1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/init.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/kthread.h> 14 #include <linux/delay.h> 15 #include <linux/freezer.h> 16 #include <linux/sched/signal.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include "segment.h" 21 #include "gc.h" 22 #include <trace/events/f2fs.h> 23 24 static struct kmem_cache *victim_entry_slab; 25 26 static unsigned int count_bits(const unsigned long *addr, 27 unsigned int offset, unsigned int len); 28 29 static int gc_thread_func(void *data) 30 { 31 struct f2fs_sb_info *sbi = data; 32 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 33 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 34 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 35 unsigned int wait_ms; 36 37 wait_ms = gc_th->min_sleep_time; 38 39 set_freezable(); 40 do { 41 bool sync_mode, foreground = false; 42 43 wait_event_interruptible_timeout(*wq, 44 kthread_should_stop() || freezing(current) || 45 waitqueue_active(fggc_wq) || 46 gc_th->gc_wake, 47 msecs_to_jiffies(wait_ms)); 48 49 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) 50 foreground = true; 51 52 /* give it a try one time */ 53 if (gc_th->gc_wake) 54 gc_th->gc_wake = 0; 55 56 if (try_to_freeze()) { 57 stat_other_skip_bggc_count(sbi); 58 continue; 59 } 60 if (kthread_should_stop()) 61 break; 62 63 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 64 increase_sleep_time(gc_th, &wait_ms); 65 stat_other_skip_bggc_count(sbi); 66 continue; 67 } 68 69 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 70 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 71 f2fs_stop_checkpoint(sbi, false); 72 } 73 74 if (!sb_start_write_trylock(sbi->sb)) { 75 stat_other_skip_bggc_count(sbi); 76 continue; 77 } 78 79 /* 80 * [GC triggering condition] 81 * 0. GC is not conducted currently. 82 * 1. There are enough dirty segments. 83 * 2. IO subsystem is idle by checking the # of writeback pages. 84 * 3. IO subsystem is idle by checking the # of requests in 85 * bdev's request list. 86 * 87 * Note) We have to avoid triggering GCs frequently. 88 * Because it is possible that some segments can be 89 * invalidated soon after by user update or deletion. 90 * So, I'd like to wait some time to collect dirty segments. 91 */ 92 if (sbi->gc_mode == GC_URGENT_HIGH) { 93 wait_ms = gc_th->urgent_sleep_time; 94 down_write(&sbi->gc_lock); 95 goto do_gc; 96 } 97 98 if (foreground) { 99 down_write(&sbi->gc_lock); 100 goto do_gc; 101 } else if (!down_write_trylock(&sbi->gc_lock)) { 102 stat_other_skip_bggc_count(sbi); 103 goto next; 104 } 105 106 if (!is_idle(sbi, GC_TIME)) { 107 increase_sleep_time(gc_th, &wait_ms); 108 up_write(&sbi->gc_lock); 109 stat_io_skip_bggc_count(sbi); 110 goto next; 111 } 112 113 if (has_enough_invalid_blocks(sbi)) 114 decrease_sleep_time(gc_th, &wait_ms); 115 else 116 increase_sleep_time(gc_th, &wait_ms); 117 do_gc: 118 if (!foreground) 119 stat_inc_bggc_count(sbi->stat_info); 120 121 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC; 122 123 /* foreground GC was been triggered via f2fs_balance_fs() */ 124 if (foreground) 125 sync_mode = false; 126 127 /* if return value is not zero, no victim was selected */ 128 if (f2fs_gc(sbi, sync_mode, !foreground, false, NULL_SEGNO)) 129 wait_ms = gc_th->no_gc_sleep_time; 130 131 if (foreground) 132 wake_up_all(&gc_th->fggc_wq); 133 134 trace_f2fs_background_gc(sbi->sb, wait_ms, 135 prefree_segments(sbi), free_segments(sbi)); 136 137 /* balancing f2fs's metadata periodically */ 138 f2fs_balance_fs_bg(sbi, true); 139 next: 140 sb_end_write(sbi->sb); 141 142 } while (!kthread_should_stop()); 143 return 0; 144 } 145 146 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 147 { 148 struct f2fs_gc_kthread *gc_th; 149 dev_t dev = sbi->sb->s_bdev->bd_dev; 150 int err = 0; 151 152 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 153 if (!gc_th) { 154 err = -ENOMEM; 155 goto out; 156 } 157 158 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 159 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 160 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 161 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 162 163 gc_th->gc_wake = 0; 164 165 sbi->gc_thread = gc_th; 166 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 167 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 168 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 169 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 170 if (IS_ERR(gc_th->f2fs_gc_task)) { 171 err = PTR_ERR(gc_th->f2fs_gc_task); 172 kfree(gc_th); 173 sbi->gc_thread = NULL; 174 } 175 out: 176 return err; 177 } 178 179 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 180 { 181 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 182 183 if (!gc_th) 184 return; 185 kthread_stop(gc_th->f2fs_gc_task); 186 wake_up_all(&gc_th->fggc_wq); 187 kfree(gc_th); 188 sbi->gc_thread = NULL; 189 } 190 191 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 192 { 193 int gc_mode; 194 195 if (gc_type == BG_GC) { 196 if (sbi->am.atgc_enabled) 197 gc_mode = GC_AT; 198 else 199 gc_mode = GC_CB; 200 } else { 201 gc_mode = GC_GREEDY; 202 } 203 204 switch (sbi->gc_mode) { 205 case GC_IDLE_CB: 206 gc_mode = GC_CB; 207 break; 208 case GC_IDLE_GREEDY: 209 case GC_URGENT_HIGH: 210 gc_mode = GC_GREEDY; 211 break; 212 case GC_IDLE_AT: 213 gc_mode = GC_AT; 214 break; 215 } 216 217 return gc_mode; 218 } 219 220 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 221 int type, struct victim_sel_policy *p) 222 { 223 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 224 225 if (p->alloc_mode == SSR) { 226 p->gc_mode = GC_GREEDY; 227 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 228 p->max_search = dirty_i->nr_dirty[type]; 229 p->ofs_unit = 1; 230 } else if (p->alloc_mode == AT_SSR) { 231 p->gc_mode = GC_GREEDY; 232 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 233 p->max_search = dirty_i->nr_dirty[type]; 234 p->ofs_unit = 1; 235 } else { 236 p->gc_mode = select_gc_type(sbi, gc_type); 237 p->ofs_unit = sbi->segs_per_sec; 238 if (__is_large_section(sbi)) { 239 p->dirty_bitmap = dirty_i->dirty_secmap; 240 p->max_search = count_bits(p->dirty_bitmap, 241 0, MAIN_SECS(sbi)); 242 } else { 243 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 244 p->max_search = dirty_i->nr_dirty[DIRTY]; 245 } 246 } 247 248 /* 249 * adjust candidates range, should select all dirty segments for 250 * foreground GC and urgent GC cases. 251 */ 252 if (gc_type != FG_GC && 253 (sbi->gc_mode != GC_URGENT_HIGH) && 254 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 255 p->max_search > sbi->max_victim_search) 256 p->max_search = sbi->max_victim_search; 257 258 /* let's select beginning hot/small space first in no_heap mode*/ 259 if (test_opt(sbi, NOHEAP) && 260 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 261 p->offset = 0; 262 else 263 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 264 } 265 266 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 267 struct victim_sel_policy *p) 268 { 269 /* SSR allocates in a segment unit */ 270 if (p->alloc_mode == SSR) 271 return sbi->blocks_per_seg; 272 else if (p->alloc_mode == AT_SSR) 273 return UINT_MAX; 274 275 /* LFS */ 276 if (p->gc_mode == GC_GREEDY) 277 return 2 * sbi->blocks_per_seg * p->ofs_unit; 278 else if (p->gc_mode == GC_CB) 279 return UINT_MAX; 280 else if (p->gc_mode == GC_AT) 281 return UINT_MAX; 282 else /* No other gc_mode */ 283 return 0; 284 } 285 286 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 287 { 288 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 289 unsigned int secno; 290 291 /* 292 * If the gc_type is FG_GC, we can select victim segments 293 * selected by background GC before. 