1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/f2fs_fs.h> 12 #include <linux/kthread.h> 13 #include <linux/delay.h> 14 #include <linux/freezer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/random.h> 17 #include <linux/sched/mm.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "gc.h" 23 #include "iostat.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *victim_entry_slab; 27 28 static unsigned int count_bits(const unsigned long *addr, 29 unsigned int offset, unsigned int len); 30 31 static int gc_thread_func(void *data) 32 { 33 struct f2fs_sb_info *sbi = data; 34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 37 unsigned int wait_ms; 38 struct f2fs_gc_control gc_control = { 39 .victim_segno = NULL_SEGNO, 40 .should_migrate_blocks = false, 41 .err_gc_skipped = false }; 42 43 wait_ms = gc_th->min_sleep_time; 44 45 set_freezable(); 46 do { 47 bool sync_mode, foreground = false; 48 49 wait_event_interruptible_timeout(*wq, 50 kthread_should_stop() || freezing(current) || 51 waitqueue_active(fggc_wq) || 52 gc_th->gc_wake, 53 msecs_to_jiffies(wait_ms)); 54 55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) 56 foreground = true; 57 58 /* give it a try one time */ 59 if (gc_th->gc_wake) 60 gc_th->gc_wake = 0; 61 62 if (try_to_freeze()) { 63 stat_other_skip_bggc_count(sbi); 64 continue; 65 } 66 if (kthread_should_stop()) 67 break; 68 69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 70 increase_sleep_time(gc_th, &wait_ms); 71 stat_other_skip_bggc_count(sbi); 72 continue; 73 } 74 75 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 76 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 77 f2fs_stop_checkpoint(sbi, false, 78 STOP_CP_REASON_FAULT_INJECT); 79 } 80 81 if (!sb_start_write_trylock(sbi->sb)) { 82 stat_other_skip_bggc_count(sbi); 83 continue; 84 } 85 86 /* 87 * [GC triggering condition] 88 * 0. GC is not conducted currently. 89 * 1. There are enough dirty segments. 90 * 2. IO subsystem is idle by checking the # of writeback pages. 91 * 3. IO subsystem is idle by checking the # of requests in 92 * bdev's request list. 93 * 94 * Note) We have to avoid triggering GCs frequently. 95 * Because it is possible that some segments can be 96 * invalidated soon after by user update or deletion. 97 * So, I'd like to wait some time to collect dirty segments. 98 */ 99 if (sbi->gc_mode == GC_URGENT_HIGH || 100 sbi->gc_mode == GC_URGENT_MID) { 101 wait_ms = gc_th->urgent_sleep_time; 102 f2fs_down_write(&sbi->gc_lock); 103 goto do_gc; 104 } 105 106 if (foreground) { 107 f2fs_down_write(&sbi->gc_lock); 108 goto do_gc; 109 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 110 stat_other_skip_bggc_count(sbi); 111 goto next; 112 } 113 114 if (!is_idle(sbi, GC_TIME)) { 115 increase_sleep_time(gc_th, &wait_ms); 116 f2fs_up_write(&sbi->gc_lock); 117 stat_io_skip_bggc_count(sbi); 118 goto next; 119 } 120 121 if (has_enough_invalid_blocks(sbi)) 122 decrease_sleep_time(gc_th, &wait_ms); 123 else 124 increase_sleep_time(gc_th, &wait_ms); 125 do_gc: 126 if (!foreground) 127 stat_inc_bggc_count(sbi->stat_info); 128 129 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC; 130 131 /* foreground GC was been triggered via f2fs_balance_fs() */ 132 if (foreground) 133 sync_mode = false; 134 135 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC; 136 gc_control.no_bg_gc = foreground; 137 gc_control.nr_free_secs = foreground ? 1 : 0; 138 139 /* if return value is not zero, no victim was selected */ 140 if (f2fs_gc(sbi, &gc_control)) { 141 /* don't bother wait_ms by foreground gc */ 142 if (!foreground) 143 wait_ms = gc_th->no_gc_sleep_time; 144 } else { 145 /* reset wait_ms to default sleep time */ 146 if (wait_ms == gc_th->no_gc_sleep_time) 147 wait_ms = gc_th->min_sleep_time; 148 } 149 150 if (foreground) 151 wake_up_all(&gc_th->fggc_wq); 152 153 trace_f2fs_background_gc(sbi->sb, wait_ms, 154 prefree_segments(sbi), free_segments(sbi)); 155 156 /* balancing f2fs's metadata periodically */ 157 f2fs_balance_fs_bg(sbi, true); 158 next: 159 if (sbi->gc_mode != GC_NORMAL) { 160 spin_lock(&sbi->gc_remaining_trials_lock); 161 if (sbi->gc_remaining_trials) { 162 sbi->gc_remaining_trials--; 163 if (!sbi->gc_remaining_trials) 164 sbi->gc_mode = GC_NORMAL; 165 } 166 spin_unlock(&sbi->gc_remaining_trials_lock); 167 } 168 sb_end_write(sbi->sb); 169 170 } while (!kthread_should_stop()); 171 return 0; 172 } 173 174 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 175 { 176 struct f2fs_gc_kthread *gc_th; 177 dev_t dev = sbi->sb->s_bdev->bd_dev; 178 179 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 180 if (!gc_th) 181 return -ENOMEM; 182 183 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 184 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 185 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 186 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 187 188 gc_th->gc_wake = 0; 189 190 sbi->gc_thread = gc_th; 191 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 192 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 193 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 194 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 195 if (IS_ERR(gc_th->f2fs_gc_task)) { 196 int err = PTR_ERR(gc_th->f2fs_gc_task); 197 198 kfree(gc_th); 199 sbi->gc_thread = NULL; 200 return err; 201 } 202 203 return 0; 204 } 205 206 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 207 { 208 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 209 210 if (!gc_th) 211 return; 212 kthread_stop(gc_th->f2fs_gc_task); 213 wake_up_all(&gc_th->fggc_wq); 214 kfree(gc_th); 215 sbi->gc_thread = NULL; 216 } 217 218 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 219 { 220 int gc_mode; 221 222 if (gc_type == BG_GC) { 223 if (sbi->am.atgc_enabled) 224 gc_mode = GC_AT; 225 else 226 gc_mode = GC_CB; 227 } else { 228 gc_mode = GC_GREEDY; 229 } 230 231 switch (sbi->gc_mode) { 232 case GC_IDLE_CB: 233 gc_mode = GC_CB; 234 break; 235 case GC_IDLE_GREEDY: 236 case GC_URGENT_HIGH: 237 gc_mode = GC_GREEDY; 238 break; 239 case GC_IDLE_AT: 240 gc_mode = GC_AT; 241 break; 242 } 243 244 return gc_mode; 245 } 246 247 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 248 int type, struct victim_sel_policy *p) 249 { 250 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 251 252 if (p->alloc_mode == SSR) { 253 p->gc_mode = GC_GREEDY; 254 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 255 p->max_search = dirty_i->nr_dirty[type]; 256 p->ofs_unit = 1; 257 } else if (p->alloc_mode == AT_SSR) { 258 p->gc_mode = GC_GREEDY; 259 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 260 p->max_search = dirty_i->nr_dirty[type]; 261 p->ofs_unit = 1; 262 } else { 263 p->gc_mode = select_gc_type(sbi, gc_type); 264 p->ofs_unit = sbi->segs_per_sec; 265 if (__is_large_section(sbi)) { 266 p->dirty_bitmap = dirty_i->dirty_secmap; 267 p->max_search = count_bits(p->dirty_bitmap, 268 0, MAIN_SECS(sbi)); 269 } else { 270 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 271 p->max_search = dirty_i->nr_dirty[DIRTY]; 272 } 273 } 274 275 /* 276 * adjust candidates range, should select all dirty segments for 277 * foreground GC and urgent GC cases. 