1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/inline.c 4 * Copyright (c) 2013, Intel Corporation 5 * Authors: Huajun Li <huajun.li@intel.com> 6 * Haicheng Li <haicheng.li@intel.com> 7 */ 8 9 #include <linux/fs.h> 10 #include <linux/f2fs_fs.h> 11 #include <linux/fiemap.h> 12 13 #include "f2fs.h" 14 #include "node.h" 15 #include <trace/events/f2fs.h> 16 17 static bool support_inline_data(struct inode *inode) 18 { 19 if (f2fs_used_in_atomic_write(inode)) 20 return false; 21 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode)) 22 return false; 23 if (i_size_read(inode) > MAX_INLINE_DATA(inode)) 24 return false; 25 return true; 26 } 27 28 bool f2fs_may_inline_data(struct inode *inode) 29 { 30 if (!support_inline_data(inode)) 31 return false; 32 33 return !f2fs_post_read_required(inode); 34 } 35 36 static bool inode_has_blocks(struct inode *inode, struct page *ipage) 37 { 38 struct f2fs_inode *ri = F2FS_INODE(ipage); 39 int i; 40 41 if (F2FS_HAS_BLOCKS(inode)) 42 return true; 43 44 for (i = 0; i < DEF_NIDS_PER_INODE; i++) { 45 if (ri->i_nid[i]) 46 return true; 47 } 48 return false; 49 } 50 51 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage) 52 { 53 if (!f2fs_has_inline_data(inode)) 54 return false; 55 56 if (inode_has_blocks(inode, ipage)) 57 return false; 58 59 if (!support_inline_data(inode)) 60 return true; 61 62 /* 63 * used by sanity_check_inode(), when disk layout fields has not 64 * been synchronized to inmem fields. 65 */ 66 return (S_ISREG(inode->i_mode) && 67 (file_is_encrypt(inode) || file_is_verity(inode) || 68 (F2FS_I(inode)->i_flags & F2FS_COMPR_FL))); 69 } 70 71 bool f2fs_may_inline_dentry(struct inode *inode) 72 { 73 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY)) 74 return false; 75 76 if (!S_ISDIR(inode->i_mode)) 77 return false; 78 79 return true; 80 } 81 82 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage) 83 { 84 struct inode *inode = folio_file_mapping(folio)->host; 85 86 if (folio_test_uptodate(folio)) 87 return; 88 89 f2fs_bug_on(F2FS_I_SB(inode), folio_index(folio)); 90 91 folio_zero_segment(folio, MAX_INLINE_DATA(inode), folio_size(folio)); 92 93 /* Copy the whole inline data block */ 94 memcpy_to_folio(folio, 0, inline_data_addr(inode, ipage), 95 MAX_INLINE_DATA(inode)); 96 if (!folio_test_uptodate(folio)) 97 folio_mark_uptodate(folio); 98 } 99 100 void f2fs_truncate_inline_inode(struct inode *inode, 101 struct page *ipage, u64 from) 102 { 103 void *addr; 104 105 if (from >= MAX_INLINE_DATA(inode)) 106 return; 107 108 addr = inline_data_addr(inode, ipage); 109 110 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 111 memset(addr + from, 0, MAX_INLINE_DATA(inode) - from); 112 set_page_dirty(ipage); 113 114 if (from == 0) 115 clear_inode_flag(inode, FI_DATA_EXIST); 116 } 117 118 int f2fs_read_inline_data(struct inode *inode, struct folio *folio) 119 { 120 struct page *ipage; 121 122 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 123 if (IS_ERR(ipage)) { 124 folio_unlock(folio); 125 return PTR_ERR(ipage); 126 } 127 128 if (!f2fs_has_inline_data(inode)) { 129 f2fs_put_page(ipage, 1); 130 return -EAGAIN; 131 } 132 133 if (folio_index(folio)) 134 folio_zero_segment(folio, 0, folio_size(folio)); 135 else 136 f2fs_do_read_inline_data(folio, ipage); 137 138 if (!folio_test_uptodate(folio)) 139 folio_mark_uptodate(folio); 140 f2fs_put_page(ipage, 1); 141 folio_unlock(folio); 142 return 0; 143 } 144 145 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page) 146 { 147 struct f2fs_io_info fio = { 148 .sbi = F2FS_I_SB(dn->inode), 149 .ino = dn->inode->i_ino, 150 .type = DATA, 151 .op = REQ_OP_WRITE, 152 .op_flags = REQ_SYNC | REQ_PRIO, 153 .page = page, 154 .encrypted_page = NULL, 155 .io_type = FS_DATA_IO, 156 }; 157 struct node_info ni; 158 int dirty, err; 159 160 if (!f2fs_exist_data(dn->inode)) 161 goto clear_out; 162 163 err = f2fs_reserve_block(dn, 0); 164 if (err) 165 return err; 166 167 err = f2fs_get_node_info(fio.sbi, dn->nid, &ni, false); 168 if (err) { 169 f2fs_truncate_data_blocks_range(dn, 1); 170 f2fs_put_dnode(dn); 171 return err; 172 } 173 174 fio.version = ni.version; 175 176 if (unlikely(dn->data_blkaddr != NEW_ADDR)) { 177 f2fs_put_dnode(dn); 178 set_sbi_flag(fio.sbi, SBI_NEED_FSCK); 179 f2fs_warn(fio.sbi, "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", 180 __func__, dn->inode->i_ino, dn->data_blkaddr); 181 f2fs_handle_error(fio.sbi, ERROR_INVALID_BLKADDR); 182 return -EFSCORRUPTED; 183 } 184 185 f2fs_bug_on(F2FS_P_SB(page), folio_test_writeback(page_folio(page))); 186 187 f2fs_do_read_inline_data(page_folio(page), dn->inode_page); 188 set_page_dirty(page); 189 190 /* clear dirty state */ 191 dirty = clear_page_dirty_for_io(page); 192 193 /* write data page to try to make data consistent */ 194 set_page_writeback(page); 195 fio.old_blkaddr = dn->data_blkaddr; 196 set_inode_flag(dn->inode, FI_HOT_DATA); 197 f2fs_outplace_write_data(dn, &fio); 198 f2fs_wait_on_page_writeback(page, DATA, true, true); 199 if (dirty) { 200 inode_dec_dirty_pages(dn->inode); 201 f2fs_remove_dirty_inode(dn->inode); 202 } 203 204 /* this converted inline_data should be recovered. */ 205 set_inode_flag(dn->inode, FI_APPEND_WRITE); 206 207 /* clear inline data and flag after data writeback */ 208 f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0); 209 clear_page_private_inline(dn->inode_page); 210 clear_out: 211 stat_dec_inline_inode(dn->inode); 212 clear_inode_flag(dn->inode, FI_INLINE_DATA); 213 f2fs_put_dnode(dn); 214 return 0; 215 } 216 217 int f2fs_convert_inline_inode(struct inode *inode) 218 { 219 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 220 struct dnode_of_data dn; 221 struct page *ipage, *page; 222 int err = 0; 223 224 if (f2fs_hw_is_readonly(sbi) || f2fs_readonly(sbi->sb)) 225 return -EROFS; 226 227 if (!f2fs_has_inline_data(inode)) 228 return 0; 229 230 err = f2fs_dquot_initialize(inode); 231 if (err) 232 return err; 233 234 page = f2fs_grab_cache_page(inode->i_mapping, 0, false); 235 if (!page) 236 return -ENOMEM; 237 238 f2fs_lock_op(sbi); 239 240 ipage = f2fs_get_node_page(sbi, inode->i_ino); 241 if (IS_ERR(ipage)) { 242 err = PTR_ERR(ipage); 243 goto out; 244 } 245 246 set_new_dnode(&dn, inode, ipage, ipage, 0); 247 248 if (f2fs_has_inline_data(inode)) 249 err = f2fs_convert_inline_page(&dn, page); 250 251 f2fs_put_dnode(&dn); 252 out: 253 f2fs_unlock_op(sbi); 254 255 f2fs_put_page(page, 1); 256 257 if (!err) 258 f2fs_balance_fs(sbi, dn.node_changed); 259 260 return err; 261 } 262 263 int f2fs_write_inline_data(struct inode *inode, struct folio *folio) 264 { 265 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 266 struct page *ipage; 267 268 ipage = f2fs_get_node_page(sbi, inode->i_ino); 269 if (IS_ERR(ipage)) 270 return PTR_ERR(ipage); 271 272 if (!f2fs_has_inline_data(inode)) { 273 f2fs_put_page(ipage, 1); 274 return -EAGAIN; 275 } 276 277 f2fs_bug_on(F2FS_I_SB(inode), folio->index); 278 279 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 280 memcpy_from_folio(inline_data_addr(inode, ipage), 281 folio, 0, MAX_INLINE_DATA(inode)); 282 set_page_dirty(ipage); 283 284 f2fs_clear_page_cache_dirty_tag(folio); 285 286 set_inode_flag(inode, FI_APPEND_WRITE); 287 set_inode_flag(inode, FI_DATA_EXIST); 288 289 clear_page_private_inline(ipage); 290 f2fs_put_page(ipage, 1); 291 return 0; 292 } 293 294 int f2fs_recover_inline_data(struct inode *inode, struct page *npage) 295 { 296 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 297 struct f2fs_inode *ri = NULL; 298 void *src_addr, *dst_addr; 299 struct page *ipage; 300 301 /* 302 * The inline_data recovery policy is as follows. 