294 * Those segments guarantee they have small valid blocks. 295 */ 296 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 297 if (sec_usage_check(sbi, secno)) 298 continue; 299 clear_bit(secno, dirty_i->victim_secmap); 300 return GET_SEG_FROM_SEC(sbi, secno); 301 } 302 return NULL_SEGNO; 303 } 304 305 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 306 { 307 struct sit_info *sit_i = SIT_I(sbi); 308 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 309 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 310 unsigned long long mtime = 0; 311 unsigned int vblocks; 312 unsigned char age = 0; 313 unsigned char u; 314 unsigned int i; 315 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno); 316 317 for (i = 0; i < usable_segs_per_sec; i++) 318 mtime += get_seg_entry(sbi, start + i)->mtime; 319 vblocks = get_valid_blocks(sbi, segno, true); 320 321 mtime = div_u64(mtime, usable_segs_per_sec); 322 vblocks = div_u64(vblocks, usable_segs_per_sec); 323 324 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 325 326 /* Handle if the system time has changed by the user */ 327 if (mtime < sit_i->min_mtime) 328 sit_i->min_mtime = mtime; 329 if (mtime > sit_i->max_mtime) 330 sit_i->max_mtime = mtime; 331 if (sit_i->max_mtime != sit_i->min_mtime) 332 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 333 sit_i->max_mtime - sit_i->min_mtime); 334 335 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 336 } 337 338 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 339 unsigned int segno, struct victim_sel_policy *p) 340 { 341 if (p->alloc_mode == SSR) 342 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 343 344 /* alloc_mode == LFS */ 345 if (p->gc_mode == GC_GREEDY) 346 return get_valid_blocks(sbi, segno, true); 347 else if (p->gc_mode == GC_CB) 348 return get_cb_cost(sbi, segno); 349 350 f2fs_bug_on(sbi, 1); 351 return 0; 352 } 353 354 static unsigned int count_bits(const unsigned long *addr, 355 unsigned int offset, unsigned int len) 356 { 357 unsigned int end = offset + len, sum = 0; 358 359 while (offset < end) { 360 if (test_bit(offset++, addr)) 361 ++sum; 362 } 363 return sum; 364 } 365 366 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi, 367 unsigned long long mtime, unsigned int segno, 368 struct rb_node *parent, struct rb_node **p, 369 bool left_most) 370 { 371 struct atgc_management *am = &sbi->am; 372 struct victim_entry *ve; 373 374 ve = f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS); 375 376 ve->mtime = mtime; 377 ve->segno = segno; 378 379 rb_link_node(&ve->rb_node, parent, p); 380 rb_insert_color_cached(&ve->rb_node, &am->root, left_most); 381 382 list_add_tail(&ve->list, &am->victim_list); 383 384 am->victim_count++; 385 386 return ve; 387 } 388 389 static void insert_victim_entry(struct f2fs_sb_info *sbi, 390 unsigned long long mtime, unsigned int segno) 391 { 392 struct atgc_management *am = &sbi->am; 393 struct rb_node **p; 394 struct rb_node *parent = NULL; 395 bool left_most = true; 396 397 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most); 398 attach_victim_entry(sbi, mtime, segno, parent, p, left_most); 399 } 400 401 static void add_victim_entry(struct f2fs_sb_info *sbi, 402 struct victim_sel_policy *p, unsigned int segno) 403 { 404 struct sit_info *sit_i = SIT_I(sbi); 405 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 406 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 407 unsigned long long mtime = 0; 408 unsigned int i; 409 410 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 411 if (p->gc_mode == GC_AT && 412 get_valid_blocks(sbi, segno, true) == 0) 413 return; 414 } 415 416 for (i = 0; i < sbi->segs_per_sec; i++) 417 mtime += get_seg_entry(sbi, start + i)->mtime; 418 mtime = div_u64(mtime, sbi->segs_per_sec); 419 420 /* Handle if the system time has changed by the user */ 421 if (mtime < sit_i->min_mtime) 422 sit_i->min_mtime = mtime; 423 if (mtime > sit_i->max_mtime) 424 sit_i->max_mtime = mtime; 425 if (mtime < sit_i->dirty_min_mtime) 426 sit_i->dirty_min_mtime = mtime; 427 if (mtime > sit_i->dirty_max_mtime) 428 sit_i->dirty_max_mtime = mtime; 429 430 /* don't choose young section as candidate */ 431 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 432 return; 433 434 insert_victim_entry(sbi, mtime, segno); 435 } 436 437 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi, 438 struct victim_sel_policy *p) 439 { 440 struct atgc_management *am = &sbi->am; 441 struct rb_node *parent = NULL; 442 bool left_most; 443 444 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most); 445 446 return parent; 447 } 448 449 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 450 struct victim_sel_policy *p) 451 { 452 struct sit_info *sit_i = SIT_I(sbi); 453 struct atgc_management *am = &sbi->am; 454 struct rb_root_cached *root = &am->root; 455 struct rb_node *node; 456 struct rb_entry *re; 457 struct victim_entry *ve; 458 unsigned long long total_time; 459 unsigned long long age, u, accu; 460 unsigned long long max_mtime = sit_i->dirty_max_mtime; 461 unsigned long long min_mtime = sit_i->dirty_min_mtime; 462 unsigned int sec_blocks = BLKS_PER_SEC(sbi); 463 unsigned int vblocks; 464 unsigned int dirty_threshold = max(am->max_candidate_count, 465 am->candidate_ratio * 466 am->victim_count / 100); 467 unsigned int age_weight = am->age_weight; 468 unsigned int cost; 469 unsigned int iter = 0; 470 471 if (max_mtime < min_mtime) 472 return; 473 474 max_mtime += 1; 475 total_time = max_mtime - min_mtime; 476 477 accu = div64_u64(ULLONG_MAX, total_time); 478 accu = min_t(unsigned long long, div_u64(accu, 100), 479 DEFAULT_ACCURACY_CLASS); 480 481 node = rb_first_cached(root); 482 next: 483 re = rb_entry_safe(node, struct rb_entry, rb_node); 484 if (!re) 485 return; 486 487 ve = (struct victim_entry *)re; 488 489 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 490 goto skip; 491 492 /* age = 10000 * x% * 60 */ 493 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 494 age_weight; 495 496 vblocks = get_valid_blocks(sbi, ve->segno, true); 497 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 498 499 /* u = 10000 * x% * 40 */ 500 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 501 (100 - age_weight); 502 503 f2fs_bug_on(sbi, age + u >= UINT_MAX); 504 505 cost = UINT_MAX - (age + u); 506 iter++; 507 508 if (cost < p->min_cost || 509 (cost == p->min_cost && age > p->oldest_age)) { 510 p->min_cost = cost; 511 p->oldest_age = age; 512 p->min_segno = ve->segno; 513 } 514 skip: 515 if (iter < dirty_threshold) { 516 node = rb_next(node); 517 goto next; 518 } 519 } 520 521 /* 522 * select candidates around source section in range of 523 * [target - dirty_threshold, target + dirty_threshold] 524 */ 525 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 