278 */ 279 if (gc_type != FG_GC && 280 (sbi->gc_mode != GC_URGENT_HIGH) && 281 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 282 p->max_search > sbi->max_victim_search) 283 p->max_search = sbi->max_victim_search; 284 285 /* let's select beginning hot/small space first in no_heap mode*/ 286 if (f2fs_need_rand_seg(sbi)) 287 p->offset = get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec); 288 else if (test_opt(sbi, NOHEAP) && 289 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 290 p->offset = 0; 291 else 292 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 293 } 294 295 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 296 struct victim_sel_policy *p) 297 { 298 /* SSR allocates in a segment unit */ 299 if (p->alloc_mode == SSR) 300 return sbi->blocks_per_seg; 301 else if (p->alloc_mode == AT_SSR) 302 return UINT_MAX; 303 304 /* LFS */ 305 if (p->gc_mode == GC_GREEDY) 306 return 2 * sbi->blocks_per_seg * p->ofs_unit; 307 else if (p->gc_mode == GC_CB) 308 return UINT_MAX; 309 else if (p->gc_mode == GC_AT) 310 return UINT_MAX; 311 else /* No other gc_mode */ 312 return 0; 313 } 314 315 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 316 { 317 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 318 unsigned int secno; 319 320 /* 321 * If the gc_type is FG_GC, we can select victim segments 322 * selected by background GC before. 323 * Those segments guarantee they have small valid blocks. 324 */ 325 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 326 if (sec_usage_check(sbi, secno)) 327 continue; 328 clear_bit(secno, dirty_i->victim_secmap); 329 return GET_SEG_FROM_SEC(sbi, secno); 330 } 331 return NULL_SEGNO; 332 } 333 334 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 335 { 336 struct sit_info *sit_i = SIT_I(sbi); 337 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 338 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 339 unsigned long long mtime = 0; 340 unsigned int vblocks; 341 unsigned char age = 0; 342 unsigned char u; 343 unsigned int i; 344 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno); 345 346 for (i = 0; i < usable_segs_per_sec; i++) 347 mtime += get_seg_entry(sbi, start + i)->mtime; 348 vblocks = get_valid_blocks(sbi, segno, true); 349 350 mtime = div_u64(mtime, usable_segs_per_sec); 351 vblocks = div_u64(vblocks, usable_segs_per_sec); 352 353 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 354 355 /* Handle if the system time has changed by the user */ 356 if (mtime < sit_i->min_mtime) 357 sit_i->min_mtime = mtime; 358 if (mtime > sit_i->max_mtime) 359 sit_i->max_mtime = mtime; 360 if (sit_i->max_mtime != sit_i->min_mtime) 361 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 362 sit_i->max_mtime - sit_i->min_mtime); 363 364 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 365 } 366 367 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 368 unsigned int segno, struct victim_sel_policy *p) 369 { 370 if (p->alloc_mode == SSR) 371 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 372 373 /* alloc_mode == LFS */ 374 if (p->gc_mode == GC_GREEDY) 375 return get_valid_blocks(sbi, segno, true); 376 else if (p->gc_mode == GC_CB) 377 return get_cb_cost(sbi, segno); 378 379 f2fs_bug_on(sbi, 1); 380 return 0; 381 } 382 383 static unsigned int count_bits(const unsigned long *addr, 384 unsigned int offset, unsigned int len) 385 { 386 unsigned int end = offset + len, sum = 0; 387 388 while (offset < end) { 389 if (test_bit(offset++, addr)) 390 ++sum; 391 } 392 return sum; 393 } 394 395 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi, 396 unsigned long long mtime, unsigned int segno, 397 struct rb_node *parent, struct rb_node **p, 398 bool left_most) 399 { 400 struct atgc_management *am = &sbi->am; 401 struct victim_entry *ve; 402 403 ve = f2fs_kmem_cache_alloc(victim_entry_slab, 404 GFP_NOFS, true, NULL); 405 406 ve->mtime = mtime; 407 ve->segno = segno; 408 409 rb_link_node(&ve->rb_node, parent, p); 410 rb_insert_color_cached(&ve->rb_node, &am->root, left_most); 411 412 list_add_tail(&ve->list, &am->victim_list); 413 414 am->victim_count++; 415 416 return ve; 417 } 418 419 static void insert_victim_entry(struct f2fs_sb_info *sbi, 420 unsigned long long mtime, unsigned int segno) 421 { 422 struct atgc_management *am = &sbi->am; 423 struct rb_node **p; 424 struct rb_node *parent = NULL; 425 bool left_most = true; 426 427 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most); 428 attach_victim_entry(sbi, mtime, segno, parent, p, left_most); 429 } 430 431 static void add_victim_entry(struct f2fs_sb_info *sbi, 432 struct victim_sel_policy *p, unsigned int segno) 433 { 434 struct sit_info *sit_i = SIT_I(sbi); 435 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 436 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 437 unsigned long long mtime = 0; 438 unsigned int i; 439 440 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 441 if (p->gc_mode == GC_AT && 442 get_valid_blocks(sbi, segno, true) == 0) 443 return; 444 } 445 446 for (i = 0; i < sbi->segs_per_sec; i++) 447 mtime += get_seg_entry(sbi, start + i)->mtime; 448 mtime = div_u64(mtime, sbi->segs_per_sec); 449 450 /* Handle if the system time has changed by the user */ 451 if (mtime < sit_i->min_mtime) 452 sit_i->min_mtime = mtime; 453 if (mtime > sit_i->max_mtime) 454 sit_i->max_mtime = mtime; 455 if (mtime < sit_i->dirty_min_mtime) 456 sit_i->dirty_min_mtime = mtime; 457 if (mtime > sit_i->dirty_max_mtime) 458 sit_i->dirty_max_mtime = mtime; 459 460 /* don't choose young section as candidate */ 461 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 462 return; 463 464 insert_victim_entry(sbi, mtime, segno); 465 } 466 467 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi, 468 struct victim_sel_policy *p) 469 { 470 struct atgc_management *am = &sbi->am; 471 struct rb_node *parent = NULL; 472 bool left_most; 473 474 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most); 475 476 return parent; 477 } 478 479 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 480 struct victim_sel_policy *p) 481 { 482 struct sit_info *sit_i = SIT_I(sbi); 483 struct atgc_management *am = &sbi->am; 484 struct rb_root_cached *root = &am->root; 485 struct rb_node *node; 486 struct rb_entry *re; 487 struct victim_entry *ve; 488 unsigned long long total_time; 489 unsigned long long age, u, accu; 490 unsigned long long max_mtime = sit_i->dirty_max_mtime; 491 unsigned long long min_mtime = sit_i->dirty_min_mtime; 492 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi); 493 unsigned int vblocks; 494 unsigned int dirty_threshold = max(am->max_candidate_count, 495 am->candidate_ratio * 496 am->victim_count / 100); 497 unsigned int age_weight = am->age_weight; 498 unsigned int cost; 499 unsigned int iter = 0; 500 501 if (max_mtime < min_mtime) 502 return; 503 504 max_mtime += 1; 505 total_time = max_mtime - min_mtime; 506 507 accu = div64_u64(ULLONG_MAX, total_time); 508 accu = min_t(unsigned long long, div_u64(accu, 100), 509 DEFAULT_ACCURACY_CLASS); 510 511 node = rb_first_cached(root); 512 next: 513 re = rb_entry_safe(node, struct rb_entry, rb_node); 514 if (!re) 515 return; 516 517 ve = (struct victim_entry *)re; 518 519 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 520 goto skip; 521 522 /* age = 10000 * x% * 60 */ 523 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 524 age_weight; 525 526 vblocks = get_valid_blocks(sbi, ve->segno, true); 527 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 528 529 /* u = 10000 * x% * 40 */ 530 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 531 (100 - age_weight); 532 533 f2fs_bug_on(sbi, age + u >= UINT_MAX); 534 535 cost = UINT_MAX - (age + u); 536 iter++; 537 538 if (cost < p->min_cost || 539 (cost == p->min_cost && age > p->oldest_age)) { 540 p->min_cost = cost; 541 p->oldest_age = age; 542 p->min_segno = ve->segno; 543 } 544 skip: 545 if (iter < dirty_threshold) { 546 node = rb_next(node); 547 goto next; 548 } 549 } 550 551 /* 552 * select candidates around source section in range of 553 * [target - dirty_threshold, target + dirty_threshold] 554 */ 555 