1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/f2fs_fs.h> 12 #include <linux/kthread.h> 13 #include <linux/delay.h> 14 #include <linux/freezer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/random.h> 17 #include <linux/sched/mm.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "gc.h" 23 #include "iostat.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *victim_entry_slab; 27 28 static unsigned int count_bits(const unsigned long *addr, 29 unsigned int offset, unsigned int len); 30 31 static int gc_thread_func(void *data) 32 { 33 struct f2fs_sb_info *sbi = data; 34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 37 unsigned int wait_ms; 38 39 wait_ms = gc_th->min_sleep_time; 40 41 set_freezable(); 42 do { 43 bool sync_mode, foreground = false; 44 45 wait_event_interruptible_timeout(*wq, 46 kthread_should_stop() || freezing(current) || 47 waitqueue_active(fggc_wq) || 48 gc_th->gc_wake, 49 msecs_to_jiffies(wait_ms)); 50 51 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) 52 foreground = true; 53 54 /* give it a try one time */ 55 if (gc_th->gc_wake) 56 gc_th->gc_wake = 0; 57 58 if (try_to_freeze()) { 59 stat_other_skip_bggc_count(sbi); 60 continue; 61 } 62 if (kthread_should_stop()) 63 break; 64 65 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 66 increase_sleep_time(gc_th, &wait_ms); 67 stat_other_skip_bggc_count(sbi); 68 continue; 69 } 70 71 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 72 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 73 f2fs_stop_checkpoint(sbi, false); 74 } 75 76 if (!sb_start_write_trylock(sbi->sb)) { 77 stat_other_skip_bggc_count(sbi); 78 continue; 79 } 80 81 /* 82 * [GC triggering condition] 83 * 0. GC is not conducted currently. 84 * 1. There are enough dirty segments. 85 * 2. IO subsystem is idle by checking the # of writeback pages. 86 * 3. IO subsystem is idle by checking the # of requests in 87 * bdev's request list. 88 * 89 * Note) We have to avoid triggering GCs frequently. 90 * Because it is possible that some segments can be 91 * invalidated soon after by user update or deletion. 92 * So, I'd like to wait some time to collect dirty segments. 93 */ 94 if (sbi->gc_mode == GC_URGENT_HIGH) { 95 spin_lock(&sbi->gc_urgent_high_lock); 96 if (sbi->gc_urgent_high_limited) { 97 if (!sbi->gc_urgent_high_remaining) { 98 sbi->gc_urgent_high_limited = false; 99 spin_unlock(&sbi->gc_urgent_high_lock); 100 sbi->gc_mode = GC_NORMAL; 101 continue; 102 } 103 sbi->gc_urgent_high_remaining--; 104 } 105 spin_unlock(&sbi->gc_urgent_high_lock); 106 } 107 108 if (sbi->gc_mode == GC_URGENT_HIGH || 109 sbi->gc_mode == GC_URGENT_MID) { 110 wait_ms = gc_th->urgent_sleep_time; 111 f2fs_down_write(&sbi->gc_lock); 112 goto do_gc; 113 } 114 115 if (foreground) { 116 f2fs_down_write(&sbi->gc_lock); 117 goto do_gc; 118 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 119 stat_other_skip_bggc_count(sbi); 120 goto next; 121 } 122 123 if (!is_idle(sbi, GC_TIME)) { 124 increase_sleep_time(gc_th, &wait_ms); 125 f2fs_up_write(&sbi->gc_lock); 126 stat_io_skip_bggc_count(sbi); 127 goto next; 128 } 129 130 if (has_enough_invalid_blocks(sbi)) 131 decrease_sleep_time(gc_th, &wait_ms); 132 else 133 increase_sleep_time(gc_th, &wait_ms); 134 do_gc: 135 if (!foreground) 136 stat_inc_bggc_count(sbi->stat_info); 137 138 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC; 139 140 /* foreground GC was been triggered via f2fs_balance_fs() */ 141 if (foreground) 142 sync_mode = false; 143 144 /* if return value is not zero, no victim was selected */ 145 if (f2fs_gc(sbi, sync_mode, !foreground, false, NULL_SEGNO)) 146 wait_ms = gc_th->no_gc_sleep_time; 147 148 if (foreground) 149 wake_up_all(&gc_th->fggc_wq); 150 151 trace_f2fs_background_gc(sbi->sb, wait_ms, 152 prefree_segments(sbi), free_segments(sbi)); 153 154 /* balancing f2fs's metadata periodically */ 155 f2fs_balance_fs_bg(sbi, true); 156 next: 157 sb_end_write(sbi->sb); 158 159 } while (!kthread_should_stop()); 160 return 0; 161 } 162 163 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 164 { 165 struct f2fs_gc_kthread *gc_th; 166 dev_t dev = sbi->sb->s_bdev->bd_dev; 167 int err = 0; 168 169 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 170 if (!gc_th) { 171 err = -ENOMEM; 172 goto out; 173 } 174 175 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 176 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 177 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 178 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 179 180 gc_th->gc_wake = 0; 181 182 sbi->gc_thread = gc_th; 183 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 184 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 185 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 186 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 187 if (IS_ERR(gc_th->f2fs_gc_task)) { 188 err = PTR_ERR(gc_th->f2fs_gc_task); 189 kfree(gc_th); 190 sbi->gc_thread = NULL; 191 } 192 out: 193 return err; 194 } 195 196 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 197 { 198 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 199 200 if (!gc_th) 201 return; 202 kthread_stop(gc_th->f2fs_gc_task); 203 wake_up_all(&gc_th->fggc_wq); 204 kfree(gc_th); 205 sbi->gc_thread = NULL; 206 } 207 208 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 209 { 210 int gc_mode; 211 212 if (gc_type == BG_GC) { 213 if (sbi->am.atgc_enabled) 214 gc_mode = GC_AT; 215 else 216 gc_mode = GC_CB; 217 } else { 218 gc_mode = GC_GREEDY; 219 } 220 221 switch (sbi->gc_mode) { 222 case GC_IDLE_CB: 223 gc_mode = GC_CB; 224 break; 225 case GC_IDLE_GREEDY: 226 case GC_URGENT_HIGH: 227 gc_mode = GC_GREEDY; 228 break; 229 case GC_IDLE_AT: 230 gc_mode = GC_AT; 231 break; 232 } 233 234 return gc_mode; 235 } 236 237 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 238 int type, struct victim_sel_policy *p) 239 { 240 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 241 242 if (p->alloc_mode == SSR) { 243 p->gc_mode = GC_GREEDY; 244 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 245 p->max_search = dirty_i->nr_dirty[type]; 246 p->ofs_unit = 1; 247 } else if (p->alloc_mode == AT_SSR) { 248 p->gc_mode = GC_GREEDY; 249 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 250 p->max_search = dirty_i->nr_dirty[type]; 251 p->ofs_unit = 1; 252 } else { 253 p->gc_mode = select_gc_type(sbi, gc_type); 254 p->ofs_unit = sbi->segs_per_sec; 255 if (__is_large_section(sbi)) { 256 p->dirty_bitmap = dirty_i->dirty_secmap; 257 p->max_search = count_bits(p->dirty_bitmap, 258 0, MAIN_SECS(sbi)); 259 } else { 260 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 261 p->max_search = dirty_i->nr_dirty[DIRTY]; 262 } 263 } 264 265 /* 266 * adjust candidates range, should select all dirty segments for 267 * foreground GC and urgent GC cases. 