1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/inline.c 4 * Copyright (c) 2013, Intel Corporation 5 * Authors: Huajun Li <huajun.li@intel.com> 6 * Haicheng Li <haicheng.li@intel.com> 7 */ 8 9 #include <linux/fs.h> 10 #include <linux/f2fs_fs.h> 11 #include <linux/fiemap.h> 12 13 #include "f2fs.h" 14 #include "node.h" 15 #include <trace/events/f2fs.h> 16 17 static bool support_inline_data(struct inode *inode) 18 { 19 if (f2fs_is_atomic_file(inode)) 20 return false; 21 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) 22 return false; 23 if (i_size_read(inode) > MAX_INLINE_DATA(inode)) 24 return false; 25 return true; 26 } 27 28 bool f2fs_may_inline_data(struct inode *inode) 29 { 30 if (!support_inline_data(inode)) 31 return false; 32 33 return !f2fs_post_read_required(inode); 34 } 35 36 bool f2fs_sanity_check_inline_data(struct inode *inode) 37 { 38 if (!f2fs_has_inline_data(inode)) 39 return false; 40 41 if (!support_inline_data(inode)) 42 return true; 43 44 /* 45 * used by sanity_check_inode(), when disk layout fields has not 46 * been synchronized to inmem fields. 47 */ 48 return (S_ISREG(inode->i_mode) && 49 (file_is_encrypt(inode) || file_is_verity(inode) || 50 (F2FS_I(inode)->i_flags & F2FS_COMPR_FL))); 51 } 52 53 bool f2fs_may_inline_dentry(struct inode *inode) 54 { 55 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY)) 56 return false; 57 58 if (!S_ISDIR(inode->i_mode)) 59 return false; 60 61 return true; 62 } 63 64 void f2fs_do_read_inline_data(struct page *page, struct page *ipage) 65 { 66 struct inode *inode = page->mapping->host; 67 void *src_addr, *dst_addr; 68 69 if (PageUptodate(page)) 70 return; 71 72 f2fs_bug_on(F2FS_P_SB(page), page->index); 73 74 zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE); 75 76 /* Copy the whole inline data block */ 77 src_addr = inline_data_addr(inode, ipage); 78 dst_addr = kmap_atomic(page); 79 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); 80 flush_dcache_page(page); 81 kunmap_atomic(dst_addr); 82 if (!PageUptodate(page)) 83 SetPageUptodate(page); 84 } 85 86 void f2fs_truncate_inline_inode(struct inode *inode, 87 struct page *ipage, u64 from) 88 { 89 void *addr; 90 91 if (from >= MAX_INLINE_DATA(inode)) 92 return; 93 94 addr = inline_data_addr(inode, ipage); 95 96 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 97 memset(addr + from, 0, MAX_INLINE_DATA(inode) - from); 98 set_page_dirty(ipage); 99 100 if (from == 0) 101 clear_inode_flag(inode, FI_DATA_EXIST); 102 } 103 104 int f2fs_read_inline_data(struct inode *inode, struct page *page) 105 { 106 struct page *ipage; 107 108 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 109 if (IS_ERR(ipage)) { 110 unlock_page(page); 111 return PTR_ERR(ipage); 112 } 113 114 if (!f2fs_has_inline_data(inode)) { 115 f2fs_put_page(ipage, 1); 116 return -EAGAIN; 117 } 118 119 if (page->index) 120 zero_user_segment(page, 0, PAGE_SIZE); 121 else 122 f2fs_do_read_inline_data(page, ipage); 123 124 if (!PageUptodate(page)) 125 SetPageUptodate(page); 126 f2fs_put_page(ipage, 1); 127 unlock_page(page); 128 return 0; 129 } 130 131 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page) 132 { 133 struct f2fs_io_info fio = { 134 .sbi = F2FS_I_SB(dn->inode), 135 .ino = dn->inode->i_ino, 136 .type = DATA, 137 .op = REQ_OP_WRITE, 138 .op_flags = REQ_SYNC | REQ_PRIO, 139 .page = page, 140 .encrypted_page = NULL, 141 .io_type = FS_DATA_IO, 142 }; 143 struct node_info ni; 144 int dirty, err; 145 146 if (!f2fs_exist_data(dn->inode)) 147 goto clear_out; 148 149 err = f2fs_reserve_block(dn, 0); 150 if (err) 151 return err; 152 153 