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 556 struct victim_sel_policy *p) 557 { 558 struct sit_info *sit_i = SIT_I(sbi); 559 struct atgc_management *am = &sbi->am; 560 struct rb_node *node; 561 struct rb_entry *re; 562 struct victim_entry *ve; 563 unsigned long long age; 564 unsigned long long max_mtime = sit_i->dirty_max_mtime; 565 unsigned long long min_mtime = sit_i->dirty_min_mtime; 566 unsigned int seg_blocks = sbi->blocks_per_seg; 567 unsigned int vblocks; 568 unsigned int dirty_threshold = max(am->max_candidate_count, 569 am->candidate_ratio * 570 am->victim_count / 100); 571 unsigned int cost; 572 unsigned int iter = 0; 573 int stage = 0; 574 575 if (max_mtime < min_mtime) 576 return; 577 max_mtime += 1; 578 next_stage: 579 node = lookup_central_victim(sbi, p); 580 next_node: 581 re = rb_entry_safe(node, struct rb_entry, rb_node); 582 if (!re) { 583 if (stage == 0) 584 goto skip_stage; 585 return; 586 } 587 588 ve = (struct victim_entry *)re; 589 590 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 591 goto skip_node; 592 593 age = max_mtime - ve->mtime; 594 595 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 596 f2fs_bug_on(sbi, !vblocks); 597 598 /* rare case */ 599 if (vblocks == seg_blocks) 600 goto skip_node; 601 602 iter++; 603 604 age = max_mtime - abs(p->age - age); 605 cost = UINT_MAX - vblocks; 606 607 if (cost < p->min_cost || 608 (cost == p->min_cost && age > p->oldest_age)) { 609 p->min_cost = cost; 610 p->oldest_age = age; 611 p->min_segno = ve->segno; 612 } 613 skip_node: 614 if (iter < dirty_threshold) { 615 if (stage == 0) 616 node = rb_prev(node); 617 else if (stage == 1) 618 node = rb_next(node); 619 goto next_node; 620 } 621 skip_stage: 622 if (stage < 1) { 623 stage++; 624 iter = 0; 625 goto next_stage; 626 } 627 } 628 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 629 struct victim_sel_policy *p) 630 { 631 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 632 &sbi->am.root, true)); 633 634 if (p->gc_mode == GC_AT) 635 atgc_lookup_victim(sbi, p); 636 else if (p->alloc_mode == AT_SSR) 637 atssr_lookup_victim(sbi, p); 638 else 639 f2fs_bug_on(sbi, 1); 640 } 641 642 static void release_victim_entry(struct f2fs_sb_info *sbi) 643 { 644 struct atgc_management *am = &sbi->am; 645 struct victim_entry *ve, *tmp; 646 647 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 648 list_del(&ve->list); 649 kmem_cache_free(victim_entry_slab, ve); 650 am->victim_count--; 651 } 652 653 am->root = RB_ROOT_CACHED; 654 655 f2fs_bug_on(sbi, am->victim_count); 656 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 657 } 658 659 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno) 660 { 661 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 662 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 663 664 if (!dirty_i->enable_pin_section) 665 return false; 666 if (!test_and_set_bit(secno, dirty_i->pinned_secmap)) 667 dirty_i->pinned_secmap_cnt++; 668 return true; 669 } 670 671 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i) 672 { 673 return dirty_i->pinned_secmap_cnt; 674 } 675 676 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i, 677 unsigned int secno) 678 { 679 return dirty_i->enable_pin_section && 680 f2fs_pinned_section_exists(dirty_i) && 681 test_bit(secno, dirty_i->pinned_secmap); 682 } 683 684 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable) 685 { 686 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 687 688 if (f2fs_pinned_section_exists(DIRTY_I(sbi))) { 689 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size); 690 DIRTY_I(sbi)->pinned_secmap_cnt = 0; 691 } 692 DIRTY_I(sbi)->enable_pin_section = enable; 693 } 694 695 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type, 696 unsigned int segno) 697 { 698 if (!f2fs_is_pinned_file(inode)) 699 return 0; 700 if (gc_type != FG_GC) 701 return -EBUSY; 702 if (!f2fs_pin_section(F2FS_I_SB(inode), segno)) 703 f2fs_pin_file_control(inode, true); 704 return -EAGAIN; 705 } 706 707 /* 708 * This function is called from two paths. 709 * One is garbage collection and the other is SSR segment selection. 710 * When it is called during GC, it just gets a victim segment 711 * and it does not remove it from dirty seglist. 712 * When it is called from SSR segment selection, it finds a segment 713 * which has minimum valid blocks and removes it from dirty seglist. 714 */ 715 static int get_victim_by_default(struct f2fs_sb_info *sbi, 716 unsigned int *result, int gc_type, int type, 717 char alloc_mode, unsigned long long age) 718 { 719 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 720 struct sit_info *sm = SIT_I(sbi); 721 struct victim_sel_policy p; 722 unsigned int secno, last_victim; 723 unsigned int last_segment; 724 unsigned int nsearched; 725 bool is_atgc; 726 int ret = 0; 727 728 mutex_lock(&dirty_i->seglist_lock); 729 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 730 731 p.alloc_mode = alloc_mode; 732 p.age = age; 733 p.age_threshold = sbi->am.age_threshold; 734 735 retry: 736 select_policy(sbi, gc_type, type, &p); 737 p.min_segno = NULL_SEGNO; 738 p.oldest_age = 0; 739 p.min_cost = get_max_cost(sbi, &p); 740 741 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 742 nsearched = 0; 743 744 if (is_atgc) 745 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 746 747 if (*result != NULL_SEGNO) { 748 if (!get_valid_blocks(sbi, *result, false)) { 749 ret = -ENODATA; 750 goto out; 751 } 752 753 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 754 ret = -EBUSY; 755 else 756 p.min_segno = *result; 757 goto out; 758 } 759 760 ret = -ENODATA; 761 if (p.max_search == 0) 762 goto out; 763 764 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 765 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 766 p.min_segno = sbi->next_victim_seg[BG_GC]; 767 *result = p.min_segno; 768 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 769 goto got_result; 770 } 771 if (gc_type == FG_GC && 772 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 773 p.min_segno = sbi->next_victim_seg[FG_GC]; 774 *result = p.min_segno; 775 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 776 goto got_result; 777 } 778 } 779 780 last_victim = sm->last_victim[p.gc_mode]; 781 if (p.alloc_mode == LFS && gc_type == FG_GC) { 782 p.min_segno = check_bg_victims(sbi); 783 if (p.min_segno != NULL_SEGNO) 784 goto got_it; 785 } 786 787 while (1) { 788 unsigned long cost, *dirty_bitmap; 789 unsigned int unit_no, segno; 790 791 dirty_bitmap = p.dirty_bitmap; 792 unit_no = find_next_bit(dirty_bitmap, 793 last_segment / p.ofs_unit, 794 p.offset / p.ofs_unit); 795 segno = unit_no * p.ofs_unit; 796 if (segno >= last_segment) { 797 if (sm->last_victim[p.gc_mode]) { 798 last_segment = 799 sm->last_victim[p.gc_mode]; 800 sm->last_victim[p.gc_mode] = 0; 801 p.offset = 0; 802 continue; 803 } 804 break; 805 } 806 807 p.offset = segno + p.ofs_unit; 808 nsearched++; 809 810 #ifdef CONFIG_F2FS_CHECK_FS 811 /* 812 * skip selecting the invalid segno (that is failed due to block 813 * validity check failure during GC) to avoid endless GC loop in 814 * such cases. 815 */ 816 if (test_bit(segno, sm->invalid_segmap)) 817 goto next; 818 #endif 819 820 secno = GET_SEC_FROM_SEG(sbi, segno); 821 822 if (sec_usage_check(sbi, secno)) 823 goto next; 824 825 /* Don't touch checkpointed data */ 826 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 827 if (p.alloc_mode == LFS) { 828 /* 829 * LFS is set to find source section during GC. 830 * The victim should have no checkpointed data. 831 */ 832 if (get_ckpt_valid_blocks(sbi, segno, true)) 833 goto next; 834 } else { 835 /* 836 * SSR | AT_SSR are set to find target segment 837 * for writes which can be full by checkpointed 838 * and newly written blocks. 