268 */ 269 if (gc_type != FG_GC && 270 (sbi->gc_mode != GC_URGENT_HIGH) && 271 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 272 p->max_search > sbi->max_victim_search) 273 p->max_search = sbi->max_victim_search; 274 275 /* let's select beginning hot/small space first in no_heap mode*/ 276 if (f2fs_need_rand_seg(sbi)) 277 p->offset = prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec); 278 else if (test_opt(sbi, NOHEAP) && 279 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 280 p->offset = 0; 281 else 282 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 283 } 284 285 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 286 struct victim_sel_policy *p) 287 { 288 /* SSR allocates in a segment unit */ 289 if (p->alloc_mode == SSR) 290 return sbi->blocks_per_seg; 291 else if (p->alloc_mode == AT_SSR) 292 return UINT_MAX; 293 294 /* LFS */ 295 if (p->gc_mode == GC_GREEDY) 296 return 2 * sbi->blocks_per_seg * p->ofs_unit; 297 else if (p->gc_mode == GC_CB) 298 return UINT_MAX; 299 else if (p->gc_mode == GC_AT) 300 return UINT_MAX; 301 else /* No other gc_mode */ 302 return 0; 303 } 304 305 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 306 { 307 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 308 unsigned int secno; 309 310 /* 311 * If the gc_type is FG_GC, we can select victim segments 312 * selected by background GC before. 313 * Those segments guarantee they have small valid blocks. 314 */ 315 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 316 if (sec_usage_check(sbi, secno)) 317 continue; 318 clear_bit(secno, dirty_i->victim_secmap); 319 return GET_SEG_FROM_SEC(sbi, secno); 320 } 321 return NULL_SEGNO; 322 } 323 324 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 325 { 326 struct sit_info *sit_i = SIT_I(sbi); 327 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 328 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 329 unsigned long long mtime = 0; 330 unsigned int vblocks; 331 unsigned char age = 0; 332 unsigned char u; 333 unsigned int i; 334 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno); 335 336 for (i = 0; i < usable_segs_per_sec; i++) 337 mtime += get_seg_entry(sbi, start + i)->mtime; 338 vblocks = get_valid_blocks(sbi, segno, true); 339 340 mtime = div_u64(mtime, usable_segs_per_sec); 341 vblocks = div_u64(vblocks, usable_segs_per_sec); 342 343 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 344 345 /* Handle if the system time has changed by the user */ 346 if (mtime < sit_i->min_mtime) 347 sit_i->min_mtime = mtime; 348 if (mtime > sit_i->max_mtime) 349 sit_i->max_mtime = mtime; 350 if (sit_i->max_mtime != sit_i->min_mtime) 351 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 352 sit_i->max_mtime - sit_i->min_mtime); 353 354 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 355 } 356 357 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 358 unsigned int segno, struct victim_sel_policy *p) 359 { 360 if (p->alloc_mode == SSR) 361 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 362 363 /* alloc_mode == LFS */ 364 if (p->gc_mode == GC_GREEDY) 365 return get_valid_blocks(sbi, segno, true); 366 else if (p->gc_mode == GC_CB) 367 return get_cb_cost(sbi, segno); 368 369 f2fs_bug_on(sbi, 1); 370 return 0; 371 } 372 373 static unsigned int count_bits(const unsigned long *addr, 374 unsigned int offset, unsigned int len) 375 { 376 unsigned int end = offset + len, sum = 0; 377 378 while (offset < end) { 379 if (test_bit(offset++, addr)) 380 ++sum; 381 } 382 return sum; 383 } 384 385 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi, 386 unsigned long long mtime, unsigned int segno, 387 struct rb_node *parent, struct rb_node **p, 388 bool left_most) 389 { 390 struct atgc_management *am = &sbi->am; 391 struct victim_entry *ve; 392 393 ve = f2fs_kmem_cache_alloc(victim_entry_slab, 394 GFP_NOFS, true, NULL); 395 396 ve->mtime = mtime; 397 ve->segno = segno; 398 399 rb_link_node(&ve->rb_node, parent, p); 400 rb_insert_color_cached(&ve->rb_node, &am->root, left_most); 401 402 list_add_tail(&ve->list, &am->victim_list); 403 404 am->victim_count++; 405 406 return ve; 407 } 408 409 static void insert_victim_entry(struct f2fs_sb_info *sbi, 410 unsigned long long mtime, unsigned int segno) 411 { 412 struct atgc_management *am = &sbi->am; 413 struct rb_node **p; 414 struct rb_node *parent = NULL; 415 bool left_most = true; 416 417 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most); 418 attach_victim_entry(sbi, mtime, segno, parent, p, left_most); 419 } 420 421 static void add_victim_entry(struct f2fs_sb_info *sbi, 422 struct victim_sel_policy *p, unsigned int segno) 423 { 424 struct sit_info *sit_i = SIT_I(sbi); 425 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 426 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 427 unsigned long long mtime = 0; 428 unsigned int i; 429 430 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 431 if (p->gc_mode == GC_AT && 432 get_valid_blocks(sbi, segno, true) == 0) 433 return; 434 } 435 436 for (i = 0; i < sbi->segs_per_sec; i++) 437 mtime += get_seg_entry(sbi, start + i)->mtime; 438 mtime = div_u64(mtime, sbi->segs_per_sec); 439 440 /* Handle if the system time has changed by the user */ 441 if (mtime < sit_i->min_mtime) 442 sit_i->min_mtime = mtime; 443 if (mtime > sit_i->max_mtime) 444 sit_i->max_mtime = mtime; 445 if (mtime < sit_i->dirty_min_mtime) 446 sit_i->dirty_min_mtime = mtime; 447 if (mtime > sit_i->dirty_max_mtime) 448 sit_i->dirty_max_mtime = mtime; 449 450 /* don't choose young section as candidate */ 451 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 452 return; 453 454 insert_victim_entry(sbi, mtime, segno); 455 } 456 457 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi, 458 struct victim_sel_policy *p) 459 { 460 struct atgc_management *am = &sbi->am; 461 struct rb_node *parent = NULL; 462 bool left_most; 463 464 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most); 465 466 return parent; 467 } 468 469 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 470 struct victim_sel_policy *p) 471 { 472 struct sit_info *sit_i = SIT_I(sbi); 473 struct atgc_management *am = &sbi->am; 474 struct rb_root_cached *root = &am->root; 475 struct rb_node *node; 476 struct rb_entry *re; 477 struct victim_entry *ve; 478 unsigned long long total_time; 479 unsigned long long age, u, accu; 480 unsigned long long max_mtime = sit_i->dirty_max_mtime; 481 unsigned long long min_mtime = sit_i->dirty_min_mtime; 482 unsigned int sec_blocks = BLKS_PER_SEC(sbi); 483 unsigned int vblocks; 484 unsigned int dirty_threshold = max(am->max_candidate_count, 485 am->candidate_ratio * 486 am->victim_count / 100); 487 unsigned int age_weight = am->age_weight; 488 unsigned int cost; 489 unsigned int iter = 0; 490 491 if (max_mtime < min_mtime) 492 return; 493 494 max_mtime += 1; 495 total_time = max_mtime - min_mtime; 496 497 accu = div64_u64(ULLONG_MAX, total_time); 498 accu = min_t(unsigned long long, div_u64(accu, 100), 499 DEFAULT_ACCURACY_CLASS); 500 501 node = rb_first_cached(root); 502 next: 503 re = rb_entry_safe(node, struct rb_entry, rb_node); 504 if (!re) 505 return; 506 507 ve = (struct victim_entry *)re; 508 509 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 510 goto skip; 511 512 /* age = 10000 * x% * 60 */ 513 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 514 age_weight; 515 516 vblocks = get_valid_blocks(sbi, ve->segno, true); 517 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 518 519 /* u = 10000 * x% * 40 */ 520 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 521 (100 - age_weight); 522 523 f2fs_bug_on(sbi, age + u >= UINT_MAX); 524 525 cost = UINT_MAX - (age + u); 526 iter++; 527 528 if (cost < p->min_cost || 529 (cost == p->min_cost && age > p->oldest_age)) { 530 p->min_cost = cost; 531 p->oldest_age = age; 532 p->min_segno = ve->segno; 533 } 534 skip: 535 if (iter < dirty_threshold) { 536 node = rb_next(node); 537 goto next; 538 } 539 } 540 541 /* 542 * select candidates around source section in range of 543 * [target - dirty_threshold, target + dirty_threshold] 544 */ 545 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 546 struct victim_sel_policy *p) 547 { 548 struct sit_info *sit_i = SIT_I(sbi); 549 struct atgc_management *am = &sbi->am; 550 struct rb_node *node; 551 struct rb_entry *re; 552 struct victim_entry *ve; 553 unsigned long long age; 554 unsigned long long max_mtime = sit_i->dirty_max_mtime; 555 unsigned long long min_mtime = sit_i->dirty_min_mtime; 556 unsigned int seg_blocks = sbi->blocks_per_seg; 557 unsigned int vblocks; 558 unsigned int dirty_threshold = max(am->max_candidate_count, 559 am->candidate_ratio * 560 am->victim_count / 100); 561 unsigned int cost; 562 unsigned int iter = 0; 563 int stage = 0; 564 565 if (max_mtime < min_mtime) 566 return; 567 max_mtime += 1; 568 next_stage: 569 node = lookup_central_victim(sbi, p); 570 next_node: 571 re = rb_entry_safe(node, struct rb_entry, rb_node); 572 if (!re) { 573 if (stage == 0) 574 goto skip_stage; 575 return; 576 } 577 578 ve = (struct victim_entry *)re; 579 580 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 581 goto skip_node; 582 583 age = max_mtime - ve->mtime; 584 585 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 586 f2fs_bug_on(sbi, !vblocks); 587 588 /* rare case */ 589 if (vblocks == seg_blocks) 590 goto skip_node; 591 592 iter++; 593 594 age = max_mtime - abs(p->age - age); 595 cost = UINT_MAX - vblocks; 596 597 if (cost < p->min_cost || 598 (cost == p->min_cost && age > p->oldest_age)) { 599 p->min_cost = cost; 600 p->oldest_age = age; 601 p->min_segno = ve->segno; 602 } 603 skip_node: 604 if (iter < dirty_threshold) { 605 if (stage == 0) 606 node = rb_prev(node); 607 else if (stage == 1) 608 node = rb_next(node); 609 goto next_node; 610 } 611 skip_stage: 612 if (stage < 1) { 613 stage++; 614 iter = 0; 615 goto next_stage; 616 } 617 } 618 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 619 struct victim_sel_policy *p) 620 { 621 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 622 &sbi->am.root, true)); 623 624 if (p->gc_mode == GC_AT) 625 atgc_lookup_victim(sbi, p); 626 else if (p->alloc_mode == AT_SSR) 627 atssr_lookup_victim(sbi, p); 628 else 629 f2fs_bug_on(sbi, 1); 630 } 631 632 static void release_victim_entry(struct f2fs_sb_info *sbi) 633 { 634 struct atgc_management *am = &sbi->am; 635 struct victim_entry *ve, *tmp; 636 637 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 638 list_del(&ve->list); 639 kmem_cache_free(victim_entry_slab, ve); 640 am->victim_count--; 641 } 642 643 am->root = RB_ROOT_CACHED; 644 645 f2fs_bug_on(sbi, am->victim_count); 646 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 647 } 648 649 /* 650 * This function is called from two paths. 651 * One is garbage collection and the other is SSR segment selection. 652 * When it is called during GC, it just gets a victim segment 653 * and it does not remove it from dirty seglist. 654 * When it is called from SSR segment selection, it finds a segment 655 * which has minimum valid blocks and removes it from dirty seglist. 656 */ 657 static int get_victim_by_default(struct f2fs_sb_info *sbi, 658 unsigned int *result, int gc_type, int type, 659 char alloc_mode, unsigned long long age) 660 { 661 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 662 struct sit_info *sm = SIT_I(sbi); 663 struct victim_sel_policy p; 664 unsigned int secno, last_victim; 665 unsigned int last_segment; 666 unsigned int nsearched; 667 bool is_atgc; 668 int ret = 0; 669 670 mutex_lock(&dirty_i->seglist_lock); 671 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 672 673 p.alloc_mode = alloc_mode; 674 p.age = age; 675 p.age_threshold = sbi->am.age_threshold; 676 677 retry: 678 select_policy(sbi, gc_type, type, &p); 679 p.min_segno = NULL_SEGNO; 680 p.oldest_age = 0; 681 p.min_cost = get_max_cost(sbi, &p); 682 683 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 684 nsearched = 0; 685 686 if (is_atgc) 687 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 688 689 if (*result != NULL_SEGNO) { 690 if (!get_valid_blocks(sbi, *result, false)) { 691 ret = -ENODATA; 692 goto out; 693 } 694 695 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 696 ret = -EBUSY; 697 else 698 p.min_segno = *result; 699 goto out; 700 } 701 702 ret = -ENODATA; 703 if (p.max_search == 0) 704 goto out; 705 706 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 707 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 708 p.min_segno = sbi->next_victim_seg[BG_GC]; 709 *result = p.min_segno; 710 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 711 goto got_result; 712 } 713 if (gc_type == FG_GC && 714 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 715 p.min_segno = sbi->next_victim_seg[FG_GC]; 716 *result = p.min_segno; 717 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 718 goto got_result; 719 } 720 } 721 722 last_victim = sm->last_victim[p.gc_mode]; 723 if (p.alloc_mode == LFS && gc_type == FG_GC) { 724 p.min_segno = check_bg_victims(sbi); 725 if (p.min_segno != NULL_SEGNO) 726 goto got_it; 727 } 728 729 while (1) { 730 unsigned long cost, *dirty_bitmap; 731 unsigned int unit_no, segno; 732 733 dirty_bitmap = p.dirty_bitmap; 734 unit_no = find_next_bit(dirty_bitmap, 735 last_segment / p.ofs_unit, 736 p.offset / p.ofs_unit); 737 segno = unit_no * p.ofs_unit; 738 if (segno >= last_segment) { 739 if (sm->last_victim[p.gc_mode]) { 740 last_segment = 741 sm->last_victim[p.gc_mode]; 742 sm->last_victim[p.gc_mode] = 0; 743 p.offset = 0; 744 continue; 745 } 746 break; 747 } 748 749 p.offset = segno + p.ofs_unit; 750 nsearched++; 751 752 #ifdef CONFIG_F2FS_CHECK_FS 753 /* 754 * skip selecting the invalid segno (that is failed due to block 755 * validity check failure during GC) to avoid endless GC loop in 756 * such cases. 757 */ 758 if (test_bit(segno, sm->invalid_segmap)) 759 goto next; 760 #endif 761 762 secno = GET_SEC_FROM_SEG(sbi, segno); 763 764 if (sec_usage_check(sbi, secno)) 765 goto next; 766 767 /* Don't touch checkpointed data */ 768 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 769 if (p.alloc_mode == LFS) { 770 /* 771 * LFS is set to find source section during GC. 772 * The victim should have no checkpointed data. 773 */ 774 if (get_ckpt_valid_blocks(sbi, segno, true)) 775 goto next; 776 } else { 777 /* 778 * SSR | AT_SSR are set to find target segment 779 * for writes which can be full by checkpointed 780 * and newly written blocks. 