1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/f2fs_fs.h> 12 #include <linux/kthread.h> 13 #include <linux/delay.h> 14 #include <linux/freezer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/random.h> 17 #include <linux/sched/mm.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "gc.h" 23 #include "iostat.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *victim_entry_slab; 27 28 static unsigned int count_bits(const unsigned long *addr, 29 unsigned int offset, unsigned int len); 30 31 static int gc_thread_func(void *data) 32 { 33 struct f2fs_sb_info *sbi = data; 34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 37 unsigned int wait_ms; 38 struct f2fs_gc_control gc_control = { 39 .victim_segno = NULL_SEGNO, 40 .should_migrate_blocks = false, 41 .err_gc_skipped = false }; 42 43 wait_ms = gc_th->min_sleep_time; 44 45 set_freezable(); 46 do { 47 bool sync_mode, foreground = false; 48 49 wait_event_interruptible_timeout(*wq, 50 kthread_should_stop() || freezing(current) || 51 waitqueue_active(fggc_wq) || 52 gc_th->gc_wake, 53 msecs_to_jiffies(wait_ms)); 54 55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) 56 foreground = true; 57 58 /* give it a try one time */ 59 if (gc_th->gc_wake) 60 gc_th->gc_wake = 0; 61 62 if (try_to_freeze()) { 63 stat_other_skip_bggc_count(sbi); 64 continue; 65 } 66 if (kthread_should_stop()) 67 break; 68 69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 70 increase_sleep_time(gc_th, &wait_ms); 71 stat_other_skip_bggc_count(sbi); 72 continue; 73 } 74 75 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 76 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 77 f2fs_stop_checkpoint(sbi, false); 78 } 79 80 if (!sb_start_write_trylock(sbi->sb)) { 81 stat_other_skip_bggc_count(sbi); 82 continue; 83 } 84 85 /* 86 * [GC triggering condition] 87 * 0. GC is not conducted currently. 88 * 1. There are enough dirty segments. 89 * 2. IO subsystem is idle by checking the # of writeback pages. 90 * 3. IO subsystem is idle by checking the # of requests in 91 * bdev's request list. 92 * 93 * Note) We have to avoid triggering GCs frequently. 94 * Because it is possible that some segments can be 95 * invalidated soon after by user update or deletion. 96 * So, I'd like to wait some time to collect dirty segments. 97 */ 98 if (sbi->gc_mode == GC_URGENT_HIGH) { 99 spin_lock(&sbi->gc_urgent_high_lock); 100 if (sbi->gc_urgent_high_limited) { 101 if (!sbi->gc_urgent_high_remaining) { 102 sbi->gc_urgent_high_limited = false; 103 spin_unlock(&sbi->gc_urgent_high_lock); 104 sbi->gc_mode = GC_NORMAL; 105 continue; 106 } 107 sbi->gc_urgent_high_remaining--; 108 } 109 spin_unlock(&sbi->gc_urgent_high_lock); 110 } 111 112 if (sbi->gc_mode == GC_URGENT_HIGH || 113 sbi->gc_mode == GC_URGENT_MID) { 114 wait_ms = gc_th->urgent_sleep_time; 115 f2fs_down_write(&sbi->gc_lock); 116 goto do_gc; 117 } 118 119 if (foreground) { 120 f2fs_down_write(&sbi->gc_lock); 121 goto do_gc; 122 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 123 stat_other_skip_bggc_count(sbi); 124 goto next; 125 } 126 127 if (!is_idle(sbi, GC_TIME)) { 128 increase_sleep_time(gc_th, &wait_ms); 129 f2fs_up_write(&sbi->gc_lock); 130 stat_io_skip_bggc_count(sbi); 131 goto next; 132 } 133 134 if (has_enough_invalid_blocks(sbi)) 135 decrease_sleep_time(gc_th, &wait_ms); 136 else 137 increase_sleep_time(gc_th, &wait_ms); 138 do_gc: 139 if (!foreground) 140 stat_inc_bggc_count(sbi->stat_info); 141 142 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC; 143 144 /* foreground GC was been triggered via f2fs_balance_fs() */ 145 if (foreground) 146 sync_mode = false; 147 148 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC; 149 gc_control.no_bg_gc = foreground; 150 gc_control.nr_free_secs = foreground ? 1 : 0; 151 152 /* if return value is not zero, no victim was selected */ 153 if (f2fs_gc(sbi, &gc_control)) 154 wait_ms = gc_th->no_gc_sleep_time; 155 156 if (foreground) 157 wake_up_all(&gc_th->fggc_wq); 158 159 trace_f2fs_background_gc(sbi->sb, wait_ms, 160 prefree_segments(sbi), free_segments(sbi)); 161 162 /* balancing f2fs's metadata periodically */ 163 f2fs_balance_fs_bg(sbi, true); 164 next: 165 sb_end_write(sbi->sb); 166 167 } while (!kthread_should_stop()); 168 return 0; 169 } 170 171 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 172 { 173 struct f2fs_gc_kthread *gc_th; 174 dev_t dev = sbi->sb->s_bdev->bd_dev; 175 int err = 0; 176 177 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 178 if (!gc_th) { 179 err = -ENOMEM; 180 goto out; 181 } 182 183 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 184 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 185 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 186 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 187 188 gc_th->gc_wake = 0; 189 190 sbi->gc_thread = gc_th; 191 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 192 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 193 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 194 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 195 if (IS_ERR(gc_th->f2fs_gc_task)) { 196 err = PTR_ERR(gc_th->f2fs_gc_task); 197 kfree(gc_th); 198 sbi->gc_thread = NULL; 199 } 200 out: 201 return err; 202 } 203 204 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 205 { 206 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 207 208 if (!gc_th) 209 return; 210 kthread_stop(gc_th->f2fs_gc_task); 211 wake_up_all(&gc_th->fggc_wq); 212 kfree(gc_th); 213 sbi->gc_thread = NULL; 214 } 215 216 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 217 { 218 int gc_mode; 219 220 if (gc_type == BG_GC) { 221 if (sbi->am.atgc_enabled) 222 gc_mode = GC_AT; 223 else 224 gc_mode = GC_CB; 225 } else { 226 gc_mode = GC_GREEDY; 227 } 228 229 switch (sbi->gc_mode) { 230 case GC_IDLE_CB: 231 gc_mode = GC_CB; 232 break; 233 case GC_IDLE_GREEDY: 234 case GC_URGENT_HIGH: 235 gc_mode = GC_GREEDY; 236 break; 237 case GC_IDLE_AT: 238 gc_mode = GC_AT; 239 break; 240 } 241 242 return gc_mode; 243 } 244 245 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 246 int type, struct victim_sel_policy *p) 247 { 248 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 249 250 if (p->alloc_mode == SSR) { 251 p->gc_mode = GC_GREEDY; 252 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 253 p->max_search = dirty_i->nr_dirty[type]; 254 p->ofs_unit = 1; 255 } else if (p->alloc_mode == AT_SSR) { 256 p->gc_mode = GC_GREEDY; 257 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 258 p->max_search = dirty_i->nr_dirty[type]; 259 p->ofs_unit = 1; 260 } else { 261 p->gc_mode = select_gc_type(sbi, gc_type); 262 p->ofs_unit = sbi->segs_per_sec; 263 if (__is_large_section(sbi)) { 264 p->dirty_bitmap = dirty_i->dirty_secmap; 265 p->max_search = count_bits(p->dirty_bitmap, 266 0, MAIN_SECS(sbi)); 267 } else { 268 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 269 p->max_search = dirty_i->nr_dirty[DIRTY]; 270 } 271 } 272 273 /* 274 * adjust candidates range, should select all dirty segments for 275 * foreground GC and urgent GC cases. 