1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/f2fs_fs.h> 12 #include <linux/kthread.h> 13 #include <linux/delay.h> 14 #include <linux/freezer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/random.h> 17 #include <linux/sched/mm.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "gc.h" 23 #include "iostat.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *victim_entry_slab; 27 28 static unsigned int count_bits(const unsigned long *addr, 29 unsigned int offset, unsigned int len); 30 31 static int gc_thread_func(void *data) 32 { 33 struct f2fs_sb_info *sbi = data; 34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 37 unsigned int wait_ms; 38 struct f2fs_gc_control gc_control = { 39 .victim_segno = NULL_SEGNO, 40 .should_migrate_blocks = false, 41 .err_gc_skipped = false }; 42 43 wait_ms = gc_th->min_sleep_time; 44 45 set_freezable(); 46 do { 47 bool sync_mode, foreground = false; 48 49 wait_event_freezable_timeout(*wq, 50 kthread_should_stop() || 51 waitqueue_active(fggc_wq) || 52 gc_th->gc_wake, 53 msecs_to_jiffies(wait_ms)); 54 55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) 56 foreground = true; 57 58 /* give it a try one time */ 59 if (gc_th->gc_wake) 60 gc_th->gc_wake = false; 61 62 if (f2fs_readonly(sbi->sb)) { 63 stat_other_skip_bggc_count(sbi); 64 continue; 65 } 66 if (kthread_should_stop()) 67 break; 68 69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 70 increase_sleep_time(gc_th, &wait_ms); 71 stat_other_skip_bggc_count(sbi); 72 continue; 73 } 74 75 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 76 f2fs_stop_checkpoint(sbi, false, 77 STOP_CP_REASON_FAULT_INJECT); 78 79 if (!sb_start_write_trylock(sbi->sb)) { 80 stat_other_skip_bggc_count(sbi); 81 continue; 82 } 83 84 /* 85 * [GC triggering condition] 86 * 0. GC is not conducted currently. 87 * 1. There are enough dirty segments. 88 * 2. IO subsystem is idle by checking the # of writeback pages. 89 * 3. IO subsystem is idle by checking the # of requests in 90 * bdev's request list. 91 * 92 * Note) We have to avoid triggering GCs frequently. 93 * Because it is possible that some segments can be 94 * invalidated soon after by user update or deletion. 95 * So, I'd like to wait some time to collect dirty segments. 96 */ 97 if (sbi->gc_mode == GC_URGENT_HIGH || 98 sbi->gc_mode == GC_URGENT_MID) { 99 wait_ms = gc_th->urgent_sleep_time; 100 f2fs_down_write(&sbi->gc_lock); 101 goto do_gc; 102 } 103 104 if (foreground) { 105 f2fs_down_write(&sbi->gc_lock); 106 goto do_gc; 107 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 108 stat_other_skip_bggc_count(sbi); 109 goto next; 110 } 111 112 if (!is_idle(sbi, GC_TIME)) { 113 increase_sleep_time(gc_th, &wait_ms); 114 f2fs_up_write(&sbi->gc_lock); 115 stat_io_skip_bggc_count(sbi); 116 goto next; 117 } 118 119 if (has_enough_invalid_blocks(sbi)) 120 decrease_sleep_time(gc_th, &wait_ms); 121 else 122 increase_sleep_time(gc_th, &wait_ms); 123 do_gc: 124 stat_inc_gc_call_count(sbi, foreground ? 125 FOREGROUND : BACKGROUND); 126 127 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC; 128 129 /* foreground GC was been triggered via f2fs_balance_fs() */ 130 if (foreground) 131 sync_mode = false; 132 133 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC; 134 gc_control.no_bg_gc = foreground; 135 gc_control.nr_free_secs = foreground ? 1 : 0; 136 137 /* if return value is not zero, no victim was selected */ 138 if (f2fs_gc(sbi, &gc_control)) { 139 /* don't bother wait_ms by foreground gc */ 140 if (!foreground) 141 wait_ms = gc_th->no_gc_sleep_time; 142 } else { 143 /* reset wait_ms to default sleep time */ 144 if (wait_ms == gc_th->no_gc_sleep_time) 145 wait_ms = gc_th->min_sleep_time; 146 } 147 148 if (foreground) 149 wake_up_all(&gc_th->fggc_wq); 150 151 trace_f2fs_background_gc(sbi->sb, wait_ms, 152 prefree_segments(sbi), free_segments(sbi)); 153 154 /* balancing f2fs's metadata periodically */ 155 f2fs_balance_fs_bg(sbi, true); 156 next: 157 if (sbi->gc_mode != GC_NORMAL) { 158 spin_lock(&sbi->gc_remaining_trials_lock); 159 if (sbi->gc_remaining_trials) { 160 sbi->gc_remaining_trials--; 161 if (!sbi->gc_remaining_trials) 162 sbi->gc_mode = GC_NORMAL; 163 } 164 spin_unlock(&sbi->gc_remaining_trials_lock); 165 } 166 sb_end_write(sbi->sb); 167 168 } while (!kthread_should_stop()); 169 return 0; 170 } 171 172 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 173 { 174 struct f2fs_gc_kthread *gc_th; 175 dev_t dev = sbi->sb->s_bdev->bd_dev; 176 177 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 178 if (!gc_th) 179 return -ENOMEM; 180 181 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 182 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 183 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 184 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 185 186 gc_th->gc_wake = false; 187 188 sbi->gc_thread = gc_th; 189 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 190 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 191 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 192 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 193 if (IS_ERR(gc_th->f2fs_gc_task)) { 194 int err = PTR_ERR(gc_th->f2fs_gc_task); 195 196 kfree(gc_th); 197 sbi->gc_thread = NULL; 198 return err; 199 } 200 201 return 0; 202 } 203 204 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 205 { 206 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 207 208 if (!gc_th) 209 return; 210 kthread_stop(gc_th->f2fs_gc_task); 211 wake_up_all(&gc_th->fggc_wq); 212 kfree(gc_th); 213 sbi->gc_thread = NULL; 214 } 215 216 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 217 { 218 int gc_mode; 219 220 if (gc_type == BG_GC) { 221 if (sbi->am.atgc_enabled) 222 gc_mode = GC_AT; 223 else 224 gc_mode = GC_CB; 225 } else { 226 gc_mode = GC_GREEDY; 227 } 228 229 switch (sbi->gc_mode) { 230 case GC_IDLE_CB: 231 gc_mode = GC_CB; 232 break; 233 case GC_IDLE_GREEDY: 234 case GC_URGENT_HIGH: 235 gc_mode = GC_GREEDY; 236 break; 237 case GC_IDLE_AT: 238 gc_mode = GC_AT; 239 break; 240 } 241 242 return gc_mode; 243 } 244 245 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 246 int type, struct victim_sel_policy *p) 247 { 248 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 249 250 if (p->alloc_mode == SSR) { 251 p->gc_mode = GC_GREEDY; 252 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 253 p->max_search = dirty_i->nr_dirty[type]; 254 p->ofs_unit = 1; 255 } else if (p->alloc_mode == AT_SSR) { 256 p->gc_mode = GC_GREEDY; 257 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 258 p->max_search = dirty_i->nr_dirty[type]; 259 p->ofs_unit = 1; 260 } else { 261 p->gc_mode = select_gc_type(sbi, gc_type); 262 p->ofs_unit = sbi->segs_per_sec; 263 if (__is_large_section(sbi)) { 264 p->dirty_bitmap = dirty_i->dirty_secmap; 265 p->max_search = count_bits(p->dirty_bitmap, 266 0, MAIN_SECS(sbi)); 267 } else { 268 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 269 p->max_search = dirty_i->nr_dirty[DIRTY]; 270 } 271 } 272 273 /* 274 * adjust candidates range, should select all dirty segments for 275 * foreground GC and urgent GC cases. 276 */ 277 if (gc_type != FG_GC && 278 (sbi->gc_mode != GC_URGENT_HIGH) && 279 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 280 p->max_search > sbi->max_victim_search) 281 p->max_search = sbi->max_victim_search; 282 283 /* let's select beginning hot/small space first in no_heap mode*/ 284 if (f2fs_need_rand_seg(sbi)) 285 p->offset = get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec); 286 else if (test_opt(sbi, NOHEAP) && 287 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 288 p->offset = 0; 289 else 290 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 291 } 292 293 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 294 struct victim_sel_policy *p) 295 { 296 /* SSR allocates in a segment unit */ 297 if (p->alloc_mode == SSR) 298 return sbi->blocks_per_seg; 299 else if (p->alloc_mode == AT_SSR) 300 return UINT_MAX; 301 302 /* LFS */ 303 if (p->gc_mode == GC_GREEDY) 304 return 2 * sbi->blocks_per_seg * p->ofs_unit; 305 else if (p->gc_mode == GC_CB) 306 return UINT_MAX; 307 else if (p->gc_mode == GC_AT) 308 return UINT_MAX; 309 else /* No other gc_mode */ 310 return 0; 311 } 312 313 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 314 { 315 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 316 unsigned int secno; 317 318 /* 319 * If the gc_type is FG_GC, we can select victim segments 320 * selected by background GC before. 