781 */ 782 if (!f2fs_segment_has_free_slot(sbi, segno)) 783 goto next; 784 } 785 } 786 787 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 788 goto next; 789 790 if (is_atgc) { 791 add_victim_entry(sbi, &p, segno); 792 goto next; 793 } 794 795 cost = get_gc_cost(sbi, segno, &p); 796 797 if (p.min_cost > cost) { 798 p.min_segno = segno; 799 p.min_cost = cost; 800 } 801 next: 802 if (nsearched >= p.max_search) { 803 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 804 sm->last_victim[p.gc_mode] = 805 last_victim + p.ofs_unit; 806 else 807 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 808 sm->last_victim[p.gc_mode] %= 809 (MAIN_SECS(sbi) * sbi->segs_per_sec); 810 break; 811 } 812 } 813 814 /* get victim for GC_AT/AT_SSR */ 815 if (is_atgc) { 816 lookup_victim_by_age(sbi, &p); 817 release_victim_entry(sbi); 818 } 819 820 if (is_atgc && p.min_segno == NULL_SEGNO && 821 sm->elapsed_time < p.age_threshold) { 822 p.age_threshold = 0; 823 goto retry; 824 } 825 826 if (p.min_segno != NULL_SEGNO) { 827 got_it: 828 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 829 got_result: 830 if (p.alloc_mode == LFS) { 831 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 832 if (gc_type == FG_GC) 833 sbi->cur_victim_sec = secno; 834 else 835 set_bit(secno, dirty_i->victim_secmap); 836 } 837 ret = 0; 838 839 } 840 out: 841 if (p.min_segno != NULL_SEGNO) 842 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 843 sbi->cur_victim_sec, 844 prefree_segments(sbi), free_segments(sbi)); 845 mutex_unlock(&dirty_i->seglist_lock); 846 847 return ret; 848 } 849 850 static const struct victim_selection default_v_ops = { 851 .get_victim = get_victim_by_default, 852 }; 853 854 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 855 { 856 struct inode_entry *ie; 857 858 ie = radix_tree_lookup(&gc_list->iroot, ino); 859 if (ie) 860 return ie->inode; 861 return NULL; 862 } 863 864 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 865 { 866 struct inode_entry *new_ie; 867 868 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 869 iput(inode); 870 return; 871 } 872 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, 873 GFP_NOFS, true, NULL); 874 new_ie->inode = inode; 875 876 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 877 list_add_tail(&new_ie->list, &gc_list->ilist); 878 } 879 880 static void put_gc_inode(struct gc_inode_list *gc_list) 881 { 882 struct inode_entry *ie, *next_ie; 883 884 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 885 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 886 iput(ie->inode); 887 list_del(&ie->list); 888 kmem_cache_free(f2fs_inode_entry_slab, ie); 889 } 890 } 891 892 static int check_valid_map(struct f2fs_sb_info *sbi, 893 unsigned int segno, int offset) 894 { 895 struct sit_info *sit_i = SIT_I(sbi); 896 struct seg_entry *sentry; 897 int ret; 898 899 down_read(&sit_i->sentry_lock); 900 sentry = get_seg_entry(sbi, segno); 901 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 902 up_read(&sit_i->sentry_lock); 903 return ret; 904 } 905 906 /* 907 * This function compares node address got in summary with that in NAT. 908 * On validity, copy that node with cold status, otherwise (invalid node) 909 * ignore that. 910 */ 911 static int gc_node_segment(struct f2fs_sb_info *sbi, 912 struct f2fs_summary *sum, unsigned int segno, int gc_type) 913 { 914 struct f2fs_summary *entry; 915 block_t start_addr; 916 int off; 917 int phase = 0; 918 bool fggc = (gc_type == FG_GC); 919 int submitted = 0; 920 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 921 922 start_addr = START_BLOCK(sbi, segno); 923 924 next_step: 925 entry = sum; 926 927 if (fggc && phase == 2) 928 atomic_inc(&sbi->wb_sync_req[NODE]); 929 930 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 931 nid_t nid = le32_to_cpu(entry->nid); 932 struct page *node_page; 933 struct node_info ni; 934 int err; 935 936 /* stop BG_GC if there is not enough free sections. */ 937 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 938 return submitted; 939 940 if (check_valid_map(sbi, segno, off) == 0) 941 continue; 942 943 if (phase == 0) { 944 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 945 META_NAT, true); 946 continue; 947 } 948 949 if (phase == 1) { 950 f2fs_ra_node_page(sbi, nid); 951 continue; 952 } 953 954 /* phase == 2 */ 955 node_page = f2fs_get_node_page(sbi, nid); 956 if (IS_ERR(node_page)) 957 continue; 958 959 /* block may become invalid during f2fs_get_node_page */ 960 if (check_valid_map(sbi, segno, off) == 0) { 961 f2fs_put_page(node_page, 1); 962 continue; 963 } 964 965 if (f2fs_get_node_info(sbi, nid, &ni, false)) { 966 f2fs_put_page(node_page, 1); 967 continue; 968 } 969 970 if (ni.blk_addr != start_addr + off) { 971 f2fs_put_page(node_page, 1); 972 continue; 973 } 974 975 err = f2fs_move_node_page(node_page, gc_type); 976 if (!err && gc_type == FG_GC) 977 submitted++; 978 stat_inc_node_blk_count(sbi, 1, gc_type); 979 } 980 981 if (++phase < 3) 982 goto next_step; 983 984 if (fggc) 985 atomic_dec(&sbi->wb_sync_req[NODE]); 986 return submitted; 987 } 988 989 /* 990 * Calculate start block index indicating the given node offset. 991 * Be careful, caller should give this node offset only indicating direct node 992 * blocks. If any node offsets, which point the other types of node blocks such 993 * as indirect or double indirect node blocks, are given, it must be a caller's 994 * bug. 995 */ 996 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 997 { 998 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 999 unsigned int bidx; 1000 1001 if (node_ofs == 0) 1002 return 0; 1003 1004 if (node_ofs <= 2) { 1005 bidx = node_ofs - 1; 1006 } else if (node_ofs <= indirect_blks) { 1007 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 1008 1009 bidx = node_ofs - 2 - dec; 1010 } else { 1011 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 1012 1013 bidx = node_ofs - 5 - dec; 1014 } 1015 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 1016 } 1017 1018 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1019 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 1020 { 1021 struct page *node_page; 1022 nid_t nid; 1023 unsigned int ofs_in_node; 1024 block_t source_blkaddr; 1025 1026 nid = le32_to_cpu(sum->nid); 1027 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1028 1029 node_page = f2fs_get_node_page(sbi, nid); 1030 if (IS_ERR(node_page)) 1031 return false; 1032 1033 if (f2fs_get_node_info(sbi, nid, dni, false)) { 1034 f2fs_put_page(node_page, 1); 1035 return false; 1036 } 1037 1038 if (sum->version != dni->version) { 1039 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1040 __func__); 1041 set_sbi_flag(sbi, SBI_NEED_FSCK); 1042 } 1043 1044 if (f2fs_check_nid_range(sbi, dni->ino)) { 1045 f2fs_put_page(node_page, 1); 1046 return false; 1047 } 1048 1049 *nofs = ofs_of_node(node_page); 1050 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 1051 f2fs_put_page(node_page, 1); 1052 1053 if (source_blkaddr != blkaddr) { 1054 #ifdef CONFIG_F2FS_CHECK_FS 1055 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1056 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1057 1058 if (unlikely(check_valid_map(sbi, segno, offset))) { 1059 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1060 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1061 blkaddr, source_blkaddr, segno); 1062 set_sbi_flag(sbi, SBI_NEED_FSCK); 1063 } 1064 } 1065 #endif 1066 return false; 1067 } 1068 return true; 1069 } 1070 1071 static int ra_data_block(struct inode *inode, pgoff_t index) 1072 { 1073 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1074 struct address_space *mapping = inode->i_mapping; 1075 struct dnode_of_data dn; 1076 struct page *page; 1077 struct extent_info ei = {0, 0, 0}; 1078 struct f2fs_io_info fio = { 1079 .sbi = sbi, 1080 .ino = inode->i_ino, 1081 .type = DATA, 1082 .temp = COLD, 1083 .op = REQ_OP_READ, 1084 .op_flags = 0, 1085 .encrypted_page = NULL, 1086 .in_list = false, 1087 .retry = false, 1088 }; 1089 int err; 1090 1091 page = f2fs_grab_cache_page(mapping, index, true); 1092 if (!page) 1093 return -ENOMEM; 1094 1095 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1096 dn.data_blkaddr = ei.blk + index - ei.fofs; 1097 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1098 DATA_GENERIC_ENHANCE_READ))) { 1099 err = -EFSCORRUPTED; 1100 goto put_page; 1101 } 1102 goto got_it; 1103 } 1104 1105 set_new_dnode(&dn, inode, NULL, NULL, 0); 1106 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1107 if (err) 1108 goto put_page; 1109 f2fs_put_dnode(&dn); 1110 1111 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1112 err = -ENOENT; 1113 goto put_page; 1114 } 1115 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1116 DATA_GENERIC_ENHANCE))) { 1117 err = -EFSCORRUPTED; 1118 goto put_page; 1119 } 1120 got_it: 1121 /* read page */ 1122 fio.page = page; 1123 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1124 1125 /* 1126 * don't cache encrypted data into meta inode until previous dirty 1127 * data were writebacked to avoid racing between GC and flush. 