err = f2fs_get_node_info(fio.sbi, dn->nid, &ni, false); 154 if (err) { 155 f2fs_truncate_data_blocks_range(dn, 1); 156 f2fs_put_dnode(dn); 157 return err; 158 } 159 160 fio.version = ni.version; 161 162 if (unlikely(dn->data_blkaddr != NEW_ADDR)) { 163 f2fs_put_dnode(dn); 164 set_sbi_flag(fio.sbi, SBI_NEED_FSCK); 165 f2fs_warn(fio.sbi, "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", 166 __func__, dn->inode->i_ino, dn->data_blkaddr); 167 return -EFSCORRUPTED; 168 } 169 170 f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page)); 171 172 f2fs_do_read_inline_data(page, dn->inode_page); 173 set_page_dirty(page); 174 175 /* clear dirty state */ 176 dirty = clear_page_dirty_for_io(page); 177 178 /* write data page to try to make data consistent */ 179 set_page_writeback(page); 180 ClearPageError(page); 181 fio.old_blkaddr = dn->data_blkaddr; 182 set_inode_flag(dn->inode, FI_HOT_DATA); 183 f2fs_outplace_write_data(dn, &fio); 184 f2fs_wait_on_page_writeback(page, DATA, true, true); 185 if (dirty) { 186 inode_dec_dirty_pages(dn->inode); 187 f2fs_remove_dirty_inode(dn->inode); 188 } 189 190 /* this converted inline_data should be recovered. */ 191 set_inode_flag(dn->inode, FI_APPEND_WRITE); 192 193 /* clear inline data and flag after data writeback */ 194 f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0); 195 clear_page_private_inline(dn->inode_page); 196 clear_out: 197 stat_dec_inline_inode(dn->inode); 198 clear_inode_flag(dn->inode, FI_INLINE_DATA); 199 f2fs_put_dnode(dn); 200 return 0; 201 } 202 203 int f2fs_convert_inline_inode(struct inode *inode) 204 { 205 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 206 struct dnode_of_data dn; 207 struct page *ipage, *page; 208 int err = 0; 209 210 if (!f2fs_has_inline_data(inode) || 211 f2fs_hw_is_readonly(sbi) || f2fs_readonly(sbi->sb)) 212 return 0; 213 214 err = f2fs_dquot_initialize(inode); 215 if (err) 216 return err; 217 218 page = f2fs_grab_cache_page(inode->i_mapping, 0, false); 219 if (!page) 220 return -ENOMEM; 221 222 f2fs_lock_op(sbi); 223 224 ipage = f2fs_get_node_page(sbi, inode->i_ino); 225 if (IS_ERR(ipage)) { 226 err = PTR_ERR(ipage); 227 goto out; 228 } 229 230 set_new_dnode(&dn, inode, ipage, ipage, 0); 231 232 if (f2fs_has_inline_data(inode)) 233 err = f2fs_convert_inline_page(&dn, page); 234 235 f2fs_put_dnode(&dn); 236 out: 237 f2fs_unlock_op(sbi); 238 239 f2fs_put_page(page, 1); 240 241 if (!err) 242 f2fs_balance_fs(sbi, dn.node_changed); 243 244 return err; 245 } 246 247 int f2fs_write_inline_data(struct inode *inode, struct page *page) 248 { 249 void *src_addr, *dst_addr; 250 struct dnode_of_data dn; 251 int err; 252 253 set_new_dnode(&dn, inode, NULL, NULL, 0); 254 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); 255 if (err) 256 return err; 257 258 if (!f2fs_has_inline_data(inode)) { 259 f2fs_put_dnode(&dn); 260 return -EAGAIN; 261 } 262 263 f2fs_bug_on(F2FS_I_SB(inode), page->index); 264 265 f2fs_wait_on_page_writeback(dn.inode_page, NODE, true, true); 266 src_addr = kmap_atomic(page); 267 dst_addr = inline_data_addr(inode, dn.inode_page); 268 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); 269 kunmap_atomic(src_addr); 270 set_page_dirty(dn.inode_page); 271 272 f2fs_clear_page_cache_dirty_tag(page); 273 274 set_inode_flag(inode, FI_APPEND_WRITE); 275 set_inode_flag(inode, FI_DATA_EXIST); 276 277 clear_page_private_inline(dn.inode_page); 278 f2fs_put_dnode(&dn); 279 return 0; 280 } 281 282 int f2fs_recover_inline_data(struct inode *inode, struct page *npage) 283 { 284 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 285 struct f2fs_inode *ri = NULL; 286 void *src_addr, *dst_addr; 287 struct page *ipage; 288 289 /* 290 * The inline_data recovery policy is as follows. 