303 * [prev.] [next] of inline_data flag 304 * o o -> recover inline_data 305 * o x -> remove inline_data, and then recover data blocks 306 * x o -> remove data blocks, and then recover inline_data 307 * x x -> recover data blocks 308 */ 309 if (IS_INODE(npage)) 310 ri = F2FS_INODE(npage); 311 312 if (f2fs_has_inline_data(inode) && 313 ri && (ri->i_inline & F2FS_INLINE_DATA)) { 314 process_inline: 315 ipage = f2fs_get_node_page(sbi, inode->i_ino); 316 if (IS_ERR(ipage)) 317 return PTR_ERR(ipage); 318 319 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 320 321 src_addr = inline_data_addr(inode, npage); 322 dst_addr = inline_data_addr(inode, ipage); 323 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode)); 324 325 set_inode_flag(inode, FI_INLINE_DATA); 326 set_inode_flag(inode, FI_DATA_EXIST); 327 328 set_page_dirty(ipage); 329 f2fs_put_page(ipage, 1); 330 return 1; 331 } 332 333 if (f2fs_has_inline_data(inode)) { 334 ipage = f2fs_get_node_page(sbi, inode->i_ino); 335 if (IS_ERR(ipage)) 336 return PTR_ERR(ipage); 337 f2fs_truncate_inline_inode(inode, ipage, 0); 338 stat_dec_inline_inode(inode); 339 clear_inode_flag(inode, FI_INLINE_DATA); 340 f2fs_put_page(ipage, 1); 341 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) { 342 int ret; 343 344 ret = f2fs_truncate_blocks(inode, 0, false); 345 if (ret) 346 return ret; 347 stat_inc_inline_inode(inode); 348 goto process_inline; 349 } 350 return 0; 351 } 352 353 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 354 const struct f2fs_filename *fname, 355 struct page **res_page) 356 { 357 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb); 358 struct f2fs_dir_entry *de; 359 struct f2fs_dentry_ptr d; 360 struct page *ipage; 361 void *inline_dentry; 362 363 ipage = f2fs_get_node_page(sbi, dir->i_ino); 364 if (IS_ERR(ipage)) { 365 *res_page = ipage; 366 return NULL; 367 } 368 369 inline_dentry = inline_data_addr(dir, ipage); 370 371 make_dentry_ptr_inline(dir, &d, inline_dentry); 372 de = f2fs_find_target_dentry(&d, fname, NULL); 373 unlock_page(ipage); 374 if (IS_ERR(de)) { 375 *res_page = ERR_CAST(de); 376 de = NULL; 377 } 378 if (de) 379 *res_page = ipage; 380 else 381 f2fs_put_page(ipage, 0); 382 383 return de; 384 } 385 386 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 387 struct page *ipage) 388 { 389 struct f2fs_dentry_ptr d; 390 void *inline_dentry; 391 392 inline_dentry = inline_data_addr(inode, ipage); 393 394 make_dentry_ptr_inline(inode, &d, inline_dentry); 395 f2fs_do_make_empty_dir(inode, parent, &d); 396 397 set_page_dirty(ipage); 398 399 /* update i_size to MAX_INLINE_DATA */ 400 if (i_size_read(inode) < MAX_INLINE_DATA(inode)) 401 f2fs_i_size_write(inode, MAX_INLINE_DATA(inode)); 402 return 0; 403 } 404 405 /* 406 * NOTE: ipage is grabbed by caller, but if any error occurs, we should 407 * release ipage in this function. 