839 */ 840 if (!f2fs_segment_has_free_slot(sbi, segno)) 841 goto next; 842 } 843 } 844 845 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 846 goto next; 847 848 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno)) 849 goto next; 850 851 if (is_atgc) { 852 add_victim_entry(sbi, &p, segno); 853 goto next; 854 } 855 856 cost = get_gc_cost(sbi, segno, &p); 857 858 if (p.min_cost > cost) { 859 p.min_segno = segno; 860 p.min_cost = cost; 861 } 862 next: 863 if (nsearched >= p.max_search) { 864 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 865 sm->last_victim[p.gc_mode] = 866 last_victim + p.ofs_unit; 867 else 868 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 869 sm->last_victim[p.gc_mode] %= 870 (MAIN_SECS(sbi) * sbi->segs_per_sec); 871 break; 872 } 873 } 874 875 /* get victim for GC_AT/AT_SSR */ 876 if (is_atgc) { 877 lookup_victim_by_age(sbi, &p); 878 release_victim_entry(sbi); 879 } 880 881 if (is_atgc && p.min_segno == NULL_SEGNO && 882 sm->elapsed_time < p.age_threshold) { 883 p.age_threshold = 0; 884 goto retry; 885 } 886 887 if (p.min_segno != NULL_SEGNO) { 888 got_it: 889 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 890 got_result: 891 if (p.alloc_mode == LFS) { 892 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 893 if (gc_type == FG_GC) 894 sbi->cur_victim_sec = secno; 895 else 896 set_bit(secno, dirty_i->victim_secmap); 897 } 898 ret = 0; 899 900 } 901 out: 902 if (p.min_segno != NULL_SEGNO) 903 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 904 sbi->cur_victim_sec, 905 prefree_segments(sbi), free_segments(sbi)); 906 mutex_unlock(&dirty_i->seglist_lock); 907 908 return ret; 909 } 910 911 static const struct victim_selection default_v_ops = { 912 .get_victim = get_victim_by_default, 913 }; 914 915 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 916 { 917 struct inode_entry *ie; 918 919 ie = radix_tree_lookup(&gc_list->iroot, ino); 920 if (ie) 921 return ie->inode; 922 return NULL; 923 } 924 925 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 926 { 927 struct inode_entry *new_ie; 928 929 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 930 iput(inode); 931 return; 932 } 933 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, 934 GFP_NOFS, true, NULL); 935 new_ie->inode = inode; 936 937 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 938 list_add_tail(&new_ie->list, &gc_list->ilist); 939 } 940 941 static void put_gc_inode(struct gc_inode_list *gc_list) 942 { 943 struct inode_entry *ie, *next_ie; 944 945 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 946 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 947 iput(ie->inode); 948 list_del(&ie->list); 949 kmem_cache_free(f2fs_inode_entry_slab, ie); 950 } 951 } 952 953 static int check_valid_map(struct f2fs_sb_info *sbi, 954 unsigned int segno, int offset) 955 { 956 struct sit_info *sit_i = SIT_I(sbi); 957 struct seg_entry *sentry; 958 int ret; 959 960 down_read(&sit_i->sentry_lock); 961 sentry = get_seg_entry(sbi, segno); 962 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 963 up_read(&sit_i->sentry_lock); 964 return ret; 965 } 966 967 /* 968 * This function compares node address got in summary with that in NAT. 969 * On validity, copy that node with cold status, otherwise (invalid node) 970 * ignore that. 971 */ 972 static int gc_node_segment(struct f2fs_sb_info *sbi, 973 struct f2fs_summary *sum, unsigned int segno, int gc_type) 974 { 975 struct f2fs_summary *entry; 976 block_t start_addr; 977 int off; 978 int phase = 0; 979 bool fggc = (gc_type == FG_GC); 980 int submitted = 0; 981 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 982 983 start_addr = START_BLOCK(sbi, segno); 984 985 next_step: 986 entry = sum; 987 988 if (fggc && phase == 2) 989 atomic_inc(&sbi->wb_sync_req[NODE]); 990 991 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 992 nid_t nid = le32_to_cpu(entry->nid); 993 struct page *node_page; 994 struct node_info ni; 995 int err; 996 997 /* stop BG_GC if there is not enough free sections. */ 998 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 999 return submitted; 1000 1001 if (check_valid_map(sbi, segno, off) == 0) 1002 continue; 1003 1004 if (phase == 0) { 1005 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1006 META_NAT, true); 1007 continue; 1008 } 1009 1010 if (phase == 1) { 1011 f2fs_ra_node_page(sbi, nid); 1012 continue; 1013 } 1014 1015 /* phase == 2 */ 1016 node_page = f2fs_get_node_page(sbi, nid); 1017 if (IS_ERR(node_page)) 1018 continue; 1019 1020 /* block may become invalid during f2fs_get_node_page */ 1021 if (check_valid_map(sbi, segno, off) == 0) { 1022 f2fs_put_page(node_page, 1); 1023 continue; 1024 } 1025 1026 if (f2fs_get_node_info(sbi, nid, &ni, false)) { 1027 f2fs_put_page(node_page, 1); 1028 continue; 1029 } 1030 1031 if (ni.blk_addr != start_addr + off) { 1032 f2fs_put_page(node_page, 1); 1033 continue; 1034 } 1035 1036 err = f2fs_move_node_page(node_page, gc_type); 1037 if (!err && gc_type == FG_GC) 1038 submitted++; 1039 stat_inc_node_blk_count(sbi, 1, gc_type); 1040 } 1041 1042 if (++phase < 3) 1043 goto next_step; 1044 1045 if (fggc) 1046 atomic_dec(&sbi->wb_sync_req[NODE]); 1047 return submitted; 1048 } 1049 1050 /* 1051 * Calculate start block index indicating the given node offset. 1052 * Be careful, caller should give this node offset only indicating direct node 1053 * blocks. If any node offsets, which point the other types of node blocks such 1054 * as indirect or double indirect node blocks, are given, it must be a caller's 1055 * bug. 1056 */ 1057 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 1058 { 1059 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 1060 unsigned int bidx; 1061 1062 if (node_ofs == 0) 1063 return 0; 1064 1065 if (node_ofs <= 2) { 1066 bidx = node_ofs - 1; 1067 } else if (node_ofs <= indirect_blks) { 1068 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 1069 1070 bidx = node_ofs - 2 - dec; 1071 } else { 1072 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 1073 1074 bidx = node_ofs - 5 - dec; 1075 } 1076 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 1077 } 1078 1079 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1080 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 1081 { 1082 struct page *node_page; 1083 nid_t nid; 1084 unsigned int ofs_in_node, max_addrs, base; 1085 block_t source_blkaddr; 1086 1087 nid = le32_to_cpu(sum->nid); 1088 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1089 1090 node_page = f2fs_get_node_page(sbi, nid); 1091 if (IS_ERR(node_page)) 1092 return false; 1093 1094 if (f2fs_get_node_info(sbi, nid, dni, false)) { 1095 f2fs_put_page(node_page, 1); 1096 return false; 1097 } 1098 1099 if (sum->version != dni->version) { 1100 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1101 __func__); 1102 set_sbi_flag(sbi, SBI_NEED_FSCK); 1103 } 1104 1105 if (f2fs_check_nid_range(sbi, dni->ino)) { 1106 f2fs_put_page(node_page, 1); 1107 return false; 1108 } 1109 1110 if (IS_INODE(node_page)) { 1111 base = offset_in_addr(F2FS_INODE(node_page)); 1112 max_addrs = DEF_ADDRS_PER_INODE; 1113 } else { 1114 base = 0; 1115 max_addrs = DEF_ADDRS_PER_BLOCK; 1116 } 1117 1118 if (base + ofs_in_node >= max_addrs) { 1119 f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u", 1120 base, ofs_in_node, max_addrs, dni->ino, dni->nid); 1121 f2fs_put_page(node_page, 1); 1122 return false; 1123 } 1124 1125 *nofs = ofs_of_node(node_page); 1126 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 1127 f2fs_put_page(node_page, 1); 1128 1129 if (source_blkaddr != blkaddr) { 