291 * [prev.] [next] of inline_data flag 292 * o o -> recover inline_data 293 * o x -> remove inline_data, and then recover data blocks 294 * x o -> remove data blocks, and then recover inline_data 295 * x x -> recover data blocks 296 */ 297 if (IS_INODE(npage)) 298 ri = F2FS_INODE(npage); 299 300 if (f2fs_has_inline_data(inode) && 301 ri && (ri->i_inline & F2FS_INLINE_DATA)) { 302 process_inline: 303 ipage = f2fs_get_node_page(sbi, inode->i_ino); 304 if (IS_ERR(ipage)) 305 return PTR_ERR(ipage); 306 307 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 308 309 src_addr = inline_data_addr(inode, npage); 310 dst_addr = inline_data_addr(inode, ipage); 311 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); 312 313 set_inode_flag(inode, FI_INLINE_DATA); 314 set_inode_flag(inode, FI_DATA_EXIST); 315 316 set_page_dirty(ipage); 317 f2fs_put_page(ipage, 1); 318 return 1; 319 } 320 321 if (f2fs_has_inline_data(inode)) { 322 ipage = f2fs_get_node_page(sbi, inode->i_ino); 323 if (IS_ERR(ipage)) 324 return PTR_ERR(ipage); 325 f2fs_truncate_inline_inode(inode, ipage, 0); 326 stat_dec_inline_inode(inode); 327 clear_inode_flag(inode, FI_INLINE_DATA); 328 f2fs_put_page(ipage, 1); 329 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) { 330 int ret; 331 332 ret = f2fs_truncate_blocks(inode, 0, false); 333 if (ret) 334 return ret; 335 stat_inc_inline_inode(inode); 336 goto process_inline; 337 } 338 return 0; 339 } 340 341 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 342 const struct f2fs_filename *fname, 343 struct page **res_page) 344 { 345 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); 346 struct f2fs_dir_entry *de; 347 struct f2fs_dentry_ptr d; 348 struct page *ipage; 349 void *inline_dentry; 350 351 ipage = f2fs_get_node_page(sbi, dir->i_ino); 352 if (IS_ERR(ipage)) { 353 *res_page = ipage; 354 return NULL; 355 } 356 357 inline_dentry = inline_data_addr(dir, ipage); 358 359 make_dentry_ptr_inline(dir, &d, inline_dentry); 360 de = f2fs_find_target_dentry(&d, fname, NULL); 361 unlock_page(ipage); 362 if (IS_ERR(de)) { 363 *res_page = ERR_CAST(de); 364 de = NULL; 365 } 366 if (de) 367 *res_page = ipage; 368 else 369 f2fs_put_page(ipage, 0); 370 371 return de; 372 } 373 374 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 375 struct page *ipage) 376 { 377 struct f2fs_dentry_ptr d; 378 void *inline_dentry; 379 380 inline_dentry = inline_data_addr(inode, ipage); 381 382 make_dentry_ptr_inline(inode, &d, inline_dentry); 383 f2fs_do_make_empty_dir(inode, parent, &d); 384 385 set_page_dirty(ipage); 386 387 /* update i_size to MAX_INLINE_DATA */ 388 if (i_size_read(inode) < MAX_INLINE_DATA(inode)) 389 f2fs_i_size_write(inode, MAX_INLINE_DATA(inode)); 390 return 0; 391 } 392 393 /* 394 * NOTE: ipage is grabbed by caller, but if any error occurs, we should 395 * release ipage in this function. 396 */ 397 static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage, 398 void *inline_dentry) 399 { 400 struct page *page; 401 struct dnode_of_data dn; 402 struct f2fs_dentry_block *dentry_blk; 403 struct f2fs_dentry_ptr src, dst; 404 int err; 405 406 page = f2fs_grab_cache_page(dir->i_mapping, 0, true); 407 if (!page) { 408 f2fs_put_page(ipage, 1); 409 return -ENOMEM; 410 } 411 412 set_new_dnode(&dn, dir, ipage, NULL, 0); 413 err = f2fs_reserve_block(&dn, 0); 414 if (err) 415 goto out; 416 417 if (unlikely(dn.data_blkaddr != NEW_ADDR)) { 418 f2fs_put_dnode(&dn); 419 