321 * Those segments guarantee they have small valid blocks. 322 */ 323 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 324 if (sec_usage_check(sbi, secno)) 325 continue; 326 clear_bit(secno, dirty_i->victim_secmap); 327 return GET_SEG_FROM_SEC(sbi, secno); 328 } 329 return NULL_SEGNO; 330 } 331 332 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 333 { 334 struct sit_info *sit_i = SIT_I(sbi); 335 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 336 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 337 unsigned long long mtime = 0; 338 unsigned int vblocks; 339 unsigned char age = 0; 340 unsigned char u; 341 unsigned int i; 342 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno); 343 344 for (i = 0; i < usable_segs_per_sec; i++) 345 mtime += get_seg_entry(sbi, start + i)->mtime; 346 vblocks = get_valid_blocks(sbi, segno, true); 347 348 mtime = div_u64(mtime, usable_segs_per_sec); 349 vblocks = div_u64(vblocks, usable_segs_per_sec); 350 351 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 352 353 /* Handle if the system time has changed by the user */ 354 if (mtime < sit_i->min_mtime) 355 sit_i->min_mtime = mtime; 356 if (mtime > sit_i->max_mtime) 357 sit_i->max_mtime = mtime; 358 if (sit_i->max_mtime != sit_i->min_mtime) 359 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 360 sit_i->max_mtime - sit_i->min_mtime); 361 362 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 363 } 364 365 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 366 unsigned int segno, struct victim_sel_policy *p) 367 { 368 if (p->alloc_mode == SSR) 369 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 370 371 /* alloc_mode == LFS */ 372 if (p->gc_mode == GC_GREEDY) 373 return get_valid_blocks(sbi, segno, true); 374 else if (p->gc_mode == GC_CB) 375 return get_cb_cost(sbi, segno); 376 377 f2fs_bug_on(sbi, 1); 378 return 0; 379 } 380 381 static unsigned int count_bits(const unsigned long *addr, 382 unsigned int offset, unsigned int len) 383 { 384 unsigned int end = offset + len, sum = 0; 385 386 while (offset < end) { 387 if (test_bit(offset++, addr)) 388 ++sum; 389 } 390 return sum; 391 } 392 393 static bool f2fs_check_victim_tree(struct f2fs_sb_info *sbi, 394 struct rb_root_cached *root) 395 { 396 #ifdef CONFIG_F2FS_CHECK_FS 397 struct rb_node *cur = rb_first_cached(root), *next; 398 struct victim_entry *cur_ve, *next_ve; 399 400 while (cur) { 401 next = rb_next(cur); 402 if (!next) 403 return true; 404 405 cur_ve = rb_entry(cur, struct victim_entry, rb_node); 406 next_ve = rb_entry(next, struct victim_entry, rb_node); 407 408 if (cur_ve->mtime > next_ve->mtime) { 409 f2fs_info(sbi, "broken victim_rbtree, " 410 "cur_mtime(%llu) next_mtime(%llu)", 411 cur_ve->mtime, next_ve->mtime); 412 return false; 413 } 414 cur = next; 415 } 416 #endif 417 return true; 418 } 419 420 static struct victim_entry *__lookup_victim_entry(struct f2fs_sb_info *sbi, 421 unsigned long long mtime) 422 { 423 struct atgc_management *am = &sbi->am; 424 struct rb_node *node = am->root.rb_root.rb_node; 425 struct victim_entry *ve = NULL; 426 427 while (node) { 428 ve = rb_entry(node, struct victim_entry, rb_node); 429 430 if (mtime < ve->mtime) 431 node = node->rb_left; 432 else 433 node = node->rb_right; 434 } 435 return ve; 436 } 437 438 static struct victim_entry *__create_victim_entry(struct f2fs_sb_info *sbi, 439 unsigned long long mtime, unsigned int segno) 440 { 441 struct atgc_management *am = &sbi->am; 442 struct victim_entry *ve; 443 444 ve = f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS, true, NULL); 445 446 ve->mtime = mtime; 447 ve->segno = segno; 448 449 list_add_tail(&ve->list, &am->victim_list); 450 am->victim_count++; 451 452 return ve; 453 } 454 455 static void __insert_victim_entry(struct f2fs_sb_info *sbi, 456 unsigned long long mtime, unsigned int segno) 457 { 458 struct atgc_management *am = &sbi->am; 459 struct rb_root_cached *root = &am->root; 460 struct rb_node **p = &root->rb_root.rb_node; 461 struct rb_node *parent = NULL; 462 struct victim_entry *ve; 463 bool left_most = true; 464 465 /* look up rb tree to find parent node */ 466 while (*p) { 467 parent = *p; 468 ve = rb_entry(parent, struct victim_entry, rb_node); 469 470 if (mtime < ve->mtime) { 471 p = &(*p)->rb_left; 472 } else { 473 p = &(*p)->rb_right; 474 left_most = false; 475 } 476 } 477 478 ve = __create_victim_entry(sbi, mtime, segno); 479 480 rb_link_node(&ve->rb_node, parent, p); 481 rb_insert_color_cached(&ve->rb_node, root, left_most); 482 } 483 484 static void add_victim_entry(struct f2fs_sb_info *sbi, 485 struct victim_sel_policy *p, unsigned int segno) 486 { 487 struct sit_info *sit_i = SIT_I(sbi); 488 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 489 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 490 unsigned long long mtime = 0; 491 unsigned int i; 492 493 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 494 if (p->gc_mode == GC_AT && 495 get_valid_blocks(sbi, segno, true) == 0) 496 return; 497 } 498 499 for (i = 0; i < sbi->segs_per_sec; i++) 500 mtime += get_seg_entry(sbi, start + i)->mtime; 501 mtime = div_u64(mtime, sbi->segs_per_sec); 502 503 /* Handle if the system time has changed by the user */ 504 if (mtime < sit_i->min_mtime) 505 sit_i->min_mtime = mtime; 506 if (mtime > sit_i->max_mtime) 507 sit_i->max_mtime = mtime; 508 if (mtime < sit_i->dirty_min_mtime) 509 sit_i->dirty_min_mtime = mtime; 510 if (mtime > sit_i->dirty_max_mtime) 511 sit_i->dirty_max_mtime = mtime; 512 513 /* don't choose young section as candidate */ 514 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 515 return; 516 517 __insert_victim_entry(sbi, mtime, segno); 518 } 519 520 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 521 struct victim_sel_policy *p) 522 { 523 struct sit_info *sit_i = SIT_I(sbi); 524 struct atgc_management *am = &sbi->am; 525 struct rb_root_cached *root = &am->root; 526 struct rb_node *node; 527 struct victim_entry *ve; 528 unsigned long long total_time; 529 unsigned long long age, u, accu; 530 unsigned long long max_mtime = sit_i->dirty_max_mtime; 531 unsigned long long min_mtime = sit_i->dirty_min_mtime; 532 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi); 533 unsigned int vblocks; 534 unsigned int dirty_threshold = max(am->max_candidate_count, 535 am->candidate_ratio * 536 am->victim_count / 100); 537 unsigned int age_weight = am->age_weight; 538 unsigned int cost; 539 unsigned int iter = 0; 540 541 if (max_mtime < min_mtime) 542 return; 543 544 max_mtime += 1; 545 total_time = max_mtime - min_mtime; 546 547 accu = div64_u64(ULLONG_MAX, total_time); 548 accu = min_t(unsigned long long, div_u64(accu, 100), 549 DEFAULT_ACCURACY_CLASS); 550 551 node = rb_first_cached(root); 552 next: 553 ve = rb_entry_safe(node, struct victim_entry, rb_node); 554 if (!ve) 555 return; 556 557 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 558 goto skip; 559 560 /* age = 10000 * x% * 60 */ 561 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 562 age_weight; 563 564 vblocks = get_valid_blocks(sbi, ve->segno, true); 565 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 566 567 /* u = 10000 * x% * 40 */ 568 