xref: /linux/fs/f2fs/node.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
24 
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
26 
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
30 
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
32 {
33 	struct f2fs_nm_info *nm_i = NM_I(sbi);
34 	struct sysinfo val;
35 	unsigned long avail_ram;
36 	unsigned long mem_size = 0;
37 	bool res = false;
38 
39 	si_meminfo(&val);
40 
41 	/* only uses low memory */
42 	avail_ram = val.totalram - val.totalhigh;
43 
44 	/*
45 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
46 	 */
47 	if (type == FREE_NIDS) {
48 		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 							PAGE_CACHE_SHIFT;
50 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 	} else if (type == NAT_ENTRIES) {
52 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 							PAGE_CACHE_SHIFT;
54 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 	} else if (type == DIRTY_DENTS) {
56 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
57 			return false;
58 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
59 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
60 	} else if (type == INO_ENTRIES) {
61 		int i;
62 
63 		for (i = 0; i <= UPDATE_INO; i++)
64 			mem_size += (sbi->im[i].ino_num *
65 				sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
66 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
67 	} else if (type == EXTENT_CACHE) {
68 		mem_size = (sbi->total_ext_tree * sizeof(struct extent_tree) +
69 				atomic_read(&sbi->total_ext_node) *
70 				sizeof(struct extent_node)) >> PAGE_CACHE_SHIFT;
71 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
72 	} else {
73 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
74 			return false;
75 	}
76 	return res;
77 }
78 
79 static void clear_node_page_dirty(struct page *page)
80 {
81 	struct address_space *mapping = page->mapping;
82 	unsigned int long flags;
83 
84 	if (PageDirty(page)) {
85 		spin_lock_irqsave(&mapping->tree_lock, flags);
86 		radix_tree_tag_clear(&mapping->page_tree,
87 				page_index(page),
88 				PAGECACHE_TAG_DIRTY);
89 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
90 
91 		clear_page_dirty_for_io(page);
92 		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
93 	}
94 	ClearPageUptodate(page);
95 }
96 
97 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
98 {
99 	pgoff_t index = current_nat_addr(sbi, nid);
100 	return get_meta_page(sbi, index);
101 }
102 
103 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
104 {
105 	struct page *src_page;
106 	struct page *dst_page;
107 	pgoff_t src_off;
108 	pgoff_t dst_off;
109 	void *src_addr;
110 	void *dst_addr;
111 	struct f2fs_nm_info *nm_i = NM_I(sbi);
112 
113 	src_off = current_nat_addr(sbi, nid);
114 	dst_off = next_nat_addr(sbi, src_off);
115 
116 	/* get current nat block page with lock */
117 	src_page = get_meta_page(sbi, src_off);
118 	dst_page = grab_meta_page(sbi, dst_off);
119 	f2fs_bug_on(sbi, PageDirty(src_page));
120 
121 	src_addr = page_address(src_page);
122 	dst_addr = page_address(dst_page);
123 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
124 	set_page_dirty(dst_page);
125 	f2fs_put_page(src_page, 1);
126 
127 	set_to_next_nat(nm_i, nid);
128 
129 	return dst_page;
130 }
131 
132 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
133 {
134 	return radix_tree_lookup(&nm_i->nat_root, n);
135 }
136 
137 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
138 		nid_t start, unsigned int nr, struct nat_entry **ep)
139 {
140 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
141 }
142 
143 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
144 {
145 	list_del(&e->list);
146 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
147 	nm_i->nat_cnt--;
148 	kmem_cache_free(nat_entry_slab, e);
149 }
150 
151 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
152 						struct nat_entry *ne)
153 {
154 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
155 	struct nat_entry_set *head;
156 
157 	if (get_nat_flag(ne, IS_DIRTY))
158 		return;
159 
160 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
161 	if (!head) {
162 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
163 
164 		INIT_LIST_HEAD(&head->entry_list);
165 		INIT_LIST_HEAD(&head->set_list);
166 		head->set = set;
167 		head->entry_cnt = 0;
168 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
169 	}
170 	list_move_tail(&ne->list, &head->entry_list);
171 	nm_i->dirty_nat_cnt++;
172 	head->entry_cnt++;
173 	set_nat_flag(ne, IS_DIRTY, true);
174 }
175 
176 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
177 						struct nat_entry *ne)
178 {
179 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
180 	struct nat_entry_set *head;
181 
182 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
183 	if (head) {
184 		list_move_tail(&ne->list, &nm_i->nat_entries);
185 		set_nat_flag(ne, IS_DIRTY, false);
186 		head->entry_cnt--;
187 		nm_i->dirty_nat_cnt--;
188 	}
189 }
190 
191 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
192 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
193 {
194 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
195 							start, nr);
196 }
197 
198 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
199 {
200 	struct f2fs_nm_info *nm_i = NM_I(sbi);
201 	struct nat_entry *e;
202 	bool need = false;
203 
204 	down_read(&nm_i->nat_tree_lock);
205 	e = __lookup_nat_cache(nm_i, nid);
206 	if (e) {
207 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
208 				!get_nat_flag(e, HAS_FSYNCED_INODE))
209 			need = true;
210 	}
211 	up_read(&nm_i->nat_tree_lock);
212 	return need;
213 }
214 
215 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
216 {
217 	struct f2fs_nm_info *nm_i = NM_I(sbi);
218 	struct nat_entry *e;
219 	bool is_cp = true;
220 
221 	down_read(&nm_i->nat_tree_lock);
222 	e = __lookup_nat_cache(nm_i, nid);
223 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
224 		is_cp = false;
225 	up_read(&nm_i->nat_tree_lock);
226 	return is_cp;
227 }
228 
229 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
230 {
231 	struct f2fs_nm_info *nm_i = NM_I(sbi);
232 	struct nat_entry *e;
233 	bool need_update = true;
234 
235 	down_read(&nm_i->nat_tree_lock);
236 	e = __lookup_nat_cache(nm_i, ino);
237 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
238 			(get_nat_flag(e, IS_CHECKPOINTED) ||
239 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
240 		need_update = false;
241 	up_read(&nm_i->nat_tree_lock);
242 	return need_update;
243 }
244 
245 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
246 {
247 	struct nat_entry *new;
248 
249 	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
250 	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
251 	memset(new, 0, sizeof(struct nat_entry));
252 	nat_set_nid(new, nid);
253 	nat_reset_flag(new);
254 	list_add_tail(&new->list, &nm_i->nat_entries);
255 	nm_i->nat_cnt++;
256 	return new;
257 }
258 
259 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
260 						struct f2fs_nat_entry *ne)
261 {
262 	struct nat_entry *e;
263 
264 	down_write(&nm_i->nat_tree_lock);
265 	e = __lookup_nat_cache(nm_i, nid);
266 	if (!e) {
267 		e = grab_nat_entry(nm_i, nid);
268 		node_info_from_raw_nat(&e->ni, ne);
269 	}
270 	up_write(&nm_i->nat_tree_lock);
271 }
272 
273 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
274 			block_t new_blkaddr, bool fsync_done)
275 {
276 	struct f2fs_nm_info *nm_i = NM_I(sbi);
277 	struct nat_entry *e;
278 
279 	down_write(&nm_i->nat_tree_lock);
280 	e = __lookup_nat_cache(nm_i, ni->nid);
281 	if (!e) {
282 		e = grab_nat_entry(nm_i, ni->nid);
283 		copy_node_info(&e->ni, ni);
284 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
285 	} else if (new_blkaddr == NEW_ADDR) {
286 		/*
287 		 * when nid is reallocated,
288 		 * previous nat entry can be remained in nat cache.
289 		 * So, reinitialize it with new information.