276 */ 277 if (gc_type != FG_GC && 278 (sbi->gc_mode != GC_URGENT_HIGH) && 279 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 280 p->max_search > sbi->max_victim_search) 281 p->max_search = sbi->max_victim_search; 282 283 /* let's select beginning hot/small space first in no_heap mode*/ 284 if (f2fs_need_rand_seg(sbi)) 285 p->offset = prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec); 286 else if (test_opt(sbi, NOHEAP) && 287 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 288 p->offset = 0; 289 else 290 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 291 } 292 293 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 294 struct victim_sel_policy *p) 295 { 296 /* SSR allocates in a segment unit */ 297 if (p->alloc_mode == SSR) 298 return sbi->blocks_per_seg; 299 else if (p->alloc_mode == AT_SSR) 300 return UINT_MAX; 301 302 /* LFS */ 303 if (p->gc_mode == GC_GREEDY) 304 return 2 * sbi->blocks_per_seg * p->ofs_unit; 305 else if (p->gc_mode == GC_CB) 306 return UINT_MAX; 307 else if (p->gc_mode == GC_AT) 308 return UINT_MAX; 309 else /* No other gc_mode */ 310 return 0; 311 } 312 313 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 314 { 315 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 316 unsigned int secno; 317 318 /* 319 * If the gc_type is FG_GC, we can select victim segments 320 * selected by background GC before. 321 * Those segments guarantee they have small valid blocks. 322 */ 323 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 324 if (sec_usage_check(sbi, secno)) 325 continue; 326 clear_bit(secno, dirty_i->victim_secmap); 327 return GET_SEG_FROM_SEC(sbi, secno); 328 } 329 return NULL_SEGNO; 330 } 331 332 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 333 { 334 struct sit_info *sit_i = SIT_I(sbi); 335 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 336 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 337 unsigned long long mtime = 0; 338 unsigned int vblocks; 339 unsigned char age = 0; 340 unsigned char u; 341 unsigned int i; 342 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno); 343 344 for (i = 0; i < usable_segs_per_sec; i++) 345 mtime += get_seg_entry(sbi, start + i)->mtime; 346 vblocks = get_valid_blocks(sbi, segno, true); 347 348 mtime = div_u64(mtime, usable_segs_per_sec); 349 vblocks = div_u64(vblocks, usable_segs_per_sec); 350 351 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 352 353 /* Handle if the system time has changed by the user */ 354 if (mtime < sit_i->min_mtime) 355 sit_i->min_mtime = mtime; 356 if (mtime > sit_i->max_mtime) 357 sit_i->max_mtime = mtime; 358 if (sit_i->max_mtime != sit_i->min_mtime) 359 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 360 sit_i->max_mtime - sit_i->min_mtime); 361 362 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 363 } 364 365 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 366 unsigned int segno, struct victim_sel_policy *p) 367 { 368 if (p->alloc_mode == SSR) 369 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 370 371 /* alloc_mode == LFS */ 372 if (p->gc_mode == GC_GREEDY) 373 return get_valid_blocks(sbi, segno, true); 374 else if (p->gc_mode == GC_CB) 375 return get_cb_cost(sbi, segno); 376 377 f2fs_bug_on(sbi, 1); 378 return 0; 379 } 380 381 static unsigned int count_bits(const unsigned long *addr, 382 unsigned int offset, unsigned int len) 383 { 384 unsigned int end = offset + len, sum = 0; 385 386 while (offset < end) { 387 if (test_bit(offset++, addr)) 388 ++sum; 389 } 390 return sum; 391 } 392 393 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi, 394 unsigned long long mtime, unsigned int segno, 395 struct rb_node *parent, struct rb_node **p, 396 bool left_most) 397 { 398 struct atgc_management *am = &sbi->am; 399 struct victim_entry *ve; 400 401 ve = f2fs_kmem_cache_alloc(victim_entry_slab, 402 GFP_NOFS, true, NULL); 403 404 ve->mtime = mtime; 405 ve->segno = segno; 406 407 rb_link_node(&ve->rb_node, parent, p); 408 rb_insert_color_cached(&ve->rb_node, &am->root, left_most); 409 410 list_add_tail(&ve->list, &am->victim_list); 411 412 am->victim_count++; 413 414 return ve; 415 } 416 417 static void insert_victim_entry(struct f2fs_sb_info *sbi, 418 unsigned long long mtime, unsigned int segno) 419 { 420 struct atgc_management *am = &sbi->am; 421 struct rb_node **p; 422 struct rb_node *parent = NULL; 423 bool left_most = true; 424 425 p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most); 426 attach_victim_entry(sbi, mtime, segno, parent, p, left_most); 427 } 428 429 static void add_victim_entry(struct f2fs_sb_info *sbi, 430 struct victim_sel_policy *p, unsigned int segno) 431 { 432 struct sit_info *sit_i = SIT_I(sbi); 433 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 434 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 435 unsigned long long mtime = 0; 436 unsigned int i; 437 438 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 439 if (p->gc_mode == GC_AT && 440 get_valid_blocks(sbi, segno, true) == 0) 441 return; 442 } 443 444 for (i = 0; i < sbi->segs_per_sec; i++) 445 mtime += get_seg_entry(sbi, start + i)->mtime; 446 mtime = div_u64(mtime, sbi->segs_per_sec); 447 448 /* Handle if the system time has changed by the user */ 449 if (mtime < sit_i->min_mtime) 450 sit_i->min_mtime = mtime; 451 if (mtime > sit_i->max_mtime) 452 sit_i->max_mtime = mtime; 453 if (mtime < sit_i->dirty_min_mtime) 454 sit_i->dirty_min_mtime = mtime; 455 if (mtime > sit_i->dirty_max_mtime) 456 sit_i->dirty_max_mtime = mtime; 457 458 /* don't choose young section as candidate */ 459 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 460 return; 461 462 insert_victim_entry(sbi, mtime, segno); 463 } 464 465 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi, 466 struct victim_sel_policy *p) 467 { 468 struct atgc_management *am = &sbi->am; 469 struct rb_node *parent = NULL; 470 bool left_most; 471 472 f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most); 473 474 return parent; 475 } 476 477 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 478 struct victim_sel_policy *p) 479 { 480 struct sit_info *sit_i = SIT_I(sbi); 481 struct atgc_management *am = &sbi->am; 482 struct rb_root_cached *root = &am->root; 483 struct rb_node *node; 484 struct rb_entry *re; 485 struct victim_entry *ve; 486 unsigned long long total_time; 487 unsigned long long age, u, accu; 488 unsigned long long max_mtime = sit_i->dirty_max_mtime; 489 unsigned long long min_mtime = sit_i->dirty_min_mtime; 490 unsigned int sec_blocks = BLKS_PER_SEC(sbi); 491 unsigned int vblocks; 492 unsigned int dirty_threshold = max(am->max_candidate_count, 493 am->candidate_ratio * 494 am->victim_count / 100); 495 unsigned int age_weight = am->age_weight; 496 unsigned int cost; 497 unsigned int iter = 0; 498 499 if (max_mtime < min_mtime) 500 return; 501 502 max_mtime += 1; 503 total_time = max_mtime - min_mtime; 504 505 accu = div64_u64(ULLONG_MAX, total_time); 506 accu = min_t(unsigned long long, div_u64(accu, 100), 507 DEFAULT_ACCURACY_CLASS); 508 509 node = rb_first_cached(root); 510 next: 511 re = rb_entry_safe(node, struct rb_entry, rb_node); 512 if (!re) 513 return; 514 515 ve = (struct victim_entry *)re; 516 517 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 518 goto skip; 519 520 /* age = 10000 * x% * 60 */ 521 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 522 age_weight; 523 524 vblocks = get_valid_blocks(sbi, ve->segno, true); 525 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 526 527 /* u = 10000 * x% * 40 */ 528 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 529 (100 - age_weight); 530 531 f2fs_bug_on(sbi, age + u >= UINT_MAX); 532 533 cost = UINT_MAX - (age + u); 534 iter++; 535 536 if (cost < p->min_cost || 537 (cost == p->min_cost && age > p->oldest_age)) { 538 p->min_cost = cost; 539 p->oldest_age = age; 540 p->min_segno = ve->segno; 541 } 542 skip: 543 if (iter < dirty_threshold) { 544 node = rb_next(node); 545 goto next; 546 } 547 } 548 549 /* 550 * select candidates around source section in range of 551 * [target - dirty_threshold, target + dirty_threshold] 552 */ 553 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 554 struct victim_sel_policy *p) 555 { 556 struct sit_info *sit_i = SIT_I(sbi); 557 struct atgc_management *am = &sbi->am; 558 struct rb_node *node; 559 struct rb_entry *re; 560 struct victim_entry *ve; 561 unsigned long long age; 562 unsigned long long max_mtime = sit_i->dirty_max_mtime; 563 unsigned long long min_mtime = sit_i->dirty_min_mtime; 564 unsigned int seg_blocks = sbi->blocks_per_seg; 565 unsigned int vblocks; 566 unsigned int dirty_threshold = max(am->max_candidate_count, 567 am->candidate_ratio * 568 am->victim_count / 100); 569 unsigned int cost; 570 unsigned int iter = 0; 571 int stage = 0; 572 573 if (max_mtime < min_mtime) 574 return; 575 max_mtime += 1; 576 next_stage: 577 node = lookup_central_victim(sbi, p); 578 next_node: 579 re = rb_entry_safe(node, struct rb_entry, rb_node); 580 if (!re) { 581 if (stage == 0) 582 goto skip_stage; 583 return; 584 } 585 586 ve = (struct victim_entry *)re; 587 588 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 589 goto skip_node; 590 591 age = max_mtime - ve->mtime; 592 593 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 594 f2fs_bug_on(sbi, !vblocks); 595 596 /* rare case */ 597 if (vblocks == seg_blocks) 598 goto skip_node; 599 600 iter++; 601 602 age = max_mtime - abs(p->age - age); 603 cost = UINT_MAX - vblocks; 604 605 if (cost < p->min_cost || 606 (cost == p->min_cost && age > p->oldest_age)) { 607 p->min_cost = cost; 608 p->oldest_age = age; 609 p->min_segno = ve->segno; 610 } 611 skip_node: 612 if (iter < dirty_threshold) { 613 if (stage == 0) 614 node = rb_prev(node); 615 else if (stage == 1) 616 node = rb_next(node); 617 goto next_node; 618 } 619 skip_stage: 620 if (stage < 1) { 621 stage++; 622 iter = 0; 623 goto next_stage; 624 } 625 } 626 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 627 struct victim_sel_policy *p) 628 { 629 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 630 &sbi->am.root, true)); 631 632 if (p->gc_mode == GC_AT) 633 atgc_lookup_victim(sbi, p); 634 else if (p->alloc_mode == AT_SSR) 635 atssr_lookup_victim(sbi, p); 636 else 637 f2fs_bug_on(sbi, 1); 638 } 639 640 static void release_victim_entry(struct f2fs_sb_info *sbi) 641 { 642 struct atgc_management *am = &sbi->am; 643 struct victim_entry *ve, *tmp; 644 645 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 646 list_del(&ve->list); 647 kmem_cache_free(victim_entry_slab, ve); 648 am->victim_count--; 649 } 650 651 am->root = RB_ROOT_CACHED; 652 653 f2fs_bug_on(sbi, am->victim_count); 654 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 655 } 656 657 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno) 658 { 659 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 660 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 661 662 if (!dirty_i->enable_pin_section) 663 return false; 664 if (!test_and_set_bit(secno, dirty_i->pinned_secmap)) 665 dirty_i->pinned_secmap_cnt++; 666 return true; 667 } 668 669 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i) 670 { 671 return dirty_i->pinned_secmap_cnt; 672 } 673 674 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i, 675 unsigned int secno) 676 { 677 return dirty_i->enable_pin_section && 678 f2fs_pinned_section_exists(dirty_i) && 679 test_bit(secno, dirty_i->pinned_secmap); 680 } 681 682 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable) 683 { 684 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 685 686 if (f2fs_pinned_section_exists(DIRTY_I(sbi))) { 687 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size); 688 DIRTY_I(sbi)->pinned_secmap_cnt = 0; 689 } 690 DIRTY_I(sbi)->enable_pin_section = enable; 691 } 692 693 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type, 694 unsigned int segno) 695 { 696 if (!f2fs_is_pinned_file(inode)) 697 return 0; 698 if (gc_type != FG_GC) 699 return -EBUSY; 700 if (!f2fs_pin_section(F2FS_I_SB(inode), segno)) 701 f2fs_pin_file_control(inode, true); 702 return -EAGAIN; 703 } 704 705 /* 706 * This function is called from two paths. 707 * One is garbage collection and the other is SSR segment selection. 708 * When it is called during GC, it just gets a victim segment 709 * and it does not remove it from dirty seglist. 710 * When it is called from SSR segment selection, it finds a segment 711 * which has minimum valid blocks and removes it from dirty seglist. 712 */ 713 static int get_victim_by_default(struct f2fs_sb_info *sbi, 714 unsigned int *result, int gc_type, int type, 715 char alloc_mode, unsigned long long age) 716 { 717 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 718 struct sit_info *sm = SIT_I(sbi); 719 struct victim_sel_policy p; 720 unsigned int secno, last_victim; 721 unsigned int last_segment; 722 unsigned int nsearched; 723 bool is_atgc; 724 int ret = 0; 725 726 mutex_lock(&dirty_i->seglist_lock); 727 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 728 729 p.alloc_mode = alloc_mode; 730 p.age = age; 731 p.age_threshold = sbi->am.age_threshold; 732 733 retry: 734 select_policy(sbi, gc_type, type, &p); 735 p.min_segno = NULL_SEGNO; 736 p.oldest_age = 0; 737 p.min_cost = get_max_cost(sbi, &p); 738 739 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 740 nsearched = 0; 741 742 if (is_atgc) 743 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 744 745 if (*result != NULL_SEGNO) { 746 if (!get_valid_blocks(sbi, *result, false)) { 747 ret = -ENODATA; 748 goto out; 749 } 750 751 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 752 ret = -EBUSY; 753 else 754 p.min_segno = *result; 755 goto out; 756 } 757 758 ret = -ENODATA; 759 if (p.max_search == 0) 760 goto out; 761 762 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 763 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 764 p.min_segno = sbi->next_victim_seg[BG_GC]; 765 *result = p.min_segno; 766 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 767 goto got_result; 768 } 769 if (gc_type == FG_GC && 770 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 771 p.min_segno = sbi->next_victim_seg[FG_GC]; 772 *result = p.min_segno; 773 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 774 goto got_result; 775 } 776 } 777 778 last_victim = sm->last_victim[p.gc_mode]; 779 if (p.alloc_mode == LFS && gc_type == FG_GC) { 780 p.min_segno = check_bg_victims(sbi); 781 if (p.min_segno != NULL_SEGNO) 782 goto got_it; 783 } 784 785 while (1) { 786 unsigned long cost, *dirty_bitmap; 787 unsigned int unit_no, segno; 788 789 dirty_bitmap = p.dirty_bitmap; 790 unit_no = find_next_bit(dirty_bitmap, 791 last_segment / p.ofs_unit, 792 p.offset / p.ofs_unit); 793 segno = unit_no * p.ofs_unit; 794 if (segno >= last_segment) { 795 if (sm->last_victim[p.gc_mode]) { 796 last_segment = 797 sm->last_victim[p.gc_mode]; 798 sm->last_victim[p.gc_mode] = 0; 799 p.offset = 0; 800 continue; 801 } 802 break; 803 } 804 805 p.offset = segno + p.ofs_unit; 806 nsearched++; 807 808 #ifdef CONFIG_F2FS_CHECK_FS 809 /* 810 * skip selecting the invalid segno (that is failed due to block 811 * validity check failure during GC) to avoid endless GC loop in 812 * such cases. 813 */ 814 if (test_bit(segno, sm->invalid_segmap)) 815 goto next; 816 #endif 817 818 secno = GET_SEC_FROM_SEG(sbi, segno); 819 820 if (sec_usage_check(sbi, secno)) 821 goto next; 822 823 /* Don't touch checkpointed data */ 824 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 825 if (p.alloc_mode == LFS) { 826 /* 827 * LFS is set to find source section during GC. 828 * The victim should have no checkpointed data. 829 */ 830 if (get_ckpt_valid_blocks(sbi, segno, true)) 831 goto next; 832 } else { 833 /* 834 * SSR | AT_SSR are set to find target segment 835 * for writes which can be full by checkpointed 836 * and newly written blocks. 