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 569 (100 - age_weight); 570 571 f2fs_bug_on(sbi, age + u >= UINT_MAX); 572 573 cost = UINT_MAX - (age + u); 574 iter++; 575 576 if (cost < p->min_cost || 577 (cost == p->min_cost && age > p->oldest_age)) { 578 p->min_cost = cost; 579 p->oldest_age = age; 580 p->min_segno = ve->segno; 581 } 582 skip: 583 if (iter < dirty_threshold) { 584 node = rb_next(node); 585 goto next; 586 } 587 } 588 589 /* 590 * select candidates around source section in range of 591 * [target - dirty_threshold, target + dirty_threshold] 592 */ 593 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 594 struct victim_sel_policy *p) 595 { 596 struct sit_info *sit_i = SIT_I(sbi); 597 struct atgc_management *am = &sbi->am; 598 struct victim_entry *ve; 599 unsigned long long age; 600 unsigned long long max_mtime = sit_i->dirty_max_mtime; 601 unsigned long long min_mtime = sit_i->dirty_min_mtime; 602 unsigned int seg_blocks = sbi->blocks_per_seg; 603 unsigned int vblocks; 604 unsigned int dirty_threshold = max(am->max_candidate_count, 605 am->candidate_ratio * 606 am->victim_count / 100); 607 unsigned int cost, iter; 608 int stage = 0; 609 610 if (max_mtime < min_mtime) 611 return; 612 max_mtime += 1; 613 next_stage: 614 iter = 0; 615 ve = __lookup_victim_entry(sbi, p->age); 616 next_node: 617 if (!ve) { 618 if (stage++ == 0) 619 goto next_stage; 620 return; 621 } 622 623 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 624 goto skip_node; 625 626 age = max_mtime - ve->mtime; 627 628 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 629 f2fs_bug_on(sbi, !vblocks); 630 631 /* rare case */ 632 if (vblocks == seg_blocks) 633 goto skip_node; 634 635 iter++; 636 637 age = max_mtime - abs(p->age - age); 638 cost = UINT_MAX - vblocks; 639 640 if (cost < p->min_cost || 641 (cost == p->min_cost && age > p->oldest_age)) { 642 p->min_cost = cost; 643 p->oldest_age = age; 644 p->min_segno = ve->segno; 645 } 646 skip_node: 647 if (iter < dirty_threshold) { 648 ve = rb_entry(stage == 0 ? rb_prev(&ve->rb_node) : 649 rb_next(&ve->rb_node), 650 struct victim_entry, rb_node); 651 goto next_node; 652 } 653 654 if (stage++ == 0) 655 goto next_stage; 656 } 657 658 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 659 struct victim_sel_policy *p) 660 { 661 f2fs_bug_on(sbi, !f2fs_check_victim_tree(sbi, &sbi->am.root)); 662 663 if (p->gc_mode == GC_AT) 664 atgc_lookup_victim(sbi, p); 665 else if (p->alloc_mode == AT_SSR) 666 atssr_lookup_victim(sbi, p); 667 else 668 f2fs_bug_on(sbi, 1); 669 } 670 671 static void release_victim_entry(struct f2fs_sb_info *sbi) 672 { 673 struct atgc_management *am = &sbi->am; 674 struct victim_entry *ve, *tmp; 675 676 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 677 list_del(&ve->list); 678 kmem_cache_free(victim_entry_slab, ve); 679 am->victim_count--; 680 } 681 682 am->root = RB_ROOT_CACHED; 683 684 f2fs_bug_on(sbi, am->victim_count); 685 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 686 } 687 688 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno) 689 { 690 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 691 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 692 693 if (!dirty_i->enable_pin_section) 694 return false; 695 if (!test_and_set_bit(secno, dirty_i->pinned_secmap)) 696 dirty_i->pinned_secmap_cnt++; 697 return true; 698 } 699 700 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i) 701 { 702 return dirty_i->pinned_secmap_cnt; 703 } 704 705 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i, 706 unsigned int secno) 707 { 708 return dirty_i->enable_pin_section && 709 f2fs_pinned_section_exists(dirty_i) && 710 test_bit(secno, dirty_i->pinned_secmap); 711 } 712 713 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable) 714 { 715 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 716 717 if (f2fs_pinned_section_exists(DIRTY_I(sbi))) { 718 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size); 719 DIRTY_I(sbi)->pinned_secmap_cnt = 0; 720 } 721 DIRTY_I(sbi)->enable_pin_section = enable; 722 } 723 724 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type, 725 unsigned int segno) 726 { 727 if (!f2fs_is_pinned_file(inode)) 728 return 0; 729 if (gc_type != FG_GC) 730 return -EBUSY; 731 if (!f2fs_pin_section(F2FS_I_SB(inode), segno)) 732 f2fs_pin_file_control(inode, true); 733 return -EAGAIN; 734 } 735 736 /* 737 * This function is called from two paths. 738 * One is garbage collection and the other is SSR segment selection. 739 * When it is called during GC, it just gets a victim segment 740 * and it does not remove it from dirty seglist. 741 * When it is called from SSR segment selection, it finds a segment 742 * which has minimum valid blocks and removes it from dirty seglist. 743 */ 744 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 745 int gc_type, int type, char alloc_mode, 746 unsigned long long age) 747 { 748 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 749 struct sit_info *sm = SIT_I(sbi); 750 struct victim_sel_policy p; 751 unsigned int secno, last_victim; 752 unsigned int last_segment; 753 unsigned int nsearched; 754 bool is_atgc; 755 int ret = 0; 756 757 mutex_lock(&dirty_i->seglist_lock); 758 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 759 760 p.alloc_mode = alloc_mode; 761 p.age = age; 762 p.age_threshold = sbi->am.age_threshold; 763 764 retry: 765 select_policy(sbi, gc_type, type, &p); 766 p.min_segno = NULL_SEGNO; 767 p.oldest_age = 0; 768 p.min_cost = get_max_cost(sbi, &p); 769 770 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 771 nsearched = 0; 772 773 if (is_atgc) 774 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 775 776 if (*result != NULL_SEGNO) { 777 if (!get_valid_blocks(sbi, *result, false)) { 778 ret = -ENODATA; 779 goto out; 780 } 781 782 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 783 ret = -EBUSY; 784 else 785 p.min_segno = *result; 786 goto out; 787 } 788 789 ret = -ENODATA; 790 if (p.max_search == 0) 791 goto out; 792 793 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 794 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 795 p.min_segno = sbi->next_victim_seg[BG_GC]; 796 *result = p.min_segno; 797 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 798 goto got_result; 799 } 800 if (gc_type == FG_GC && 801 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 802 p.min_segno = sbi->next_victim_seg[FG_GC]; 803 *result = p.min_segno; 804 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 805 goto got_result; 806 } 807 } 808 809 last_victim = sm->last_victim[p.gc_mode]; 810 if (p.alloc_mode == LFS && gc_type == FG_GC) { 811 p.min_segno = check_bg_victims(sbi); 812 if (p.min_segno != NULL_SEGNO) 813 goto got_it; 814 } 815 816 while (1) { 817 unsigned long cost, *dirty_bitmap; 818 unsigned int unit_no, segno; 819 820 dirty_bitmap = p.dirty_bitmap; 821 unit_no = find_next_bit(dirty_bitmap, 822 last_segment / p.ofs_unit, 823 p.offset / p.ofs_unit); 824 segno = unit_no * p.ofs_unit; 825 if (segno >= last_segment) { 826 if (sm->last_victim[p.gc_mode]) { 827 last_segment = 828 sm->last_victim[p.gc_mode]; 829 sm->last_victim[p.gc_mode] = 0; 830 p.offset = 0; 831 continue; 832 } 833 break; 834 } 835 836 p.offset = segno + p.ofs_unit; 837 nsearched++; 838 839 #ifdef CONFIG_F2FS_CHECK_FS 840 /* 841 * skip selecting the invalid segno (that is failed due to block 842 * validity check failure during GC) to avoid endless GC loop in 843 * such cases. 844 */ 845 if (test_bit(segno, sm->invalid_segmap)) 846 goto next; 847 #endif 848 849 secno = GET_SEC_FROM_SEG(sbi, segno); 850 851 if (sec_usage_check(sbi, secno)) 852 goto next; 853 854 /* Don't touch checkpointed data */ 855 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 856 if (p.alloc_mode == LFS) { 857 /* 858 * LFS is set to find source section during GC. 859 * The victim should have no checkpointed data. 860 */ 861 if (get_ckpt_valid_blocks(sbi, segno, true)) 862 goto next; 863 } else { 864 /* 865 * SSR | AT_SSR are set to find target segment 866 * for writes which can be full by checkpointed 867 * and newly written blocks. 