290 		 */
291 		copy_node_info(&e->ni, ni);
292 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
293 	}
294 
295 	/* sanity check */
296 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
297 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
298 			new_blkaddr == NULL_ADDR);
299 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
300 			new_blkaddr == NEW_ADDR);
301 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
302 			nat_get_blkaddr(e) != NULL_ADDR &&
303 			new_blkaddr == NEW_ADDR);
304 
305 	/* increment version no as node is removed */
306 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
307 		unsigned char version = nat_get_version(e);
308 		nat_set_version(e, inc_node_version(version));
309 	}
310 
311 	/* change address */
312 	nat_set_blkaddr(e, new_blkaddr);
313 	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
314 		set_nat_flag(e, IS_CHECKPOINTED, false);
315 	__set_nat_cache_dirty(nm_i, e);
316 
317 	/* update fsync_mark if its inode nat entry is still alive */
318 	if (ni->nid != ni->ino)
319 		e = __lookup_nat_cache(nm_i, ni->ino);
320 	if (e) {
321 		if (fsync_done && ni->nid == ni->ino)
322 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
323 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
324 	}
325 	up_write(&nm_i->nat_tree_lock);
326 }
327 
328 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
329 {
330 	struct f2fs_nm_info *nm_i = NM_I(sbi);
331 
332 	if (available_free_memory(sbi, NAT_ENTRIES))
333 		return 0;
334 
335 	down_write(&nm_i->nat_tree_lock);
336 	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
337 		struct nat_entry *ne;
338 		ne = list_first_entry(&nm_i->nat_entries,
339 					struct nat_entry, list);
340 		__del_from_nat_cache(nm_i, ne);
341 		nr_shrink--;
342 	}
343 	up_write(&nm_i->nat_tree_lock);
344 	return nr_shrink;
345 }
346 
347 /*
348  * This function always returns success
349  */
350 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
351 {
352 	struct f2fs_nm_info *nm_i = NM_I(sbi);
353 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
354 	struct f2fs_summary_block *sum = curseg->sum_blk;
355 	nid_t start_nid = START_NID(nid);
356 	struct f2fs_nat_block *nat_blk;
357 	struct page *page = NULL;
358 	struct f2fs_nat_entry ne;
359 	struct nat_entry *e;
360 	int i;
361 
362 	ni->nid = nid;
363 
364 	/* Check nat cache */
365 	down_read(&nm_i->nat_tree_lock);
366 	e = __lookup_nat_cache(nm_i, nid);
367 	if (e) {
368 		ni->ino = nat_get_ino(e);
369 		ni->blk_addr = nat_get_blkaddr(e);
370 		ni->version = nat_get_version(e);
371 	}
372 	up_read(&nm_i->nat_tree_lock);
373 	if (e)
374 		return;
375 
376 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
377 
378 	/* Check current segment summary */
379 	mutex_lock(&curseg->curseg_mutex);
380 	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
381 	if (i >= 0) {
382 		ne = nat_in_journal(sum, i);
383 		node_info_from_raw_nat(ni, &ne);
384 	}
385 	mutex_unlock(&curseg->curseg_mutex);
386 	if (i >= 0)
387 		goto cache;
388 
389 	/* Fill node_info from nat page */
390 	page = get_current_nat_page(sbi, start_nid);
391 	nat_blk = (struct f2fs_nat_block *)page_address(page);
392 	ne = nat_blk->entries[nid - start_nid];
393 	node_info_from_raw_nat(ni, &ne);
394 	f2fs_put_page(page, 1);
395 cache:
396 	/* cache nat entry */
397 	cache_nat_entry(NM_I(sbi), nid, &ne);
398 }
399 
400 /*
401  * The maximum depth is four.
402  * Offset[0] will have raw inode offset.
403  */
404 static int get_node_path(struct f2fs_inode_info *fi, long block,
405 				int offset[4], unsigned int noffset[4])
406 {
407 	const long direct_index = ADDRS_PER_INODE(fi);
408 	const long direct_blks = ADDRS_PER_BLOCK;
409 	const long dptrs_per_blk = NIDS_PER_BLOCK;
410 	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
411 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
412 	int n = 0;
413 	int level = 0;
414 
415 	noffset[0] = 0;
416 
417 	if (block < direct_index) {
418 		offset[n] = block;
419 		goto got;
420 	}
421 	block -= direct_index;
422 	if (block < direct_blks) {
423 		offset[n++] = NODE_DIR1_BLOCK;
424 		noffset[n] = 1;
425 		offset[n] = block;
426 		level = 1;
427 		goto got;
428 	}
429 	block -= direct_blks;
430 	if (block < direct_blks) {
431 		offset[n++] = NODE_DIR2_BLOCK;
432 		noffset[n] = 2;
433 		offset[n] = block;
434 		level = 1;
435 		goto got;
436 	}
437 	block -= direct_blks;
438 	if (block < indirect_blks) {
439 		offset[n++] = NODE_IND1_BLOCK;
440 		noffset[n] = 3;
441 		offset[n++] = block / direct_blks;
442 		noffset[n] = 4 + offset[n - 1];
443 		offset[n] = block % direct_blks;
444 		level = 2;
445 		goto got;
446 	}
447 	block -= indirect_blks;
448 	if (block < indirect_blks) {
449 		offset[n++] = NODE_IND2_BLOCK;
450 		noffset[n] = 4 + dptrs_per_blk;
451 		offset[n++] = block / direct_blks;
452 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
453 		offset[n] = block % direct_blks;
454 		level = 2;
455 		goto got;
456 	}
457 	block -= indirect_blks;
458 	if (block < dindirect_blks) {
459 		offset[n++] = NODE_DIND_BLOCK;
460 		noffset[n] = 5 + (dptrs_per_blk * 2);
461 		offset[n++] = block / indirect_blks;
462 		noffset[n] = 6 + (dptrs_per_blk * 2) +
463 			      offset[n - 1] * (dptrs_per_blk + 1);
464 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
465 		noffset[n] = 7 + (dptrs_per_blk * 2) +
466 			      offset[n - 2] * (dptrs_per_blk + 1) +
467 			      offset[n - 1];
468 		offset[n] = block % direct_blks;
469 		level = 3;
470 		goto got;
471 	} else {
472 		BUG();
473 	}
474 got:
475 	return level;
476 }
477 
478 /*
479  * Caller should call f2fs_put_dnode(dn).
480  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
481  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
482  * In the case of RDONLY_NODE, we don't need to care about mutex.