526 struct victim_sel_policy *p) 527 { 528 struct sit_info *sit_i = SIT_I(sbi); 529 struct atgc_management *am = &sbi->am; 530 struct rb_node *node; 531 struct rb_entry *re; 532 struct victim_entry *ve; 533 unsigned long long age; 534 unsigned long long max_mtime = sit_i->dirty_max_mtime; 535 unsigned long long min_mtime = sit_i->dirty_min_mtime; 536 unsigned int seg_blocks = sbi->blocks_per_seg; 537 unsigned int vblocks; 538 unsigned int dirty_threshold = max(am->max_candidate_count, 539 am->candidate_ratio * 540 am->victim_count / 100); 541 unsigned int cost; 542 unsigned int iter = 0; 543 int stage = 0; 544 545 if (max_mtime < min_mtime) 546 return; 547 max_mtime += 1; 548 next_stage: 549 node = lookup_central_victim(sbi, p); 550 next_node: 551 re = rb_entry_safe(node, struct rb_entry, rb_node); 552 if (!re) { 553 if (stage == 0) 554 goto skip_stage; 555 return; 556 } 557 558 ve = (struct victim_entry *)re; 559 560 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 561 goto skip_node; 562 563 age = max_mtime - ve->mtime; 564 565 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 566 f2fs_bug_on(sbi, !vblocks); 567 568 /* rare case */ 569 if (vblocks == seg_blocks) 570 goto skip_node; 571 572 iter++; 573 574 age = max_mtime - abs(p->age - age); 575 cost = UINT_MAX - vblocks; 576 577 if (cost < p->min_cost || 578 (cost == p->min_cost && age > p->oldest_age)) { 579 p->min_cost = cost; 580 p->oldest_age = age; 581 p->min_segno = ve->segno; 582 } 583 skip_node: 584 if (iter < dirty_threshold) { 585 if (stage == 0) 586 node = rb_prev(node); 587 else if (stage == 1) 588 node = rb_next(node); 589 goto next_node; 590 } 591 skip_stage: 592 if (stage < 1) { 593 stage++; 594 iter = 0; 595 goto next_stage; 596 } 597 } 598 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 599 struct victim_sel_policy *p) 600 { 601 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 602 &sbi->am.root, true)); 603 604 if (p->gc_mode == GC_AT) 605 atgc_lookup_victim(sbi, p); 606 else if (p->alloc_mode == AT_SSR) 607 atssr_lookup_victim(sbi, p); 608 else 609 f2fs_bug_on(sbi, 1); 610 } 611 612 static void release_victim_entry(struct f2fs_sb_info *sbi) 613 { 614 struct atgc_management *am = &sbi->am; 615 struct victim_entry *ve, *tmp; 616 617 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 618 list_del(&ve->list); 619 kmem_cache_free(victim_entry_slab, ve); 620 am->victim_count--; 621 } 622 623 am->root = RB_ROOT_CACHED; 624 625 f2fs_bug_on(sbi, am->victim_count); 626 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 627 } 628 629 /* 630 * This function is called from two paths. 631 * One is garbage collection and the other is SSR segment selection. 632 * When it is called during GC, it just gets a victim segment 633 * and it does not remove it from dirty seglist. 634 * When it is called from SSR segment selection, it finds a segment 635 * which has minimum valid blocks and removes it from dirty seglist. 636 */ 637 static int get_victim_by_default(struct f2fs_sb_info *sbi, 638 unsigned int *result, int gc_type, int type, 639 char alloc_mode, unsigned long long age) 640 { 641 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 642 struct sit_info *sm = SIT_I(sbi); 643 struct victim_sel_policy p; 644 unsigned int secno, last_victim; 645 unsigned int last_segment; 646 unsigned int nsearched; 647 bool is_atgc; 648 int ret = 0; 649 650 mutex_lock(&dirty_i->seglist_lock); 651 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 652 653 p.alloc_mode = alloc_mode; 654 p.age = age; 655 p.age_threshold = sbi->am.age_threshold; 656 657 retry: 658 select_policy(sbi, gc_type, type, &p); 659 p.min_segno = NULL_SEGNO; 660 p.oldest_age = 0; 661 p.min_cost = get_max_cost(sbi, &p); 662 663 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 664 nsearched = 0; 665 666 if (is_atgc) 667 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 668 669 if (*result != NULL_SEGNO) { 670 if (!get_valid_blocks(sbi, *result, false)) { 671 ret = -ENODATA; 672 goto out; 673 } 674 675 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 676 ret = -EBUSY; 677 else 678 p.min_segno = *result; 679 goto out; 680 } 681 682 ret = -ENODATA; 683 if (p.max_search == 0) 684 goto out; 685 686 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 687 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 688 p.min_segno = sbi->next_victim_seg[BG_GC]; 689 *result = p.min_segno; 690 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 691 goto got_result; 692 } 693 if (gc_type == FG_GC && 694 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 695 p.min_segno = sbi->next_victim_seg[FG_GC]; 696 *result = p.min_segno; 697 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 698 goto got_result; 699 } 700 } 701 702 last_victim = sm->last_victim[p.gc_mode]; 703 if (p.alloc_mode == LFS && gc_type == FG_GC) { 704 p.min_segno = check_bg_victims(sbi); 705 if (p.min_segno != NULL_SEGNO) 706 goto got_it; 707 } 708 709 while (1) { 710 unsigned long cost, *dirty_bitmap; 711 unsigned int unit_no, segno; 712 713 dirty_bitmap = p.dirty_bitmap; 714 unit_no = find_next_bit(dirty_bitmap, 715 last_segment / p.ofs_unit, 716 p.offset / p.ofs_unit); 717 segno = unit_no * p.ofs_unit; 718 if (segno >= last_segment) { 719 if (sm->last_victim[p.gc_mode]) { 720 last_segment = 721 sm->last_victim[p.gc_mode]; 722 sm->last_victim[p.gc_mode] = 0; 723 p.offset = 0; 724 continue; 725 } 726 break; 727 } 728 729 p.offset = segno + p.ofs_unit; 730 nsearched++; 731 732 #ifdef CONFIG_F2FS_CHECK_FS 733 /* 734 * skip selecting the invalid segno (that is failed due to block 735 * validity check failure during GC) to avoid endless GC loop in 736 * such cases. 737 */ 738 if (test_bit(segno, sm->invalid_segmap)) 739 goto next; 740 #endif 741 742 secno = GET_SEC_FROM_SEG(sbi, segno); 743 744 if (sec_usage_check(sbi, secno)) 745 goto next; 746 747 /* Don't touch checkpointed data */ 748 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 749 if (p.alloc_mode == LFS) { 750 /* 751 * LFS is set to find source section during GC. 752 * The victim should have no checkpointed data. 753 */ 754 if (get_ckpt_valid_blocks(sbi, segno, true)) 755 goto next; 756 } else { 757 /* 758 * SSR | AT_SSR are set to find target segment 759 * for writes which can be full by checkpointed 760 * and newly written blocks. 