set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK); 420 f2fs_warn(F2FS_P_SB(page), "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", 421 __func__, dir->i_ino, dn.data_blkaddr); 422 err = -EFSCORRUPTED; 423 goto out; 424 } 425 426 f2fs_wait_on_page_writeback(page, DATA, true, true); 427 428 dentry_blk = page_address(page); 429 430 make_dentry_ptr_inline(dir, &src, inline_dentry); 431 make_dentry_ptr_block(dir, &dst, dentry_blk); 432 433 /* copy data from inline dentry block to new dentry block */ 434 memcpy(dst.bitmap, src.bitmap, src.nr_bitmap); 435 memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap); 436 /* 437 * we do not need to zero out remainder part of dentry and filename 438 * field, since we have used bitmap for marking the usage status of 439 * them, besides, we can also ignore copying/zeroing reserved space 440 * of dentry block, because them haven't been used so far. 441 */ 442 memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max); 443 memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN); 444 445 if (!PageUptodate(page)) 446 SetPageUptodate(page); 447 set_page_dirty(page); 448 449 /* clear inline dir and flag after data writeback */ 450 f2fs_truncate_inline_inode(dir, ipage, 0); 451 452 stat_dec_inline_dir(dir); 453 clear_inode_flag(dir, FI_INLINE_DENTRY); 454 455 /* 456 * should retrieve reserved space which was used to keep 457 * inline_dentry's structure for backward compatibility. 458 */ 459 if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && 460 !f2fs_has_inline_xattr(dir)) 461 F2FS_I(dir)->i_inline_xattr_size = 0; 462 463 f2fs_i_depth_write(dir, 1); 464 if (i_size_read(dir) < PAGE_SIZE) 465 f2fs_i_size_write(dir, PAGE_SIZE); 466 out: 467 f2fs_put_page(page, 1); 468 return err; 469 } 470 471 static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry) 472 { 473 struct f2fs_dentry_ptr d; 474 unsigned long bit_pos = 0; 475 int err = 0; 476 477 make_dentry_ptr_inline(dir, &d, inline_dentry); 478 479 while (bit_pos < d.max) { 480 struct f2fs_dir_entry *de; 481 struct f2fs_filename fname; 482 nid_t ino; 483 umode_t fake_mode; 484 485 if (!test_bit_le(bit_pos, d.bitmap)) { 486 bit_pos++; 487 continue; 488 } 489 490 de = &d.dentry[bit_pos]; 491 492 if (unlikely(!de->name_len)) { 493 bit_pos++; 494 continue; 495 } 496 497 /* 498 * We only need the disk_name and hash to move the dentry. 499 * We don't need the original or casefolded filenames. 500 */ 501 memset(&fname, 0, sizeof(fname)); 502 fname.disk_name.name = d.filename[bit_pos]; 503 fname.disk_name.len = le16_to_cpu(de->name_len); 504 fname.hash = de->hash_code; 505 506 ino = le32_to_cpu(de->ino); 507 fake_mode = f2fs_get_de_type(de) << S_SHIFT; 508 509 err = f2fs_add_regular_entry(dir, &fname, NULL, ino, fake_mode); 510 if (err) 511 goto punch_dentry_pages; 512 513 bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); 514 } 515 return 0; 516 punch_dentry_pages: 517 truncate_inode_pages(&dir->i_data, 0); 518 f2fs_truncate_blocks(dir, 0, false); 519 f2fs_remove_dirty_inode(dir); 520 return err; 521 } 522 523 static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage, 524 void *inline_dentry) 525 { 526 void *backup_dentry; 527 int err; 528 529 backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir), 530 MAX_INLINE_DATA(dir), GFP_F2FS_ZERO); 531 if (!backup_dentry) { 532 f2fs_put_page(ipage, 1); 533 return -ENOMEM; 534 } 535 536 memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir)); 537 f2fs_truncate_inline_inode(dir, ipage, 0); 538 539 unlock_page(ipage); 540 541 err = f2fs_add_inline_entries(dir, backup_dentry); 542 if (err) 543 goto recover; 544 545 lock_page(ipage); 546 547 stat_dec_inline_dir(dir); 548 clear_inode_flag(dir, FI_INLINE_DENTRY); 549 550 /* 551 * should retrieve reserved space which was used to keep 552 * inline_dentry's structure for backward compatibility. 