483  */
484 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
485 {
486 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
487 	struct page *npage[4];
488 	struct page *parent = NULL;
489 	int offset[4];
490 	unsigned int noffset[4];
491 	nid_t nids[4];
492 	int level, i;
493 	int err = 0;
494 
495 	level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
496 
497 	nids[0] = dn->inode->i_ino;
498 	npage[0] = dn->inode_page;
499 
500 	if (!npage[0]) {
501 		npage[0] = get_node_page(sbi, nids[0]);
502 		if (IS_ERR(npage[0]))
503 			return PTR_ERR(npage[0]);
504 	}
505 
506 	/* if inline_data is set, should not report any block indices */
507 	if (f2fs_has_inline_data(dn->inode) && index) {
508 		err = -ENOENT;
509 		f2fs_put_page(npage[0], 1);
510 		goto release_out;
511 	}
512 
513 	parent = npage[0];
514 	if (level != 0)
515 		nids[1] = get_nid(parent, offset[0], true);
516 	dn->inode_page = npage[0];
517 	dn->inode_page_locked = true;
518 
519 	/* get indirect or direct nodes */
520 	for (i = 1; i <= level; i++) {
521 		bool done = false;
522 
523 		if (!nids[i] && mode == ALLOC_NODE) {
524 			/* alloc new node */
525 			if (!alloc_nid(sbi, &(nids[i]))) {
526 				err = -ENOSPC;
527 				goto release_pages;
528 			}
529 
530 			dn->nid = nids[i];
531 			npage[i] = new_node_page(dn, noffset[i], NULL);
532 			if (IS_ERR(npage[i])) {
533 				alloc_nid_failed(sbi, nids[i]);
534 				err = PTR_ERR(npage[i]);
535 				goto release_pages;
536 			}
537 
538 			set_nid(parent, offset[i - 1], nids[i], i == 1);
539 			alloc_nid_done(sbi, nids[i]);
540 			done = true;
541 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
542 			npage[i] = get_node_page_ra(parent, offset[i - 1]);
543 			if (IS_ERR(npage[i])) {
544 				err = PTR_ERR(npage[i]);
545 				goto release_pages;
546 			}
547 			done = true;
548 		}
549 		if (i == 1) {
550 			dn->inode_page_locked = false;
551 			unlock_page(parent);
552 		} else {
553 			f2fs_put_page(parent, 1);
554 		}
555 
556 		if (!done) {
557 			npage[i] = get_node_page(sbi, nids[i]);
558 			if (IS_ERR(npage[i])) {
559 				err = PTR_ERR(npage[i]);
560 				f2fs_put_page(npage[0], 0);
561 				goto release_out;
562 			}
563 		}
564 		if (i < level) {
565 			parent = npage[i];
566 			nids[i + 1] = get_nid(parent, offset[i], false);
567 		}
568 	}
569 	dn->nid = nids[level];
570 	dn->ofs_in_node = offset[level];
571 	dn->node_page = npage[level];
572 	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
573 	return 0;
574 
575 release_pages:
576 	f2fs_put_page(parent, 1);
577 	if (i > 1)
578 		f2fs_put_page(npage[0], 0);
579 release_out:
580 	dn->inode_page = NULL;
581 	dn->node_page = NULL;
582 	return err;
583 }
584 
585 static void truncate_node(struct dnode_of_data *dn)
586 {
587 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
588 	struct node_info ni;
589 
590 	get_node_info(sbi, dn->nid, &ni);
591 	if (dn->inode->i_blocks == 0) {
592 		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
593 		goto invalidate;
594 	}
595 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
596 
597 	/* Deallocate node address */
598 	invalidate_blocks(sbi, ni.blk_addr);
599 	dec_valid_node_count(sbi, dn->inode);
600 	set_node_addr(sbi, &ni, NULL_ADDR, false);
601 
602 	if (dn->nid == dn->inode->i_ino) {
603 		remove_orphan_inode(sbi, dn->nid);
604 		dec_valid_inode_count(sbi);
605 	} else {
606 		sync_inode_page(dn);
607 	}
608 invalidate:
609 	clear_node_page_dirty(dn->node_page);
610 	set_sbi_flag(sbi, SBI_IS_DIRTY);
611 
612 	f2fs_put_page(dn->node_page, 1);
613 
614 	invalidate_mapping_pages(NODE_MAPPING(sbi),
615 			dn->node_page->index, dn->node_page->index);
616 
617 	dn->node_page = NULL;
618 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
619 }
620 
621 static int truncate_dnode(struct dnode_of_data *dn)
622 {
623 	struct page *page;
624 
625 	if (dn->nid == 0)
626 		return 1;
627 
628 	/* get direct node */
629 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
630 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
631 		return 1;
632 	else if (IS_ERR(page))
633 		return PTR_ERR(page);
634 
635 	/* Make dnode_of_data for parameter */
636 	dn->node_page = page;
637 	dn->ofs_in_node = 0;
638 	truncate_data_blocks(dn);
639 	truncate_node(dn);
640 	return 1;
641 }
642 
643 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
644 						int ofs, int depth)
645 {
646 	struct dnode_of_data rdn = *dn;
647 	struct page *page;
648 	struct f2fs_node *rn;
649 	nid_t child_nid;
650 	unsigned int child_nofs;
651 	int freed = 0;
652 	int i, ret;
653 
654 	if (dn->nid == 0)
655 		return NIDS_PER_BLOCK + 1;
656 
657 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
658 
659 	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
660 	if (IS_ERR(page)) {
661 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
662 		return PTR_ERR(page);
663 	}
664 
665 	rn = F2FS_NODE(page);
666 	if (depth < 3) {
667 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
668 			child_nid = le32_to_cpu(rn->in.nid[i]);
669 			if (child_nid == 0)
670 				continue;
671 			rdn.nid = child_nid;
672 			ret = truncate_dnode(&rdn);
673 			if (ret < 0)
674 				goto out_err;
675 			set_nid(page, i, 0, false);
676 		}
677 	} else {
678 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
679 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
680 			child_nid = le32_to_cpu(rn->in.nid[i]);
681 			if (child_nid == 0) {
682 				child_nofs += NIDS_PER_BLOCK + 1;
683 				continue;
684 			}
685 			rdn.nid = child_nid;
686 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
687 			if (ret == (NIDS_PER_BLOCK + 1)) {
688 				set_nid(page, i, 0, false);
689 				child_nofs += ret;
690 			} else if (ret < 0 && ret != -ENOENT) {
691 				goto out_err;
692 			}
693 		}
694 		freed = child_nofs;
695 	}
696 
697 	if (!ofs) {
698 		/* remove current indirect node */
699 		dn->node_page = page;
700 		truncate_node(dn);
701 		freed++;
702 	} else {
703 		f2fs_put_page(page, 1);
704 	}
705 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
706 	return freed;
707 
708 out_err:
709 	f2fs_put_page(page, 1);
710 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
711 	return ret;
712 }
713 
714 static int truncate_partial_nodes(struct dnode_of_data *dn,
715 			struct f2fs_inode *ri, int *offset, int depth)
716 {
717 	struct page *pages[2];
718 	nid_t nid[3];
719 	nid_t child_nid;
720 	int err = 0;
721 	int i;
722 	int idx = depth - 2;
723 
724 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
725 	if (!nid[0])
726 		return 0;
727 
728 	/* get indirect nodes in the path */
729 	for (i = 0; i < idx + 1; i++) {
730 		/* reference count'll be increased */
731 		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
732 		if (IS_ERR(pages[i])) {
733 			err = PTR_ERR(pages[i]);
734 			idx = i - 1;
735 			goto fail;
736 		}
737 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
738 	}
739 
740 	/* free direct nodes linked to a partial indirect node */
741 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
742 		child_nid = get_nid(pages[idx], i, false);
743 		if (!child_nid)
744 			continue;
745 		dn->nid = child_nid;
746 		err = truncate_dnode(dn);
747 		if (err < 0)
748 			goto fail;
749 		set_nid(pages[idx], i, 0, false);
750 	}
751 
752 	if (offset[idx + 1] == 0) {
753 		dn->node_page = pages[idx];
754 		dn->nid = nid[idx];
755 		truncate_node(dn);
756 	} else {
757 		f2fs_put_page(pages[idx], 1);
758 	}
759 	offset[idx]++;
760 	offset[idx + 1] = 0;
761 	idx--;
762 fail:
763 	for (i = idx; i >= 0; i--)
764 		f2fs_put_page(pages[i], 1);
765 
766 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
767 
768 	return err;
769 }
770 
771 /*
772  * All the block addresses of data and nodes should be nullified.