761 */ 762 if (!f2fs_segment_has_free_slot(sbi, segno)) 763 goto next; 764 } 765 } 766 767 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 768 goto next; 769 770 if (is_atgc) { 771 add_victim_entry(sbi, &p, segno); 772 goto next; 773 } 774 775 cost = get_gc_cost(sbi, segno, &p); 776 777 if (p.min_cost > cost) { 778 p.min_segno = segno; 779 p.min_cost = cost; 780 } 781 next: 782 if (nsearched >= p.max_search) { 783 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 784 sm->last_victim[p.gc_mode] = 785 last_victim + p.ofs_unit; 786 else 787 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 788 sm->last_victim[p.gc_mode] %= 789 (MAIN_SECS(sbi) * sbi->segs_per_sec); 790 break; 791 } 792 } 793 794 /* get victim for GC_AT/AT_SSR */ 795 if (is_atgc) { 796 lookup_victim_by_age(sbi, &p); 797 release_victim_entry(sbi); 798 } 799 800 if (is_atgc && p.min_segno == NULL_SEGNO && 801 sm->elapsed_time < p.age_threshold) { 802 p.age_threshold = 0; 803 goto retry; 804 } 805 806 if (p.min_segno != NULL_SEGNO) { 807 got_it: 808 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 809 got_result: 810 if (p.alloc_mode == LFS) { 811 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 812 if (gc_type == FG_GC) 813 sbi->cur_victim_sec = secno; 814 else 815 set_bit(secno, dirty_i->victim_secmap); 816 } 817 ret = 0; 818 819 } 820 out: 821 if (p.min_segno != NULL_SEGNO) 822 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 823 sbi->cur_victim_sec, 824 prefree_segments(sbi), free_segments(sbi)); 825 mutex_unlock(&dirty_i->seglist_lock); 826 827 return ret; 828 } 829 830 static const struct victim_selection default_v_ops = { 831 .get_victim = get_victim_by_default, 832 }; 833 834 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 835 { 836 struct inode_entry *ie; 837 838 ie = radix_tree_lookup(&gc_list->iroot, ino); 839 if (ie) 840 return ie->inode; 841 return NULL; 842 } 843 844 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 845 { 846 struct inode_entry *new_ie; 847 848 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 849 iput(inode); 850 return; 851 } 852 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, GFP_NOFS); 853 new_ie->inode = inode; 854 855 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 856 list_add_tail(&new_ie->list, &gc_list->ilist); 857 } 858 859 static void put_gc_inode(struct gc_inode_list *gc_list) 860 { 861 struct inode_entry *ie, *next_ie; 862 863 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 864 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 865 iput(ie->inode); 866 list_del(&ie->list); 867 kmem_cache_free(f2fs_inode_entry_slab, ie); 868 } 869 } 870 871 static int check_valid_map(struct f2fs_sb_info *sbi, 872 unsigned int segno, int offset) 873 { 874 struct sit_info *sit_i = SIT_I(sbi); 875 struct seg_entry *sentry; 876 int ret; 877 878 down_read(&sit_i->sentry_lock); 879 sentry = get_seg_entry(sbi, segno); 880 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 881 up_read(&sit_i->sentry_lock); 882 return ret; 883 } 884 885 /* 886 * This function compares node address got in summary with that in NAT. 887 * On validity, copy that node with cold status, otherwise (invalid node) 888 * ignore that. 889 */ 890 static int gc_node_segment(struct f2fs_sb_info *sbi, 891 struct f2fs_summary *sum, unsigned int segno, int gc_type) 892 { 893 struct f2fs_summary *entry; 894 block_t start_addr; 895 int off; 896 int phase = 0; 897 bool fggc = (gc_type == FG_GC); 898 int submitted = 0; 899 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 900 901 start_addr = START_BLOCK(sbi, segno); 902 903 next_step: 904 entry = sum; 905 906 if (fggc && phase == 2) 907 atomic_inc(&sbi->wb_sync_req[NODE]); 908 909 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 910 nid_t nid = le32_to_cpu(entry->nid); 911 struct page *node_page; 912 struct node_info ni; 913 int err; 914 915 /* stop BG_GC if there is not enough free sections. */ 916 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 917 return submitted; 918 919 if (check_valid_map(sbi, segno, off) == 0) 920 continue; 921 922 if (phase == 0) { 923 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 924 META_NAT, true); 925 continue; 926 } 927 928 if (phase == 1) { 929 f2fs_ra_node_page(sbi, nid); 930 continue; 931 } 932 933 /* phase == 2 */ 934 node_page = f2fs_get_node_page(sbi, nid); 935 if (IS_ERR(node_page)) 936 continue; 937 938 /* block may become invalid during f2fs_get_node_page */ 939 if (check_valid_map(sbi, segno, off) == 0) { 940 f2fs_put_page(node_page, 1); 941 continue; 942 } 943 944 if (f2fs_get_node_info(sbi, nid, &ni)) { 945 f2fs_put_page(node_page, 1); 946 continue; 947 } 948 949 if (ni.blk_addr != start_addr + off) { 950 f2fs_put_page(node_page, 1); 951 continue; 952 } 953 954 err = f2fs_move_node_page(node_page, gc_type); 955 if (!err && gc_type == FG_GC) 956 submitted++; 957 stat_inc_node_blk_count(sbi, 1, gc_type); 958 } 959 960 if (++phase < 3) 961 goto next_step; 962 963 if (fggc) 964 atomic_dec(&sbi->wb_sync_req[NODE]); 965 return submitted; 966 } 967 968 /* 969 * Calculate start block index indicating the given node offset. 970 * Be careful, caller should give this node offset only indicating direct node 971 * blocks. If any node offsets, which point the other types of node blocks such 972 * as indirect or double indirect node blocks, are given, it must be a caller's 973 * bug. 974 */ 975 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 976 { 977 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 978 unsigned int bidx; 979 980 if (node_ofs == 0) 981 return 0; 982 983 if (node_ofs <= 2) { 984 bidx = node_ofs - 1; 985 } else if (node_ofs <= indirect_blks) { 986 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 987 988 bidx = node_ofs - 2 - dec; 989 } else { 990 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 991 992 bidx = node_ofs - 5 - dec; 993 } 994 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 995 } 996 997 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 998 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 999 { 1000 struct page *node_page; 1001 nid_t nid; 1002 unsigned int ofs_in_node; 1003 block_t source_blkaddr; 1004 1005 nid = le32_to_cpu(sum->nid); 1006 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1007 1008 node_page = f2fs_get_node_page(sbi, nid); 1009 if (IS_ERR(node_page)) 1010 return false; 1011 1012 if (f2fs_get_node_info(sbi, nid, dni)) { 1013 f2fs_put_page(node_page, 1); 1014 return false; 1015 } 1016 1017 if (sum->version != dni->version) { 1018 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1019 __func__); 1020 set_sbi_flag(sbi, SBI_NEED_FSCK); 1021 } 1022 1023 *nofs = ofs_of_node(node_page); 1024 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 1025 f2fs_put_page(node_page, 1); 1026 1027 if (source_blkaddr != blkaddr) { 1028 #ifdef CONFIG_F2FS_CHECK_FS 1029 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1030 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1031 1032 if (unlikely(check_valid_map(sbi, segno, offset))) { 1033 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1034 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1035 blkaddr, source_blkaddr, segno); 1036 f2fs_bug_on(sbi, 1); 1037 } 1038 } 1039 #endif 1040 return false; 1041 } 1042 return true; 1043 } 1044 1045 static int ra_data_block(struct inode *inode, pgoff_t index) 1046 { 1047 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1048 struct address_space *mapping = inode->i_mapping; 1049 struct dnode_of_data dn; 1050 struct page *page; 1051 struct extent_info ei = {0, 0, 0}; 1052 struct f2fs_io_info fio = { 1053 .sbi = sbi, 1054 .ino = inode->i_ino, 1055 .type = DATA, 1056 .temp = COLD, 1057 .op = REQ_OP_READ, 1058 .op_flags = 0, 1059 .encrypted_page = NULL, 1060 .in_list = false, 1061 .retry = false, 1062 }; 1063 int err; 1064 1065 page = f2fs_grab_cache_page(mapping, index, true); 1066 if (!page) 1067 return -ENOMEM; 1068 1069 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1070 dn.data_blkaddr = ei.blk + index - ei.fofs; 1071 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1072 DATA_GENERIC_ENHANCE_READ))) { 1073 err = -EFSCORRUPTED; 1074 goto put_page; 1075 } 1076 goto got_it; 1077 } 1078 1079 set_new_dnode(&dn, inode, NULL, NULL, 0); 1080 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1081 if (err) 1082 goto put_page; 1083 f2fs_put_dnode(&dn); 1084 1085 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1086 err = -ENOENT; 1087 goto put_page; 1088 } 1089 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1090 DATA_GENERIC_ENHANCE))) { 1091 err = -EFSCORRUPTED; 1092 goto put_page; 1093 } 1094 got_it: 1095 /* read page */ 1096 fio.page = page; 1097 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1098 1099 /* 1100 * don't cache encrypted data into meta inode until previous dirty 1101 * data were writebacked to avoid racing between GC and flush. 