408 */ 409 static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage, 410 void *inline_dentry) 411 { 412 struct page *page; 413 struct dnode_of_data dn; 414 struct f2fs_dentry_block *dentry_blk; 415 struct f2fs_dentry_ptr src, dst; 416 int err; 417 418 page = f2fs_grab_cache_page(dir->i_mapping, 0, true); 419 if (!page) { 420 f2fs_put_page(ipage, 1); 421 return -ENOMEM; 422 } 423 424 set_new_dnode(&dn, dir, ipage, NULL, 0); 425 err = f2fs_reserve_block(&dn, 0); 426 if (err) 427 goto out; 428 429 if (unlikely(dn.data_blkaddr != NEW_ADDR)) { 430 f2fs_put_dnode(&dn); 431 set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK); 432 f2fs_warn(F2FS_P_SB(page), "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.", 433 __func__, dir->i_ino, dn.data_blkaddr); 434 f2fs_handle_error(F2FS_P_SB(page), ERROR_INVALID_BLKADDR); 435 err = -EFSCORRUPTED; 436 goto out; 437 } 438 439 f2fs_wait_on_page_writeback(page, DATA, true, true); 440 441 dentry_blk = page_address(page); 442 443 /* 444 * Start by zeroing the full block, to ensure that all unused space is 445 * zeroed and no uninitialized memory is leaked to disk. 446 */ 447 memset(dentry_blk, 0, F2FS_BLKSIZE); 448 449 make_dentry_ptr_inline(dir, &src, inline_dentry); 450 make_dentry_ptr_block(dir, &dst, dentry_blk); 451 452 /* copy data from inline dentry block to new dentry block */ 453 memcpy(dst.bitmap, src.bitmap, src.nr_bitmap); 454 memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max); 455 memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN); 456 457 if (!PageUptodate(page)) 458 SetPageUptodate(page); 459 set_page_dirty(page); 460 461 /* clear inline dir and flag after data writeback */ 462 f2fs_truncate_inline_inode(dir, ipage, 0); 463 464 stat_dec_inline_dir(dir); 465 clear_inode_flag(dir, FI_INLINE_DENTRY); 466 467 /* 468 * should retrieve reserved space which was used to keep 469 * inline_dentry's structure for backward compatibility. 470 */ 471 if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && 472 !f2fs_has_inline_xattr(dir)) 473 F2FS_I(dir)->i_inline_xattr_size = 0; 474 475 f2fs_i_depth_write(dir, 1); 476 if (i_size_read(dir) < PAGE_SIZE) 477 f2fs_i_size_write(dir, PAGE_SIZE); 478 out: 479 f2fs_put_page(page, 1); 480 return err; 481 } 482 483 static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry) 484 { 485 struct f2fs_dentry_ptr d; 486 unsigned long bit_pos = 0; 487 int err = 0; 488 489 make_dentry_ptr_inline(dir, &d, inline_dentry); 490 491 while (bit_pos < d.max) { 492 struct f2fs_dir_entry *de; 493 struct f2fs_filename fname; 494 nid_t ino; 495 umode_t fake_mode; 496 497 if (!test_bit_le(bit_pos, d.bitmap)) { 498 bit_pos++; 499 continue; 500 } 501 502 de = &d.dentry[bit_pos]; 503 504 if (unlikely(!de->name_len)) { 505 bit_pos++; 506 continue; 507 } 508 509 /* 510 * We only need the disk_name and hash to move the dentry. 511 * We don't need the original or casefolded filenames. 512 */ 513 memset(&fname, 0, sizeof(fname)); 514 fname.disk_name.name = d.filename[bit_pos]; 515 fname.disk_name.len = le16_to_cpu(de->name_len); 516 fname.hash = de->hash_code; 517 518 ino = le32_to_cpu(de->ino); 519 fake_mode = fs_ftype_to_dtype(de->file_type) << S_DT_SHIFT; 520 521 err = f2fs_add_regular_entry(dir, &fname, NULL, ino, fake_mode); 522 if (err) 523 goto punch_dentry_pages; 524 525 bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len)); 526 } 527 return 0; 528 punch_dentry_pages: 529 truncate_inode_pages(&dir->i_data, 0); 530 f2fs_truncate_blocks(dir, 0, false); 531 f2fs_remove_dirty_inode(dir); 532 return err; 533 } 534 535 static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage, 536 void *inline_dentry) 537 { 538 void *backup_dentry; 539 int err; 540 541 backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir), 542 MAX_INLINE_DATA(dir), GFP_F2FS_ZERO); 543 if (!backup_dentry) { 544 f2fs_put_page(ipage, 1); 545 return -ENOMEM; 546 } 547 548 memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir)); 549 f2fs_truncate_inline_inode(dir, ipage, 0); 550 551 unlock_page(ipage); 552 553 err = f2fs_add_inline_entries(dir, backup_dentry); 554 if (err) 555 goto recover; 556 557 lock_page(ipage); 558 559 stat_dec_inline_dir(dir); 560 clear_inode_flag(dir, FI_INLINE_DENTRY); 561 562 /* 563 * should retrieve reserved space which was used to keep 564 * inline_dentry's structure for backward compatibility. 