1130 #ifdef CONFIG_F2FS_CHECK_FS 1131 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1132 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1133 1134 if (unlikely(check_valid_map(sbi, segno, offset))) { 1135 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1136 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1137 blkaddr, source_blkaddr, segno); 1138 set_sbi_flag(sbi, SBI_NEED_FSCK); 1139 } 1140 } 1141 #endif 1142 return false; 1143 } 1144 return true; 1145 } 1146 1147 static int ra_data_block(struct inode *inode, pgoff_t index) 1148 { 1149 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1150 struct address_space *mapping = inode->i_mapping; 1151 struct dnode_of_data dn; 1152 struct page *page; 1153 struct extent_info ei = {0, }; 1154 struct f2fs_io_info fio = { 1155 .sbi = sbi, 1156 .ino = inode->i_ino, 1157 .type = DATA, 1158 .temp = COLD, 1159 .op = REQ_OP_READ, 1160 .op_flags = 0, 1161 .encrypted_page = NULL, 1162 .in_list = false, 1163 .retry = false, 1164 }; 1165 int err; 1166 1167 page = f2fs_grab_cache_page(mapping, index, true); 1168 if (!page) 1169 return -ENOMEM; 1170 1171 if (f2fs_lookup_read_extent_cache(inode, index, &ei)) { 1172 dn.data_blkaddr = ei.blk + index - ei.fofs; 1173 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1174 DATA_GENERIC_ENHANCE_READ))) { 1175 err = -EFSCORRUPTED; 1176 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1177 goto put_page; 1178 } 1179 goto got_it; 1180 } 1181 1182 set_new_dnode(&dn, inode, NULL, NULL, 0); 1183 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1184 if (err) 1185 goto put_page; 1186 f2fs_put_dnode(&dn); 1187 1188 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1189 err = -ENOENT; 1190 goto put_page; 1191 } 1192 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1193 DATA_GENERIC_ENHANCE))) { 1194 err = -EFSCORRUPTED; 1195 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1196 goto put_page; 1197 } 1198 got_it: 1199 /* read page */ 1200 fio.page = page; 1201 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1202 1203 /* 1204 * don't cache encrypted data into meta inode until previous dirty 1205 * data were writebacked to avoid racing between GC and flush. 1206 */ 1207 f2fs_wait_on_page_writeback(page, DATA, true, true); 1208 1209 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1210 1211 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1212 dn.data_blkaddr, 1213 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1214 if (!fio.encrypted_page) { 1215 err = -ENOMEM; 1216 goto put_page; 1217 } 1218 1219 err = f2fs_submit_page_bio(&fio); 1220 if (err) 1221 goto put_encrypted_page; 1222 f2fs_put_page(fio.encrypted_page, 0); 1223 f2fs_put_page(page, 1); 1224 1225 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 1226 f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1227 1228 return 0; 1229 put_encrypted_page: 1230 f2fs_put_page(fio.encrypted_page, 1); 1231 put_page: 1232 f2fs_put_page(page, 1); 1233 return err; 1234 } 1235 1236 /* 1237 * Move data block via META_MAPPING while keeping locked data page. 1238 * This can be used to move blocks, aka LBAs, directly on disk. 1239 */ 1240 static int move_data_block(struct inode *inode, block_t bidx, 1241 int gc_type, unsigned int segno, int off) 1242 { 1243 struct f2fs_io_info fio = { 1244 .sbi = F2FS_I_SB(inode), 1245 .ino = inode->i_ino, 1246 .type = DATA, 1247 .temp = COLD, 1248 .op = REQ_OP_READ, 1249 .op_flags = 0, 1250 .encrypted_page = NULL, 1251 .in_list = false, 1252 .retry = false, 1253 }; 1254 struct dnode_of_data dn; 1255 struct f2fs_summary sum; 1256 struct node_info ni; 1257 struct page *page, *mpage; 1258 block_t newaddr; 1259 int err = 0; 1260 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1261 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1262 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1263 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1264 1265 /* do not read out */ 1266 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 1267 if (!page) 1268 return -ENOMEM; 1269 1270 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1271 err = -ENOENT; 1272 goto out; 1273 } 1274 1275 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1276 if (err) 1277 goto out; 1278 1279 set_new_dnode(&dn, inode, NULL, NULL, 0); 1280 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1281 if (err) 1282 goto out; 1283 1284 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1285 ClearPageUptodate(page); 1286 err = -ENOENT; 1287 goto put_out; 1288 } 1289 1290 /* 1291 * don't cache encrypted data into meta inode until previous dirty 1292 * data were writebacked to avoid racing between GC and flush. 1293 */ 1294 f2fs_wait_on_page_writeback(page, DATA, true, true); 1295 1296 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1297 1298 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1299 if (err) 1300 goto put_out; 1301 1302 /* read page */ 1303 fio.page = page; 1304 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1305 1306 if (lfs_mode) 1307 f2fs_down_write(&fio.sbi->io_order_lock); 1308 1309 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1310 fio.old_blkaddr, false); 1311 if (!mpage) { 1312 err = -ENOMEM; 1313 goto up_out; 1314 } 1315 1316 fio.encrypted_page = mpage; 1317 1318 /* read source block in mpage */ 1319 if (!PageUptodate(mpage)) { 1320 err = f2fs_submit_page_bio(&fio); 1321 if (err) { 1322 f2fs_put_page(mpage, 1); 1323 goto up_out; 1324 } 1325 1326 f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO, 1327 F2FS_BLKSIZE); 1328 f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO, 1329 F2FS_BLKSIZE); 1330 1331 lock_page(mpage); 1332 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1333 !PageUptodate(mpage))) { 1334 err = -EIO; 1335 f2fs_put_page(mpage, 1); 1336 goto up_out; 1337 } 1338 } 1339 1340 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1341 1342 /* allocate block address */ 1343 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1344 &sum, type, NULL); 1345 1346 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1347 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1348 if (!fio.encrypted_page) { 1349 err = -ENOMEM; 1350 f2fs_put_page(mpage, 1); 1351 goto recover_block; 1352 } 1353 1354 /* write target block */ 1355 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1356 memcpy(page_address(fio.encrypted_page), 1357 page_address(mpage), PAGE_SIZE); 1358 f2fs_put_page(mpage, 1); 1359 invalidate_mapping_pages(META_MAPPING(fio.sbi), 1360 fio.old_blkaddr, fio.old_blkaddr); 1361 f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr); 1362 1363 set_page_dirty(fio.encrypted_page); 1364 if (clear_page_dirty_for_io(fio.encrypted_page)) 1365 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1366 1367 set_page_writeback(fio.encrypted_page); 1368 ClearPageError(page); 1369 1370 fio.op = REQ_OP_WRITE; 1371 fio.op_flags = REQ_SYNC; 1372 fio.new_blkaddr = newaddr; 1373 f2fs_submit_page_write(&fio); 1374 if (fio.retry) { 1375 err = -EAGAIN; 1376 if (PageWriteback(fio.encrypted_page)) 1377 end_page_writeback(fio.encrypted_page); 1378 goto put_page_out; 1379 } 1380 1381 f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE); 1382 1383 f2fs_update_data_blkaddr(&dn, newaddr); 1384 set_inode_flag(inode, FI_APPEND_WRITE); 1385 if (page->index == 0) 1386 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1387 put_page_out: 1388 f2fs_put_page(fio.encrypted_page, 1); 1389 recover_block: 1390 if (err) 1391 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1392 true, true, true); 1393 up_out: 1394 if (lfs_mode) 1395 f2fs_up_write(&fio.sbi->io_order_lock); 1396 put_out: 1397 