773  */
774 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
775 {
776 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
777 	int err = 0, cont = 1;
778 	int level, offset[4], noffset[4];
779 	unsigned int nofs = 0;
780 	struct f2fs_inode *ri;
781 	struct dnode_of_data dn;
782 	struct page *page;
783 
784 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
785 
786 	level = get_node_path(F2FS_I(inode), from, offset, noffset);
787 restart:
788 	page = get_node_page(sbi, inode->i_ino);
789 	if (IS_ERR(page)) {
790 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
791 		return PTR_ERR(page);
792 	}
793 
794 	set_new_dnode(&dn, inode, page, NULL, 0);
795 	unlock_page(page);
796 
797 	ri = F2FS_INODE(page);
798 	switch (level) {
799 	case 0:
800 	case 1:
801 		nofs = noffset[1];
802 		break;
803 	case 2:
804 		nofs = noffset[1];
805 		if (!offset[level - 1])
806 			goto skip_partial;
807 		err = truncate_partial_nodes(&dn, ri, offset, level);
808 		if (err < 0 && err != -ENOENT)
809 			goto fail;
810 		nofs += 1 + NIDS_PER_BLOCK;
811 		break;
812 	case 3:
813 		nofs = 5 + 2 * NIDS_PER_BLOCK;
814 		if (!offset[level - 1])
815 			goto skip_partial;
816 		err = truncate_partial_nodes(&dn, ri, offset, level);
817 		if (err < 0 && err != -ENOENT)
818 			goto fail;
819 		break;
820 	default:
821 		BUG();
822 	}
823 
824 skip_partial:
825 	while (cont) {
826 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
827 		switch (offset[0]) {
828 		case NODE_DIR1_BLOCK:
829 		case NODE_DIR2_BLOCK:
830 			err = truncate_dnode(&dn);
831 			break;
832 
833 		case NODE_IND1_BLOCK:
834 		case NODE_IND2_BLOCK:
835 			err = truncate_nodes(&dn, nofs, offset[1], 2);
836 			break;
837 
838 		case NODE_DIND_BLOCK:
839 			err = truncate_nodes(&dn, nofs, offset[1], 3);
840 			cont = 0;
841 			break;
842 
843 		default:
844 			BUG();
845 		}
846 		if (err < 0 && err != -ENOENT)
847 			goto fail;
848 		if (offset[1] == 0 &&
849 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
850 			lock_page(page);
851 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
852 				f2fs_put_page(page, 1);
853 				goto restart;
854 			}
855 			f2fs_wait_on_page_writeback(page, NODE);
856 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
857 			set_page_dirty(page);
858 			unlock_page(page);
859 		}
860 		offset[1] = 0;
861 		offset[0]++;
862 		nofs += err;
863 	}
864 fail:
865 	f2fs_put_page(page, 0);
866 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
867 	return err > 0 ? 0 : err;
868 }
869 
870 int truncate_xattr_node(struct inode *inode, struct page *page)
871 {
872 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
873 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
874 	struct dnode_of_data dn;
875 	struct page *npage;
876 
877 	if (!nid)
878 		return 0;
879 
880 	npage = get_node_page(sbi, nid);
881 	if (IS_ERR(npage))
882 		return PTR_ERR(npage);
883 
884 	F2FS_I(inode)->i_xattr_nid = 0;
885 
886 	/* need to do checkpoint during fsync */
887 	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
888 
889 	set_new_dnode(&dn, inode, page, npage, nid);
890 
891 	if (page)
892 		dn.inode_page_locked = true;
893 	truncate_node(&dn);
894 	return 0;
895 }
896 
897 /*
898  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
899  * f2fs_unlock_op().
900  */
901 void remove_inode_page(struct inode *inode)
902 {
903 	struct dnode_of_data dn;
904 
905 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
906 	if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
907 		return;
908 
909 	if (truncate_xattr_node(inode, dn.inode_page)) {
910 		f2fs_put_dnode(&dn);
911 		return;
912 	}
913 
914 	/* remove potential inline_data blocks */
915 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
916 				S_ISLNK(inode->i_mode))
917 		truncate_data_blocks_range(&dn, 1);
918 
919 	/* 0 is possible, after f2fs_new_inode() has failed */
920 	f2fs_bug_on(F2FS_I_SB(inode),
921 			inode->i_blocks != 0 && inode->i_blocks != 1);
922 
923 	/* will put inode & node pages */
924 	truncate_node(&dn);
925 }
926 
927 struct page *new_inode_page(struct inode *inode)
928 {
929 	struct dnode_of_data dn;
930 
931 	/* allocate inode page for new inode */
932 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
933 
934 	/* caller should f2fs_put_page(page, 1); */
935 	return new_node_page(&dn, 0, NULL);
936 }
937 
938 struct page *new_node_page(struct dnode_of_data *dn,
939 				unsigned int ofs, struct page *ipage)
940 {
941 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
942 	struct node_info old_ni, new_ni;
943 	struct page *page;
944 	int err;
945 
946 	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
947 		return ERR_PTR(-EPERM);
948 
949 	page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
950 	if (!page)
951 		return ERR_PTR(-ENOMEM);
952 
953 	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
954 		err = -ENOSPC;
955 		goto fail;
956 	}
957 
958 	get_node_info(sbi, dn->nid, &old_ni);
959 
960 	/* Reinitialize old_ni with new node page */
961 	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
962 	new_ni = old_ni;
963 	new_ni.ino = dn->inode->i_ino;
964 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
965 
966 	f2fs_wait_on_page_writeback(page, NODE);
967 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
968 	set_cold_node(dn->inode, page);
969 	SetPageUptodate(page);
970 	set_page_dirty(page);
971 
972 	if (f2fs_has_xattr_block(ofs))
973 		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
974 
975 	dn->node_page = page;
976 	if (ipage)
977 		update_inode(dn->inode, ipage);
978 	else
979 		sync_inode_page(dn);
980 	if (ofs == 0)
981 		inc_valid_inode_count(sbi);
982 
983 	return page;
984 
985 fail:
986 	clear_node_page_dirty(page);
987 	f2fs_put_page(page, 1);
988 	return ERR_PTR(err);
989 }
990 
991 /*
992  * Caller should do after getting the following values.
993  * 0: f2fs_put_page(page, 0)
994  * LOCKED_PAGE: f2fs_put_page(page, 1)
995  * error: nothing
996  */
997 static int read_node_page(struct page *page, int rw)
998 {
999 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1000 	struct node_info ni;
1001 	struct f2fs_io_info fio = {
1002 		.sbi = sbi,
1003 		.type = NODE,
1004 		.rw = rw,
1005 		.page = page,
1006 		.encrypted_page = NULL,
1007 	};
1008 
1009 	get_node_info(sbi, page->index, &ni);
1010 
1011 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1012 		ClearPageUptodate(page);
1013 		f2fs_put_page(page, 1);
1014 		return -ENOENT;
1015 	}
1016 
1017 	if (PageUptodate(page))
1018 		return LOCKED_PAGE;
1019 
1020 	fio.blk_addr = ni.blk_addr;
1021 	return f2fs_submit_page_bio(&fio);
1022 }
1023 
1024 /*
1025  * Readahead a node page
1026  */
1027 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1028 {
1029 	struct page *apage;
1030 	int err;
1031 
1032 	apage = find_get_page(NODE_MAPPING(sbi), nid);
1033 	if (apage && PageUptodate(apage)) {
1034 		f2fs_put_page(apage, 0);
1035 		return;
1036 	}
1037 	f2fs_put_page(apage, 0);
1038 
1039 	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1040 	if (!apage)
1041 		return;
1042 
1043 	err = read_node_page(apage, READA);
1044 	if (err == 0)
1045 		f2fs_put_page(apage, 0);
1046 	else if (err == LOCKED_PAGE)
1047 		f2fs_put_page(apage, 1);
1048 }
1049 
1050 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1051 {
1052 	struct page *page;
1053 	int err;
1054 repeat:
1055 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1056 	if (!page)
1057 		return ERR_PTR(-ENOMEM);
1058 
1059 	err = read_node_page(page, READ_SYNC);
1060 	if (err < 0)
1061 		return ERR_PTR(err);
1062 	else if (err != LOCKED_PAGE)
1063 		lock_page(page);
1064 
1065 	if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1066 		ClearPageUptodate(page);
1067 		f2fs_put_page(page, 1);
1068 		return ERR_PTR(-EIO);
1069 	}
1070 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1071 		f2fs_put_page(page, 1);
1072 		goto repeat;
1073 	}
1074 	return page;
1075 }
1076 
1077 /*
1078  * Return a locked page for the desired node page.
1079  * And, readahead MAX_RA_NODE number of node pages.