565 */ 566 if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) && 567 !f2fs_has_inline_xattr(dir)) 568 F2FS_I(dir)->i_inline_xattr_size = 0; 569 570 kfree(backup_dentry); 571 return 0; 572 recover: 573 lock_page(ipage); 574 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 575 memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir)); 576 f2fs_i_depth_write(dir, 0); 577 f2fs_i_size_write(dir, MAX_INLINE_DATA(dir)); 578 set_page_dirty(ipage); 579 f2fs_put_page(ipage, 1); 580 581 kfree(backup_dentry); 582 return err; 583 } 584 585 static int do_convert_inline_dir(struct inode *dir, struct page *ipage, 586 void *inline_dentry) 587 { 588 if (!F2FS_I(dir)->i_dir_level) 589 return f2fs_move_inline_dirents(dir, ipage, inline_dentry); 590 else 591 return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry); 592 } 593 594 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry) 595 { 596 struct f2fs_sb_info *sbi = F2FS_I_SB(dir); 597 struct page *ipage; 598 struct f2fs_filename fname; 599 void *inline_dentry = NULL; 600 int err = 0; 601 602 if (!f2fs_has_inline_dentry(dir)) 603 return 0; 604 605 f2fs_lock_op(sbi); 606 607 err = f2fs_setup_filename(dir, &dentry->d_name, 0, &fname); 608 if (err) 609 goto out; 610 611 ipage = f2fs_get_node_page(sbi, dir->i_ino); 612 if (IS_ERR(ipage)) { 613 err = PTR_ERR(ipage); 614 goto out_fname; 615 } 616 617 if (f2fs_has_enough_room(dir, ipage, &fname)) { 618 f2fs_put_page(ipage, 1); 619 goto out_fname; 620 } 621 622 inline_dentry = inline_data_addr(dir, ipage); 623 624 err = do_convert_inline_dir(dir, ipage, inline_dentry); 625 if (!err) 626 f2fs_put_page(ipage, 1); 627 out_fname: 628 f2fs_free_filename(&fname); 629 out: 630 f2fs_unlock_op(sbi); 631 return err; 632 } 633 634 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 635 struct inode *inode, nid_t ino, umode_t mode) 636 { 637 struct f2fs_sb_info *sbi = F2FS_I_SB(dir); 638 struct page *ipage; 639 unsigned int bit_pos; 640 void *inline_dentry = NULL; 641 struct f2fs_dentry_ptr d; 642 int slots = GET_DENTRY_SLOTS(fname->disk_name.len); 643 struct page *page = NULL; 644 int err = 0; 645 646 ipage = f2fs_get_node_page(sbi, dir->i_ino); 647 if (IS_ERR(ipage)) 648 return PTR_ERR(ipage); 649 650 inline_dentry = inline_data_addr(dir, ipage); 651 make_dentry_ptr_inline(dir, &d, inline_dentry); 652 653 bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max); 654 if (bit_pos >= d.max) { 655 err = do_convert_inline_dir(dir, ipage, inline_dentry); 656 if (err) 657 return err; 658 err = -EAGAIN; 659 goto out; 660 } 661 662 if (inode) { 663 f2fs_down_write_nested(&F2FS_I(inode)->i_sem, 664 SINGLE_DEPTH_NESTING); 665 page = f2fs_init_inode_metadata(inode, dir, fname, ipage); 666 if (IS_ERR(page)) { 667 err = PTR_ERR(page); 668 goto fail; 669 } 670 } 671 672 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 673 674 f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash, 675 bit_pos); 676 677 set_page_dirty(ipage); 678 679 /* we don't need to mark_inode_dirty now */ 680 if (inode) { 681 f2fs_i_pino_write(inode, dir->i_ino); 682 683 /* synchronize inode page's data from inode cache */ 684 if (is_inode_flag_set(inode, FI_NEW_INODE)) 685 f2fs_update_inode(inode, page); 686 687 f2fs_put_page(page, 1); 688 } 689 690 f2fs_update_parent_metadata(dir, inode, 0); 691 fail: 692 if (inode) 693 