f2fs_put_dnode(&dn); 1398 out: 1399 f2fs_put_page(page, 1); 1400 return err; 1401 } 1402 1403 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1404 unsigned int segno, int off) 1405 { 1406 struct page *page; 1407 int err = 0; 1408 1409 page = f2fs_get_lock_data_page(inode, bidx, true); 1410 if (IS_ERR(page)) 1411 return PTR_ERR(page); 1412 1413 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1414 err = -ENOENT; 1415 goto out; 1416 } 1417 1418 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1419 if (err) 1420 goto out; 1421 1422 if (gc_type == BG_GC) { 1423 if (PageWriteback(page)) { 1424 err = -EAGAIN; 1425 goto out; 1426 } 1427 set_page_dirty(page); 1428 set_page_private_gcing(page); 1429 } else { 1430 struct f2fs_io_info fio = { 1431 .sbi = F2FS_I_SB(inode), 1432 .ino = inode->i_ino, 1433 .type = DATA, 1434 .temp = COLD, 1435 .op = REQ_OP_WRITE, 1436 .op_flags = REQ_SYNC, 1437 .old_blkaddr = NULL_ADDR, 1438 .page = page, 1439 .encrypted_page = NULL, 1440 .need_lock = LOCK_REQ, 1441 .io_type = FS_GC_DATA_IO, 1442 }; 1443 bool is_dirty = PageDirty(page); 1444 1445 retry: 1446 f2fs_wait_on_page_writeback(page, DATA, true, true); 1447 1448 set_page_dirty(page); 1449 if (clear_page_dirty_for_io(page)) { 1450 inode_dec_dirty_pages(inode); 1451 f2fs_remove_dirty_inode(inode); 1452 } 1453 1454 set_page_private_gcing(page); 1455 1456 err = f2fs_do_write_data_page(&fio); 1457 if (err) { 1458 clear_page_private_gcing(page); 1459 if (err == -ENOMEM) { 1460 memalloc_retry_wait(GFP_NOFS); 1461 goto retry; 1462 } 1463 if (is_dirty) 1464 set_page_dirty(page); 1465 } 1466 } 1467 out: 1468 f2fs_put_page(page, 1); 1469 return err; 1470 } 1471 1472 /* 1473 * This function tries to get parent node of victim data block, and identifies 1474 * data block validity. If the block is valid, copy that with cold status and 1475 * modify parent node. 1476 * If the parent node is not valid or the data block address is different, 1477 * the victim data block is ignored. 1478 */ 1479 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1480 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1481 bool force_migrate) 1482 { 1483 struct super_block *sb = sbi->sb; 1484 struct f2fs_summary *entry; 1485 block_t start_addr; 1486 int off; 1487 int phase = 0; 1488 int submitted = 0; 1489 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1490 1491 start_addr = START_BLOCK(sbi, segno); 1492 1493 next_step: 1494 entry = sum; 1495 1496 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1497 struct page *data_page; 1498 struct inode *inode; 1499 struct node_info dni; /* dnode info for the data */ 1500 unsigned int ofs_in_node, nofs; 1501 block_t start_bidx; 1502 nid_t nid = le32_to_cpu(entry->nid); 1503 1504 /* 1505 * stop BG_GC if there is not enough free sections. 1506 * Or, stop GC if the segment becomes fully valid caused by 1507 * race condition along with SSR block allocation. 1508 */ 1509 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1510 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1511 CAP_BLKS_PER_SEC(sbi))) 1512 return submitted; 1513 1514 if (check_valid_map(sbi, segno, off) == 0) 1515 continue; 1516 1517 if (phase == 0) { 1518 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1519 META_NAT, true); 1520 continue; 1521 } 1522 1523 if (phase == 1) { 1524 f2fs_ra_node_page(sbi, nid); 1525 continue; 1526 } 1527 1528 /* Get an inode by ino with checking validity */ 1529 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1530 continue; 1531 1532 if (phase == 2) { 1533 f2fs_ra_node_page(sbi, dni.ino); 1534 continue; 1535 } 1536 1537 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1538 1539 if (phase == 3) { 1540 int err; 1541 1542 inode = f2fs_iget(sb, dni.ino); 1543 if (IS_ERR(inode) || is_bad_inode(inode) || 1544 special_file(inode->i_mode)) 1545 continue; 1546 1547 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1548 if (err == -EAGAIN) { 1549 iput(inode); 1550 return submitted; 1551 } 1552 1553 if (!f2fs_down_write_trylock( 1554 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1555 iput(inode); 1556 sbi->skipped_gc_rwsem++; 1557 continue; 1558 } 1559 1560 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1561 ofs_in_node; 1562 1563 if (f2fs_post_read_required(inode)) { 1564 int err = ra_data_block(inode, start_bidx); 1565 1566 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1567 if (err) { 1568 iput(inode); 1569 continue; 1570 } 1571 add_gc_inode(gc_list, inode); 1572 continue; 1573 } 1574 1575 data_page = f2fs_get_read_data_page(inode, start_bidx, 1576 REQ_RAHEAD, true, NULL); 1577 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1578 if (IS_ERR(data_page)) { 1579 iput(inode); 1580 continue; 1581 } 1582 1583 f2fs_put_page(data_page, 0); 1584 add_gc_inode(gc_list, inode); 1585 continue; 1586 } 1587 1588 /* phase 4 */ 1589 inode = find_gc_inode(gc_list, dni.ino); 1590 if (inode) { 1591 struct f2fs_inode_info *fi = F2FS_I(inode); 1592 bool locked = false; 1593 int err; 1594 1595 if (S_ISREG(inode->i_mode)) { 1596 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[READ])) { 1597 sbi->skipped_gc_rwsem++; 1598 continue; 1599 } 1600 if (!f2fs_down_write_trylock( 1601 &fi->i_gc_rwsem[WRITE])) { 1602 sbi->skipped_gc_rwsem++; 1603 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1604 continue; 1605 } 1606 locked = true; 1607 1608 /* wait for all inflight aio data */ 1609 inode_dio_wait(inode); 1610 } 1611 1612 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1613 + ofs_in_node; 1614 if (f2fs_post_read_required(inode)) 1615 err = move_data_block(inode, start_bidx, 1616 gc_type, segno, off); 1617 else 1618 err = move_data_page(inode, start_bidx, gc_type, 1619 segno, off); 1620 1621 if (!err && (gc_type == FG_GC || 1622 f2fs_post_read_required(inode))) 1623 submitted++; 1624 1625 if (locked) { 1626 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1627 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1628 } 1629 1630 stat_inc_data_blk_count(sbi, 1, gc_type); 1631 } 1632 } 1633 1634 if (++phase < 5) 1635 goto next_step; 1636 1637 return submitted; 1638 } 1639 1640 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1641 int gc_type) 1642 { 1643 struct sit_info *sit_i = SIT_I(sbi); 1644 int ret; 1645 1646 down_write(&sit_i->sentry_lock); 1647 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, 1648 NO_CHECK_TYPE, LFS, 0); 1649 up_write(&sit_i->sentry_lock); 1650 return ret; 1651 } 1652 1653 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1654 unsigned int start_segno, 1655 struct gc_inode_list *gc_list, int gc_type, 1656 bool force_migrate) 1657 { 1658 struct page *sum_page; 1659 struct f2fs_summary_block *sum; 1660 struct blk_plug plug; 1661 unsigned int segno = start_segno; 1662 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1663 int seg_freed = 0, migrated = 0; 1664 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1665 SUM_TYPE_DATA : SUM_TYPE_NODE; 1666 int submitted = 0; 1667 1668 if (__is_large_section(sbi)) 1669 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1670 1671 /* 1672 * zone-capacity can be less than zone-size in zoned devices, 1673 * resulting in less than expected usable segments in the zone, 1674 * calculate the end segno in the zone which can be garbage collected 1675 */ 1676 if (f2fs_sb_has_blkzoned(sbi)) 1677 end_segno -= sbi->segs_per_sec - 1678 f2fs_usable_segs_in_sec(sbi, segno); 1679 1680 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1681 1682 /* readahead multi ssa blocks those have contiguous address */ 1683 if (__is_large_section(sbi)) 1684 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1685 end_segno - segno, META_SSA, true); 