1080  */
1081 struct page *get_node_page_ra(struct page *parent, int start)
1082 {
1083 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1084 	struct blk_plug plug;
1085 	struct page *page;
1086 	int err, i, end;
1087 	nid_t nid;
1088 
1089 	/* First, try getting the desired direct node. */
1090 	nid = get_nid(parent, start, false);
1091 	if (!nid)
1092 		return ERR_PTR(-ENOENT);
1093 repeat:
1094 	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1095 	if (!page)
1096 		return ERR_PTR(-ENOMEM);
1097 
1098 	err = read_node_page(page, READ_SYNC);
1099 	if (err < 0)
1100 		return ERR_PTR(err);
1101 	else if (err == LOCKED_PAGE)
1102 		goto page_hit;
1103 
1104 	blk_start_plug(&plug);
1105 
1106 	/* Then, try readahead for siblings of the desired node */
1107 	end = start + MAX_RA_NODE;
1108 	end = min(end, NIDS_PER_BLOCK);
1109 	for (i = start + 1; i < end; i++) {
1110 		nid = get_nid(parent, i, false);
1111 		if (!nid)
1112 			continue;
1113 		ra_node_page(sbi, nid);
1114 	}
1115 
1116 	blk_finish_plug(&plug);
1117 
1118 	lock_page(page);
1119 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1120 		f2fs_put_page(page, 1);
1121 		goto repeat;
1122 	}
1123 page_hit:
1124 	if (unlikely(!PageUptodate(page))) {
1125 		f2fs_put_page(page, 1);
1126 		return ERR_PTR(-EIO);
1127 	}
1128 	return page;
1129 }
1130 
1131 void sync_inode_page(struct dnode_of_data *dn)
1132 {
1133 	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1134 		update_inode(dn->inode, dn->node_page);
1135 	} else if (dn->inode_page) {
1136 		if (!dn->inode_page_locked)
1137 			lock_page(dn->inode_page);
1138 		update_inode(dn->inode, dn->inode_page);
1139 		if (!dn->inode_page_locked)
1140 			unlock_page(dn->inode_page);
1141 	} else {
1142 		update_inode_page(dn->inode);
1143 	}
1144 }
1145 
1146 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1147 					struct writeback_control *wbc)
1148 {
1149 	pgoff_t index, end;
1150 	struct pagevec pvec;
1151 	int step = ino ? 2 : 0;
1152 	int nwritten = 0, wrote = 0;
1153 
1154 	pagevec_init(&pvec, 0);
1155 
1156 next_step:
1157 	index = 0;
1158 	end = LONG_MAX;
1159 
1160 	while (index <= end) {
1161 		int i, nr_pages;
1162 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1163 				PAGECACHE_TAG_DIRTY,
1164 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1165 		if (nr_pages == 0)
1166 			break;
1167 
1168 		for (i = 0; i < nr_pages; i++) {
1169 			struct page *page = pvec.pages[i];
1170 
1171 			/*
1172 			 * flushing sequence with step:
1173 			 * 0. indirect nodes
1174 			 * 1. dentry dnodes
1175 			 * 2. file dnodes
1176 			 */
1177 			if (step == 0 && IS_DNODE(page))
1178 				continue;
1179 			if (step == 1 && (!IS_DNODE(page) ||
1180 						is_cold_node(page)))
1181 				continue;
1182 			if (step == 2 && (!IS_DNODE(page) ||
1183 						!is_cold_node(page)))
1184 				continue;
1185 
1186 			/*
1187 			 * If an fsync mode,
1188 			 * we should not skip writing node pages.
1189 			 */
1190 			if (ino && ino_of_node(page) == ino)
1191 				lock_page(page);
1192 			else if (!trylock_page(page))
1193 				continue;
1194 
1195 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1196 continue_unlock:
1197 				unlock_page(page);
1198 				continue;
1199 			}
1200 			if (ino && ino_of_node(page) != ino)
1201 				goto continue_unlock;
1202 
1203 			if (!PageDirty(page)) {
1204 				/* someone wrote it for us */
1205 				goto continue_unlock;
1206 			}
1207 
1208 			if (!clear_page_dirty_for_io(page))
1209 				goto continue_unlock;
1210 
1211 			/* called by fsync() */
1212 			if (ino && IS_DNODE(page)) {
1213 				set_fsync_mark(page, 1);
1214 				if (IS_INODE(page))
1215 					set_dentry_mark(page,
1216 						need_dentry_mark(sbi, ino));
1217 				nwritten++;
1218 			} else {
1219 				set_fsync_mark(page, 0);
1220 				set_dentry_mark(page, 0);
1221 			}
1222 
1223 			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1224 				unlock_page(page);
1225 			else
1226 				wrote++;
1227 
1228 			if (--wbc->nr_to_write == 0)
1229 				break;
1230 		}
1231 		pagevec_release(&pvec);
1232 		cond_resched();
1233 
1234 		if (wbc->nr_to_write == 0) {
1235 			step = 2;
1236 			break;
1237 		}
1238 	}
1239 
1240 	if (step < 2) {
1241 		step++;
1242 		goto next_step;
1243 	}
1244 
1245 	if (wrote)
1246 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1247 	return nwritten;
1248 }
1249 
1250 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1251 {
1252 	pgoff_t index = 0, end = LONG_MAX;
1253 	struct pagevec pvec;
1254 	int ret2 = 0, ret = 0;
1255 
1256 	pagevec_init(&pvec, 0);
1257 
1258 	while (index <= end) {
1259 		int i, nr_pages;
1260 		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1261 				PAGECACHE_TAG_WRITEBACK,
1262 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1263 		if (nr_pages == 0)
1264 			break;
1265 
1266 		for (i = 0; i < nr_pages; i++) {
1267 			struct page *page = pvec.pages[i];
1268 
1269 			/* until radix tree lookup accepts end_index */
1270 			if (unlikely(page->index > end))
1271 				continue;
1272 
1273 			if (ino && ino_of_node(page) == ino) {
1274 				f2fs_wait_on_page_writeback(page, NODE);
1275 				if (TestClearPageError(page))
1276 					ret = -EIO;
1277 			}
1278 		}
1279 		pagevec_release(&pvec);
1280 		cond_resched();
1281 	}
1282 
1283 	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1284 		ret2 = -ENOSPC;
1285 	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1286 		ret2 = -EIO;
1287 	if (!ret)
1288 		ret = ret2;
1289 	return ret;
1290 }
1291 
1292 static int f2fs_write_node_page(struct page *page,
1293 				struct writeback_control *wbc)
1294 {
1295 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1296 	nid_t nid;
1297 	struct node_info ni;
1298 	struct f2fs_io_info fio = {
1299 		.sbi = sbi,
1300 		.type = NODE,
1301 		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1302 		.page = page,
1303 		.encrypted_page = NULL,
1304 	};
1305 
1306 	trace_f2fs_writepage(page, NODE);
1307 
1308 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1309 		goto redirty_out;
1310 	if (unlikely(f2fs_cp_error(sbi)))
1311 		goto redirty_out;
1312 
1313 	f2fs_wait_on_page_writeback(page, NODE);
1314 
1315 	/* get old block addr of this node page */
1316 	nid = nid_of_node(page);
1317 	f2fs_bug_on(sbi, page->index != nid);
1318 
1319 	get_node_info(sbi, nid, &ni);
1320 
1321 	/* This page is already truncated */
1322 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1323 		ClearPageUptodate(page);
1324 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1325 		unlock_page(page);
1326 		return 0;
1327 	}
1328 
1329 	if (wbc->for_reclaim) {
1330 		if (!down_read_trylock(&sbi->node_write))
1331 			goto redirty_out;
1332 	} else {
1333 		down_read(&sbi->node_write);
1334 	}
1335 
1336 	set_page_writeback(page);
1337 	fio.blk_addr = ni.blk_addr;
1338 	write_node_page(nid, &fio);
1339 	set_node_addr(sbi, &ni, fio.blk_addr, is_fsync_dnode(page));
1340 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1341 	up_read(&sbi->node_write);
1342 	unlock_page(page);
1343 
1344 	if (wbc->for_reclaim)
1345 		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1346 
1347 	return 0;
1348 
1349 redirty_out:
1350 	redirty_page_for_writepage(wbc, page);
1351 	return AOP_WRITEPAGE_ACTIVATE;
1352 }
1353 
1354 static int f2fs_write_node_pages(struct address_space *mapping,
1355 			    struct writeback_control *wbc)
1356 {
1357 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1358 	long diff;
1359 
1360 	trace_f2fs_writepages(mapping->host, wbc, NODE);