837 */ 838 if (!f2fs_segment_has_free_slot(sbi, segno)) 839 goto next; 840 } 841 } 842 843 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 844 goto next; 845 846 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno)) 847 goto next; 848 849 if (is_atgc) { 850 add_victim_entry(sbi, &p, segno); 851 goto next; 852 } 853 854 cost = get_gc_cost(sbi, segno, &p); 855 856 if (p.min_cost > cost) { 857 p.min_segno = segno; 858 p.min_cost = cost; 859 } 860 next: 861 if (nsearched >= p.max_search) { 862 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 863 sm->last_victim[p.gc_mode] = 864 last_victim + p.ofs_unit; 865 else 866 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 867 sm->last_victim[p.gc_mode] %= 868 (MAIN_SECS(sbi) * sbi->segs_per_sec); 869 break; 870 } 871 } 872 873 /* get victim for GC_AT/AT_SSR */ 874 if (is_atgc) { 875 lookup_victim_by_age(sbi, &p); 876 release_victim_entry(sbi); 877 } 878 879 if (is_atgc && p.min_segno == NULL_SEGNO && 880 sm->elapsed_time < p.age_threshold) { 881 p.age_threshold = 0; 882 goto retry; 883 } 884 885 if (p.min_segno != NULL_SEGNO) { 886 got_it: 887 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 888 got_result: 889 if (p.alloc_mode == LFS) { 890 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 891 if (gc_type == FG_GC) 892 sbi->cur_victim_sec = secno; 893 else 894 set_bit(secno, dirty_i->victim_secmap); 895 } 896 ret = 0; 897 898 } 899 out: 900 if (p.min_segno != NULL_SEGNO) 901 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 902 sbi->cur_victim_sec, 903 prefree_segments(sbi), free_segments(sbi)); 904 mutex_unlock(&dirty_i->seglist_lock); 905 906 return ret; 907 } 908 909 static const struct victim_selection default_v_ops = { 910 .get_victim = get_victim_by_default, 911 }; 912 913 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 914 { 915 struct inode_entry *ie; 916 917 ie = radix_tree_lookup(&gc_list->iroot, ino); 918 if (ie) 919 return ie->inode; 920 return NULL; 921 } 922 923 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 924 { 925 struct inode_entry *new_ie; 926 927 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 928 iput(inode); 929 return; 930 } 931 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, 932 GFP_NOFS, true, NULL); 933 new_ie->inode = inode; 934 935 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 936 list_add_tail(&new_ie->list, &gc_list->ilist); 937 } 938 939 static void put_gc_inode(struct gc_inode_list *gc_list) 940 { 941 struct inode_entry *ie, *next_ie; 942 943 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 944 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 945 iput(ie->inode); 946 list_del(&ie->list); 947 kmem_cache_free(f2fs_inode_entry_slab, ie); 948 } 949 } 950 951 static int check_valid_map(struct f2fs_sb_info *sbi, 952 unsigned int segno, int offset) 953 { 954 struct sit_info *sit_i = SIT_I(sbi); 955 struct seg_entry *sentry; 956 int ret; 957 958 down_read(&sit_i->sentry_lock); 959 sentry = get_seg_entry(sbi, segno); 960 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 961 up_read(&sit_i->sentry_lock); 962 return ret; 963 } 964 965 /* 966 * This function compares node address got in summary with that in NAT. 967 * On validity, copy that node with cold status, otherwise (invalid node) 968 * ignore that. 969 */ 970 static int gc_node_segment(struct f2fs_sb_info *sbi, 971 struct f2fs_summary *sum, unsigned int segno, int gc_type) 972 { 973 struct f2fs_summary *entry; 974 block_t start_addr; 975 int off; 976 int phase = 0; 977 bool fggc = (gc_type == FG_GC); 978 int submitted = 0; 979 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 980 981 start_addr = START_BLOCK(sbi, segno); 982 983 next_step: 984 entry = sum; 985 986 if (fggc && phase == 2) 987 atomic_inc(&sbi->wb_sync_req[NODE]); 988 989 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 990 nid_t nid = le32_to_cpu(entry->nid); 991 struct page *node_page; 992 struct node_info ni; 993 int err; 994 995 /* stop BG_GC if there is not enough free sections. */ 996 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 997 return submitted; 998 999 if (check_valid_map(sbi, segno, off) == 0) 1000 continue; 1001 1002 if (phase == 0) { 1003 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1004 META_NAT, true); 1005 continue; 1006 } 1007 1008 if (phase == 1) { 1009 f2fs_ra_node_page(sbi, nid); 1010 continue; 1011 } 1012 1013 /* phase == 2 */ 1014 node_page = f2fs_get_node_page(sbi, nid); 1015 if (IS_ERR(node_page)) 1016 continue; 1017 1018 /* block may become invalid during f2fs_get_node_page */ 1019 if (check_valid_map(sbi, segno, off) == 0) { 1020 f2fs_put_page(node_page, 1); 1021 continue; 1022 } 1023 1024 if (f2fs_get_node_info(sbi, nid, &ni, false)) { 1025 f2fs_put_page(node_page, 1); 1026 continue; 1027 } 1028 1029 if (ni.blk_addr != start_addr + off) { 1030 f2fs_put_page(node_page, 1); 1031 continue; 1032 } 1033 1034 err = f2fs_move_node_page(node_page, gc_type); 1035 if (!err && gc_type == FG_GC) 1036 submitted++; 1037 stat_inc_node_blk_count(sbi, 1, gc_type); 1038 } 1039 1040 if (++phase < 3) 1041 goto next_step; 1042 1043 if (fggc) 1044 atomic_dec(&sbi->wb_sync_req[NODE]); 1045 return submitted; 1046 } 1047 1048 /* 1049 * Calculate start block index indicating the given node offset. 1050 * Be careful, caller should give this node offset only indicating direct node 1051 * blocks. If any node offsets, which point the other types of node blocks such 1052 * as indirect or double indirect node blocks, are given, it must be a caller's 1053 * bug. 1054 */ 1055 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 1056 { 1057 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 1058 unsigned int bidx; 1059 1060 if (node_ofs == 0) 1061 return 0; 1062 1063 if (node_ofs <= 2) { 1064 bidx = node_ofs - 1; 1065 } else if (node_ofs <= indirect_blks) { 1066 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 1067 1068 bidx = node_ofs - 2 - dec; 1069 } else { 1070 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 1071 1072 bidx = node_ofs - 5 - dec; 1073 } 1074 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 1075 } 1076 1077 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1078 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 1079 { 1080 struct page *node_page; 1081 nid_t nid; 1082 unsigned int ofs_in_node; 1083 block_t source_blkaddr; 1084 1085 nid = le32_to_cpu(sum->nid); 1086 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1087 1088 node_page = f2fs_get_node_page(sbi, nid); 1089 if (IS_ERR(node_page)) 1090 return false; 1091 1092 if (f2fs_get_node_info(sbi, nid, dni, false)) { 1093 f2fs_put_page(node_page, 1); 1094 return false; 1095 } 1096 1097 if (sum->version != dni->version) { 1098 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1099 __func__); 1100 set_sbi_flag(sbi, SBI_NEED_FSCK); 1101 } 1102 1103 if (f2fs_check_nid_range(sbi, dni->ino)) { 1104 f2fs_put_page(node_page, 1); 1105 return false; 1106 } 1107 1108 *nofs = ofs_of_node(node_page); 1109 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 1110 f2fs_put_page(node_page, 1); 1111 1112 if (source_blkaddr != blkaddr) { 1113 #ifdef CONFIG_F2FS_CHECK_FS 1114 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1115 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1116 1117 if (unlikely(check_valid_map(sbi, segno, offset))) { 1118 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1119 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1120 blkaddr, source_blkaddr, segno); 1121 set_sbi_flag(sbi, SBI_NEED_FSCK); 1122 } 1123 } 1124 #endif 1125 return false; 1126 } 1127 return true; 1128 } 1129 1130 static int ra_data_block(struct inode *inode, pgoff_t index) 1131 { 1132 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1133 struct address_space *mapping = inode->i_mapping; 1134 struct dnode_of_data dn; 1135 struct page *page; 1136 struct extent_info ei = {0, 0, 0}; 1137 struct f2fs_io_info fio = { 1138 .sbi = sbi, 1139 .ino = inode->i_ino, 1140 .type = DATA, 1141 .temp = COLD, 1142 .op = REQ_OP_READ, 1143 .op_flags = 0, 1144 .encrypted_page = NULL, 1145 .in_list = false, 1146 .retry = false, 1147 }; 1148 int err; 1149 1150 page = f2fs_grab_cache_page(mapping, index, true); 1151 if (!page) 1152 return -ENOMEM; 1153 1154 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1155 dn.data_blkaddr = ei.blk + index - ei.fofs; 1156 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1157 DATA_GENERIC_ENHANCE_READ))) { 1158 err = -EFSCORRUPTED; 1159 goto put_page; 1160 } 1161 goto got_it; 1162 } 1163 1164 set_new_dnode(&dn, inode, NULL, NULL, 0); 1165 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1166 if (err) 1167 goto put_page; 1168 f2fs_put_dnode(&dn); 1169 1170 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1171 err = -ENOENT; 1172 goto put_page; 1173 } 1174 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1175 DATA_GENERIC_ENHANCE))) { 1176 err = -EFSCORRUPTED; 1177 goto put_page; 1178 } 1179 got_it: 1180 /* read page */ 1181 fio.page = page; 1182 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1183 1184 /* 1185 * don't cache encrypted data into meta inode until previous dirty 1186 * data were writebacked to avoid racing between GC and flush. 1187 */ 1188 f2fs_wait_on_page_writeback(page, DATA, true, true); 1189 1190 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1191 1192 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1193 dn.data_blkaddr, 1194 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1195 if (!fio.encrypted_page) { 1196 err = -ENOMEM; 1197 goto put_page; 1198 } 1199 1200 err = f2fs_submit_page_bio(&fio); 1201 if (err) 1202 goto put_encrypted_page; 1203 f2fs_put_page(fio.encrypted_page, 0); 1204 f2fs_put_page(page, 1); 1205 1206 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1207 f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1208 1209 return 0; 1210 put_encrypted_page: 1211 f2fs_put_page(fio.encrypted_page, 1); 1212 put_page: 1213 f2fs_put_page(page, 1); 1214 return err; 1215 } 1216 1217 /* 1218 * Move data block via META_MAPPING while keeping locked data page. 1219 * This can be used to move blocks, aka LBAs, directly on disk. 1220 */ 1221 static int move_data_block(struct inode *inode, block_t bidx, 1222 int gc_type, unsigned int segno, int off) 1223 { 1224 struct f2fs_io_info fio = { 1225 .sbi = F2FS_I_SB(inode), 1226 .ino = inode->i_ino, 1227 .type = DATA, 1228 .temp = COLD, 1229 .op = REQ_OP_READ, 1230 .op_flags = 0, 1231 .encrypted_page = NULL, 1232 .in_list = false, 1233 .retry = false, 1234 }; 1235 struct dnode_of_data dn; 1236 struct f2fs_summary sum; 1237 struct node_info ni; 1238 struct page *page, *mpage; 1239 block_t newaddr; 1240 int err = 0; 1241 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1242 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1243 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1244 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1245 1246 /* do not read out */ 1247 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 1248 if (!page) 1249 return -ENOMEM; 1250 1251 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1252 err = -ENOENT; 1253 goto out; 1254 } 1255 1256 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1257 if (err) 1258 goto out; 1259 1260 set_new_dnode(&dn, inode, NULL, NULL, 0); 1261 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1262 if (err) 1263 goto out; 1264 1265 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1266 ClearPageUptodate(page); 1267 err = -ENOENT; 1268 goto put_out; 1269 } 1270 1271 /* 1272 * don't cache encrypted data into meta inode until previous dirty 1273 * data were writebacked to avoid racing between GC and flush. 1274 */ 1275 f2fs_wait_on_page_writeback(page, DATA, true, true); 1276 1277 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1278 1279 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1280 if (err) 1281 goto put_out; 1282 1283 /* read page */ 1284 fio.page = page; 1285 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1286 1287 if (lfs_mode) 1288 f2fs_down_write(&fio.sbi->io_order_lock); 1289 1290 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1291 fio.old_blkaddr, false); 1292 if (!mpage) { 1293 err = -ENOMEM; 1294 goto up_out; 1295 } 1296 1297 fio.encrypted_page = mpage; 1298 1299 /* read source block in mpage */ 1300 if (!PageUptodate(mpage)) { 1301 err = f2fs_submit_page_bio(&fio); 1302 if (err) { 1303 f2fs_put_page(mpage, 1); 1304 goto up_out; 1305 } 1306 1307 f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1308 f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1309 1310 lock_page(mpage); 1311 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1312 !PageUptodate(mpage))) { 1313 err = -EIO; 1314 f2fs_put_page(mpage, 1); 1315 goto up_out; 1316 } 1317 } 1318 1319 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1320 1321 /* allocate block address */ 1322 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1323 &sum, type, NULL); 1324 1325 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1326 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1327 if (!fio.encrypted_page) { 1328 err = -ENOMEM; 1329 f2fs_put_page(mpage, 1); 1330 goto recover_block; 1331 } 1332 1333 /* write target block */ 1334 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1335 memcpy(page_address(fio.encrypted_page), 1336 page_address(mpage), PAGE_SIZE); 1337 f2fs_put_page(mpage, 1); 1338 invalidate_mapping_pages(META_MAPPING(fio.sbi), 1339 fio.old_blkaddr, fio.old_blkaddr); 1340 f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr); 1341 1342 set_page_dirty(fio.encrypted_page); 1343 if (clear_page_dirty_for_io(fio.encrypted_page)) 1344 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1345 1346 set_page_writeback(fio.encrypted_page); 1347 ClearPageError(page); 1348 1349 fio.op = REQ_OP_WRITE; 1350 fio.op_flags = REQ_SYNC; 1351 fio.new_blkaddr = newaddr; 1352 f2fs_submit_page_write(&fio); 1353 if (fio.retry) { 1354 err = -EAGAIN; 1355 if (PageWriteback(fio.encrypted_page)) 1356 end_page_writeback(fio.encrypted_page); 1357 goto put_page_out; 1358 } 1359 1360 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE); 1361 1362 f2fs_update_data_blkaddr(&dn, newaddr); 1363 set_inode_flag(inode, FI_APPEND_WRITE); 1364 if (page->index == 0) 1365 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1366 put_page_out: 1367 f2fs_put_page(fio.encrypted_page, 1); 1368 recover_block: 1369 if (err) 1370 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1371 true, true, true); 1372 up_out: 1373 if (lfs_mode) 1374 f2fs_up_write(&fio.sbi->io_order_lock); 1375 put_out: 1376 f2fs_put_dnode(&dn); 1377 out: 1378 f2fs_put_page(page, 1); 1379 return err; 1380 } 1381 1382 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1383 unsigned int segno, int off) 1384 { 1385 struct page *page; 1386 int err = 0; 1387 1388 page = f2fs_get_lock_data_page(inode, bidx, true); 1389 if (IS_ERR(page)) 1390 return PTR_ERR(page); 1391 1392 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1393 err = -ENOENT; 1394 goto out; 1395 } 1396 1397 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1398 if (err) 1399 goto out; 1400 1401 if (gc_type == BG_GC) { 1402 if (PageWriteback(page)) { 1403 err = -EAGAIN; 1404 goto out; 1405 } 1406 set_page_dirty(page); 1407 set_page_private_gcing(page); 1408 } else { 1409 struct f2fs_io_info fio = { 1410 .sbi = F2FS_I_SB(inode), 1411 .ino = inode->i_ino, 1412 .type = DATA, 1413 .temp = COLD, 1414 .op = REQ_OP_WRITE, 1415 .op_flags = REQ_SYNC, 1416 .old_blkaddr = NULL_ADDR, 1417 .page = page, 1418 .encrypted_page = NULL, 1419 .need_lock = LOCK_REQ, 1420 .io_type = FS_GC_DATA_IO, 1421 }; 1422 bool is_dirty = PageDirty(page); 1423 1424 retry: 1425 f2fs_wait_on_page_writeback(page, DATA, true, true); 1426 1427 set_page_dirty(page); 1428 if (clear_page_dirty_for_io(page)) { 1429 inode_dec_dirty_pages(inode); 1430 f2fs_remove_dirty_inode(inode); 1431 } 1432 1433 set_page_private_gcing(page); 1434 1435 err = f2fs_do_write_data_page(&fio); 1436 if (err) { 1437 clear_page_private_gcing(page); 1438 if (err == -ENOMEM) { 1439 memalloc_retry_wait(GFP_NOFS); 1440 goto retry; 1441 } 1442 if (is_dirty) 1443 set_page_dirty(page); 1444 } 1445 } 1446 out: 1447 f2fs_put_page(page, 1); 1448 return err; 1449 } 1450 1451 /* 1452 * This function tries to get parent node of victim data block, and identifies 1453 * data block validity. If the block is valid, copy that with cold status and 1454 * modify parent node. 1455 * If the parent node is not valid or the data block address is different, 1456 * the victim data block is ignored. 1457 */ 1458 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1459 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1460 bool force_migrate) 1461 { 1462 struct super_block *sb = sbi->sb; 1463 struct f2fs_summary *entry; 1464 block_t start_addr; 1465 int off; 1466 int phase = 0; 1467 int submitted = 0; 1468 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1469 1470 start_addr = START_BLOCK(sbi, segno); 1471 1472 next_step: 1473 entry = sum; 1474 1475 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1476 struct page *data_page; 1477 struct inode *inode; 1478 struct node_info dni; /* dnode info for the data */ 1479 unsigned int ofs_in_node, nofs; 1480 block_t start_bidx; 1481 nid_t nid = le32_to_cpu(entry->nid); 1482 1483 /* 1484 * stop BG_GC if there is not enough free sections. 1485 * Or, stop GC if the segment becomes fully valid caused by 1486 * race condition along with SSR block allocation. 1487 */ 1488 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1489 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1490 BLKS_PER_SEC(sbi))) 1491 return submitted; 1492 1493 if (check_valid_map(sbi, segno, off) == 0) 1494 continue; 1495 1496 if (phase == 0) { 1497 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1498 META_NAT, true); 1499 continue; 1500 } 1501 1502 if (phase == 1) { 1503 f2fs_ra_node_page(sbi, nid); 1504 continue; 1505 } 1506 1507 /* Get an inode by ino with checking validity */ 1508 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1509 continue; 1510 1511 if (phase == 2) { 1512 f2fs_ra_node_page(sbi, dni.ino); 1513 continue; 1514 } 1515 1516 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1517 1518 if (phase == 3) { 1519 int err; 1520 1521 inode = f2fs_iget(sb, dni.ino); 1522 if (IS_ERR(inode) || is_bad_inode(inode) || 1523 special_file(inode->i_mode)) 1524 continue; 1525 1526 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1527 if (err == -EAGAIN) { 1528 iput(inode); 1529 return submitted; 1530 } 1531 1532 if (!f2fs_down_write_trylock( 1533 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1534 iput(inode); 1535 sbi->skipped_gc_rwsem++; 1536 continue; 1537 } 1538 1539 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1540 ofs_in_node; 1541 1542 if (f2fs_post_read_required(inode)) { 1543 int err = ra_data_block(inode, start_bidx); 1544 1545 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1546 if (err) { 1547 iput(inode); 1548 continue; 1549 } 1550 add_gc_inode(gc_list, inode); 1551 continue; 1552 } 1553 1554 data_page = f2fs_get_read_data_page(inode, 1555 start_bidx, REQ_RAHEAD, true); 1556 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1557 if (IS_ERR(data_page)) { 1558 iput(inode); 1559 continue; 1560 } 1561 1562 f2fs_put_page(data_page, 0); 1563 add_gc_inode(gc_list, inode); 1564 continue; 1565 } 1566 1567 /* phase 4 */ 1568 inode = find_gc_inode(gc_list, dni.ino); 1569 if (inode) { 1570 struct f2fs_inode_info *fi = F2FS_I(inode); 1571 bool locked = false; 1572 int err; 1573 1574 if (S_ISREG(inode->i_mode)) { 1575 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[READ])) { 1576 sbi->skipped_gc_rwsem++; 1577 continue; 1578 } 1579 if (!f2fs_down_write_trylock( 1580 &fi->i_gc_rwsem[WRITE])) { 1581 sbi->skipped_gc_rwsem++; 1582 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1583 continue; 1584 } 1585 locked = true; 1586 1587 /* wait for all inflight aio data */ 1588 inode_dio_wait(inode); 1589 } 1590 1591 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1592 + ofs_in_node; 1593 if (f2fs_post_read_required(inode)) 1594 err = move_data_block(inode, start_bidx, 1595 gc_type, segno, off); 1596 else 1597 err = move_data_page(inode, start_bidx, gc_type, 1598 segno, off); 1599 1600 if (!err && (gc_type == FG_GC || 1601 f2fs_post_read_required(inode))) 1602 submitted++; 1603 1604 if (locked) { 1605 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1606 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1607 } 1608 1609 stat_inc_data_blk_count(sbi, 1, gc_type); 1610 } 1611 } 1612 1613 if (++phase < 5) 1614 goto next_step; 1615 1616 return submitted; 1617 } 1618 1619 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1620 int gc_type) 1621 { 1622 struct sit_info *sit_i = SIT_I(sbi); 1623 int ret; 1624 1625 down_write(&sit_i->sentry_lock); 1626 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, 1627 NO_CHECK_TYPE, LFS, 0); 1628 up_write(&sit_i->sentry_lock); 1629 return ret; 1630 } 1631 1632 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1633 unsigned int start_segno, 1634 struct gc_inode_list *gc_list, int gc_type, 1635 bool force_migrate) 1636 { 1637 struct page *sum_page; 1638 struct f2fs_summary_block *sum; 1639 struct blk_plug plug; 1640 unsigned int segno = start_segno; 1641 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1642 int seg_freed = 0, migrated = 0; 1643 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1644 SUM_TYPE_DATA : SUM_TYPE_NODE; 1645 int submitted = 0; 1646 1647 if (__is_large_section(sbi)) 1648 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1649 1650 /* 1651 * zone-capacity can be less than zone-size in zoned devices, 1652 * resulting in less than expected usable segments in the zone, 1653 * calculate the end segno in the zone which can be garbage collected 1654 */ 1655 if (f2fs_sb_has_blkzoned(sbi)) 1656 end_segno -= sbi->segs_per_sec - 1657 f2fs_usable_segs_in_sec(sbi, segno); 1658 1659 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1660 1661 /* readahead multi ssa blocks those have contiguous address */ 1662 if (__is_large_section(sbi)) 1663 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1664 end_segno - segno, META_SSA, true); 1665 1666 /* reference all summary page */ 1667 while (segno < end_segno) { 1668 sum_page = f2fs_get_sum_page(sbi, segno++); 1669 if (IS_ERR(sum_page)) { 