1102 */ 1103 f2fs_wait_on_page_writeback(page, DATA, true, true); 1104 1105 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1106 1107 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1108 dn.data_blkaddr, 1109 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1110 if (!fio.encrypted_page) { 1111 err = -ENOMEM; 1112 goto put_page; 1113 } 1114 1115 err = f2fs_submit_page_bio(&fio); 1116 if (err) 1117 goto put_encrypted_page; 1118 f2fs_put_page(fio.encrypted_page, 0); 1119 f2fs_put_page(page, 1); 1120 1121 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1122 f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1123 1124 return 0; 1125 put_encrypted_page: 1126 f2fs_put_page(fio.encrypted_page, 1); 1127 put_page: 1128 f2fs_put_page(page, 1); 1129 return err; 1130 } 1131 1132 /* 1133 * Move data block via META_MAPPING while keeping locked data page. 1134 * This can be used to move blocks, aka LBAs, directly on disk. 1135 */ 1136 static int move_data_block(struct inode *inode, block_t bidx, 1137 int gc_type, unsigned int segno, int off) 1138 { 1139 struct f2fs_io_info fio = { 1140 .sbi = F2FS_I_SB(inode), 1141 .ino = inode->i_ino, 1142 .type = DATA, 1143 .temp = COLD, 1144 .op = REQ_OP_READ, 1145 .op_flags = 0, 1146 .encrypted_page = NULL, 1147 .in_list = false, 1148 .retry = false, 1149 }; 1150 struct dnode_of_data dn; 1151 struct f2fs_summary sum; 1152 struct node_info ni; 1153 struct page *page, *mpage; 1154 block_t newaddr; 1155 int err = 0; 1156 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1157 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1158 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1159 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1160 1161 /* do not read out */ 1162 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 1163 if (!page) 1164 return -ENOMEM; 1165 1166 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1167 err = -ENOENT; 1168 goto out; 1169 } 1170 1171 if (f2fs_is_atomic_file(inode)) { 1172 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 1173 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 1174 err = -EAGAIN; 1175 goto out; 1176 } 1177 1178 if (f2fs_is_pinned_file(inode)) { 1179 f2fs_pin_file_control(inode, true); 1180 err = -EAGAIN; 1181 goto out; 1182 } 1183 1184 set_new_dnode(&dn, inode, NULL, NULL, 0); 1185 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1186 if (err) 1187 goto out; 1188 1189 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1190 ClearPageUptodate(page); 1191 err = -ENOENT; 1192 goto put_out; 1193 } 1194 1195 /* 1196 * don't cache encrypted data into meta inode until previous dirty 1197 * data were writebacked to avoid racing between GC and flush. 1198 */ 1199 f2fs_wait_on_page_writeback(page, DATA, true, true); 1200 1201 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1202 1203 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni); 1204 if (err) 1205 goto put_out; 1206 1207 /* read page */ 1208 fio.page = page; 1209 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1210 1211 if (lfs_mode) 1212 down_write(&fio.sbi->io_order_lock); 1213 1214 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1215 fio.old_blkaddr, false); 1216 if (!mpage) { 1217 err = -ENOMEM; 1218 goto up_out; 1219 } 1220 1221 fio.encrypted_page = mpage; 1222 1223 /* read source block in mpage */ 1224 if (!PageUptodate(mpage)) { 1225 err = f2fs_submit_page_bio(&fio); 1226 if (err) { 1227 f2fs_put_page(mpage, 1); 1228 goto up_out; 1229 } 1230 1231 f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1232 f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1233 1234 lock_page(mpage); 1235 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1236 !PageUptodate(mpage))) { 1237 err = -EIO; 1238 f2fs_put_page(mpage, 1); 1239 goto up_out; 1240 } 1241 } 1242 1243 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1244 1245 /* allocate block address */ 1246 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1247 &sum, type, NULL); 1248 1249 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1250 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1251 if (!fio.encrypted_page) { 1252 err = -ENOMEM; 1253 f2fs_put_page(mpage, 1); 1254 goto recover_block; 1255 } 1256 1257 /* write target block */ 1258 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1259 memcpy(page_address(fio.encrypted_page), 1260 page_address(mpage), PAGE_SIZE); 1261 f2fs_put_page(mpage, 1); 1262 invalidate_mapping_pages(META_MAPPING(fio.sbi), 1263 fio.old_blkaddr, fio.old_blkaddr); 1264 f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr); 1265 1266 set_page_dirty(fio.encrypted_page); 1267 if (clear_page_dirty_for_io(fio.encrypted_page)) 1268 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1269 1270 set_page_writeback(fio.encrypted_page); 1271 ClearPageError(page); 1272 1273 fio.op = REQ_OP_WRITE; 1274 fio.op_flags = REQ_SYNC; 1275 fio.new_blkaddr = newaddr; 1276 f2fs_submit_page_write(&fio); 1277 if (fio.retry) { 1278 err = -EAGAIN; 1279 if (PageWriteback(fio.encrypted_page)) 1280 end_page_writeback(fio.encrypted_page); 1281 goto put_page_out; 1282 } 1283 1284 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE); 1285 1286 f2fs_update_data_blkaddr(&dn, newaddr); 1287 set_inode_flag(inode, FI_APPEND_WRITE); 1288 if (page->index == 0) 1289 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1290 put_page_out: 1291 f2fs_put_page(fio.encrypted_page, 1); 1292 recover_block: 1293 if (err) 1294 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1295 true, true, true); 1296 up_out: 1297 if (lfs_mode) 1298 up_write(&fio.sbi->io_order_lock); 1299 put_out: 1300 f2fs_put_dnode(&dn); 1301 out: 1302 f2fs_put_page(page, 1); 1303 return err; 1304 } 1305 1306 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1307 unsigned int segno, int off) 1308 { 1309 struct page *page; 1310 int err = 0; 1311 1312 page = f2fs_get_lock_data_page(inode, bidx, true); 1313 if (IS_ERR(page)) 1314 return PTR_ERR(page); 1315 1316 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1317 err = -ENOENT; 1318 goto out; 1319 } 1320 1321 if (f2fs_is_atomic_file(inode)) { 1322 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 1323 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 1324 err = -EAGAIN; 1325 goto out; 1326 } 1327 if (f2fs_is_pinned_file(inode)) { 1328 if (gc_type == FG_GC) 1329 f2fs_pin_file_control(inode, true); 1330 err = -EAGAIN; 1331 goto out; 1332 } 1333 1334 if (gc_type == BG_GC) { 1335 if (PageWriteback(page)) { 