1128 */ 1129 f2fs_wait_on_page_writeback(page, DATA, true, true); 1130 1131 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1132 1133 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1134 dn.data_blkaddr, 1135 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1136 if (!fio.encrypted_page) { 1137 err = -ENOMEM; 1138 goto put_page; 1139 } 1140 1141 err = f2fs_submit_page_bio(&fio); 1142 if (err) 1143 goto put_encrypted_page; 1144 f2fs_put_page(fio.encrypted_page, 0); 1145 f2fs_put_page(page, 1); 1146 1147 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1148 f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1149 1150 return 0; 1151 put_encrypted_page: 1152 f2fs_put_page(fio.encrypted_page, 1); 1153 put_page: 1154 f2fs_put_page(page, 1); 1155 return err; 1156 } 1157 1158 /* 1159 * Move data block via META_MAPPING while keeping locked data page. 1160 * This can be used to move blocks, aka LBAs, directly on disk. 1161 */ 1162 static int move_data_block(struct inode *inode, block_t bidx, 1163 int gc_type, unsigned int segno, int off) 1164 { 1165 struct f2fs_io_info fio = { 1166 .sbi = F2FS_I_SB(inode), 1167 .ino = inode->i_ino, 1168 .type = DATA, 1169 .temp = COLD, 1170 .op = REQ_OP_READ, 1171 .op_flags = 0, 1172 .encrypted_page = NULL, 1173 .in_list = false, 1174 .retry = false, 1175 }; 1176 struct dnode_of_data dn; 1177 struct f2fs_summary sum; 1178 struct node_info ni; 1179 struct page *page, *mpage; 1180 block_t newaddr; 1181 int err = 0; 1182 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1183 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1184 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1185 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1186 1187 /* do not read out */ 1188 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 1189 if (!page) 1190 return -ENOMEM; 1191 1192 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1193 err = -ENOENT; 1194 goto out; 1195 } 1196 1197 if (f2fs_is_atomic_file(inode)) { 1198 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 1199 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 1200 err = -EAGAIN; 1201 goto out; 1202 } 1203 1204 if (f2fs_is_pinned_file(inode)) { 1205 f2fs_pin_file_control(inode, true); 1206 err = -EAGAIN; 1207 goto out; 1208 } 1209 1210 set_new_dnode(&dn, inode, NULL, NULL, 0); 1211 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1212 if (err) 1213 goto out; 1214 1215 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1216 ClearPageUptodate(page); 1217 err = -ENOENT; 1218 goto put_out; 1219 } 1220 1221 /* 1222 * don't cache encrypted data into meta inode until previous dirty 1223 * data were writebacked to avoid racing between GC and flush. 1224 */ 1225 f2fs_wait_on_page_writeback(page, DATA, true, true); 1226 1227 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1228 1229 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1230 if (err) 1231 goto put_out; 1232 1233 /* read page */ 1234 fio.page = page; 1235 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1236 1237 if (lfs_mode) 1238 f2fs_down_write(&fio.sbi->io_order_lock); 1239 1240 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1241 fio.old_blkaddr, false); 1242 if (!mpage) { 1243 err = -ENOMEM; 1244 goto up_out; 1245 } 1246 1247 fio.encrypted_page = mpage; 1248 1249 /* read source block in mpage */ 1250 if (!PageUptodate(mpage)) { 1251 err = f2fs_submit_page_bio(&fio); 1252 if (err) { 1253 f2fs_put_page(mpage, 1); 1254 goto up_out; 1255 } 1256 1257 f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1258 f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1259 1260 lock_page(mpage); 1261 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1262 !PageUptodate(mpage))) { 1263 err = -EIO; 1264 f2fs_put_page(mpage, 1); 1265 goto up_out; 1266 } 1267 } 1268 1269 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1270 1271 /* allocate block address */ 1272 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1273 &sum, type, NULL); 1274 1275 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1276 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1277 if (!fio.encrypted_page) { 1278 err = -ENOMEM; 1279 f2fs_put_page(mpage, 1); 1280 goto recover_block; 1281 } 1282 1283 /* write target block */ 1284 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1285 memcpy(page_address(fio.encrypted_page), 1286 page_address(mpage), PAGE_SIZE); 1287 f2fs_put_page(mpage, 1); 1288 invalidate_mapping_pages(META_MAPPING(fio.sbi), 1289 fio.old_blkaddr, fio.old_blkaddr); 1290 f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr); 1291 1292 set_page_dirty(fio.encrypted_page); 1293 if (clear_page_dirty_for_io(fio.encrypted_page)) 1294 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1295 1296 set_page_writeback(fio.encrypted_page); 1297 ClearPageError(page); 1298 1299 fio.op = REQ_OP_WRITE; 1300 fio.op_flags = REQ_SYNC; 1301 fio.new_blkaddr = newaddr; 1302 f2fs_submit_page_write(&fio); 1303 if (fio.retry) { 1304 err = -EAGAIN; 1305 if (PageWriteback(fio.encrypted_page)) 1306 end_page_writeback(fio.encrypted_page); 1307 goto put_page_out; 1308 } 1309 1310 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE); 1311 1312 f2fs_update_data_blkaddr(&dn, newaddr); 1313 set_inode_flag(inode, FI_APPEND_WRITE); 1314 if (page->index == 0) 1315 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1316 put_page_out: 1317 f2fs_put_page(fio.encrypted_page, 1); 1318 recover_block: 1319 if (err) 1320 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1321 true, true, true); 1322 up_out: 1323 if (lfs_mode) 1324 f2fs_up_write(&fio.sbi->io_order_lock); 1325 put_out: 1326 f2fs_put_dnode(&dn); 1327 out: 1328 f2fs_put_page(page, 1); 1329 return err; 1330 } 1331 1332 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1333 unsigned int segno, int off) 1334 { 1335 struct page *page; 1336 int err = 0; 1337 1338 page = f2fs_get_lock_data_page(inode, bidx, true); 1339 if (IS_ERR(page)) 1340 return PTR_ERR(page); 1341 1342 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1343 err = -ENOENT; 1344 goto out; 1345 } 1346 1347 if (f2fs_is_atomic_file(inode)) { 1348 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 1349 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 1350 err = -EAGAIN; 1351 goto out; 1352 } 1353 if (f2fs_is_pinned_file(inode)) { 1354 if (gc_type == FG_GC) 1355 f2fs_pin_file_control(inode, true); 