2173 			f2fs_bug_on(sbi, offset < 0);
2174 			raw_ne = &nat_in_journal(journal, offset);
2175 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2176 		} else {
2177 			raw_ne = &nat_blk->entries[nid - start_nid];
2178 		}
2179 		raw_nat_from_node_info(raw_ne, &ne->ni);
2180 		nat_reset_flag(ne);
2181 		__clear_nat_cache_dirty(NM_I(sbi), ne);
2182 		if (nat_get_blkaddr(ne) == NULL_ADDR)
2183 			add_free_nid(sbi, nid, false);
2184 	}
2185 
2186 	if (to_journal)
2187 		up_write(&curseg->journal_rwsem);
2188 	else
2189 		f2fs_put_page(page, 1);
2190 
2191 	f2fs_bug_on(sbi, set->entry_cnt);
2192 
2193 	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2194 	kmem_cache_free(nat_entry_set_slab, set);
2195 }
2196 
2197 /*
2198  * This function is called during the checkpointing process.
2199  */
2200 void flush_nat_entries(struct f2fs_sb_info *sbi)
2201 {
2202 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2203 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2204 	struct f2fs_journal *journal = curseg->journal;
2205 	struct nat_entry_set *setvec[SETVEC_SIZE];
2206 	struct nat_entry_set *set, *tmp;
2207 	unsigned int found;
2208 	nid_t set_idx = 0;
2209 	LIST_HEAD(sets);
2210 
2211 	if (!nm_i->dirty_nat_cnt)
2212 		return;
2213 
2214 	down_write(&nm_i->nat_tree_lock);
2215 
2216 	/*
2217 	 * if there are no enough space in journal to store dirty nat
2218 	 * entries, remove all entries from journal and merge them
2219 	 * into nat entry set.
2220 	 */
2221 	if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2222 		remove_nats_in_journal(sbi);
2223 
2224 	while ((found = __gang_lookup_nat_set(nm_i,
2225 					set_idx, SETVEC_SIZE, setvec))) {
2226 		unsigned idx;
2227 		set_idx = setvec[found - 1]->set + 1;
2228 		for (idx = 0; idx < found; idx++)
2229 			__adjust_nat_entry_set(setvec[idx], &sets,
2230 						MAX_NAT_JENTRIES(journal));
2231 	}
2232 
2233 	/* flush dirty nats in nat entry set */
2234 	list_for_each_entry_safe(set, tmp, &sets, set_list)
2235 		__flush_nat_entry_set(sbi, set);
2236 
2237 	up_write(&nm_i->nat_tree_lock);
2238 
2239 	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2240 }
2241 
2242 static int init_node_manager(struct f2fs_sb_info *sbi)
2243 {
2244 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2245 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2246 	unsigned char *version_bitmap;
2247 	unsigned int nat_segs, nat_blocks;
2248 
2249 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2250 
2251 	/* segment_count_nat includes pair segment so divide to 2. */
2252 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2253 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2254 
2255 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2256 
2257 	/* not used nids: 0, node, meta, (and root counted as valid node) */
2258 	nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2259 	nm_i->fcnt = 0;
2260 	nm_i->nat_cnt = 0;
2261 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2262 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2263 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2264 
2265 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2266 	INIT_LIST_HEAD(&nm_i->free_nid_list);
2267 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2268 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2269 	INIT_LIST_HEAD(&nm_i->nat_entries);
2270 
2271 	mutex_init(&nm_i->build_lock);
2272 	spin_lock_init(&nm_i->free_nid_list_lock);
2273 	init_rwsem(&nm_i->nat_tree_lock);
2274 
2275 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2276 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2277 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2278 	if (!version_bitmap)
2279 		return -EFAULT;
2280 
2281 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2282 					GFP_KERNEL);
2283 	if (!nm_i->nat_bitmap)
2284 		return -ENOMEM;
2285 	return 0;
2286 }
2287 
2288 int build_node_manager(struct f2fs_sb_info *sbi)
2289 {
2290 	int err;
2291 
2292 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2293 	if (!sbi->nm_info)
2294 		return -ENOMEM;
2295 
2296 	err = init_node_manager(sbi);
2297 	if (err)
2298 		return err;
2299 
2300 	build_free_nids(sbi);
2301 	return 0;
2302 }
2303 
2304 void destroy_node_manager(struct f2fs_sb_info *sbi)
2305 {
2306 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2307 	struct free_nid *i, *next_i;
2308 	struct nat_entry *natvec[NATVEC_SIZE];
2309 	struct nat_entry_set *setvec[SETVEC_SIZE];
2310 	nid_t nid = 0;
2311 	unsigned int found;
2312 
2313 	if (!nm_i)
2314 		return;
2315 
2316 	/* destroy free nid list */
2317 	spin_lock(&nm_i->free_nid_list_lock);
2318 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2319 		f2fs_bug_on(sbi, i->state == NID_ALLOC);
2320 		__del_from_free_nid_list(nm_i, i);
2321 		nm_i->fcnt--;
2322 		spin_unlock(&nm_i->free_nid_list_lock);
2323 		kmem_cache_free(free_nid_slab, i);
2324 		spin_lock(&nm_i->free_nid_list_lock);
2325 	}
2326 	f2fs_bug_on(sbi, nm_i->fcnt);
2327 	spin_unlock(&nm_i->free_nid_list_lock);
2328 
2329 	/* destroy nat cache */
2330 	down_write(&nm_i->nat_tree_lock);
2331 	while ((found = __gang_lookup_nat_cache(nm_i,
2332 					nid, NATVEC_SIZE, natvec))) {
2333 		unsigned idx;
2334 
2335 		nid = nat_get_nid(natvec[found - 1]) + 1;
2336 		for (idx = 0; idx < found; idx++)
2337 			__del_from_nat_cache(nm_i, natvec[idx]);
2338 	}
2339 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2340 
2341 	/* destroy nat set cache */
2342 	nid = 0;
2343 	while ((found = __gang_lookup_nat_set(nm_i,
2344 					nid, SETVEC_SIZE, setvec))) {
2345 		unsigned idx;
2346 
2347 		nid = setvec[found - 1]->set + 1;
2348 		for (idx = 0; idx < found; idx++) {
2349 			/* entry_cnt is not zero, when cp_error was occurred */
2350 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2351 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2352 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2353 		}
2354 	}
2355 	up_write(&nm_i->nat_tree_lock);
2356 
2357 	kfree(nm_i->nat_bitmap);
2358 	sbi->nm_info = NULL;
2359 	kfree(nm_i);
2360 }
2361 
2362 int __init create_node_manager_caches(void)
2363 {
2364 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2365 			sizeof(struct nat_entry));
2366 	if (!nat_entry_slab)
2367 		goto fail;
2368 
2369 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2370 			sizeof(struct free_nid));
2371 	if (!free_nid_slab)
2372 		goto destroy_nat_entry;
2373 
2374 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2375 			sizeof(struct nat_entry_set));
2376 	if (!nat_entry_set_slab)
2377 		goto destroy_free_nid;
2378 	return 0;
2379 
2380 destroy_free_nid:
2381 	kmem_cache_destroy(free_nid_slab);
2382 destroy_nat_entry:
2383 	kmem_cache_destroy(nat_entry_slab);
2384 fail:
2385 	return -ENOMEM;
2386 }
2387 
2388 void destroy_node_manager_caches(void)
2389 {
2390 	kmem_cache_destroy(nat_entry_set_slab);
2391 	kmem_cache_destroy(free_nid_slab);
2392 	kmem_cache_destroy(nat_entry_slab);
2393 }
2394