1336 err = -EAGAIN; 1337 goto out; 1338 } 1339 set_page_dirty(page); 1340 set_page_private_gcing(page); 1341 } else { 1342 struct f2fs_io_info fio = { 1343 .sbi = F2FS_I_SB(inode), 1344 .ino = inode->i_ino, 1345 .type = DATA, 1346 .temp = COLD, 1347 .op = REQ_OP_WRITE, 1348 .op_flags = REQ_SYNC, 1349 .old_blkaddr = NULL_ADDR, 1350 .page = page, 1351 .encrypted_page = NULL, 1352 .need_lock = LOCK_REQ, 1353 .io_type = FS_GC_DATA_IO, 1354 }; 1355 bool is_dirty = PageDirty(page); 1356 1357 retry: 1358 f2fs_wait_on_page_writeback(page, DATA, true, true); 1359 1360 set_page_dirty(page); 1361 if (clear_page_dirty_for_io(page)) { 1362 inode_dec_dirty_pages(inode); 1363 f2fs_remove_dirty_inode(inode); 1364 } 1365 1366 set_page_private_gcing(page); 1367 1368 err = f2fs_do_write_data_page(&fio); 1369 if (err) { 1370 clear_page_private_gcing(page); 1371 if (err == -ENOMEM) { 1372 congestion_wait(BLK_RW_ASYNC, 1373 DEFAULT_IO_TIMEOUT); 1374 goto retry; 1375 } 1376 if (is_dirty) 1377 set_page_dirty(page); 1378 } 1379 } 1380 out: 1381 f2fs_put_page(page, 1); 1382 return err; 1383 } 1384 1385 /* 1386 * This function tries to get parent node of victim data block, and identifies 1387 * data block validity. If the block is valid, copy that with cold status and 1388 * modify parent node. 1389 * If the parent node is not valid or the data block address is different, 1390 * the victim data block is ignored. 1391 */ 1392 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1393 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1394 bool force_migrate) 1395 { 1396 struct super_block *sb = sbi->sb; 1397 struct f2fs_summary *entry; 1398 block_t start_addr; 1399 int off; 1400 int phase = 0; 1401 int submitted = 0; 1402 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1403 1404 start_addr = START_BLOCK(sbi, segno); 1405 1406 next_step: 1407 entry = sum; 1408 1409 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1410 struct page *data_page; 1411 struct inode *inode; 1412 struct node_info dni; /* dnode info for the data */ 1413 unsigned int ofs_in_node, nofs; 1414 block_t start_bidx; 1415 nid_t nid = le32_to_cpu(entry->nid); 1416 1417 /* 1418 * stop BG_GC if there is not enough free sections. 1419 * Or, stop GC if the segment becomes fully valid caused by 1420 * race condition along with SSR block allocation. 1421 */ 1422 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1423 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1424 BLKS_PER_SEC(sbi))) 1425 return submitted; 1426 1427 if (check_valid_map(sbi, segno, off) == 0) 1428 continue; 1429 1430 if (phase == 0) { 1431 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1432 META_NAT, true); 1433 continue; 1434 } 1435 1436 if (phase == 1) { 1437 f2fs_ra_node_page(sbi, nid); 1438 continue; 1439 } 1440 1441 /* Get an inode by ino with checking validity */ 1442 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1443 continue; 1444 1445 if (phase == 2) { 1446 f2fs_ra_node_page(sbi, dni.ino); 1447 continue; 1448 } 1449 1450 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1451 1452 if (phase == 3) { 1453 inode = f2fs_iget(sb, dni.ino); 1454 if (IS_ERR(inode) || is_bad_inode(inode)) 1455 continue; 1456 1457 if (!down_write_trylock( 1458 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1459 iput(inode); 1460 sbi->skipped_gc_rwsem++; 1461 continue; 1462 } 1463 1464 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1465 ofs_in_node; 1466 1467 if (f2fs_post_read_required(inode)) { 1468 int err = ra_data_block(inode, start_bidx); 1469 1470 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1471 if (err) { 1472 iput(inode); 1473 continue; 1474 } 1475 add_gc_inode(gc_list, inode); 1476 continue; 1477 } 1478 1479 data_page = f2fs_get_read_data_page(inode, 1480 start_bidx, REQ_RAHEAD, true); 1481 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1482 if (IS_ERR(data_page)) { 1483 iput(inode); 1484 continue; 1485 } 1486 1487 f2fs_put_page(data_page, 0); 1488 add_gc_inode(gc_list, inode); 1489 continue; 1490 } 1491 1492 /* phase 4 */ 1493 inode = find_gc_inode(gc_list, dni.ino); 1494 if (inode) { 1495 struct f2fs_inode_info *fi = F2FS_I(inode); 1496 bool locked = false; 1497 int err; 1498 1499 if (S_ISREG(inode->i_mode)) { 1500 if (!down_write_trylock(&fi->i_gc_rwsem[READ])) 1501 continue; 1502 if (!down_write_trylock( 1503 &fi->i_gc_rwsem[WRITE])) { 1504 sbi->skipped_gc_rwsem++; 1505 up_write(&fi->i_gc_rwsem[READ]); 1506 continue; 1507 } 1508 locked = true; 1509 1510 /* wait for all inflight aio data */ 1511 inode_dio_wait(inode); 1512 } 1513 1514 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1515 + ofs_in_node; 1516 if (f2fs_post_read_required(inode)) 1517 err = move_data_block(inode, start_bidx, 1518 gc_type, segno, off); 1519 else 1520 err = move_data_page(inode, start_bidx, gc_type, 1521 segno, off); 1522 1523 if (!err && (gc_type == FG_GC || 1524 f2fs_post_read_required(inode))) 1525 submitted++; 1526 1527 if (locked) { 1528 up_write(&fi->i_gc_rwsem[WRITE]); 1529 up_write(&fi->i_gc_rwsem[READ]); 1530 } 1531 1532 stat_inc_data_blk_count(sbi, 1, gc_type); 1533 } 1534 } 1535 1536 if (++phase < 5) 1537 goto next_step; 1538 1539 return submitted; 1540 } 1541 1542 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1543 int gc_type) 1544 { 1545 struct sit_info *sit_i = SIT_I(sbi); 1546 int ret; 1547 1548 down_write(&sit_i->sentry_lock); 1549 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, 1550 NO_CHECK_TYPE, LFS, 0); 1551 up_write(&sit_i->sentry_lock); 1552 return ret; 1553 } 1554 1555 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1556 unsigned int start_segno, 1557 struct gc_inode_list *gc_list, int gc_type, 1558 bool force_migrate) 1559 { 1560 struct page *sum_page; 1561 struct f2fs_summary_block *sum; 1562 struct blk_plug plug; 1563 unsigned int segno = start_segno; 1564 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1565 int seg_freed = 0, migrated = 0; 1566 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1567 SUM_TYPE_DATA : SUM_TYPE_NODE; 1568 int submitted = 0; 1569 1570 if (__is_large_section(sbi)) 1571 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1572 1573 /* 1574 * zone-capacity can be less than zone-size in zoned devices, 1575 * resulting in less than expected usable segments in the zone, 1576 * calculate the end segno in the zone which can be garbage collected 1577 */ 1578 if (f2fs_sb_has_blkzoned(sbi)) 1579 end_segno -= sbi->segs_per_sec - 1580 f2fs_usable_segs_in_sec(sbi, segno); 1581 1582 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1583 1584 /* readahead multi ssa blocks those have contiguous address */ 1585 if (__is_large_section(sbi)) 1586 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1587 end_segno - segno, META_SSA, true); 1588 1589 /* reference all summary page */ 1590 while (segno < end_segno) { 1591 sum_page = f2fs_get_sum_page(sbi, segno++); 1592 if (IS_ERR(sum_page)) { 1593 int err = PTR_ERR(sum_page); 1594 1595 end_segno = segno - 1; 1596 for (segno = start_segno; segno < end_segno; segno++) { 1597 sum_page = find_get_page(META_MAPPING(sbi), 1598 GET_SUM_BLOCK(sbi, segno)); 1599 f2fs_put_page(sum_page, 0); 1600 f2fs_put_page(sum_page, 0); 1601 } 1602 return err; 1603 } 1604 