1361 
1362 	/* balancing f2fs's metadata in background */
1363 	f2fs_balance_fs_bg(sbi);
1364 
1365 	/* collect a number of dirty node pages and write together */
1366 	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1367 		goto skip_write;
1368 
1369 	diff = nr_pages_to_write(sbi, NODE, wbc);
1370 	wbc->sync_mode = WB_SYNC_NONE;
1371 	sync_node_pages(sbi, 0, wbc);
1372 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1373 	return 0;
1374 
1375 skip_write:
1376 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1377 	return 0;
1378 }
1379 
1380 static int f2fs_set_node_page_dirty(struct page *page)
1381 {
1382 	trace_f2fs_set_page_dirty(page, NODE);
1383 
1384 	SetPageUptodate(page);
1385 	if (!PageDirty(page)) {
1386 		__set_page_dirty_nobuffers(page);
1387 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1388 		SetPagePrivate(page);
1389 		f2fs_trace_pid(page);
1390 		return 1;
1391 	}
1392 	return 0;
1393 }
1394 
1395 /*
1396  * Structure of the f2fs node operations
1397  */
1398 const struct address_space_operations f2fs_node_aops = {
1399 	.writepage	= f2fs_write_node_page,
1400 	.writepages	= f2fs_write_node_pages,
1401 	.set_page_dirty	= f2fs_set_node_page_dirty,
1402 	.invalidatepage	= f2fs_invalidate_page,
1403 	.releasepage	= f2fs_release_page,
1404 };
1405 
1406 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1407 						nid_t n)
1408 {
1409 	return radix_tree_lookup(&nm_i->free_nid_root, n);
1410 }
1411 
1412 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1413 						struct free_nid *i)
1414 {
1415 	list_del(&i->list);
1416 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1417 }
1418 
1419 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1420 {
1421 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1422 	struct free_nid *i;
1423 	struct nat_entry *ne;
1424 	bool allocated = false;
1425 
1426 	if (!available_free_memory(sbi, FREE_NIDS))
1427 		return -1;
1428 
1429 	/* 0 nid should not be used */
1430 	if (unlikely(nid == 0))
1431 		return 0;
1432 
1433 	if (build) {
1434 		/* do not add allocated nids */
1435 		down_read(&nm_i->nat_tree_lock);
1436 		ne = __lookup_nat_cache(nm_i, nid);
1437 		if (ne &&
1438 			(!get_nat_flag(ne, IS_CHECKPOINTED) ||
1439 				nat_get_blkaddr(ne) != NULL_ADDR))
1440 			allocated = true;
1441 		up_read(&nm_i->nat_tree_lock);
1442 		if (allocated)
1443 			return 0;
1444 	}
1445 
1446 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1447 	i->nid = nid;
1448 	i->state = NID_NEW;
1449 
1450 	if (radix_tree_preload(GFP_NOFS)) {
1451 		kmem_cache_free(free_nid_slab, i);
1452 		return 0;
1453 	}
1454 
1455 	spin_lock(&nm_i->free_nid_list_lock);
1456 	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1457 		spin_unlock(&nm_i->free_nid_list_lock);
1458 		radix_tree_preload_end();
1459 		kmem_cache_free(free_nid_slab, i);
1460 		return 0;
1461 	}
1462 	list_add_tail(&i->list, &nm_i->free_nid_list);
1463 	nm_i->fcnt++;
1464 	spin_unlock(&nm_i->free_nid_list_lock);
1465 	radix_tree_preload_end();
1466 	return 1;
1467 }
1468 
1469 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1470 {
1471 	struct free_nid *i;
1472 	bool need_free = false;
1473 
1474 	spin_lock(&nm_i->free_nid_list_lock);
1475 	i = __lookup_free_nid_list(nm_i, nid);
1476 	if (i && i->state == NID_NEW) {
1477 		__del_from_free_nid_list(nm_i, i);
1478 		nm_i->fcnt--;
1479 		need_free = true;
1480 	}
1481 	spin_unlock(&nm_i->free_nid_list_lock);
1482 
1483 	if (need_free)
1484 		kmem_cache_free(free_nid_slab, i);
1485 }
1486 
1487 static void scan_nat_page(struct f2fs_sb_info *sbi,
1488 			struct page *nat_page, nid_t start_nid)
1489 {
1490 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1491 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1492 	block_t blk_addr;
1493 	int i;
1494 
1495 	i = start_nid % NAT_ENTRY_PER_BLOCK;
1496 
1497 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1498 
1499 		if (unlikely(start_nid >= nm_i->max_nid))
1500 			break;
1501 
1502 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1503 		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1504 		if (blk_addr == NULL_ADDR) {
1505 			if (add_free_nid(sbi, start_nid, true) < 0)
1506 				break;
1507 		}
1508 	}
1509 }
1510 
1511 static void build_free_nids(struct f2fs_sb_info *sbi)
1512 {
1513 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1514 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1515 	struct f2fs_summary_block *sum = curseg->sum_blk;
1516 	int i = 0;
1517 	nid_t nid = nm_i->next_scan_nid;
1518 
1519 	/* Enough entries */
1520 	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1521 		return;
1522 
1523 	/* readahead nat pages to be scanned */
1524 	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1525 
1526 	while (1) {
1527 		struct page *page = get_current_nat_page(sbi, nid);
1528 
1529 		scan_nat_page(sbi, page, nid);
1530 		f2fs_put_page(page, 1);
1531 
1532 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1533 		if (unlikely(nid >= nm_i->max_nid))
1534 			nid = 0;
1535 
1536 		if (i++ == FREE_NID_PAGES)
1537 			break;
1538 	}
1539 
1540 	/* go to the next free nat pages to find free nids abundantly */
1541 	nm_i->next_scan_nid = nid;
1542 
1543 	/* find free nids from current sum_pages */
1544 	mutex_lock(&curseg->curseg_mutex);
1545 	for (i = 0; i < nats_in_cursum(sum); i++) {
1546 		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1547 		nid = le32_to_cpu(nid_in_journal(sum, i));
1548 		if (addr == NULL_ADDR)
1549 			add_free_nid(sbi, nid, true);
1550 		else
1551 			remove_free_nid(nm_i, nid);
1552 	}
1553 	mutex_unlock(&curseg->curseg_mutex);
1554 }
1555 
1556 /*
1557  * If this function returns success, caller can obtain a new nid
1558  * from second parameter of this function.
1559  * The returned nid could be used ino as well as nid when inode is created.
1560  */
1561 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1562 {
1563 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1564 	struct free_nid *i = NULL;
1565 retry:
1566 	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1567 		return false;
1568 
1569 	spin_lock(&nm_i->free_nid_list_lock);
1570 
1571 	/* We should not use stale free nids created by build_free_nids */
1572 	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1573 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1574 		list_for_each_entry(i, &nm_i->free_nid_list, list)
1575 			if (i->state == NID_NEW)
1576 				break;
1577 
1578 		f2fs_bug_on(sbi, i->state != NID_NEW);
1579 		*nid = i->nid;
1580 		i->state = NID_ALLOC;
1581 		nm_i->fcnt--;
1582 		spin_unlock(&nm_i->free_nid_list_lock);
1583 		return true;
1584 	}
1585 	spin_unlock(&nm_i->free_nid_list_lock);
1586 
1587 	/* Let's scan nat pages and its caches to get free nids */
1588 	mutex_lock(&nm_i->build_lock);
1589 	build_free_nids(sbi);
1590 	mutex_unlock(&nm_i->build_lock);
1591 	goto retry;
1592 }
1593 
1594 /*
1595  * alloc_nid() should be called prior to this function.
1596  */
1597 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1598 {
1599 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1600 	struct free_nid *i;
1601 
1602 	spin_lock(&nm_i->free_nid_list_lock);
1603 	i = __lookup_free_nid_list(nm_i, nid);
1604 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1605 	__del_from_free_nid_list(nm_i, i);
1606 	spin_unlock(&nm_i->free_nid_list_lock);
1607 
1608 	kmem_cache_free(free_nid_slab, i);
1609 }
1610 
1611 /*
1612  * alloc_nid() should be called prior to this function.