868 */ 869 if (!f2fs_segment_has_free_slot(sbi, segno)) 870 goto next; 871 } 872 } 873 874 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 875 goto next; 876 877 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno)) 878 goto next; 879 880 if (is_atgc) { 881 add_victim_entry(sbi, &p, segno); 882 goto next; 883 } 884 885 cost = get_gc_cost(sbi, segno, &p); 886 887 if (p.min_cost > cost) { 888 p.min_segno = segno; 889 p.min_cost = cost; 890 } 891 next: 892 if (nsearched >= p.max_search) { 893 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 894 sm->last_victim[p.gc_mode] = 895 last_victim + p.ofs_unit; 896 else 897 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 898 sm->last_victim[p.gc_mode] %= 899 (MAIN_SECS(sbi) * sbi->segs_per_sec); 900 break; 901 } 902 } 903 904 /* get victim for GC_AT/AT_SSR */ 905 if (is_atgc) { 906 lookup_victim_by_age(sbi, &p); 907 release_victim_entry(sbi); 908 } 909 910 if (is_atgc && p.min_segno == NULL_SEGNO && 911 sm->elapsed_time < p.age_threshold) { 912 p.age_threshold = 0; 913 goto retry; 914 } 915 916 if (p.min_segno != NULL_SEGNO) { 917 got_it: 918 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 919 got_result: 920 if (p.alloc_mode == LFS) { 921 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 922 if (gc_type == FG_GC) 923 sbi->cur_victim_sec = secno; 924 else 925 set_bit(secno, dirty_i->victim_secmap); 926 } 927 ret = 0; 928 929 } 930 out: 931 if (p.min_segno != NULL_SEGNO) 932 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 933 sbi->cur_victim_sec, 934 prefree_segments(sbi), free_segments(sbi)); 935 mutex_unlock(&dirty_i->seglist_lock); 936 937 return ret; 938 } 939 940 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 941 { 942 struct inode_entry *ie; 943 944 ie = radix_tree_lookup(&gc_list->iroot, ino); 945 if (ie) 946 return ie->inode; 947 return NULL; 948 } 949 950 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 951 { 952 struct inode_entry *new_ie; 953 954 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 955 iput(inode); 956 return; 957 } 958 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, 959 GFP_NOFS, true, NULL); 960 new_ie->inode = inode; 961 962 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 963 list_add_tail(&new_ie->list, &gc_list->ilist); 964 } 965 966 static void put_gc_inode(struct gc_inode_list *gc_list) 967 { 968 struct inode_entry *ie, *next_ie; 969 970 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 971 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 972 iput(ie->inode); 973 list_del(&ie->list); 974 kmem_cache_free(f2fs_inode_entry_slab, ie); 975 } 976 } 977 978 static int check_valid_map(struct f2fs_sb_info *sbi, 979 unsigned int segno, int offset) 980 { 981 struct sit_info *sit_i = SIT_I(sbi); 982 struct seg_entry *sentry; 983 int ret; 984 985 down_read(&sit_i->sentry_lock); 986 sentry = get_seg_entry(sbi, segno); 987 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 988 up_read(&sit_i->sentry_lock); 989 return ret; 990 } 991 992 /* 993 * This function compares node address got in summary with that in NAT. 994 * On validity, copy that node with cold status, otherwise (invalid node) 995 * ignore that. 996 */ 997 static int gc_node_segment(struct f2fs_sb_info *sbi, 998 struct f2fs_summary *sum, unsigned int segno, int gc_type) 999 { 1000 struct f2fs_summary *entry; 1001 block_t start_addr; 1002 int off; 1003 int phase = 0; 1004 bool fggc = (gc_type == FG_GC); 1005 int submitted = 0; 1006 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1007 1008 start_addr = START_BLOCK(sbi, segno); 1009 1010 next_step: 1011 entry = sum; 1012 1013 if (fggc && phase == 2) 1014 atomic_inc(&sbi->wb_sync_req[NODE]); 1015 1016 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1017 nid_t nid = le32_to_cpu(entry->nid); 1018 struct page *node_page; 1019 struct node_info ni; 1020 int err; 1021 1022 /* stop BG_GC if there is not enough free sections. */ 1023 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 1024 return submitted; 1025 1026 if (check_valid_map(sbi, segno, off) == 0) 1027 continue; 1028 1029 if (phase == 0) { 1030 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1031 META_NAT, true); 1032 continue; 1033 } 1034 1035 if (phase == 1) { 1036 f2fs_ra_node_page(sbi, nid); 1037 continue; 1038 } 1039 1040 /* phase == 2 */ 1041 node_page = f2fs_get_node_page(sbi, nid); 1042 if (IS_ERR(node_page)) 1043 continue; 1044 1045 /* block may become invalid during f2fs_get_node_page */ 1046 if (check_valid_map(sbi, segno, off) == 0) { 1047 f2fs_put_page(node_page, 1); 1048 continue; 1049 } 1050 1051 if (f2fs_get_node_info(sbi, nid, &ni, false)) { 1052 f2fs_put_page(node_page, 1); 1053 continue; 1054 } 1055 1056 if (ni.blk_addr != start_addr + off) { 1057 f2fs_put_page(node_page, 1); 1058 continue; 1059 } 1060 1061 err = f2fs_move_node_page(node_page, gc_type); 1062 if (!err && gc_type == FG_GC) 1063 submitted++; 1064 stat_inc_node_blk_count(sbi, 1, gc_type); 1065 } 1066 1067 if (++phase < 3) 1068 goto next_step; 1069 1070 if (fggc) 1071 atomic_dec(&sbi->wb_sync_req[NODE]); 1072 return submitted; 1073 } 1074 1075 /* 1076 * Calculate start block index indicating the given node offset. 1077 * Be careful, caller should give this node offset only indicating direct node 1078 * blocks. If any node offsets, which point the other types of node blocks such 1079 * as indirect or double indirect node blocks, are given, it must be a caller's 1080 * bug. 1081 */ 1082 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 1083 { 1084 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 1085 unsigned int bidx; 1086 1087 if (node_ofs == 0) 1088 return 0; 1089 1090 if (node_ofs <= 2) { 1091 bidx = node_ofs - 1; 1092 } else if (node_ofs <= indirect_blks) { 1093 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 1094 1095 bidx = node_ofs - 2 - dec; 1096 } else { 1097 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 1098 1099 bidx = node_ofs - 5 - dec; 1100 } 1101 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 1102 } 1103 1104 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1105 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 1106 { 1107 struct page *node_page; 1108 nid_t nid; 1109 unsigned int ofs_in_node, max_addrs, base; 1110 block_t source_blkaddr; 1111 1112 nid = le32_to_cpu(sum->nid); 1113 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1114 1115 node_page = f2fs_get_node_page(sbi, nid); 1116 if (IS_ERR(node_page)) 1117 return false; 1118 1119 if (f2fs_get_node_info(sbi, nid, dni, false)) { 1120 f2fs_put_page(node_page, 1); 1121 return false; 1122 } 1123 1124 if (sum->version != dni->version) { 1125 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1126 __func__); 1127 set_sbi_flag(sbi, SBI_NEED_FSCK); 1128 } 1129 1130 if (f2fs_check_nid_range(sbi, dni->ino)) { 1131 f2fs_put_page(node_page, 1); 1132 return false; 1133 } 1134 1135 if (IS_INODE(node_page)) { 1136 base = offset_in_addr(F2FS_INODE(node_page)); 1137 max_addrs = DEF_ADDRS_PER_INODE; 1138 } else { 1139 base = 0; 1140 max_addrs = DEF_ADDRS_PER_BLOCK; 1141 } 1142 1143 if (base + ofs_in_node >= max_addrs) { 1144 f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u", 1145 base, ofs_in_node, max_addrs, dni->ino, dni->nid); 1146 f2fs_put_page(node_page, 1); 1147 return false; 1148 } 1149 1150 *nofs = ofs_of_node(node_page); 1151 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 1152 f2fs_put_page(node_page, 1); 1153 1154 if (source_blkaddr != blkaddr) { 1155 #ifdef CONFIG_F2FS_CHECK_FS 1156 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1157 