1356 err = -EAGAIN; 1357 goto out; 1358 } 1359 1360 if (gc_type == BG_GC) { 1361 if (PageWriteback(page)) { 1362 err = -EAGAIN; 1363 goto out; 1364 } 1365 set_page_dirty(page); 1366 set_page_private_gcing(page); 1367 } else { 1368 struct f2fs_io_info fio = { 1369 .sbi = F2FS_I_SB(inode), 1370 .ino = inode->i_ino, 1371 .type = DATA, 1372 .temp = COLD, 1373 .op = REQ_OP_WRITE, 1374 .op_flags = REQ_SYNC, 1375 .old_blkaddr = NULL_ADDR, 1376 .page = page, 1377 .encrypted_page = NULL, 1378 .need_lock = LOCK_REQ, 1379 .io_type = FS_GC_DATA_IO, 1380 }; 1381 bool is_dirty = PageDirty(page); 1382 1383 retry: 1384 f2fs_wait_on_page_writeback(page, DATA, true, true); 1385 1386 set_page_dirty(page); 1387 if (clear_page_dirty_for_io(page)) { 1388 inode_dec_dirty_pages(inode); 1389 f2fs_remove_dirty_inode(inode); 1390 } 1391 1392 set_page_private_gcing(page); 1393 1394 err = f2fs_do_write_data_page(&fio); 1395 if (err) { 1396 clear_page_private_gcing(page); 1397 if (err == -ENOMEM) { 1398 memalloc_retry_wait(GFP_NOFS); 1399 goto retry; 1400 } 1401 if (is_dirty) 1402 set_page_dirty(page); 1403 } 1404 } 1405 out: 1406 f2fs_put_page(page, 1); 1407 return err; 1408 } 1409 1410 /* 1411 * This function tries to get parent node of victim data block, and identifies 1412 * data block validity. If the block is valid, copy that with cold status and 1413 * modify parent node. 1414 * If the parent node is not valid or the data block address is different, 1415 * the victim data block is ignored. 1416 */ 1417 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1418 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1419 bool force_migrate) 1420 { 1421 struct super_block *sb = sbi->sb; 1422 struct f2fs_summary *entry; 1423 block_t start_addr; 1424 int off; 1425 int phase = 0; 1426 int submitted = 0; 1427 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1428 1429 start_addr = START_BLOCK(sbi, segno); 1430 1431 next_step: 1432 entry = sum; 1433 1434 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1435 struct page *data_page; 1436 struct inode *inode; 1437 struct node_info dni; /* dnode info for the data */ 1438 unsigned int ofs_in_node, nofs; 1439 block_t start_bidx; 1440 nid_t nid = le32_to_cpu(entry->nid); 1441 1442 /* 1443 * stop BG_GC if there is not enough free sections. 1444 * Or, stop GC if the segment becomes fully valid caused by 1445 * race condition along with SSR block allocation. 1446 */ 1447 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1448 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1449 BLKS_PER_SEC(sbi))) 1450 return submitted; 1451 1452 if (check_valid_map(sbi, segno, off) == 0) 1453 continue; 1454 1455 if (phase == 0) { 1456 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1457 META_NAT, true); 1458 continue; 1459 } 1460 1461 if (phase == 1) { 1462 f2fs_ra_node_page(sbi, nid); 1463 continue; 1464 } 1465 1466 /* Get an inode by ino with checking validity */ 1467 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1468 continue; 1469 1470 if (phase == 2) { 1471 f2fs_ra_node_page(sbi, dni.ino); 1472 continue; 1473 } 1474 1475 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1476 1477 if (phase == 3) { 1478 inode = f2fs_iget(sb, dni.ino); 1479 if (IS_ERR(inode) || is_bad_inode(inode) || 1480 special_file(inode->i_mode)) 1481 continue; 1482 1483 if (!f2fs_down_write_trylock( 1484 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1485 iput(inode); 1486 sbi->skipped_gc_rwsem++; 1487 continue; 1488 } 1489 1490 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1491 ofs_in_node; 1492 1493 if (f2fs_post_read_required(inode)) { 1494 int err = ra_data_block(inode, start_bidx); 1495 1496 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1497 if (err) { 1498 iput(inode); 1499 continue; 1500 } 1501 add_gc_inode(gc_list, inode); 1502 continue; 1503 } 1504 1505 data_page = f2fs_get_read_data_page(inode, 1506 start_bidx, REQ_RAHEAD, true); 1507 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1508 if (IS_ERR(data_page)) { 1509 iput(inode); 1510 continue; 1511 } 1512 1513 f2fs_put_page(data_page, 0); 1514 add_gc_inode(gc_list, inode); 1515 continue; 1516 } 1517 1518 /* phase 4 */ 1519 inode = find_gc_inode(gc_list, dni.ino); 1520 if (inode) { 1521 struct f2fs_inode_info *fi = F2FS_I(inode); 1522 bool locked = false; 1523 int err; 1524 1525 if (S_ISREG(inode->i_mode)) { 1526 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[READ])) { 1527 sbi->skipped_gc_rwsem++; 1528 continue; 1529 } 1530 if (!f2fs_down_write_trylock( 1531 &fi->i_gc_rwsem[WRITE])) { 1532 sbi->skipped_gc_rwsem++; 1533 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1534 continue; 1535 } 1536 locked = true; 1537 1538 /* wait for all inflight aio data */ 1539 inode_dio_wait(inode); 1540 } 1541 1542 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1543 + ofs_in_node; 1544 if (f2fs_post_read_required(inode)) 1545 err = move_data_block(inode, start_bidx, 1546 gc_type, segno, off); 1547 else 1548 err = move_data_page(inode, start_bidx, gc_type, 1549 segno, off); 1550 1551 if (!err && (gc_type == FG_GC || 1552 f2fs_post_read_required(inode))) 1553 submitted++; 1554 1555 if (locked) { 1556 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1557 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1558 } 1559 1560 stat_inc_data_blk_count(sbi, 1, gc_type); 1561 } 1562 } 1563 1564 if (++phase < 5) 1565 goto next_step; 1566 1567 return submitted; 1568 } 1569 1570 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1571 int gc_type) 1572 { 1573 struct sit_info *sit_i = SIT_I(sbi); 1574 int ret; 1575 1576 down_write(&sit_i->sentry_lock); 1577 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, 1578 NO_CHECK_TYPE, LFS, 0); 1579 up_write(&sit_i->sentry_lock); 1580 return ret; 1581 } 1582 1583 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1584 unsigned int start_segno, 1585 struct gc_inode_list *gc_list, int gc_type, 1586 bool force_migrate) 1587 { 1588 struct page *sum_page; 1589 struct f2fs_summary_block *sum; 1590 struct blk_plug plug; 1591 unsigned int segno = start_segno; 1592 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1593 int seg_freed = 0, migrated = 0; 1594 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1595 SUM_TYPE_DATA : SUM_TYPE_NODE; 1596 int submitted = 0; 1597 1598 if (__is_large_section(sbi)) 1599 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1600 1601 /* 1602 * zone-capacity can be less than zone-size in zoned devices, 1603 * resulting in less than expected usable segments in the zone, 1604 * calculate the end segno in the zone which can be garbage collected 1605 */ 1606 if (f2fs_sb_has_blkzoned(sbi)) 1607 end_segno -= sbi->segs_per_sec - 1608 f2fs_usable_segs_in_sec(sbi, segno); 1609 1610 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1611 1612 /* readahead multi ssa blocks those have contiguous address */ 1613 if (__is_large_section(sbi)) 1614 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1615 end_segno - segno, META_SSA, true); 1616 1617 /* reference all summary page */ 1618 while (segno < end_segno) { 1619 sum_page = f2fs_get_sum_page(sbi, segno++); 1620 if (IS_ERR(sum_page)) { 1621 int err = PTR_ERR(sum_page); 1622 1623 end_segno = segno - 1; 1624 for (segno = start_segno; segno < end_segno; segno++) { 1625 sum_page = find_get_page(META_MAPPING(sbi), 1626 