553 */ 554 if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && 555 !f2fs_has_inline_xattr(dir)) 556 F2FS_I(dir)->i_inline_xattr_size = 0; 557 558 kfree(backup_dentry); 559 return 0; 560 recover: 561 lock_page(ipage); 562 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 563 memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir)); 564 f2fs_i_depth_write(dir, 0); 565 f2fs_i_size_write(dir, MAX_INLINE_DATA(dir)); 566 set_page_dirty(ipage); 567 f2fs_put_page(ipage, 1); 568 569 kfree(backup_dentry); 570 return err; 571 } 572 573 static int do_convert_inline_dir(struct inode *dir, struct page *ipage, 574 void *inline_dentry) 575 { 576 if (!F2FS_I(dir)->i_dir_level) 577 return f2fs_move_inline_dirents(dir, ipage, inline_dentry); 578 else 579 return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry); 580 } 581 582 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry) 583 { 584 struct f2fs_sb_info *sbi = F2FS_I_SB(dir); 585 struct page *ipage; 586 struct f2fs_filename fname; 587 void *inline_dentry = NULL; 588 int err = 0; 589 590 if (!f2fs_has_inline_dentry(dir)) 591 return 0; 592 593 f2fs_lock_op(sbi); 594 595 err = f2fs_setup_filename(dir, &dentry->d_name, 0, &fname); 596 if (err) 597 goto out; 598 599 ipage = f2fs_get_node_page(sbi, dir->i_ino); 600 if (IS_ERR(ipage)) { 601 err = PTR_ERR(ipage); 602 goto out_fname; 603 } 604 605 if (f2fs_has_enough_room(dir, ipage, &fname)) { 606 f2fs_put_page(ipage, 1); 607 goto out_fname; 608 } 609 610 inline_dentry = inline_data_addr(dir, ipage); 611 612 err = do_convert_inline_dir(dir, ipage, inline_dentry); 613 if (!err) 614 f2fs_put_page(ipage, 1); 615 out_fname: 616 f2fs_free_filename(&fname); 617 out: 618 f2fs_unlock_op(sbi); 619 return err; 620 } 621 622 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 623 struct inode *inode, nid_t ino, umode_t mode) 624 { 625 struct f2fs_sb_info *sbi = F2FS_I_SB(dir); 626 struct page *ipage; 627 unsigned int bit_pos; 628 void *inline_dentry = NULL; 629 struct f2fs_dentry_ptr d; 630 int slots = GET_DENTRY_SLOTS(fname->disk_name.len); 631 struct page *page = NULL; 632 int err = 0; 633 634 ipage = f2fs_get_node_page(sbi, dir->i_ino); 635 if (IS_ERR(ipage)) 636 return PTR_ERR(ipage); 637 638 inline_dentry = inline_data_addr(dir, ipage); 639 make_dentry_ptr_inline(dir, &d, inline_dentry); 640 641 bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max); 642 if (bit_pos >= d.max) { 643 err = do_convert_inline_dir(dir, ipage, inline_dentry); 644 if (err) 645 return err; 646 err = -EAGAIN; 647 goto out; 648 } 649 650 if (inode) { 651 f2fs_down_write(&F2FS_I(inode)->i_sem); 652 page = f2fs_init_inode_metadata(inode, dir, fname, ipage); 653 if (IS_ERR(page)) { 654 err = PTR_ERR(page); 655 goto fail; 656 } 657 } 658 659 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 660 661 f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash, 662 bit_pos); 663 664 set_page_dirty(ipage); 665 666 /* we don't need to mark_inode_dirty now */ 667 if (inode) { 668 f2fs_i_pino_write(inode, dir->i_ino); 669 670 /* synchronize inode page's data from inode cache */ 671 if (is_inode_flag_set(inode, FI_NEW_INODE)) 672 f2fs_update_inode(inode, page); 673 674 f2fs_put_page(page, 1); 675 } 676 677 f2fs_update_parent_metadata(dir, inode, 0); 678 fail: 679 if (inode) 680 f2fs_up_write(&F2FS_I(inode)->i_sem); 681 out: 682 