1613  */
1614 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1615 {
1616 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1617 	struct free_nid *i;
1618 	bool need_free = false;
1619 
1620 	if (!nid)
1621 		return;
1622 
1623 	spin_lock(&nm_i->free_nid_list_lock);
1624 	i = __lookup_free_nid_list(nm_i, nid);
1625 	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1626 	if (!available_free_memory(sbi, FREE_NIDS)) {
1627 		__del_from_free_nid_list(nm_i, i);
1628 		need_free = true;
1629 	} else {
1630 		i->state = NID_NEW;
1631 		nm_i->fcnt++;
1632 	}
1633 	spin_unlock(&nm_i->free_nid_list_lock);
1634 
1635 	if (need_free)
1636 		kmem_cache_free(free_nid_slab, i);
1637 }
1638 
1639 void recover_inline_xattr(struct inode *inode, struct page *page)
1640 {
1641 	void *src_addr, *dst_addr;
1642 	size_t inline_size;
1643 	struct page *ipage;
1644 	struct f2fs_inode *ri;
1645 
1646 	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1647 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1648 
1649 	ri = F2FS_INODE(page);
1650 	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1651 		clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1652 		goto update_inode;
1653 	}
1654 
1655 	dst_addr = inline_xattr_addr(ipage);
1656 	src_addr = inline_xattr_addr(page);
1657 	inline_size = inline_xattr_size(inode);
1658 
1659 	f2fs_wait_on_page_writeback(ipage, NODE);
1660 	memcpy(dst_addr, src_addr, inline_size);
1661 update_inode:
1662 	update_inode(inode, ipage);
1663 	f2fs_put_page(ipage, 1);
1664 }
1665 
1666 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1667 {
1668 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1669 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1670 	nid_t new_xnid = nid_of_node(page);
1671 	struct node_info ni;
1672 
1673 	/* 1: invalidate the previous xattr nid */
1674 	if (!prev_xnid)
1675 		goto recover_xnid;
1676 
1677 	/* Deallocate node address */
1678 	get_node_info(sbi, prev_xnid, &ni);
1679 	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1680 	invalidate_blocks(sbi, ni.blk_addr);
1681 	dec_valid_node_count(sbi, inode);
1682 	set_node_addr(sbi, &ni, NULL_ADDR, false);
1683 
1684 recover_xnid:
1685 	/* 2: allocate new xattr nid */
1686 	if (unlikely(!inc_valid_node_count(sbi, inode)))
1687 		f2fs_bug_on(sbi, 1);
1688 
1689 	remove_free_nid(NM_I(sbi), new_xnid);
1690 	get_node_info(sbi, new_xnid, &ni);
1691 	ni.ino = inode->i_ino;
1692 	set_node_addr(sbi, &ni, NEW_ADDR, false);
1693 	F2FS_I(inode)->i_xattr_nid = new_xnid;
1694 
1695 	/* 3: update xattr blkaddr */
1696 	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1697 	set_node_addr(sbi, &ni, blkaddr, false);
1698 
1699 	update_inode_page(inode);
1700 }
1701 
1702 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1703 {
1704 	struct f2fs_inode *src, *dst;
1705 	nid_t ino = ino_of_node(page);
1706 	struct node_info old_ni, new_ni;
1707 	struct page *ipage;
1708 
1709 	get_node_info(sbi, ino, &old_ni);
1710 
1711 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
1712 		return -EINVAL;
1713 
1714 	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1715 	if (!ipage)
1716 		return -ENOMEM;
1717 
1718 	/* Should not use this inode from free nid list */
1719 	remove_free_nid(NM_I(sbi), ino);
1720 
1721 	SetPageUptodate(ipage);
1722 	fill_node_footer(ipage, ino, ino, 0, true);
1723 
1724 	src = F2FS_INODE(page);
1725 	dst = F2FS_INODE(ipage);
1726 
1727 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1728 	dst->i_size = 0;
1729 	dst->i_blocks = cpu_to_le64(1);
1730 	dst->i_links = cpu_to_le32(1);
1731 	dst->i_xattr_nid = 0;
1732 	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1733 
1734 	new_ni = old_ni;
1735 	new_ni.ino = ino;
1736 
1737 	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1738 		WARN_ON(1);
1739 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1740 	inc_valid_inode_count(sbi);
1741 	set_page_dirty(ipage);
1742 	f2fs_put_page(ipage, 1);
1743 	return 0;
1744 }
1745 
1746 int restore_node_summary(struct f2fs_sb_info *sbi,
1747 			unsigned int segno, struct f2fs_summary_block *sum)
1748 {
1749 	struct f2fs_node *rn;
1750 	struct f2fs_summary *sum_entry;
1751 	block_t addr;
1752 	int bio_blocks = MAX_BIO_BLOCKS(sbi);
1753 	int i, idx, last_offset, nrpages;
1754 
1755 	/* scan the node segment */
1756 	last_offset = sbi->blocks_per_seg;
1757 	addr = START_BLOCK(sbi, segno);
1758 	sum_entry = &sum->entries[0];
1759 
1760 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1761 		nrpages = min(last_offset - i, bio_blocks);
1762 
1763 		/* readahead node pages */
1764 		ra_meta_pages(sbi, addr, nrpages, META_POR);
1765 
1766 		for (idx = addr; idx < addr + nrpages; idx++) {
1767 			struct page *page = get_meta_page(sbi, idx);
1768 
1769 			rn = F2FS_NODE(page);
1770 			sum_entry->nid = rn->footer.nid;
1771 			sum_entry->version = 0;
1772 			sum_entry->ofs_in_node = 0;
1773 			sum_entry++;
1774 			f2fs_put_page(page, 1);
1775 		}
1776 
1777 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
1778 							addr + nrpages);
1779 	}
1780 	return 0;
1781 }
1782 
1783 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1784 {
1785 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1786 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1787 	struct f2fs_summary_block *sum = curseg->sum_blk;
1788 	int i;
1789 
1790 	mutex_lock(&curseg->curseg_mutex);
1791 	for (i = 0; i < nats_in_cursum(sum); i++) {
1792 		struct nat_entry *ne;
1793 		struct f2fs_nat_entry raw_ne;
1794 		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1795 
1796 		raw_ne = nat_in_journal(sum, i);
1797 
1798 		down_write(&nm_i->nat_tree_lock);
1799 		ne = __lookup_nat_cache(nm_i, nid);
1800 		if (!ne) {
1801 			ne = grab_nat_entry(nm_i, nid);
1802 			node_info_from_raw_nat(&ne->ni, &raw_ne);
1803 		}
1804 		__set_nat_cache_dirty(nm_i, ne);
1805 		up_write(&nm_i->nat_tree_lock);
1806 	}
1807 	update_nats_in_cursum(sum, -i);
1808 	mutex_unlock(&curseg->curseg_mutex);
1809 }
1810 
1811 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1812 						struct list_head *head, int max)
1813 {
1814 	struct nat_entry_set *cur;
1815 
1816 	if (nes->entry_cnt >= max)
1817 		goto add_out;
1818 
1819 	list_for_each_entry(cur, head, set_list) {
1820 		if (cur->entry_cnt >= nes->entry_cnt) {
1821 			list_add(&nes->set_list, cur->set_list.prev);
1822 			return;
1823 		}
1824 	}
1825 add_out:
1826 	list_add_tail(&nes->set_list, head);
1827 }
1828 
1829 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1830 					struct nat_entry_set *set)
1831 {
1832 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1833 	struct f2fs_summary_block *sum = curseg->sum_blk;
1834 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1835 	bool to_journal = true;
1836 	struct f2fs_nat_block *nat_blk;
1837 	struct nat_entry *ne, *cur;
1838 	struct page *page = NULL;
1839 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1840 
1841 	/*
1842 	 * there are two steps to flush nat entries:
1843 	 * #1, flush nat entries to journal in current hot data summary block.
1844 	 * #2, flush nat entries to nat page.