GET_SUM_BLOCK(sbi, segno)); 1627 f2fs_put_page(sum_page, 0); 1628 f2fs_put_page(sum_page, 0); 1629 } 1630 return err; 1631 } 1632 unlock_page(sum_page); 1633 } 1634 1635 blk_start_plug(&plug); 1636 1637 for (segno = start_segno; segno < end_segno; segno++) { 1638 1639 /* find segment summary of victim */ 1640 sum_page = find_get_page(META_MAPPING(sbi), 1641 GET_SUM_BLOCK(sbi, segno)); 1642 f2fs_put_page(sum_page, 0); 1643 1644 if (get_valid_blocks(sbi, segno, false) == 0) 1645 goto freed; 1646 if (gc_type == BG_GC && __is_large_section(sbi) && 1647 migrated >= sbi->migration_granularity) 1648 goto skip; 1649 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1650 goto skip; 1651 1652 sum = page_address(sum_page); 1653 if (type != GET_SUM_TYPE((&sum->footer))) { 1654 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1655 segno, type, GET_SUM_TYPE((&sum->footer))); 1656 set_sbi_flag(sbi, SBI_NEED_FSCK); 1657 f2fs_stop_checkpoint(sbi, false); 1658 goto skip; 1659 } 1660 1661 /* 1662 * this is to avoid deadlock: 1663 * - lock_page(sum_page) - f2fs_replace_block 1664 * - check_valid_map() - down_write(sentry_lock) 1665 * - down_read(sentry_lock) - change_curseg() 1666 * - lock_page(sum_page) 1667 */ 1668 if (type == SUM_TYPE_NODE) 1669 submitted += gc_node_segment(sbi, sum->entries, segno, 1670 gc_type); 1671 else 1672 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1673 segno, gc_type, 1674 force_migrate); 1675 1676 stat_inc_seg_count(sbi, type, gc_type); 1677 sbi->gc_reclaimed_segs[sbi->gc_mode]++; 1678 migrated++; 1679 1680 freed: 1681 if (gc_type == FG_GC && 1682 get_valid_blocks(sbi, segno, false) == 0) 1683 seg_freed++; 1684 1685 if (__is_large_section(sbi) && segno + 1 < end_segno) 1686 sbi->next_victim_seg[gc_type] = segno + 1; 1687 skip: 1688 f2fs_put_page(sum_page, 0); 1689 } 1690 1691 if (submitted) 1692 f2fs_submit_merged_write(sbi, 1693 (type == SUM_TYPE_NODE) ? NODE : DATA); 1694 1695 blk_finish_plug(&plug); 1696 1697 stat_inc_call_count(sbi->stat_info); 1698 1699 return seg_freed; 1700 } 1701 1702 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, 1703 bool background, bool force, unsigned int segno) 1704 { 1705 int gc_type = sync ? FG_GC : BG_GC; 1706 int sec_freed = 0, seg_freed = 0, total_freed = 0; 1707 int ret = 0; 1708 struct cp_control cpc; 1709 unsigned int init_segno = segno; 1710 struct gc_inode_list gc_list = { 1711 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1712 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1713 }; 1714 unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC]; 1715 unsigned long long first_skipped; 1716 unsigned int skipped_round = 0, round = 0; 1717 1718 trace_f2fs_gc_begin(sbi->sb, sync, background, 1719 get_pages(sbi, F2FS_DIRTY_NODES), 1720 get_pages(sbi, F2FS_DIRTY_DENTS), 1721 get_pages(sbi, F2FS_DIRTY_IMETA), 1722 free_sections(sbi), 1723 free_segments(sbi), 1724 reserved_segments(sbi), 1725 prefree_segments(sbi)); 1726 1727 cpc.reason = __get_cp_reason(sbi); 1728 sbi->skipped_gc_rwsem = 0; 1729 first_skipped = last_skipped; 1730 gc_more: 1731 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1732 ret = -EINVAL; 1733 goto stop; 1734 } 1735 if (unlikely(f2fs_cp_error(sbi))) { 1736 ret = -EIO; 1737 goto stop; 1738 } 1739 1740 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { 1741 /* 1742 * For example, if there are many prefree_segments below given 1743 * threshold, we can make them free by checkpoint. Then, we 1744 * secure free segments which doesn't need fggc any more. 1745 */ 1746 if (prefree_segments(sbi) && 1747 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 1748 ret = f2fs_write_checkpoint(sbi, &cpc); 1749 if (ret) 1750 goto stop; 1751 } 1752 if (has_not_enough_free_secs(sbi, 0, 0)) 1753 gc_type = FG_GC; 1754 } 1755 1756 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1757 if (gc_type == BG_GC && !background) { 1758 ret = -EINVAL; 1759 goto stop; 1760 } 1761 ret = __get_victim(sbi, &segno, gc_type); 1762 if (ret) 1763 goto stop; 1764 1765 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, force); 1766 if (gc_type == FG_GC && 1767 seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) 1768 sec_freed++; 1769 total_freed += seg_freed; 1770 1771 if (gc_type == FG_GC) { 1772 if (sbi->skipped_atomic_files[FG_GC] > last_skipped || 1773 sbi->skipped_gc_rwsem) 1774 skipped_round++; 1775 last_skipped = sbi->skipped_atomic_files[FG_GC]; 1776 round++; 1777 } 1778 1779 if (gc_type == FG_GC) 1780 sbi->cur_victim_sec = NULL_SEGNO; 1781 1782 if (sync) 1783 goto stop; 1784 1785 if (has_not_enough_free_secs(sbi, sec_freed, 0)) { 1786 if (skipped_round <= MAX_SKIP_GC_COUNT || 1787 skipped_round * 2 < round) { 1788 segno = NULL_SEGNO; 1789 goto gc_more; 1790 } 1791 1792 if (first_skipped < last_skipped && 1793 (last_skipped - first_skipped) > 1794 sbi->skipped_gc_rwsem) { 1795 f2fs_drop_inmem_pages_all(sbi, true); 1796 segno = NULL_SEGNO; 1797 goto gc_more; 1798 } 1799 if (gc_type == FG_GC && !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1800 ret = f2fs_write_checkpoint(sbi, &cpc); 1801 } 1802 stop: 1803 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1804 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno; 1805 1806 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, 1807 get_pages(sbi, F2FS_DIRTY_NODES), 1808 get_pages(sbi, F2FS_DIRTY_DENTS), 1809 get_pages(sbi, F2FS_DIRTY_IMETA), 1810 free_sections(sbi), 1811 free_segments(sbi), 1812 reserved_segments(sbi), 1813 prefree_segments(sbi)); 1814 1815 f2fs_up_write(&sbi->gc_lock); 1816 1817 put_gc_inode(&gc_list); 1818 1819 if (sync && !ret) 1820 ret = sec_freed ? 0 : -EAGAIN; 1821 return ret; 1822 } 1823 1824 int __init f2fs_create_garbage_collection_cache(void) 1825 { 1826 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 1827 sizeof(struct victim_entry)); 1828 if (!victim_entry_slab) 1829 return -ENOMEM; 1830 return 0; 1831 } 1832 1833 void f2fs_destroy_garbage_collection_cache(void) 1834 { 1835 kmem_cache_destroy(victim_entry_slab); 1836 } 1837 1838 static void init_atgc_management(struct f2fs_sb_info *sbi) 1839 { 1840 struct atgc_management *am = &sbi->am; 1841 1842 if (test_opt(sbi, ATGC) && 1843 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 1844 am->atgc_enabled = true; 1845 1846 am->root = RB_ROOT_CACHED; 1847 INIT_LIST_HEAD(&am->victim_list); 1848 am->victim_count = 0; 1849 1850 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 1851 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 1852 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 1853 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 1854 } 1855 1856 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1857 { 1858 DIRTY_I(sbi)->v_ops = &default_v_ops; 1859 1860 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1861 1862 /* give warm/cold data area from slower device */ 1863 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1864 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1865 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1866 1867 init_atgc_management(sbi); 1868 } 1869 1870 static int free_segment_range(struct f2fs_sb_info *sbi, 1871 unsigned int secs, bool gc_only) 1872 { 1873 unsigned int segno, next_inuse, start, end; 1874 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1875 int gc_mode, gc_type; 1876 int err = 0; 1877 int type; 1878 