f2fs_put_page(ipage, 1); 683 return err; 684 } 685 686 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 687 struct inode *dir, struct inode *inode) 688 { 689 struct f2fs_dentry_ptr d; 690 void *inline_dentry; 691 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); 692 unsigned int bit_pos; 693 int i; 694 695 lock_page(page); 696 f2fs_wait_on_page_writeback(page, NODE, true, true); 697 698 inline_dentry = inline_data_addr(dir, page); 699 make_dentry_ptr_inline(dir, &d, inline_dentry); 700 701 bit_pos = dentry - d.dentry; 702 for (i = 0; i < slots; i++) 703 __clear_bit_le(bit_pos + i, d.bitmap); 704 705 set_page_dirty(page); 706 f2fs_put_page(page, 1); 707 708 dir->i_ctime = dir->i_mtime = current_time(dir); 709 f2fs_mark_inode_dirty_sync(dir, false); 710 711 if (inode) 712 f2fs_drop_nlink(dir, inode); 713 } 714 715 bool f2fs_empty_inline_dir(struct inode *dir) 716 { 717 struct f2fs_sb_info *sbi = F2FS_I_SB(dir); 718 struct page *ipage; 719 unsigned int bit_pos = 2; 720 void *inline_dentry; 721 struct f2fs_dentry_ptr d; 722 723 ipage = f2fs_get_node_page(sbi, dir->i_ino); 724 if (IS_ERR(ipage)) 725 return false; 726 727 inline_dentry = inline_data_addr(dir, ipage); 728 make_dentry_ptr_inline(dir, &d, inline_dentry); 729 730 bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos); 731 732 f2fs_put_page(ipage, 1); 733 734 if (bit_pos < d.max) 735 return false; 736 737 return true; 738 } 739 740 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 741 struct fscrypt_str *fstr) 742 { 743 struct inode *inode = file_inode(file); 744 struct page *ipage = NULL; 745 struct f2fs_dentry_ptr d; 746 void *inline_dentry = NULL; 747 int err; 748 749 make_dentry_ptr_inline(inode, &d, inline_dentry); 750 751 if (ctx->pos == d.max) 752 return 0; 753 754 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 755 if (IS_ERR(ipage)) 756 return PTR_ERR(ipage); 757 758 /* 759 * f2fs_readdir was protected by inode.i_rwsem, it is safe to access 760 * ipage without page's lock held. 761 */ 762 unlock_page(ipage); 763 764 inline_dentry = inline_data_addr(inode, ipage); 765 766 make_dentry_ptr_inline(inode, &d, inline_dentry); 767 768 err = f2fs_fill_dentries(ctx, &d, 0, fstr); 769 if (!err) 770 ctx->pos = d.max; 771 772 f2fs_put_page(ipage, 0); 773 return err < 0 ? err : 0; 774 } 775 776 int f2fs_inline_data_fiemap(struct inode *inode, 777 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len) 778 { 779 __u64 byteaddr, ilen; 780 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED | 781 FIEMAP_EXTENT_LAST; 782 struct node_info ni; 783 struct page *ipage; 784 int err = 0; 785 786 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 787 if (IS_ERR(ipage)) 788 return PTR_ERR(ipage); 789 790 if ((S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) && 791 !f2fs_has_inline_data(inode)) { 792 err = -EAGAIN; 793 goto out; 794 } 795 796 if (S_ISDIR(inode->i_mode) && !f2fs_has_inline_dentry(inode)) { 797 err = -EAGAIN; 798 goto out; 799 } 800 801 ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode)); 802 if (start >= ilen) 803 goto out; 804 if (start + len < ilen) 805 ilen = start + len; 806 ilen -= start; 807 808 err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni, false); 809 if (err) 810 goto out; 811 812 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits; 813 byteaddr += (char *)inline_data_addr(inode, ipage) - 814 (char *)F2FS_INODE(ipage); 815 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags); 816 trace_f2fs_fiemap(inode, start, byteaddr, ilen, flags, err); 817 out: 818 f2fs_put_page(ipage, 1); 819 return err; 820 } 821