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1158 1159 if (unlikely(check_valid_map(sbi, segno, offset))) { 1160 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1161 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1162 blkaddr, source_blkaddr, segno); 1163 set_sbi_flag(sbi, SBI_NEED_FSCK); 1164 } 1165 } 1166 #endif 1167 return false; 1168 } 1169 return true; 1170 } 1171 1172 static int ra_data_block(struct inode *inode, pgoff_t index) 1173 { 1174 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1175 struct address_space *mapping = inode->i_mapping; 1176 struct dnode_of_data dn; 1177 struct page *page; 1178 struct f2fs_io_info fio = { 1179 .sbi = sbi, 1180 .ino = inode->i_ino, 1181 .type = DATA, 1182 .temp = COLD, 1183 .op = REQ_OP_READ, 1184 .op_flags = 0, 1185 .encrypted_page = NULL, 1186 .in_list = 0, 1187 .retry = 0, 1188 }; 1189 int err; 1190 1191 page = f2fs_grab_cache_page(mapping, index, true); 1192 if (!page) 1193 return -ENOMEM; 1194 1195 if (f2fs_lookup_read_extent_cache_block(inode, index, 1196 &dn.data_blkaddr)) { 1197 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1198 DATA_GENERIC_ENHANCE_READ))) { 1199 err = -EFSCORRUPTED; 1200 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1201 goto put_page; 1202 } 1203 goto got_it; 1204 } 1205 1206 set_new_dnode(&dn, inode, NULL, NULL, 0); 1207 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1208 if (err) 1209 goto put_page; 1210 f2fs_put_dnode(&dn); 1211 1212 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1213 err = -ENOENT; 1214 goto put_page; 1215 } 1216 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1217 DATA_GENERIC_ENHANCE))) { 1218 err = -EFSCORRUPTED; 1219 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1220 goto put_page; 1221 } 1222 got_it: 1223 /* read page */ 1224 fio.page = page; 1225 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1226 1227 /* 1228 * don't cache encrypted data into meta inode until previous dirty 1229 * data were writebacked to avoid racing between GC and flush. 1230 */ 1231 f2fs_wait_on_page_writeback(page, DATA, true, true); 1232 1233 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1234 1235 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1236 dn.data_blkaddr, 1237 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1238 if (!fio.encrypted_page) { 1239 err = -ENOMEM; 1240 goto put_page; 1241 } 1242 1243 err = f2fs_submit_page_bio(&fio); 1244 if (err) 1245 goto put_encrypted_page; 1246 f2fs_put_page(fio.encrypted_page, 0); 1247 f2fs_put_page(page, 1); 1248 1249 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 1250 f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1251 1252 return 0; 1253 put_encrypted_page: 1254 f2fs_put_page(fio.encrypted_page, 1); 1255 put_page: 1256 f2fs_put_page(page, 1); 1257 return err; 1258 } 1259 1260 /* 1261 * Move data block via META_MAPPING while keeping locked data page. 1262 * This can be used to move blocks, aka LBAs, directly on disk. 1263 */ 1264 static int move_data_block(struct inode *inode, block_t bidx, 1265 int gc_type, unsigned int segno, int off) 1266 { 1267 struct f2fs_io_info fio = { 1268 .sbi = F2FS_I_SB(inode), 1269 .ino = inode->i_ino, 1270 .type = DATA, 1271 .temp = COLD, 1272 .op = REQ_OP_READ, 1273 .op_flags = 0, 1274 .encrypted_page = NULL, 1275 .in_list = 0, 1276 .retry = 0, 1277 }; 1278 struct dnode_of_data dn; 1279 struct f2fs_summary sum; 1280 struct node_info ni; 1281 struct page *page, *mpage; 1282 block_t newaddr; 1283 int err = 0; 1284 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1285 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1286 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1287 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1288 1289 /* do not read out */ 1290 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 1291 if (!page) 1292 return -ENOMEM; 1293 1294 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1295 err = -ENOENT; 1296 goto out; 1297 } 1298 1299 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1300 if (err) 1301 goto out; 1302 1303 set_new_dnode(&dn, inode, NULL, NULL, 0); 1304 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1305 if (err) 1306 goto out; 1307 1308 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1309 ClearPageUptodate(page); 1310 err = -ENOENT; 1311 goto put_out; 1312 } 1313 1314 /* 1315 * don't cache encrypted data into meta inode until previous dirty 1316 * data were writebacked to avoid racing between GC and flush. 1317 */ 1318 f2fs_wait_on_page_writeback(page, DATA, true, true); 1319 1320 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1321 1322 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1323 if (err) 1324 goto put_out; 1325 1326 /* read page */ 1327 fio.page = page; 1328 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1329 1330 if (lfs_mode) 1331 f2fs_down_write(&fio.sbi->io_order_lock); 1332 1333 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1334 fio.old_blkaddr, false); 1335 if (!mpage) { 1336 err = -ENOMEM; 1337 goto up_out; 1338 } 1339 1340 fio.encrypted_page = mpage; 1341 1342 /* read source block in mpage */ 1343 if (!PageUptodate(mpage)) { 1344 err = f2fs_submit_page_bio(&fio); 1345 if (err) { 1346 f2fs_put_page(mpage, 1); 1347 goto up_out; 1348 } 1349 1350 f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO, 1351 F2FS_BLKSIZE); 1352 f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO, 1353 F2FS_BLKSIZE); 1354 1355 lock_page(mpage); 1356 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1357 !PageUptodate(mpage))) { 1358 err = -EIO; 1359 f2fs_put_page(mpage, 1); 1360 goto up_out; 1361 } 1362 } 1363 1364 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1365 1366 /* allocate block address */ 1367 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1368 &sum, type, NULL); 1369 1370 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1371 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1372 if (!fio.encrypted_page) { 1373 err = -ENOMEM; 1374 f2fs_put_page(mpage, 1); 1375 goto recover_block; 1376 } 1377 1378 /* write target block */ 1379 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1380 memcpy(page_address(fio.encrypted_page), 1381 page_address(mpage), PAGE_SIZE); 1382 f2fs_put_page(mpage, 1); 1383 1384 f2fs_invalidate_internal_cache(fio.sbi, fio.old_blkaddr); 1385 1386 set_page_dirty(fio.encrypted_page); 1387 if (clear_page_dirty_for_io(fio.encrypted_page)) 1388 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1389 1390 set_page_writeback(fio.encrypted_page); 1391 1392 fio.op = REQ_OP_WRITE; 1393 fio.op_flags = REQ_SYNC; 1394 fio.new_blkaddr = newaddr; 1395 f2fs_submit_page_write(&fio); 1396 if (fio.retry) { 1397 err = -EAGAIN; 1398 if (PageWriteback(fio.encrypted_page)) 1399 end_page_writeback(fio.encrypted_page); 1400 goto put_page_out; 1401 } 1402 1403 f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE); 1404 1405 f2fs_update_data_blkaddr(&dn, newaddr); 1406 set_inode_flag(inode, FI_APPEND_WRITE); 1407 put_page_out: 1408 f2fs_put_page(fio.encrypted_page, 1); 1409 recover_block: 1410 if (err) 1411 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1412 true, true, true); 1413 up_out: 1414 if (lfs_mode) 1415 f2fs_up_write(&fio.sbi->io_order_lock); 1416 put_out: 1417 f2fs_put_dnode(&dn); 1418 out: 1419 f2fs_put_page(page, 1); 1420 return err; 1421 } 1422 1423 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1424 unsigned int segno, int off) 1425 { 1426 struct page *page; 1427 int err = 0; 1428 1429 page = f2fs_get_lock_data_page(inode, bidx, true); 1430 if (IS_ERR(page)) 1431 return PTR_ERR(page); 1432 1433 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1434 err = -ENOENT; 1435 goto out; 1436 } 1437 1438 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1439 if (err) 1440 goto out; 1441 1442 if (gc_type == BG_GC) { 1443 if (PageWriteback(page)) { 1444 err = -EAGAIN; 1445 goto out; 1446 } 1447 set_page_dirty(page); 1448 set_page_private_gcing(page); 1449 } else { 1450 struct f2fs_io_info fio = { 1451 .sbi = F2FS_I_SB(inode), 1452 .ino = inode->i_ino, 1453 .type = DATA, 1454 .temp = COLD, 1455 .op = REQ_OP_WRITE, 1456 .op_flags = REQ_SYNC, 1457 .old_blkaddr = NULL_ADDR, 1458 .page = page, 1459 .encrypted_page = NULL, 1460 .need_lock = LOCK_REQ, 1461 .io_type = FS_GC_DATA_IO, 1462 }; 1463 bool is_dirty = PageDirty(page); 1464 1465 retry: 1466 f2fs_wait_on_page_writeback(page, DATA, true, true); 1467 1468 set_page_dirty(page); 1469 if (clear_page_dirty_for_io(page)) { 1470 inode_dec_dirty_pages(inode); 1471 f2fs_remove_dirty_inode(inode); 1472 } 1473 1474 set_page_private_gcing(page); 1475 1476 err = f2fs_do_write_data_page(&fio); 1477 if (err) { 1478 clear_page_private_gcing(page); 1479 if (err == -ENOMEM) { 1480 memalloc_retry_wait(GFP_NOFS); 1481 goto retry; 1482 } 1483 if (is_dirty) 1484 set_page_dirty(page); 1485 } 1486 } 1487 out: 1488 f2fs_put_page(page, 1); 1489 return err; 1490 } 1491 1492 /* 1493 * This function tries to get parent node of victim data block, and identifies 1494 * data block validity. If the block is valid, copy that with cold status and 1495 * modify parent node. 1496 * If the parent node is not valid or the data block address is different, 1497 * the victim data block is ignored. 1498 */ 1499 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1500 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1501 bool force_migrate) 1502 { 1503 struct super_block *sb = sbi->sb; 1504 struct f2fs_summary *entry; 1505 block_t start_addr; 1506 int off; 1507 int phase = 0; 1508 int submitted = 0; 1509 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1510 1511 start_addr = START_BLOCK(sbi, segno); 1512 1513 next_step: 1514 entry = sum; 1515 1516 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1517 struct page *data_page; 1518 struct inode *inode; 1519 struct node_info dni; /* dnode info for the data */ 1520 unsigned int ofs_in_node, nofs; 1521 block_t start_bidx; 1522 nid_t nid = le32_to_cpu(entry->nid); 1523 1524 /* 1525 * stop BG_GC if there is not enough free sections. 1526 * Or, stop GC if the segment becomes fully valid caused by 1527 * race condition along with SSR block allocation. 1528 */ 1529 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1530 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1531 CAP_BLKS_PER_SEC(sbi))) 1532 return submitted; 1533 1534 if (check_valid_map(sbi, segno, off) == 0) 1535 continue; 1536 1537 if (phase == 0) { 1538 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1539 META_NAT, true); 1540 continue; 1541 } 1542 1543 if (phase == 1) { 1544 f2fs_ra_node_page(sbi, nid); 1545 continue; 1546 } 1547 1548 /* Get an inode by ino with checking validity */ 1549 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1550 continue; 1551 1552 if (phase == 2) { 1553 f2fs_ra_node_page(sbi, dni.ino); 1554 continue; 1555 } 1556 1557 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1558 1559 if (phase == 3) { 1560 int err; 1561 1562 inode = f2fs_iget(sb, dni.ino); 1563 if (IS_ERR(inode) || is_bad_inode(inode) || 1564 special_file(inode->i_mode)) 1565 continue; 1566 1567 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1568 if (err == -EAGAIN) { 1569 iput(inode); 1570 return submitted; 1571 } 1572 1573 if (!f2fs_down_write_trylock( 1574 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1575 iput(inode); 1576 sbi->skipped_gc_rwsem++; 1577 continue; 1578 } 1579 1580 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1581 ofs_in_node; 1582 1583 if (f2fs_post_read_required(inode)) { 1584 int err = ra_data_block(inode, start_bidx); 1585 1586 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1587 if (err) { 1588 iput(inode); 1589 continue; 1590 } 1591 add_gc_inode(gc_list, inode); 1592 continue; 1593 } 1594 1595 data_page = f2fs_get_read_data_page(inode, start_bidx, 1596 REQ_RAHEAD, true, NULL); 1597 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1598 if (IS_ERR(data_page)) { 1599 iput(inode); 1600 continue; 1601 } 1602 1603 f2fs_put_page(data_page, 0); 1604 add_gc_inode(gc_list, inode); 1605 continue; 1606 } 1607 1608 /* phase 4 */ 1609 inode = find_gc_inode(gc_list, dni.ino); 1610 if (inode) { 1611 struct f2fs_inode_info *fi = F2FS_I(inode); 1612 bool locked = false; 1613 int err; 1614 1615 if (S_ISREG(inode->i_mode)) { 1616 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[WRITE])) { 1617 sbi->skipped_gc_rwsem++; 1618 continue; 1619 } 1620 if (!f2fs_down_write_trylock( 1621 &fi->i_gc_rwsem[READ])) { 1622 sbi->skipped_gc_rwsem++; 1623 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1624 continue; 1625 } 1626 locked = true; 1627 1628 /* wait for all inflight aio data */ 1629 inode_dio_wait(inode); 1630 } 1631 1632 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1633 + ofs_in_node; 1634 if (f2fs_post_read_required(inode)) 1635 err = move_data_block(inode, start_bidx, 1636 gc_type, segno, off); 1637 else 1638 err = move_data_page(inode, start_bidx, gc_type, 1639 segno, off); 1640 1641 if (!err && (gc_type == FG_GC || 1642 f2fs_post_read_required(inode))) 1643 submitted++; 1644 1645 if (locked) { 1646 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1647 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1648 } 1649 1650 stat_inc_data_blk_count(sbi, 1, gc_type); 1651 } 1652 } 1653 1654 if (++phase < 5) 1655 goto next_step; 1656 1657 return submitted; 1658 } 1659 1660 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1661 int gc_type) 1662 { 1663 struct sit_info *sit_i = SIT_I(sbi); 1664 int ret; 1665 1666 down_write(&sit_i->sentry_lock); 1667 ret = f2fs_get_victim(sbi, victim, gc_type, NO_CHECK_TYPE, LFS, 0); 1668 up_write(&sit_i->sentry_lock); 1669 return ret; 1670 } 1671 1672 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1673 unsigned int start_segno, 1674 struct gc_inode_list *gc_list, int gc_type, 1675 bool force_migrate) 1676 { 1677 struct page *sum_page; 1678 struct f2fs_summary_block *sum; 1679 struct blk_plug plug; 1680 unsigned int segno = start_segno; 1681 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1682 int seg_freed = 0, migrated = 0; 1683 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1684 SUM_TYPE_DATA : SUM_TYPE_NODE; 1685 unsigned char data_type = (type == SUM_TYPE_DATA) ? DATA : NODE; 1686 int submitted = 0; 1687 1688 if (__is_large_section(sbi)) 1689 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1690 1691 /* 1692 * zone-capacity can be less than zone-size in zoned devices, 1693 * resulting in less than expected usable segments in the zone, 1694 * calculate the end segno in the zone which can be garbage collected 1695 */ 1696 if (f2fs_sb_has_blkzoned(sbi)) 1697 end_segno -= sbi->segs_per_sec - 1698 f2fs_usable_segs_in_sec(sbi, segno); 1699 1700 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1701 1702 /* readahead multi ssa blocks those have contiguous address */ 1703 if (__is_large_section(sbi)) 1704 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1705 end_segno - segno, META_SSA, true); 1706 1707 /* reference all summary page */ 1708 while (segno < end_segno) { 1709 sum_page = f2fs_get_sum_page(sbi, segno++); 1710 if (IS_ERR(sum_page)) { 1711 int err = PTR_ERR(sum_page); 1712 1713 end_segno = segno - 1; 1714 for (segno = start_segno; segno < end_segno; segno++) { 1715 sum_page = find_get_page(META_MAPPING(sbi), 1716 GET_SUM_BLOCK(sbi, segno)); 1717 f2fs_put_page(sum_page, 0); 1718 f2fs_put_page(sum_page, 0); 1719 } 1720 return err; 1721 } 1722 unlock_page(sum_page); 1723 } 1724 1725 blk_start_plug(&plug); 1726 1727 for (segno = start_segno; segno < end_segno; segno++) { 1728 1729 /* find segment summary of victim */ 1730 sum_page = find_get_page(META_MAPPING(sbi), 