1686 1687 /* reference all summary page */ 1688 while (segno < end_segno) { 1689 sum_page = f2fs_get_sum_page(sbi, segno++); 1690 if (IS_ERR(sum_page)) { 1691 int err = PTR_ERR(sum_page); 1692 1693 end_segno = segno - 1; 1694 for (segno = start_segno; segno < end_segno; segno++) { 1695 sum_page = find_get_page(META_MAPPING(sbi), 1696 GET_SUM_BLOCK(sbi, segno)); 1697 f2fs_put_page(sum_page, 0); 1698 f2fs_put_page(sum_page, 0); 1699 } 1700 return err; 1701 } 1702 unlock_page(sum_page); 1703 } 1704 1705 blk_start_plug(&plug); 1706 1707 for (segno = start_segno; segno < end_segno; segno++) { 1708 1709 /* find segment summary of victim */ 1710 sum_page = find_get_page(META_MAPPING(sbi), 1711 GET_SUM_BLOCK(sbi, segno)); 1712 f2fs_put_page(sum_page, 0); 1713 1714 if (get_valid_blocks(sbi, segno, false) == 0) 1715 goto freed; 1716 if (gc_type == BG_GC && __is_large_section(sbi) && 1717 migrated >= sbi->migration_granularity) 1718 goto skip; 1719 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1720 goto skip; 1721 1722 sum = page_address(sum_page); 1723 if (type != GET_SUM_TYPE((&sum->footer))) { 1724 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1725 segno, type, GET_SUM_TYPE((&sum->footer))); 1726 set_sbi_flag(sbi, SBI_NEED_FSCK); 1727 f2fs_stop_checkpoint(sbi, false, 1728 STOP_CP_REASON_CORRUPTED_SUMMARY); 1729 goto skip; 1730 } 1731 1732 /* 1733 * this is to avoid deadlock: 1734 * - lock_page(sum_page) - f2fs_replace_block 1735 * - check_valid_map() - down_write(sentry_lock) 1736 * - down_read(sentry_lock) - change_curseg() 1737 * - lock_page(sum_page) 1738 */ 1739 if (type == SUM_TYPE_NODE) 1740 submitted += gc_node_segment(sbi, sum->entries, segno, 1741 gc_type); 1742 else 1743 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1744 segno, gc_type, 1745 force_migrate); 1746 1747 stat_inc_seg_count(sbi, type, gc_type); 1748 sbi->gc_reclaimed_segs[sbi->gc_mode]++; 1749 migrated++; 1750 1751 freed: 1752 if (gc_type == FG_GC && 1753 get_valid_blocks(sbi, segno, false) == 0) 1754 seg_freed++; 1755 1756 if (__is_large_section(sbi)) 1757 sbi->next_victim_seg[gc_type] = 1758 (segno + 1 < end_segno) ? segno + 1 : NULL_SEGNO; 1759 skip: 1760 f2fs_put_page(sum_page, 0); 1761 } 1762 1763 if (submitted) 1764 f2fs_submit_merged_write(sbi, 1765 (type == SUM_TYPE_NODE) ? NODE : DATA); 1766 1767 blk_finish_plug(&plug); 1768 1769 stat_inc_call_count(sbi->stat_info); 1770 1771 return seg_freed; 1772 } 1773 1774 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control) 1775 { 1776 int gc_type = gc_control->init_gc_type; 1777 unsigned int segno = gc_control->victim_segno; 1778 int sec_freed = 0, seg_freed = 0, total_freed = 0; 1779 int ret = 0; 1780 struct cp_control cpc; 1781 struct gc_inode_list gc_list = { 1782 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1783 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1784 }; 1785 unsigned int skipped_round = 0, round = 0; 1786 1787 trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc, 1788 gc_control->nr_free_secs, 1789 get_pages(sbi, F2FS_DIRTY_NODES), 1790 get_pages(sbi, F2FS_DIRTY_DENTS), 1791 get_pages(sbi, F2FS_DIRTY_IMETA), 1792 free_sections(sbi), 1793 free_segments(sbi), 1794 reserved_segments(sbi), 1795 prefree_segments(sbi)); 1796 1797 cpc.reason = __get_cp_reason(sbi); 1798 sbi->skipped_gc_rwsem = 0; 1799 gc_more: 1800 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1801 ret = -EINVAL; 1802 goto stop; 1803 } 1804 if (unlikely(f2fs_cp_error(sbi))) { 1805 ret = -EIO; 1806 goto stop; 1807 } 1808 1809 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { 1810 /* 1811 * For example, if there are many prefree_segments below given 1812 * threshold, we can make them free by checkpoint. Then, we 1813 * secure free segments which doesn't need fggc any more. 1814 */ 1815 if (prefree_segments(sbi)) { 1816 ret = f2fs_write_checkpoint(sbi, &cpc); 1817 if (ret) 1818 goto stop; 1819 } 1820 if (has_not_enough_free_secs(sbi, 0, 0)) 1821 gc_type = FG_GC; 1822 } 1823 1824 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1825 if (gc_type == BG_GC && gc_control->no_bg_gc) { 1826 ret = -EINVAL; 1827 goto stop; 1828 } 1829 retry: 1830 ret = __get_victim(sbi, &segno, gc_type); 1831 if (ret) { 1832 /* allow to search victim from sections has pinned data */ 1833 if (ret == -ENODATA && gc_type == FG_GC && 1834 f2fs_pinned_section_exists(DIRTY_I(sbi))) { 1835 f2fs_unpin_all_sections(sbi, false); 1836 goto retry; 1837 } 1838 goto stop; 1839 } 1840 1841 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, 1842 gc_control->should_migrate_blocks); 1843 total_freed += seg_freed; 1844 1845 if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) 1846 sec_freed++; 1847 1848 if (gc_type == FG_GC) 1849 sbi->cur_victim_sec = NULL_SEGNO; 1850 1851 if (gc_control->init_gc_type == FG_GC || 1852 !has_not_enough_free_secs(sbi, 1853 (gc_type == FG_GC) ? sec_freed : 0, 0)) { 1854 if (gc_type == FG_GC && sec_freed < gc_control->nr_free_secs) 1855 goto go_gc_more; 1856 goto stop; 1857 } 1858 1859 /* FG_GC stops GC by skip_count */ 1860 if (gc_type == FG_GC) { 1861 if (sbi->skipped_gc_rwsem) 1862 skipped_round++; 1863 round++; 1864 if (skipped_round > MAX_SKIP_GC_COUNT && 1865 skipped_round * 2 >= round) { 1866 ret = f2fs_write_checkpoint(sbi, &cpc); 1867 goto stop; 1868 } 1869 } 1870 1871 /* Write checkpoint to reclaim prefree segments */ 1872 if (free_sections(sbi) < NR_CURSEG_PERSIST_TYPE && 1873 prefree_segments(sbi)) { 1874 ret = f2fs_write_checkpoint(sbi, &cpc); 1875 if (ret) 1876 goto stop; 1877 } 1878 go_gc_more: 1879 segno = NULL_SEGNO; 1880 goto gc_more; 1881 1882 stop: 1883 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1884 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno; 1885 1886 if (gc_type == FG_GC) 1887 f2fs_unpin_all_sections(sbi, true); 1888 1889 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, 1890 get_pages(sbi, F2FS_DIRTY_NODES), 1891 get_pages(sbi, F2FS_DIRTY_DENTS), 1892 get_pages(sbi, F2FS_DIRTY_IMETA), 1893 free_sections(sbi), 1894 free_segments(sbi), 1895 reserved_segments(sbi), 1896 prefree_segments(sbi)); 1897 1898 f2fs_up_write(&sbi->gc_lock); 1899 1900 put_gc_inode(&gc_list); 1901 1902 if (gc_control->err_gc_skipped && !ret) 1903 ret = sec_freed ? 0 : -EAGAIN; 1904 return ret; 1905 } 1906 1907 int __init f2fs_create_garbage_collection_cache(void) 1908 { 1909 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 1910 sizeof(struct victim_entry)); 1911 return victim_entry_slab ? 0 : -ENOMEM; 1912 } 1913 1914 void f2fs_destroy_garbage_collection_cache(void) 1915 { 1916 kmem_cache_destroy(victim_entry_slab); 1917 } 1918 1919 static void init_atgc_management(struct f2fs_sb_info *sbi) 1920 { 1921 struct atgc_management *am = &sbi->am; 1922 1923 if (test_opt(sbi, ATGC) && 1924 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 1925 am->atgc_enabled = true; 1926 1927 am->root = RB_ROOT_CACHED; 1928 INIT_LIST_HEAD(&am->victim_list); 1929 am->victim_count = 0; 1930 1931 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 1932 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 1933 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 1934 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 1935 } 1936 1937 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1938 { 1939 DIRTY_I(sbi)->v_ops = &default_v_ops; 1940 1941 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1942 1943 /* give warm/cold data area from slower device */ 1944 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1945 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1946 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1947 1948 