1670 int err = PTR_ERR(sum_page); 1671 1672 end_segno = segno - 1; 1673 for (segno = start_segno; segno < end_segno; segno++) { 1674 sum_page = find_get_page(META_MAPPING(sbi), 1675 GET_SUM_BLOCK(sbi, segno)); 1676 f2fs_put_page(sum_page, 0); 1677 f2fs_put_page(sum_page, 0); 1678 } 1679 return err; 1680 } 1681 unlock_page(sum_page); 1682 } 1683 1684 blk_start_plug(&plug); 1685 1686 for (segno = start_segno; segno < end_segno; segno++) { 1687 1688 /* find segment summary of victim */ 1689 sum_page = find_get_page(META_MAPPING(sbi), 1690 GET_SUM_BLOCK(sbi, segno)); 1691 f2fs_put_page(sum_page, 0); 1692 1693 if (get_valid_blocks(sbi, segno, false) == 0) 1694 goto freed; 1695 if (gc_type == BG_GC && __is_large_section(sbi) && 1696 migrated >= sbi->migration_granularity) 1697 goto skip; 1698 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1699 goto skip; 1700 1701 sum = page_address(sum_page); 1702 if (type != GET_SUM_TYPE((&sum->footer))) { 1703 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1704 segno, type, GET_SUM_TYPE((&sum->footer))); 1705 set_sbi_flag(sbi, SBI_NEED_FSCK); 1706 f2fs_stop_checkpoint(sbi, false); 1707 goto skip; 1708 } 1709 1710 /* 1711 * this is to avoid deadlock: 1712 * - lock_page(sum_page) - f2fs_replace_block 1713 * - check_valid_map() - down_write(sentry_lock) 1714 * - down_read(sentry_lock) - change_curseg() 1715 * - lock_page(sum_page) 1716 */ 1717 if (type == SUM_TYPE_NODE) 1718 submitted += gc_node_segment(sbi, sum->entries, segno, 1719 gc_type); 1720 else 1721 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1722 segno, gc_type, 1723 force_migrate); 1724 1725 stat_inc_seg_count(sbi, type, gc_type); 1726 sbi->gc_reclaimed_segs[sbi->gc_mode]++; 1727 migrated++; 1728 1729 freed: 1730 if (gc_type == FG_GC && 1731 get_valid_blocks(sbi, segno, false) == 0) 1732 seg_freed++; 1733 1734 if (__is_large_section(sbi) && segno + 1 < end_segno) 1735 sbi->next_victim_seg[gc_type] = segno + 1; 1736 skip: 1737 f2fs_put_page(sum_page, 0); 1738 } 1739 1740 if (submitted) 1741 f2fs_submit_merged_write(sbi, 1742 (type == SUM_TYPE_NODE) ? NODE : DATA); 1743 1744 blk_finish_plug(&plug); 1745 1746 stat_inc_call_count(sbi->stat_info); 1747 1748 return seg_freed; 1749 } 1750 1751 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control) 1752 { 1753 int gc_type = gc_control->init_gc_type; 1754 unsigned int segno = gc_control->victim_segno; 1755 int sec_freed = 0, seg_freed = 0, total_freed = 0; 1756 int ret = 0; 1757 struct cp_control cpc; 1758 struct gc_inode_list gc_list = { 1759 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1760 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1761 }; 1762 unsigned int skipped_round = 0, round = 0; 1763 1764 trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc, 1765 gc_control->nr_free_secs, 1766 get_pages(sbi, F2FS_DIRTY_NODES), 1767 get_pages(sbi, F2FS_DIRTY_DENTS), 1768 get_pages(sbi, F2FS_DIRTY_IMETA), 1769 free_sections(sbi), 1770 free_segments(sbi), 1771 reserved_segments(sbi), 1772 prefree_segments(sbi)); 1773 1774 cpc.reason = __get_cp_reason(sbi); 1775 sbi->skipped_gc_rwsem = 0; 1776 gc_more: 1777 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1778 ret = -EINVAL; 1779 goto stop; 1780 } 1781 if (unlikely(f2fs_cp_error(sbi))) { 1782 ret = -EIO; 1783 goto stop; 1784 } 1785 1786 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { 1787 /* 1788 * For example, if there are many prefree_segments below given 1789 * threshold, we can make them free by checkpoint. Then, we 1790 * secure free segments which doesn't need fggc any more. 1791 */ 1792 if (prefree_segments(sbi)) { 1793 ret = f2fs_write_checkpoint(sbi, &cpc); 1794 if (ret) 1795 goto stop; 1796 } 1797 if (has_not_enough_free_secs(sbi, 0, 0)) 1798 gc_type = FG_GC; 1799 } 1800 1801 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1802 if (gc_type == BG_GC && gc_control->no_bg_gc) { 1803 ret = -EINVAL; 1804 goto stop; 1805 } 1806 retry: 1807 ret = __get_victim(sbi, &segno, gc_type); 1808 if (ret) { 1809 /* allow to search victim from sections has pinned data */ 1810 if (ret == -ENODATA && gc_type == FG_GC && 1811 f2fs_pinned_section_exists(DIRTY_I(sbi))) { 1812 f2fs_unpin_all_sections(sbi, false); 1813 goto retry; 1814 } 1815 goto stop; 1816 } 1817 1818 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, 1819 gc_control->should_migrate_blocks); 1820 total_freed += seg_freed; 1821 1822 if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) 1823 sec_freed++; 1824 1825 if (gc_type == FG_GC) 1826 sbi->cur_victim_sec = NULL_SEGNO; 1827 1828 if (gc_control->init_gc_type == FG_GC || 1829 !has_not_enough_free_secs(sbi, 1830 (gc_type == FG_GC) ? sec_freed : 0, 0)) { 1831 if (gc_type == FG_GC && sec_freed < gc_control->nr_free_secs) 1832 goto go_gc_more; 1833 goto stop; 1834 } 1835 1836 /* FG_GC stops GC by skip_count */ 1837 if (gc_type == FG_GC) { 1838 if (sbi->skipped_gc_rwsem) 1839 skipped_round++; 1840 round++; 1841 if (skipped_round > MAX_SKIP_GC_COUNT && 1842 skipped_round * 2 >= round) { 1843 ret = f2fs_write_checkpoint(sbi, &cpc); 1844 goto stop; 1845 } 1846 } 1847 1848 /* Write checkpoint to reclaim prefree segments */ 1849 if (free_sections(sbi) < NR_CURSEG_PERSIST_TYPE && 1850 prefree_segments(sbi)) { 1851 ret = f2fs_write_checkpoint(sbi, &cpc); 1852 if (ret) 1853 goto stop; 1854 } 1855 go_gc_more: 1856 segno = NULL_SEGNO; 1857 goto gc_more; 1858 1859 stop: 1860 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1861 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno; 1862 1863 if (gc_type == FG_GC) 1864 f2fs_unpin_all_sections(sbi, true); 1865 1866 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, 1867 get_pages(sbi, F2FS_DIRTY_NODES), 1868 get_pages(sbi, F2FS_DIRTY_DENTS), 1869 get_pages(sbi, F2FS_DIRTY_IMETA), 1870 free_sections(sbi), 1871 free_segments(sbi), 1872 reserved_segments(sbi), 1873 prefree_segments(sbi)); 1874 1875 f2fs_up_write(&sbi->gc_lock); 1876 1877 put_gc_inode(&gc_list); 1878 1879 if (gc_control->err_gc_skipped && !ret) 1880 ret = sec_freed ? 0 : -EAGAIN; 1881 return ret; 1882 } 1883 1884 int __init f2fs_create_garbage_collection_cache(void) 1885 { 1886 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 1887 sizeof(struct victim_entry)); 1888 if (!victim_entry_slab) 1889 return -ENOMEM; 1890 return 0; 1891 } 1892 1893 void f2fs_destroy_garbage_collection_cache(void) 1894 { 1895 kmem_cache_destroy(victim_entry_slab); 1896 } 1897 1898 static void init_atgc_management(struct f2fs_sb_info *sbi) 1899 { 1900 struct atgc_management *am = &sbi->am; 1901 1902 if (test_opt(sbi, ATGC) && 1903 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 1904 am->atgc_enabled = true; 1905 1906 am->root = RB_ROOT_CACHED; 1907 INIT_LIST_HEAD(&am->victim_list); 1908 am->victim_count = 0; 1909 1910 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 1911 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 1912 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 1913 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 1914 } 1915 1916 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1917 { 1918 DIRTY_I(sbi)->v_ops = &default_v_ops; 1919 1920 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1921 1922 /* give warm/cold data area from slower device */ 1923 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1924 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1925 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1926 1927 init_atgc_management(sbi); 1928 } 1929 1930 static int free_segment_range(struct f2fs_sb_info *sbi, 1931 unsigned