1731 GET_SUM_BLOCK(sbi, segno)); 1732 f2fs_put_page(sum_page, 0); 1733 1734 if (get_valid_blocks(sbi, segno, false) == 0) 1735 goto freed; 1736 if (gc_type == BG_GC && __is_large_section(sbi) && 1737 migrated >= sbi->migration_granularity) 1738 goto skip; 1739 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1740 goto skip; 1741 1742 sum = page_address(sum_page); 1743 if (type != GET_SUM_TYPE((&sum->footer))) { 1744 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1745 segno, type, GET_SUM_TYPE((&sum->footer))); 1746 set_sbi_flag(sbi, SBI_NEED_FSCK); 1747 f2fs_stop_checkpoint(sbi, false, 1748 STOP_CP_REASON_CORRUPTED_SUMMARY); 1749 goto skip; 1750 } 1751 1752 /* 1753 * this is to avoid deadlock: 1754 * - lock_page(sum_page) - f2fs_replace_block 1755 * - check_valid_map() - down_write(sentry_lock) 1756 * - down_read(sentry_lock) - change_curseg() 1757 * - lock_page(sum_page) 1758 */ 1759 if (type == SUM_TYPE_NODE) 1760 submitted += gc_node_segment(sbi, sum->entries, segno, 1761 gc_type); 1762 else 1763 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1764 segno, gc_type, 1765 force_migrate); 1766 1767 stat_inc_gc_seg_count(sbi, data_type, gc_type); 1768 sbi->gc_reclaimed_segs[sbi->gc_mode]++; 1769 migrated++; 1770 1771 freed: 1772 if (gc_type == FG_GC && 1773 get_valid_blocks(sbi, segno, false) == 0) 1774 seg_freed++; 1775 1776 if (__is_large_section(sbi)) 1777 sbi->next_victim_seg[gc_type] = 1778 (segno + 1 < end_segno) ? segno + 1 : NULL_SEGNO; 1779 skip: 1780 f2fs_put_page(sum_page, 0); 1781 } 1782 1783 if (submitted) 1784 f2fs_submit_merged_write(sbi, data_type); 1785 1786 blk_finish_plug(&plug); 1787 1788 if (migrated) 1789 stat_inc_gc_sec_count(sbi, data_type, gc_type); 1790 1791 return seg_freed; 1792 } 1793 1794 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control) 1795 { 1796 int gc_type = gc_control->init_gc_type; 1797 unsigned int segno = gc_control->victim_segno; 1798 int sec_freed = 0, seg_freed = 0, total_freed = 0, total_sec_freed = 0; 1799 int ret = 0; 1800 struct cp_control cpc; 1801 struct gc_inode_list gc_list = { 1802 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1803 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1804 }; 1805 unsigned int skipped_round = 0, round = 0; 1806 unsigned int upper_secs; 1807 1808 trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc, 1809 gc_control->nr_free_secs, 1810 get_pages(sbi, F2FS_DIRTY_NODES), 1811 get_pages(sbi, F2FS_DIRTY_DENTS), 1812 get_pages(sbi, F2FS_DIRTY_IMETA), 1813 free_sections(sbi), 1814 free_segments(sbi), 1815 reserved_segments(sbi), 1816 prefree_segments(sbi)); 1817 1818 cpc.reason = __get_cp_reason(sbi); 1819 gc_more: 1820 sbi->skipped_gc_rwsem = 0; 1821 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1822 ret = -EINVAL; 1823 goto stop; 1824 } 1825 if (unlikely(f2fs_cp_error(sbi))) { 1826 ret = -EIO; 1827 goto stop; 1828 } 1829 1830 /* Let's run FG_GC, if we don't have enough space. */ 1831 if (has_not_enough_free_secs(sbi, 0, 0)) { 1832 gc_type = FG_GC; 1833 1834 /* 1835 * For example, if there are many prefree_segments below given 1836 * threshold, we can make them free by checkpoint. Then, we 1837 * secure free segments which doesn't need fggc any more. 1838 */ 1839 if (prefree_segments(sbi)) { 1840 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1841 ret = f2fs_write_checkpoint(sbi, &cpc); 1842 if (ret) 1843 goto stop; 1844 /* Reset due to checkpoint */ 1845 sec_freed = 0; 1846 } 1847 } 1848 1849 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1850 if (gc_type == BG_GC && gc_control->no_bg_gc) { 1851 ret = -EINVAL; 1852 goto stop; 1853 } 1854 retry: 1855 ret = __get_victim(sbi, &segno, gc_type); 1856 if (ret) { 1857 /* allow to search victim from sections has pinned data */ 1858 if (ret == -ENODATA && gc_type == FG_GC && 1859 f2fs_pinned_section_exists(DIRTY_I(sbi))) { 1860 f2fs_unpin_all_sections(sbi, false); 1861 goto retry; 1862 } 1863 goto stop; 1864 } 1865 1866 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, 1867 gc_control->should_migrate_blocks); 1868 if (seg_freed < 0) 1869 goto stop; 1870 1871 total_freed += seg_freed; 1872 1873 if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) { 1874 sec_freed++; 1875 total_sec_freed++; 1876 } 1877 1878 if (gc_type == FG_GC) { 1879 sbi->cur_victim_sec = NULL_SEGNO; 1880 1881 if (has_enough_free_secs(sbi, sec_freed, 0)) { 1882 if (!gc_control->no_bg_gc && 1883 total_sec_freed < gc_control->nr_free_secs) 1884 goto go_gc_more; 1885 goto stop; 1886 } 1887 if (sbi->skipped_gc_rwsem) 1888 skipped_round++; 1889 round++; 1890 if (skipped_round > MAX_SKIP_GC_COUNT && 1891 skipped_round * 2 >= round) { 1892 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1893 ret = f2fs_write_checkpoint(sbi, &cpc); 1894 goto stop; 1895 } 1896 } else if (has_enough_free_secs(sbi, 0, 0)) { 1897 goto stop; 1898 } 1899 1900 __get_secs_required(sbi, NULL, &upper_secs, NULL); 1901 1902 /* 1903 * Write checkpoint to reclaim prefree segments. 1904 * We need more three extra sections for writer's data/node/dentry. 1905 */ 1906 if (free_sections(sbi) <= upper_secs + NR_GC_CHECKPOINT_SECS && 1907 prefree_segments(sbi)) { 1908 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1909 ret = f2fs_write_checkpoint(sbi, &cpc); 1910 if (ret) 1911 goto stop; 1912 /* Reset due to checkpoint */ 1913 sec_freed = 0; 1914 } 1915 go_gc_more: 1916 segno = NULL_SEGNO; 1917 goto gc_more; 1918 1919 stop: 1920 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1921 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno; 1922 1923 if (gc_type == FG_GC) 1924 f2fs_unpin_all_sections(sbi, true); 1925 1926 trace_f2fs_gc_end(sbi->sb, ret, total_freed, total_sec_freed, 1927 get_pages(sbi, F2FS_DIRTY_NODES), 1928 get_pages(sbi, F2FS_DIRTY_DENTS), 1929 get_pages(sbi, F2FS_DIRTY_IMETA), 1930 free_sections(sbi), 1931 free_segments(sbi), 1932 reserved_segments(sbi), 1933 prefree_segments(sbi)); 1934 1935 f2fs_up_write(&sbi->gc_lock); 1936 1937 put_gc_inode(&gc_list); 1938 1939 if (gc_control->err_gc_skipped && !ret) 1940 ret = total_sec_freed ? 0 : -EAGAIN; 1941 return ret; 1942 } 1943 1944 int __init f2fs_create_garbage_collection_cache(void) 1945 { 1946 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 1947 sizeof(struct victim_entry)); 1948 return victim_entry_slab ? 0 : -ENOMEM; 1949 } 1950 1951 void f2fs_destroy_garbage_collection_cache(void) 1952 { 1953 kmem_cache_destroy(victim_entry_slab); 1954 } 1955 1956 static void init_atgc_management(struct f2fs_sb_info *sbi) 1957 { 1958 struct atgc_management *am = &sbi->am; 1959 1960 if (test_opt(sbi, ATGC) && 1961 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 1962 am->atgc_enabled = true; 1963 1964 am->root = RB_ROOT_CACHED; 1965 INIT_LIST_HEAD(&am->victim_list); 1966 am->victim_count = 0; 1967 1968 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 1969 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 1970 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 1971 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 1972 } 1973 1974 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1975 { 1976 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1977 1978 /* give warm/cold data area from slower device */ 1979 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1980 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1981 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1982 1983 init_atgc_management(sbi); 1984 } 1985 1986 static int free_segment_range(struct f2fs_sb_info *sbi, 1987 unsigned int secs, bool gc_only) 1988 { 1989 unsigned int segno, next_inuse, start, end; 1990 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1991 int gc_mode, gc_type; 1992 int err = 0; 1993 int type; 1994 1995 /* Force block allocation for GC */ 1996 MAIN_SECS(sbi) -= secs; 1997 start = MAIN_SECS(sbi) * sbi->segs_per_sec; 1998 end = MAIN_SEGS(sbi) - 1; 1999 2000 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2001 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 2002 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 2003 SIT_I(sbi)->last_victim[gc_mode] = 0; 2004 2005 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 2006 if (sbi->next_victim_seg[gc_type] >= start) 2007 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 2008 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2009 2010 /* Move out cursegs from the target range */ 2011 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) 2012 f2fs_allocate_segment_for_resize(sbi, type, start, end); 2013 2014 /* do GC to move out valid blocks in the range */ 2015 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 2016 struct gc_inode_list gc_list = { 2017 .ilist = LIST_HEAD_INIT(gc_list.ilist), 2018 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 2019 }; 2020 2021 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true); 2022 put_gc_inode(&gc_list); 2023 2024 if (!gc_only && get_valid_blocks(sbi, segno, true)) { 2025 err = -EAGAIN; 2026 goto out; 2027 } 2028 if (fatal_signal_pending(current)) { 2029 err = -ERESTARTSYS; 2030 goto out; 2031 } 2032 } 2033 if (gc_only) 2034 goto out; 2035 2036 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2037 err = f2fs_write_checkpoint(sbi, &cpc); 2038 if (err) 2039 goto out; 2040 2041 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 2042 if (next_inuse <= end) { 2043 f2fs_err(sbi, "segno %u should be free but still inuse!", 2044 next_inuse); 2045 f2fs_bug_on(sbi, 1); 2046 } 2047 out: 2048 MAIN_SECS(sbi) += secs; 2049 return err; 2050 } 2051 2052 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 2053 { 2054 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 2055 int section_count; 2056 int segment_count; 2057 int segment_count_main; 2058 long long block_count; 2059 int segs = secs * sbi->segs_per_sec; 2060 2061 f2fs_down_write(&sbi->sb_lock); 2062 2063 section_count = le32_to_cpu(raw_sb->section_count); 2064 segment_count = le32_to_cpu(raw_sb->segment_count); 2065 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 2066 block_count = le64_to_cpu(raw_sb->block_count); 2067 2068 raw_sb->section_count = cpu_to_le32(section_count + secs); 2069 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 2070 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 2071 raw_sb->block_count = cpu_to_le64(block_count + 2072 (long long)segs * sbi->blocks_per_seg); 2073 if (f2fs_is_multi_device(sbi)) { 2074 int last_dev = sbi->s_ndevs - 1; 2075 int dev_segs = 2076 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 2077 2078 raw_sb->devs[last_dev].total_segments = 2079 cpu_to_le32(dev_segs + segs); 2080 } 2081 2082 f2fs_up_write(&sbi->sb_lock); 2083 } 2084 2085 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 2086 { 2087 int segs = secs * sbi->segs_per_sec; 2088 long long blks = (long long)segs * sbi->blocks_per_seg; 2089 long long user_block_count = 2090 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 2091 2092 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 2093 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 2094 MAIN_SECS(sbi) += secs; 2095 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 2096 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 2097 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 2098 2099 if (f2fs_is_multi_device(sbi)) { 2100 int last_dev = sbi->s_ndevs - 1; 2101 2102 FDEV(last_dev).total_segments = 2103 (int)FDEV(last_dev).total_segments + segs; 2104 FDEV(last_dev).end_blk = 2105 (long long)FDEV(last_dev).end_blk + blks; 2106 #ifdef CONFIG_BLK_DEV_ZONED 2107 FDEV(last_dev).nr_blkz = FDEV(last_dev).nr_blkz + 2108 div_u64(blks, sbi->blocks_per_blkz); 2109 #endif 2110 } 2111 } 2112 2113 int f2fs_resize_fs(struct file *filp, __u64 block_count) 2114 { 2115 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2116 __u64 old_block_count, shrunk_blocks; 2117 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2118 unsigned int secs; 2119 int err = 0; 2120 __u32 rem; 2121 2122 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 2123 if (block_count > old_block_count) 2124 return -EINVAL; 2125 2126 if (f2fs_is_multi_device(sbi)) { 2127 int last_dev = sbi->s_ndevs - 1; 2128 __u64 last_segs = FDEV(last_dev).total_segments; 2129 2130 if (block_count + last_segs * sbi->blocks_per_seg <= 2131 old_block_count) 2132 return -EINVAL; 2133 } 2134 2135 /* new fs size should align to section size */ 2136 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 2137 if (rem) 2138 return -EINVAL; 2139 2140 if (block_count == old_block_count) 2141 return 0; 2142 2143 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2144 f2fs_err(sbi, "Should run fsck to repair first."); 2145 return -EFSCORRUPTED; 2146 } 2147 2148 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2149 f2fs_err(sbi, "Checkpoint should be enabled."); 2150 return -EINVAL; 2151 } 2152 2153 err = mnt_want_write_file(filp); 2154 if (err) 2155 return err; 2156 2157 shrunk_blocks = old_block_count - block_count; 2158 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2159 2160 /* stop other GC */ 2161 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2162 err = -EAGAIN; 2163 goto out_drop_write; 2164 } 2165 2166 /* stop CP to protect MAIN_SEC in free_segment_range */ 2167 f2fs_lock_op(sbi); 2168 2169 spin_lock(&sbi->stat_lock); 2170 if (shrunk_blocks + valid_user_blocks(sbi) + 2171 sbi->current_reserved_blocks + sbi->unusable_block_count + 2172 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2173 err = -ENOSPC; 2174 spin_unlock(&sbi->stat_lock); 2175 2176 if (err) 2177 goto out_unlock; 2178 2179 err = free_segment_range(sbi, secs, true); 2180 2181 out_unlock: 2182 f2fs_unlock_op(sbi); 2183 f2fs_up_write(&sbi->gc_lock); 2184 out_drop_write: 2185 mnt_drop_write_file(filp); 2186 if (err) 2187 return err; 2188 2189 err = freeze_super(sbi->sb, FREEZE_HOLDER_USERSPACE); 2190 if (err) 2191 return err; 2192 2193 if (f2fs_readonly(sbi->sb)) { 2194 err = thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE); 2195 if (err) 2196 return err; 2197 return -EROFS; 2198 } 2199 2200 f2fs_down_write(&sbi->gc_lock); 2201 f2fs_down_write(&sbi->cp_global_sem); 2202 2203 spin_lock(&sbi->stat_lock); 2204 if (shrunk_blocks + valid_user_blocks(sbi) + 2205 sbi->current_reserved_blocks + sbi->unusable_block_count + 2206 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2207 err = -ENOSPC; 2208 else 2209 sbi->user_block_count -= shrunk_blocks; 2210 spin_unlock(&sbi->stat_lock); 2211 if (err) 2212 goto out_err; 2213 2214 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2215 err = free_segment_range(sbi, secs, false); 2216 if (err) 2217 goto recover_out; 2218 2219 update_sb_metadata(sbi, -secs); 2220 2221 err = f2fs_commit_super(sbi, false); 2222 if (err) { 2223 update_sb_metadata(sbi, secs); 2224 goto recover_out; 2225 } 2226 2227 update_fs_metadata(sbi, -secs); 2228 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2229 set_sbi_flag(sbi, SBI_IS_DIRTY); 2230 2231 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2232 err = f2fs_write_checkpoint(sbi, &cpc); 2233 if (err) { 2234 update_fs_metadata(sbi, secs); 2235 update_sb_metadata(sbi, secs); 2236 f2fs_commit_super(sbi, false); 2237 } 2238 recover_out: 2239 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2240 if (err) { 2241 set_sbi_flag(sbi, SBI_NEED_FSCK); 2242 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2243 2244 spin_lock(&sbi->stat_lock); 2245 sbi->user_block_count += shrunk_blocks; 2246 spin_unlock(&sbi->stat_lock); 2247 } 2248 out_err: 2249 f2fs_up_write(&sbi->cp_global_sem); 2250 f2fs_up_write(&sbi->gc_lock); 2251 thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE); 2252 return err; 2253 } 2254