unlock_page(sum_page); 1605 } 1606 1607 blk_start_plug(&plug); 1608 1609 for (segno = start_segno; segno < end_segno; segno++) { 1610 1611 /* find segment summary of victim */ 1612 sum_page = find_get_page(META_MAPPING(sbi), 1613 GET_SUM_BLOCK(sbi, segno)); 1614 f2fs_put_page(sum_page, 0); 1615 1616 if (get_valid_blocks(sbi, segno, false) == 0) 1617 goto freed; 1618 if (gc_type == BG_GC && __is_large_section(sbi) && 1619 migrated >= sbi->migration_granularity) 1620 goto skip; 1621 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1622 goto skip; 1623 1624 sum = page_address(sum_page); 1625 if (type != GET_SUM_TYPE((&sum->footer))) { 1626 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1627 segno, type, GET_SUM_TYPE((&sum->footer))); 1628 set_sbi_flag(sbi, SBI_NEED_FSCK); 1629 f2fs_stop_checkpoint(sbi, false); 1630 goto skip; 1631 } 1632 1633 /* 1634 * this is to avoid deadlock: 1635 * - lock_page(sum_page) - f2fs_replace_block 1636 * - check_valid_map() - down_write(sentry_lock) 1637 * - down_read(sentry_lock) - change_curseg() 1638 * - lock_page(sum_page) 1639 */ 1640 if (type == SUM_TYPE_NODE) 1641 submitted += gc_node_segment(sbi, sum->entries, segno, 1642 gc_type); 1643 else 1644 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1645 segno, gc_type, 1646 force_migrate); 1647 1648 stat_inc_seg_count(sbi, type, gc_type); 1649 migrated++; 1650 1651 freed: 1652 if (gc_type == FG_GC && 1653 get_valid_blocks(sbi, segno, false) == 0) 1654 seg_freed++; 1655 1656 if (__is_large_section(sbi) && segno + 1 < end_segno) 1657 sbi->next_victim_seg[gc_type] = segno + 1; 1658 skip: 1659 f2fs_put_page(sum_page, 0); 1660 } 1661 1662 if (submitted) 1663 f2fs_submit_merged_write(sbi, 1664 (type == SUM_TYPE_NODE) ? NODE : DATA); 1665 1666 blk_finish_plug(&plug); 1667 1668 stat_inc_call_count(sbi->stat_info); 1669 1670 return seg_freed; 1671 } 1672 1673 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, 1674 bool background, bool force, unsigned int segno) 1675 { 1676 int gc_type = sync ? FG_GC : BG_GC; 1677 int sec_freed = 0, seg_freed = 0, total_freed = 0; 1678 int ret = 0; 1679 struct cp_control cpc; 1680 unsigned int init_segno = segno; 1681 struct gc_inode_list gc_list = { 1682 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1683 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1684 }; 1685 unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC]; 1686 unsigned long long first_skipped; 1687 unsigned int skipped_round = 0, round = 0; 1688 1689 trace_f2fs_gc_begin(sbi->sb, sync, background, 1690 get_pages(sbi, F2FS_DIRTY_NODES), 1691 get_pages(sbi, F2FS_DIRTY_DENTS), 1692 get_pages(sbi, F2FS_DIRTY_IMETA), 1693 free_sections(sbi), 1694 free_segments(sbi), 1695 reserved_segments(sbi), 1696 prefree_segments(sbi)); 1697 1698 cpc.reason = __get_cp_reason(sbi); 1699 sbi->skipped_gc_rwsem = 0; 1700 first_skipped = last_skipped; 1701 gc_more: 1702 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1703 ret = -EINVAL; 1704 goto stop; 1705 } 1706 if (unlikely(f2fs_cp_error(sbi))) { 1707 ret = -EIO; 1708 goto stop; 1709 } 1710 1711 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { 1712 /* 1713 * For example, if there are many prefree_segments below given 1714 * threshold, we can make them free by checkpoint. Then, we 1715 * secure free segments which doesn't need fggc any more. 1716 */ 1717 if (prefree_segments(sbi) && 1718 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 1719 ret = f2fs_write_checkpoint(sbi, &cpc); 1720 if (ret) 1721 goto stop; 1722 } 1723 if (has_not_enough_free_secs(sbi, 0, 0)) 1724 gc_type = FG_GC; 1725 } 1726 1727 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1728 if (gc_type == BG_GC && !background) { 1729 ret = -EINVAL; 1730 goto stop; 1731 } 1732 ret = __get_victim(sbi, &segno, gc_type); 1733 if (ret) 1734 goto stop; 1735 1736 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, force); 1737 if (gc_type == FG_GC && 1738 seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) 1739 sec_freed++; 1740 total_freed += seg_freed; 1741 1742 if (gc_type == FG_GC) { 1743 if (sbi->skipped_atomic_files[FG_GC] > last_skipped || 1744 sbi->skipped_gc_rwsem) 1745 skipped_round++; 1746 last_skipped = sbi->skipped_atomic_files[FG_GC]; 1747 round++; 1748 } 1749 1750 if (gc_type == FG_GC && seg_freed) 1751 sbi->cur_victim_sec = NULL_SEGNO; 1752 1753 if (sync) 1754 goto stop; 1755 1756 if (has_not_enough_free_secs(sbi, sec_freed, 0)) { 1757 if (skipped_round <= MAX_SKIP_GC_COUNT || 1758 skipped_round * 2 < round) { 1759 segno = NULL_SEGNO; 1760 goto gc_more; 1761 } 1762 1763 if (first_skipped < last_skipped && 1764 (last_skipped - first_skipped) > 1765 sbi->skipped_gc_rwsem) { 1766 f2fs_drop_inmem_pages_all(sbi, true); 1767 segno = NULL_SEGNO; 1768 goto gc_more; 1769 } 1770 if (gc_type == FG_GC && !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1771 ret = f2fs_write_checkpoint(sbi, &cpc); 1772 } 1773 stop: 1774 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1775 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno; 1776 1777 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, 1778 get_pages(sbi, F2FS_DIRTY_NODES), 1779 get_pages(sbi, F2FS_DIRTY_DENTS), 1780 get_pages(sbi, F2FS_DIRTY_IMETA), 1781 free_sections(sbi), 1782 free_segments(sbi), 1783 reserved_segments(sbi), 1784 prefree_segments(sbi)); 1785 1786 up_write(&sbi->gc_lock); 1787 1788 put_gc_inode(&gc_list); 1789 1790 if (sync && !ret) 1791 ret = sec_freed ? 0 : -EAGAIN; 1792 return ret; 1793 } 1794 1795 int __init f2fs_create_garbage_collection_cache(void) 1796 { 1797 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 1798 sizeof(struct victim_entry)); 1799 if (!victim_entry_slab) 1800 return -ENOMEM; 1801 return 0; 1802 } 1803 1804 void f2fs_destroy_garbage_collection_cache(void) 1805 { 1806 kmem_cache_destroy(victim_entry_slab); 1807 } 1808 1809 static void init_atgc_management(struct f2fs_sb_info *sbi) 1810 { 1811 struct atgc_management *am = &sbi->am; 1812 1813 if (test_opt(sbi, ATGC) && 1814 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 1815 am->atgc_enabled = true; 1816 1817 am->root = RB_ROOT_CACHED; 1818 INIT_LIST_HEAD(&am->victim_list); 1819 am->victim_count = 0; 1820 1821 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 1822 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 1823 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 1824 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 1825 } 1826 1827 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1828 { 1829 DIRTY_I(sbi)->v_ops = &default_v_ops; 1830 1831 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1832 1833 /* give warm/cold data area from slower device */ 1834 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1835 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1836 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1837 1838 init_atgc_management(sbi); 1839 } 1840 1841 static int free_segment_range(struct f2fs_sb_info *sbi, 1842 unsigned int secs, bool gc_only) 1843 { 1844 unsigned int segno, next_inuse, start, end; 1845 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1846 int gc_mode, gc_type; 1847 int err = 0; 1848 int type; 1849 1850 /* Force block allocation for GC */ 1851 MAIN_SECS(sbi) -= secs; 