1845 	 */
1846 	if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1847 		to_journal = false;
1848 
1849 	if (to_journal) {
1850 		mutex_lock(&curseg->curseg_mutex);
1851 	} else {
1852 		page = get_next_nat_page(sbi, start_nid);
1853 		nat_blk = page_address(page);
1854 		f2fs_bug_on(sbi, !nat_blk);
1855 	}
1856 
1857 	/* flush dirty nats in nat entry set */
1858 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1859 		struct f2fs_nat_entry *raw_ne;
1860 		nid_t nid = nat_get_nid(ne);
1861 		int offset;
1862 
1863 		if (nat_get_blkaddr(ne) == NEW_ADDR)
1864 			continue;
1865 
1866 		if (to_journal) {
1867 			offset = lookup_journal_in_cursum(sum,
1868 							NAT_JOURNAL, nid, 1);
1869 			f2fs_bug_on(sbi, offset < 0);
1870 			raw_ne = &nat_in_journal(sum, offset);
1871 			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1872 		} else {
1873 			raw_ne = &nat_blk->entries[nid - start_nid];
1874 		}
1875 		raw_nat_from_node_info(raw_ne, &ne->ni);
1876 
1877 		down_write(&NM_I(sbi)->nat_tree_lock);
1878 		nat_reset_flag(ne);
1879 		__clear_nat_cache_dirty(NM_I(sbi), ne);
1880 		up_write(&NM_I(sbi)->nat_tree_lock);
1881 
1882 		if (nat_get_blkaddr(ne) == NULL_ADDR)
1883 			add_free_nid(sbi, nid, false);
1884 	}
1885 
1886 	if (to_journal)
1887 		mutex_unlock(&curseg->curseg_mutex);
1888 	else
1889 		f2fs_put_page(page, 1);
1890 
1891 	f2fs_bug_on(sbi, set->entry_cnt);
1892 
1893 	down_write(&nm_i->nat_tree_lock);
1894 	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1895 	up_write(&nm_i->nat_tree_lock);
1896 	kmem_cache_free(nat_entry_set_slab, set);
1897 }
1898 
1899 /*
1900  * This function is called during the checkpointing process.
1901  */
1902 void flush_nat_entries(struct f2fs_sb_info *sbi)
1903 {
1904 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1905 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1906 	struct f2fs_summary_block *sum = curseg->sum_blk;
1907 	struct nat_entry_set *setvec[SETVEC_SIZE];
1908 	struct nat_entry_set *set, *tmp;
1909 	unsigned int found;
1910 	nid_t set_idx = 0;
1911 	LIST_HEAD(sets);
1912 
1913 	if (!nm_i->dirty_nat_cnt)
1914 		return;
1915 	/*
1916 	 * if there are no enough space in journal to store dirty nat
1917 	 * entries, remove all entries from journal and merge them
1918 	 * into nat entry set.
1919 	 */
1920 	if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1921 		remove_nats_in_journal(sbi);
1922 
1923 	down_write(&nm_i->nat_tree_lock);
1924 	while ((found = __gang_lookup_nat_set(nm_i,
1925 					set_idx, SETVEC_SIZE, setvec))) {
1926 		unsigned idx;
1927 		set_idx = setvec[found - 1]->set + 1;
1928 		for (idx = 0; idx < found; idx++)
1929 			__adjust_nat_entry_set(setvec[idx], &sets,
1930 							MAX_NAT_JENTRIES(sum));
1931 	}
1932 	up_write(&nm_i->nat_tree_lock);
1933 
1934 	/* flush dirty nats in nat entry set */
1935 	list_for_each_entry_safe(set, tmp, &sets, set_list)
1936 		__flush_nat_entry_set(sbi, set);
1937 
1938 	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1939 }
1940 
1941 static int init_node_manager(struct f2fs_sb_info *sbi)
1942 {
1943 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1944 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1945 	unsigned char *version_bitmap;
1946 	unsigned int nat_segs, nat_blocks;
1947 
1948 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1949 
1950 	/* segment_count_nat includes pair segment so divide to 2. */
1951 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1952 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1953 
1954 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1955 
1956 	/* not used nids: 0, node, meta, (and root counted as valid node) */
1957 	nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1958 	nm_i->fcnt = 0;
1959 	nm_i->nat_cnt = 0;
1960 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1961 
1962 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1963 	INIT_LIST_HEAD(&nm_i->free_nid_list);
1964 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
1965 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
1966 	INIT_LIST_HEAD(&nm_i->nat_entries);
1967 
1968 	mutex_init(&nm_i->build_lock);
1969 	spin_lock_init(&nm_i->free_nid_list_lock);
1970 	init_rwsem(&nm_i->nat_tree_lock);
1971 
1972 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1973 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1974 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1975 	if (!version_bitmap)
1976 		return -EFAULT;
1977 
1978 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1979 					GFP_KERNEL);
1980 	if (!nm_i->nat_bitmap)
1981 		return -ENOMEM;
1982 	return 0;
1983 }
1984 
1985 int build_node_manager(struct f2fs_sb_info *sbi)
1986 {
1987 	int err;
1988 
1989 	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1990 	if (!sbi->nm_info)
1991 		return -ENOMEM;
1992 
1993 	err = init_node_manager(sbi);
1994 	if (err)
1995 		return err;
1996 
1997 	build_free_nids(sbi);
1998 	return 0;
1999 }
2000 
2001 void destroy_node_manager(struct f2fs_sb_info *sbi)
2002 {
2003 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2004 	struct free_nid *i, *next_i;
2005 	struct nat_entry *natvec[NATVEC_SIZE];
2006 	struct nat_entry_set *setvec[SETVEC_SIZE];
2007 	nid_t nid = 0;
2008 	unsigned int found;
2009 
2010 	if (!nm_i)
2011 		return;
2012 
2013 	/* destroy free nid list */
2014 	spin_lock(&nm_i->free_nid_list_lock);
2015 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2016 		f2fs_bug_on(sbi, i->state == NID_ALLOC);
2017 		__del_from_free_nid_list(nm_i, i);
2018 		nm_i->fcnt--;
2019 		spin_unlock(&nm_i->free_nid_list_lock);
2020 		kmem_cache_free(free_nid_slab, i);
2021 		spin_lock(&nm_i->free_nid_list_lock);
2022 	}
2023 	f2fs_bug_on(sbi, nm_i->fcnt);
2024 	spin_unlock(&nm_i->free_nid_list_lock);
2025 
2026 	/* destroy nat cache */
2027 	down_write(&nm_i->nat_tree_lock);
2028 	while ((found = __gang_lookup_nat_cache(nm_i,
2029 					nid, NATVEC_SIZE, natvec))) {
2030 		unsigned idx;
2031 
2032 		nid = nat_get_nid(natvec[found - 1]) + 1;
2033 		for (idx = 0; idx < found; idx++)
2034 			__del_from_nat_cache(nm_i, natvec[idx]);
2035 	}
2036 	f2fs_bug_on(sbi, nm_i->nat_cnt);
2037 
2038 	/* destroy nat set cache */
2039 	nid = 0;
2040 	while ((found = __gang_lookup_nat_set(nm_i,
2041 					nid, SETVEC_SIZE, setvec))) {
2042 		unsigned idx;
2043 
2044 		nid = setvec[found - 1]->set + 1;
2045 		for (idx = 0; idx < found; idx++) {
2046 			/* entry_cnt is not zero, when cp_error was occurred */
2047 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2048 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2049 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2050 		}
2051 	}
2052 	up_write(&nm_i->nat_tree_lock);
2053 
2054 	kfree(nm_i->nat_bitmap);
2055 	sbi->nm_info = NULL;
2056 	kfree(nm_i);
2057 }
2058 
2059 int __init create_node_manager_caches(void)
2060 {
2061 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2062 			sizeof(struct nat_entry));
2063 	if (!nat_entry_slab)
2064 		goto fail;
2065 
2066 	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2067 			sizeof(struct free_nid));
2068 	if (!free_nid_slab)
2069 		goto destroy_nat_entry;
2070 
2071 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2072 			sizeof(struct nat_entry_set));
2073 	if (!nat_entry_set_slab)
2074 		goto destroy_free_nid;
2075 	return 0;
2076 
2077 destroy_free_nid:
2078 	kmem_cache_destroy(free_nid_slab);
2079 destroy_nat_entry:
2080 	kmem_cache_destroy(nat_entry_slab);
2081 fail:
2082 	return -ENOMEM;
2083 }
2084 
2085 void destroy_node_manager_caches(void)
2086 {
2087 	kmem_cache_destroy(nat_entry_set_slab);
2088 	kmem_cache_destroy(free_nid_slab);
2089 	kmem_cache_destroy(nat_entry_slab);
2090 }
2091