init_atgc_management(sbi); 1949 } 1950 1951 static int free_segment_range(struct f2fs_sb_info *sbi, 1952 unsigned int secs, bool gc_only) 1953 { 1954 unsigned int segno, next_inuse, start, end; 1955 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1956 int gc_mode, gc_type; 1957 int err = 0; 1958 int type; 1959 1960 /* Force block allocation for GC */ 1961 MAIN_SECS(sbi) -= secs; 1962 start = MAIN_SECS(sbi) * sbi->segs_per_sec; 1963 end = MAIN_SEGS(sbi) - 1; 1964 1965 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 1966 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 1967 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 1968 SIT_I(sbi)->last_victim[gc_mode] = 0; 1969 1970 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 1971 if (sbi->next_victim_seg[gc_type] >= start) 1972 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 1973 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 1974 1975 /* Move out cursegs from the target range */ 1976 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) 1977 f2fs_allocate_segment_for_resize(sbi, type, start, end); 1978 1979 /* do GC to move out valid blocks in the range */ 1980 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 1981 struct gc_inode_list gc_list = { 1982 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1983 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1984 }; 1985 1986 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true); 1987 put_gc_inode(&gc_list); 1988 1989 if (!gc_only && get_valid_blocks(sbi, segno, true)) { 1990 err = -EAGAIN; 1991 goto out; 1992 } 1993 if (fatal_signal_pending(current)) { 1994 err = -ERESTARTSYS; 1995 goto out; 1996 } 1997 } 1998 if (gc_only) 1999 goto out; 2000 2001 err = f2fs_write_checkpoint(sbi, &cpc); 2002 if (err) 2003 goto out; 2004 2005 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 2006 if (next_inuse <= end) { 2007 f2fs_err(sbi, "segno %u should be free but still inuse!", 2008 next_inuse); 2009 f2fs_bug_on(sbi, 1); 2010 } 2011 out: 2012 MAIN_SECS(sbi) += secs; 2013 return err; 2014 } 2015 2016 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 2017 { 2018 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 2019 int section_count; 2020 int segment_count; 2021 int segment_count_main; 2022 long long block_count; 2023 int segs = secs * sbi->segs_per_sec; 2024 2025 f2fs_down_write(&sbi->sb_lock); 2026 2027 section_count = le32_to_cpu(raw_sb->section_count); 2028 segment_count = le32_to_cpu(raw_sb->segment_count); 2029 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 2030 block_count = le64_to_cpu(raw_sb->block_count); 2031 2032 raw_sb->section_count = cpu_to_le32(section_count + secs); 2033 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 2034 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 2035 raw_sb->block_count = cpu_to_le64(block_count + 2036 (long long)segs * sbi->blocks_per_seg); 2037 if (f2fs_is_multi_device(sbi)) { 2038 int last_dev = sbi->s_ndevs - 1; 2039 int dev_segs = 2040 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 2041 2042 raw_sb->devs[last_dev].total_segments = 2043 cpu_to_le32(dev_segs + segs); 2044 } 2045 2046 f2fs_up_write(&sbi->sb_lock); 2047 } 2048 2049 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 2050 { 2051 int segs = secs * sbi->segs_per_sec; 2052 long long blks = (long long)segs * sbi->blocks_per_seg; 2053 long long user_block_count = 2054 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 2055 2056 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 2057 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 2058 MAIN_SECS(sbi) += secs; 2059 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 2060 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 2061 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 2062 2063 if (f2fs_is_multi_device(sbi)) { 2064 int last_dev = sbi->s_ndevs - 1; 2065 2066 FDEV(last_dev).total_segments = 2067 (int)FDEV(last_dev).total_segments + segs; 2068 FDEV(last_dev).end_blk = 2069 (long long)FDEV(last_dev).end_blk + blks; 2070 #ifdef CONFIG_BLK_DEV_ZONED 2071 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz + 2072 (int)(blks >> sbi->log_blocks_per_blkz); 2073 #endif 2074 } 2075 } 2076 2077 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count) 2078 { 2079 __u64 old_block_count, shrunk_blocks; 2080 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2081 unsigned int secs; 2082 int err = 0; 2083 __u32 rem; 2084 2085 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 2086 if (block_count > old_block_count) 2087 return -EINVAL; 2088 2089 if (f2fs_is_multi_device(sbi)) { 2090 int last_dev = sbi->s_ndevs - 1; 2091 __u64 last_segs = FDEV(last_dev).total_segments; 2092 2093 if (block_count + last_segs * sbi->blocks_per_seg <= 2094 old_block_count) 2095 return -EINVAL; 2096 } 2097 2098 /* new fs size should align to section size */ 2099 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 2100 if (rem) 2101 return -EINVAL; 2102 2103 if (block_count == old_block_count) 2104 return 0; 2105 2106 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2107 f2fs_err(sbi, "Should run fsck to repair first."); 2108 return -EFSCORRUPTED; 2109 } 2110 2111 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2112 f2fs_err(sbi, "Checkpoint should be enabled."); 2113 return -EINVAL; 2114 } 2115 2116 shrunk_blocks = old_block_count - block_count; 2117 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2118 2119 /* stop other GC */ 2120 if (!f2fs_down_write_trylock(&sbi->gc_lock)) 2121 return -EAGAIN; 2122 2123 /* stop CP to protect MAIN_SEC in free_segment_range */ 2124 f2fs_lock_op(sbi); 2125 2126 spin_lock(&sbi->stat_lock); 2127 if (shrunk_blocks + valid_user_blocks(sbi) + 2128 sbi->current_reserved_blocks + sbi->unusable_block_count + 2129 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2130 err = -ENOSPC; 2131 spin_unlock(&sbi->stat_lock); 2132 2133 if (err) 2134 goto out_unlock; 2135 2136 err = free_segment_range(sbi, secs, true); 2137 2138 out_unlock: 2139 f2fs_unlock_op(sbi); 2140 f2fs_up_write(&sbi->gc_lock); 2141 if (err) 2142 return err; 2143 2144 freeze_super(sbi->sb); 2145 f2fs_down_write(&sbi->gc_lock); 2146 f2fs_down_write(&sbi->cp_global_sem); 2147 2148 spin_lock(&sbi->stat_lock); 2149 if (shrunk_blocks + valid_user_blocks(sbi) + 2150 sbi->current_reserved_blocks + sbi->unusable_block_count + 2151 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2152 err = -ENOSPC; 2153 else 2154 sbi->user_block_count -= shrunk_blocks; 2155 spin_unlock(&sbi->stat_lock); 2156 if (err) 2157 goto out_err; 2158 2159 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2160 err = free_segment_range(sbi, secs, false); 2161 if (err) 2162 goto recover_out; 2163 2164 update_sb_metadata(sbi, -secs); 2165 2166 err = f2fs_commit_super(sbi, false); 2167 if (err) { 2168 update_sb_metadata(sbi, secs); 2169 goto recover_out; 2170 } 2171 2172 update_fs_metadata(sbi, -secs); 2173 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2174 set_sbi_flag(sbi, SBI_IS_DIRTY); 2175 2176 err = f2fs_write_checkpoint(sbi, &cpc); 2177 if (err) { 2178 update_fs_metadata(sbi, secs); 2179 update_sb_metadata(sbi, secs); 2180 f2fs_commit_super(sbi, false); 2181 } 2182 recover_out: 2183 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2184 if (err) { 2185 set_sbi_flag(sbi, SBI_NEED_FSCK); 2186 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2187 2188 spin_lock(&sbi->stat_lock); 2189 sbi->user_block_count += shrunk_blocks; 2190 spin_unlock(&sbi->stat_lock); 2191 } 2192 out_err: 2193 f2fs_up_write(&sbi->cp_global_sem); 2194 f2fs_up_write(&sbi->gc_lock); 2195 thaw_super(sbi->sb); 2196 return err; 2197 } 2198