f2fs_up_write(&F2FS_I(inode)->i_sem); 694 out: 695 f2fs_put_page(ipage, 1); 696 return err; 697 } 698 699 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 700 struct inode *dir, struct inode *inode) 701 { 702 struct f2fs_dentry_ptr d; 703 void *inline_dentry; 704 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len)); 705 unsigned int bit_pos; 706 int i; 707 708 lock_page(page); 709 f2fs_wait_on_page_writeback(page, NODE, true, true); 710 711 inline_dentry = inline_data_addr(dir, page); 712 make_dentry_ptr_inline(dir, &d, inline_dentry); 713 714 bit_pos = dentry - d.dentry; 715 for (i = 0; i < slots; i++) 716 __clear_bit_le(bit_pos + i, d.bitmap); 717 718 set_page_dirty(page); 719 f2fs_put_page(page, 1); 720 721 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 722 f2fs_mark_inode_dirty_sync(dir, false); 723 724 if (inode) 725 f2fs_drop_nlink(dir, inode); 726 } 727 728 bool f2fs_empty_inline_dir(struct inode *dir) 729 { 730 struct f2fs_sb_info *sbi = F2FS_I_SB(dir); 731 struct page *ipage; 732 unsigned int bit_pos = 2; 733 void *inline_dentry; 734 struct f2fs_dentry_ptr d; 735 736 ipage = f2fs_get_node_page(sbi, dir->i_ino); 737 if (IS_ERR(ipage)) 738 return false; 739 740 inline_dentry = inline_data_addr(dir, ipage); 741 make_dentry_ptr_inline(dir, &d, inline_dentry); 742 743 bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos); 744 745 f2fs_put_page(ipage, 1); 746 747 if (bit_pos < d.max) 748 return false; 749 750 return true; 751 } 752 753 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 754 struct fscrypt_str *fstr) 755 { 756 struct inode *inode = file_inode(file); 757 struct page *ipage = NULL; 758 struct f2fs_dentry_ptr d; 759 void *inline_dentry = NULL; 760 int err; 761 762 make_dentry_ptr_inline(inode, &d, inline_dentry); 763 764 if (ctx->pos == d.max) 765 return 0; 766 767 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 768 if (IS_ERR(ipage)) 769 return PTR_ERR(ipage); 770 771 /* 772 * f2fs_readdir was protected by inode.i_rwsem, it is safe to access 773 * ipage without page's lock held. 774 */ 775 unlock_page(ipage); 776 777 inline_dentry = inline_data_addr(inode, ipage); 778 779 make_dentry_ptr_inline(inode, &d, inline_dentry); 780 781 err = f2fs_fill_dentries(ctx, &d, 0, fstr); 782 if (!err) 783 ctx->pos = d.max; 784 785 f2fs_put_page(ipage, 0); 786 return err < 0 ? err : 0; 787 } 788 789 int f2fs_inline_data_fiemap(struct inode *inode, 790 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len) 791 { 792 __u64 byteaddr, ilen; 793 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED | 794 FIEMAP_EXTENT_LAST; 795 struct node_info ni; 796 struct page *ipage; 797 int err = 0; 798 799 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 800 if (IS_ERR(ipage)) 801 return PTR_ERR(ipage); 802 803 if ((S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) && 804 !f2fs_has_inline_data(inode)) { 805 err = -EAGAIN; 806 goto out; 807 } 808 809 if (S_ISDIR(inode->i_mode) && !f2fs_has_inline_dentry(inode)) { 810 err = -EAGAIN; 811 goto out; 812 } 813 814 ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode)); 815 if (start >= ilen) 816 goto out; 817 if (start + len < ilen) 818 ilen = start + len; 819 ilen -= start; 820 821 err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni, false); 822 if (err) 823 goto out; 824 825 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits; 826 byteaddr += (char *)inline_data_addr(inode, ipage) - 827 (char *)F2FS_INODE(ipage); 828 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags); 829 trace_f2fs_fiemap(inode, start, byteaddr, ilen, flags, err); 830 out: 831 f2fs_put_page(ipage, 1); 832 return err; 833 } 834