int secs, bool gc_only) 1932 { 1933 unsigned int segno, next_inuse, start, end; 1934 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 1935 int gc_mode, gc_type; 1936 int err = 0; 1937 int type; 1938 1939 /* Force block allocation for GC */ 1940 MAIN_SECS(sbi) -= secs; 1941 start = MAIN_SECS(sbi) * sbi->segs_per_sec; 1942 end = MAIN_SEGS(sbi) - 1; 1943 1944 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 1945 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 1946 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 1947 SIT_I(sbi)->last_victim[gc_mode] = 0; 1948 1949 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 1950 if (sbi->next_victim_seg[gc_type] >= start) 1951 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 1952 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 1953 1954 /* Move out cursegs from the target range */ 1955 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) 1956 f2fs_allocate_segment_for_resize(sbi, type, start, end); 1957 1958 /* do GC to move out valid blocks in the range */ 1959 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 1960 struct gc_inode_list gc_list = { 1961 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1962 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1963 }; 1964 1965 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true); 1966 put_gc_inode(&gc_list); 1967 1968 if (!gc_only && get_valid_blocks(sbi, segno, true)) { 1969 err = -EAGAIN; 1970 goto out; 1971 } 1972 if (fatal_signal_pending(current)) { 1973 err = -ERESTARTSYS; 1974 goto out; 1975 } 1976 } 1977 if (gc_only) 1978 goto out; 1979 1980 err = f2fs_write_checkpoint(sbi, &cpc); 1981 if (err) 1982 goto out; 1983 1984 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 1985 if (next_inuse <= end) { 1986 f2fs_err(sbi, "segno %u should be free but still inuse!", 1987 next_inuse); 1988 f2fs_bug_on(sbi, 1); 1989 } 1990 out: 1991 MAIN_SECS(sbi) += secs; 1992 return err; 1993 } 1994 1995 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 1996 { 1997 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 1998 int section_count; 1999 int segment_count; 2000 int segment_count_main; 2001 long long block_count; 2002 int segs = secs * sbi->segs_per_sec; 2003 2004 f2fs_down_write(&sbi->sb_lock); 2005 2006 section_count = le32_to_cpu(raw_sb->section_count); 2007 segment_count = le32_to_cpu(raw_sb->segment_count); 2008 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 2009 block_count = le64_to_cpu(raw_sb->block_count); 2010 2011 raw_sb->section_count = cpu_to_le32(section_count + secs); 2012 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 2013 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 2014 raw_sb->block_count = cpu_to_le64(block_count + 2015 (long long)segs * sbi->blocks_per_seg); 2016 if (f2fs_is_multi_device(sbi)) { 2017 int last_dev = sbi->s_ndevs - 1; 2018 int dev_segs = 2019 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 2020 2021 raw_sb->devs[last_dev].total_segments = 2022 cpu_to_le32(dev_segs + segs); 2023 } 2024 2025 f2fs_up_write(&sbi->sb_lock); 2026 } 2027 2028 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 2029 { 2030 int segs = secs * sbi->segs_per_sec; 2031 long long blks = (long long)segs * sbi->blocks_per_seg; 2032 long long user_block_count = 2033 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 2034 2035 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 2036 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 2037 MAIN_SECS(sbi) += secs; 2038 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 2039 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 2040 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 2041 2042 if (f2fs_is_multi_device(sbi)) { 2043 int last_dev = sbi->s_ndevs - 1; 2044 2045 FDEV(last_dev).total_segments = 2046 (int)FDEV(last_dev).total_segments + segs; 2047 FDEV(last_dev).end_blk = 2048 (long long)FDEV(last_dev).end_blk + blks; 2049 #ifdef CONFIG_BLK_DEV_ZONED 2050 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz + 2051 (int)(blks >> sbi->log_blocks_per_blkz); 2052 #endif 2053 } 2054 } 2055 2056 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count) 2057 { 2058 __u64 old_block_count, shrunk_blocks; 2059 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2060 unsigned int secs; 2061 int err = 0; 2062 __u32 rem; 2063 2064 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 2065 if (block_count > old_block_count) 2066 return -EINVAL; 2067 2068 if (f2fs_is_multi_device(sbi)) { 2069 int last_dev = sbi->s_ndevs - 1; 2070 __u64 last_segs = FDEV(last_dev).total_segments; 2071 2072 if (block_count + last_segs * sbi->blocks_per_seg <= 2073 old_block_count) 2074 return -EINVAL; 2075 } 2076 2077 /* new fs size should align to section size */ 2078 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 2079 if (rem) 2080 return -EINVAL; 2081 2082 if (block_count == old_block_count) 2083 return 0; 2084 2085 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2086 f2fs_err(sbi, "Should run fsck to repair first."); 2087 return -EFSCORRUPTED; 2088 } 2089 2090 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2091 f2fs_err(sbi, "Checkpoint should be enabled."); 2092 return -EINVAL; 2093 } 2094 2095 shrunk_blocks = old_block_count - block_count; 2096 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2097 2098 /* stop other GC */ 2099 if (!f2fs_down_write_trylock(&sbi->gc_lock)) 2100 return -EAGAIN; 2101 2102 /* stop CP to protect MAIN_SEC in free_segment_range */ 2103 f2fs_lock_op(sbi); 2104 2105 spin_lock(&sbi->stat_lock); 2106 if (shrunk_blocks + valid_user_blocks(sbi) + 2107 sbi->current_reserved_blocks + sbi->unusable_block_count + 2108 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2109 err = -ENOSPC; 2110 spin_unlock(&sbi->stat_lock); 2111 2112 if (err) 2113 goto out_unlock; 2114 2115 err = free_segment_range(sbi, secs, true); 2116 2117 out_unlock: 2118 f2fs_unlock_op(sbi); 2119 f2fs_up_write(&sbi->gc_lock); 2120 if (err) 2121 return err; 2122 2123 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2124 2125 freeze_super(sbi->sb); 2126 f2fs_down_write(&sbi->gc_lock); 2127 f2fs_down_write(&sbi->cp_global_sem); 2128 2129 spin_lock(&sbi->stat_lock); 2130 if (shrunk_blocks + valid_user_blocks(sbi) + 2131 sbi->current_reserved_blocks + sbi->unusable_block_count + 2132 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2133 err = -ENOSPC; 2134 else 2135 sbi->user_block_count -= shrunk_blocks; 2136 spin_unlock(&sbi->stat_lock); 2137 if (err) 2138 goto out_err; 2139 2140 err = free_segment_range(sbi, secs, false); 2141 if (err) 2142 goto recover_out; 2143 2144 update_sb_metadata(sbi, -secs); 2145 2146 err = f2fs_commit_super(sbi, false); 2147 if (err) { 2148 update_sb_metadata(sbi, secs); 2149 goto recover_out; 2150 } 2151 2152 update_fs_metadata(sbi, -secs); 2153 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2154 set_sbi_flag(sbi, SBI_IS_DIRTY); 2155 2156 err = f2fs_write_checkpoint(sbi, &cpc); 2157 if (err) { 2158 update_fs_metadata(sbi, secs); 2159 update_sb_metadata(sbi, secs); 2160 f2fs_commit_super(sbi, false); 2161 } 2162 recover_out: 2163 if (err) { 2164 set_sbi_flag(sbi, SBI_NEED_FSCK); 2165 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2166 2167 spin_lock(&sbi->stat_lock); 2168 sbi->user_block_count += shrunk_blocks; 2169 spin_unlock(&sbi->stat_lock); 2170 } 2171 out_err: 2172 f2fs_up_write(&sbi->cp_global_sem); 2173 f2fs_up_write(&sbi->gc_lock); 2174 thaw_super(sbi->sb); 2175 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2176 return err; 2177 } 2178