1879 /* Force block allocation for GC */ 1880 MAIN_SECS(sbi) -= secs; 1881 start = MAIN_SECS(sbi) * sbi->segs_per_sec; 1882 end = MAIN_SEGS(sbi) - 1; 1883 1884 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 1885 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 1886 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 1887 SIT_I(sbi)->last_victim[gc_mode] = 0; 1888 1889 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 1890 if (sbi->next_victim_seg[gc_type] >= start) 1891 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 1892 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 1893 1894 /* Move out cursegs from the target range */ 1895 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) 1896 f2fs_allocate_segment_for_resize(sbi, type, start, end); 1897 1898 /* do GC to move out valid blocks in the range */ 1899 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 1900 struct gc_inode_list gc_list = { 1901 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1902 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1903 }; 1904 1905 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true); 1906 put_gc_inode(&gc_list); 1907 1908 if (!gc_only && get_valid_blocks(sbi, segno, true)) { 1909 err = -EAGAIN; 1910 goto out; 1911 } 1912 if (fatal_signal_pending(current)) { 1913 err = -ERESTARTSYS; 1914 goto out; 1915 } 1916 } 1917 if (gc_only) 1918 goto out; 1919 1920 err = f2fs_write_checkpoint(sbi, &cpc); 1921 if (err) 1922 goto out; 1923 1924 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 1925 if (next_inuse <= end) { 1926 f2fs_err(sbi, "segno %u should be free but still inuse!", 1927 next_inuse); 1928 f2fs_bug_on(sbi, 1); 1929 } 1930 out: 1931 MAIN_SECS(sbi) += secs; 1932 return err; 1933 } 1934 1935 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 1936 { 1937 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 1938 int section_count; 1939 int segment_count; 1940 int segment_count_main; 1941 long long block_count; 1942 int segs = secs * sbi->segs_per_sec; 1943 1944 f2fs_down_write(&sbi->sb_lock); 1945 1946 section_count = le32_to_cpu(raw_sb->section_count); 1947 segment_count = le32_to_cpu(raw_sb->segment_count); 1948 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 1949 block_count = le64_to_cpu(raw_sb->block_count); 1950 1951 raw_sb->section_count = cpu_to_le32(section_count + secs); 1952 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 1953 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 1954 raw_sb->block_count = cpu_to_le64(block_count + 1955 (long long)segs * sbi->blocks_per_seg); 1956 if (f2fs_is_multi_device(sbi)) { 1957 int last_dev = sbi->s_ndevs - 1; 1958 int dev_segs = 1959 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 1960 1961 raw_sb->devs[last_dev].total_segments = 1962 cpu_to_le32(dev_segs + segs); 1963 } 1964 1965 f2fs_up_write(&sbi->sb_lock); 1966 } 1967 1968 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 1969 { 1970 int segs = secs * sbi->segs_per_sec; 1971 long long blks = (long long)segs * sbi->blocks_per_seg; 1972 long long user_block_count = 1973 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 1974 1975 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 1976 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 1977 MAIN_SECS(sbi) += secs; 1978 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 1979 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 1980 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 1981 1982 if (f2fs_is_multi_device(sbi)) { 1983 int last_dev = sbi->s_ndevs - 1; 1984 1985 FDEV(last_dev).total_segments = 1986 (int)FDEV(last_dev).total_segments + segs; 1987 FDEV(last_dev).end_blk = 1988 (long long)FDEV(last_dev).end_blk + blks; 1989 #ifdef CONFIG_BLK_DEV_ZONED 1990 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz + 1991 (int)(blks >> sbi->log_blocks_per_blkz); 1992 #endif 1993 } 1994 } 1995 1996 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count) 1997 { 1998 __u64 old_block_count, shrunk_blocks; 1999 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2000 unsigned int secs; 2001 int err = 0; 2002 __u32 rem; 2003 2004 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 2005 if (block_count > old_block_count) 2006 return -EINVAL; 2007 2008 if (f2fs_is_multi_device(sbi)) { 2009 int last_dev = sbi->s_ndevs - 1; 2010 __u64 last_segs = FDEV(last_dev).total_segments; 2011 2012 if (block_count + last_segs * sbi->blocks_per_seg <= 2013 old_block_count) 2014 return -EINVAL; 2015 } 2016 2017 /* new fs size should align to section size */ 2018 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 2019 if (rem) 2020 return -EINVAL; 2021 2022 if (block_count == old_block_count) 2023 return 0; 2024 2025 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2026 f2fs_err(sbi, "Should run fsck to repair first."); 2027 return -EFSCORRUPTED; 2028 } 2029 2030 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2031 f2fs_err(sbi, "Checkpoint should be enabled."); 2032 return -EINVAL; 2033 } 2034 2035 shrunk_blocks = old_block_count - block_count; 2036 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2037 2038 /* stop other GC */ 2039 if (!f2fs_down_write_trylock(&sbi->gc_lock)) 2040 return -EAGAIN; 2041 2042 /* stop CP to protect MAIN_SEC in free_segment_range */ 2043 f2fs_lock_op(sbi); 2044 2045 spin_lock(&sbi->stat_lock); 2046 if (shrunk_blocks + valid_user_blocks(sbi) + 2047 sbi->current_reserved_blocks + sbi->unusable_block_count + 2048 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2049 err = -ENOSPC; 2050 spin_unlock(&sbi->stat_lock); 2051 2052 if (err) 2053 goto out_unlock; 2054 2055 err = free_segment_range(sbi, secs, true); 2056 2057 out_unlock: 2058 f2fs_unlock_op(sbi); 2059 f2fs_up_write(&sbi->gc_lock); 2060 if (err) 2061 return err; 2062 2063 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2064 2065 freeze_super(sbi->sb); 2066 f2fs_down_write(&sbi->gc_lock); 2067 f2fs_down_write(&sbi->cp_global_sem); 2068 2069 spin_lock(&sbi->stat_lock); 2070 if (shrunk_blocks + valid_user_blocks(sbi) + 2071 sbi->current_reserved_blocks + sbi->unusable_block_count + 2072 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2073 err = -ENOSPC; 2074 else 2075 sbi->user_block_count -= shrunk_blocks; 2076 spin_unlock(&sbi->stat_lock); 2077 if (err) 2078 goto out_err; 2079 2080 err = free_segment_range(sbi, secs, false); 2081 if (err) 2082 goto recover_out; 2083 2084 update_sb_metadata(sbi, -secs); 2085 2086 err = f2fs_commit_super(sbi, false); 2087 if (err) { 2088 update_sb_metadata(sbi, secs); 2089 goto recover_out; 2090 } 2091 2092 update_fs_metadata(sbi, -secs); 2093 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2094 set_sbi_flag(sbi, SBI_IS_DIRTY); 2095 2096 err = f2fs_write_checkpoint(sbi, &cpc); 2097 if (err) { 2098 update_fs_metadata(sbi, secs); 2099 update_sb_metadata(sbi, secs); 2100 f2fs_commit_super(sbi, false); 2101 } 2102 recover_out: 2103 if (err) { 2104 set_sbi_flag(sbi, SBI_NEED_FSCK); 2105 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2106 2107 spin_lock(&sbi->stat_lock); 2108 sbi->user_block_count += shrunk_blocks; 2109 spin_unlock(&sbi->stat_lock); 2110 } 2111 out_err: 2112 f2fs_up_write(&sbi->cp_global_sem); 2113 f2fs_up_write(&sbi->gc_lock); 2114 thaw_super(sbi->sb); 2115 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2116 return err; 2117 } 2118