1852 start = MAIN_SECS(sbi) * sbi->segs_per_sec; 1853 end = MAIN_SEGS(sbi) - 1; 1854 1855 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 1856 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 1857 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 1858 SIT_I(sbi)->last_victim[gc_mode] = 0; 1859 1860 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 1861 if (sbi->next_victim_seg[gc_type] >= start) 1862 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 1863 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 1864 1865 /* Move out cursegs from the target range */ 1866 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) 1867 f2fs_allocate_segment_for_resize(sbi, type, start, end); 1868 1869 /* do GC to move out valid blocks in the range */ 1870 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 1871 struct gc_inode_list gc_list = { 1872 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1873 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1874 }; 1875 1876 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true); 1877 put_gc_inode(&gc_list); 1878 1879 if (!gc_only && get_valid_blocks(sbi, segno, true)) { 1880 err = -EAGAIN; 1881 goto out; 1882 } 1883 if (fatal_signal_pending(current)) { 1884 err = -ERESTARTSYS; 1885 goto out; 1886 } 1887 } 1888 if (gc_only) 1889 goto out; 1890 1891 err = f2fs_write_checkpoint(sbi, &cpc); 1892 if (err) 1893 goto out; 1894 1895 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 1896 if (next_inuse <= end) { 1897 f2fs_err(sbi, "segno %u should be free but still inuse!", 1898 next_inuse); 1899 f2fs_bug_on(sbi, 1); 1900 } 1901 out: 1902 MAIN_SECS(sbi) += secs; 1903 return err; 1904 } 1905 1906 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 1907 { 1908 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 1909 int section_count; 1910 int segment_count; 1911 int segment_count_main; 1912 long long block_count; 1913 int segs = secs * sbi->segs_per_sec; 1914 1915 down_write(&sbi->sb_lock); 1916 1917 section_count = le32_to_cpu(raw_sb->section_count); 1918 segment_count = le32_to_cpu(raw_sb->segment_count); 1919 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 1920 block_count = le64_to_cpu(raw_sb->block_count); 1921 1922 raw_sb->section_count = cpu_to_le32(section_count + secs); 1923 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 1924 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 1925 raw_sb->block_count = cpu_to_le64(block_count + 1926 (long long)segs * sbi->blocks_per_seg); 1927 if (f2fs_is_multi_device(sbi)) { 1928 int last_dev = sbi->s_ndevs - 1; 1929 int dev_segs = 1930 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 1931 1932 raw_sb->devs[last_dev].total_segments = 1933 cpu_to_le32(dev_segs + segs); 1934 } 1935 1936 up_write(&sbi->sb_lock); 1937 } 1938 1939 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 1940 { 1941 int segs = secs * sbi->segs_per_sec; 1942 long long blks = (long long)segs * sbi->blocks_per_seg; 1943 long long user_block_count = 1944 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 1945 1946 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 1947 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 1948 MAIN_SECS(sbi) += secs; 1949 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 1950 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 1951 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 1952 1953 if (f2fs_is_multi_device(sbi)) { 1954 int last_dev = sbi->s_ndevs - 1; 1955 1956 FDEV(last_dev).total_segments = 1957 (int)FDEV(last_dev).total_segments + segs; 1958 FDEV(last_dev).end_blk = 1959 (long long)FDEV(last_dev).end_blk + blks; 1960 #ifdef CONFIG_BLK_DEV_ZONED 1961 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz + 1962 (int)(blks >> sbi->log_blocks_per_blkz); 1963 #endif 1964 } 1965 } 1966 1967 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count) 1968 { 1969 __u64 old_block_count, shrunk_blocks; 1970 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1971 unsigned int secs; 1972 int err = 0; 1973 __u32 rem; 1974 1975 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 1976 if (block_count > old_block_count) 1977 return -EINVAL; 1978 1979 if (f2fs_is_multi_device(sbi)) { 1980 int last_dev = sbi->s_ndevs - 1; 1981 __u64 last_segs = FDEV(last_dev).total_segments; 1982 1983 if (block_count + last_segs * sbi->blocks_per_seg <= 1984 old_block_count) 1985 return -EINVAL; 1986 } 1987 1988 /* new fs size should align to section size */ 1989 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 1990 if (rem) 1991 return -EINVAL; 1992 1993 if (block_count == old_block_count) 1994 return 0; 1995 1996 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1997 f2fs_err(sbi, "Should run fsck to repair first."); 1998 return -EFSCORRUPTED; 1999 } 2000 2001 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2002 f2fs_err(sbi, "Checkpoint should be enabled."); 2003 return -EINVAL; 2004 } 2005 2006 shrunk_blocks = old_block_count - block_count; 2007 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2008 2009 /* stop other GC */ 2010 if (!down_write_trylock(&sbi->gc_lock)) 2011 return -EAGAIN; 2012 2013 /* stop CP to protect MAIN_SEC in free_segment_range */ 2014 f2fs_lock_op(sbi); 2015 2016 spin_lock(&sbi->stat_lock); 2017 if (shrunk_blocks + valid_user_blocks(sbi) + 2018 sbi->current_reserved_blocks + sbi->unusable_block_count + 2019 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2020 err = -ENOSPC; 2021 spin_unlock(&sbi->stat_lock); 2022 2023 if (err) 2024 goto out_unlock; 2025 2026 err = free_segment_range(sbi, secs, true); 2027 2028 out_unlock: 2029 f2fs_unlock_op(sbi); 2030 up_write(&sbi->gc_lock); 2031 if (err) 2032 return err; 2033 2034 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2035 2036 freeze_super(sbi->sb); 2037 down_write(&sbi->gc_lock); 2038 down_write(&sbi->cp_global_sem); 2039 2040 spin_lock(&sbi->stat_lock); 2041 if (shrunk_blocks + valid_user_blocks(sbi) + 2042 sbi->current_reserved_blocks + sbi->unusable_block_count + 2043 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2044 err = -ENOSPC; 2045 else 2046 sbi->user_block_count -= shrunk_blocks; 2047 spin_unlock(&sbi->stat_lock); 2048 if (err) 2049 goto out_err; 2050 2051 err = free_segment_range(sbi, secs, false); 2052 if (err) 2053 goto recover_out; 2054 2055 update_sb_metadata(sbi, -secs); 2056 2057 err = f2fs_commit_super(sbi, false); 2058 if (err) { 2059 update_sb_metadata(sbi, secs); 2060 goto recover_out; 2061 } 2062 2063 update_fs_metadata(sbi, -secs); 2064 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2065 set_sbi_flag(sbi, SBI_IS_DIRTY); 2066 2067 err = f2fs_write_checkpoint(sbi, &cpc); 2068 if (err) { 2069 update_fs_metadata(sbi, secs); 2070 update_sb_metadata(sbi, secs); 2071 f2fs_commit_super(sbi, false); 2072 } 2073 recover_out: 2074 if (err) { 2075 set_sbi_flag(sbi, SBI_NEED_FSCK); 2076 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2077 2078 spin_lock(&sbi->stat_lock); 2079 sbi->user_block_count += shrunk_blocks; 2080 spin_unlock(&sbi->stat_lock); 2081 } 2082 out_err: 2083 up_write(&sbi->cp_global_sem); 2084 up_write(&sbi->gc_lock); 2085 thaw_super(sbi->sb); 2086 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2087 return err; 2088 } 2089