1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/f2fs_fs.h> 12 #include <linux/kthread.h> 13 #include <linux/delay.h> 14 #include <linux/freezer.h> 15 #include <linux/sched/signal.h> 16 #include <linux/random.h> 17 #include <linux/sched/mm.h> 18 19 #include "f2fs.h" 20 #include "node.h" 21 #include "segment.h" 22 #include "gc.h" 23 #include "iostat.h" 24 #include <trace/events/f2fs.h> 25 26 static struct kmem_cache *victim_entry_slab; 27 28 static unsigned int count_bits(const unsigned long *addr, 29 unsigned int offset, unsigned int len); 30 31 static int gc_thread_func(void *data) 32 { 33 struct f2fs_sb_info *sbi = data; 34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq; 37 unsigned int wait_ms; 38 struct f2fs_gc_control gc_control = { 39 .victim_segno = NULL_SEGNO, 40 .should_migrate_blocks = false, 41 .err_gc_skipped = false }; 42 43 wait_ms = gc_th->min_sleep_time; 44 45 set_freezable(); 46 do { 47 bool sync_mode, foreground = false; 48 49 wait_event_freezable_timeout(*wq, 50 kthread_should_stop() || 51 waitqueue_active(fggc_wq) || 52 gc_th->gc_wake, 53 msecs_to_jiffies(wait_ms)); 54 55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq)) 56 foreground = true; 57 58 /* give it a try one time */ 59 if (gc_th->gc_wake) 60 gc_th->gc_wake = false; 61 62 if (f2fs_readonly(sbi->sb)) { 63 stat_other_skip_bggc_count(sbi); 64 continue; 65 } 66 if (kthread_should_stop()) 67 break; 68 69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 70 increase_sleep_time(gc_th, &wait_ms); 71 stat_other_skip_bggc_count(sbi); 72 continue; 73 } 74 75 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 76 f2fs_stop_checkpoint(sbi, false, 77 STOP_CP_REASON_FAULT_INJECT); 78 79 if (!sb_start_write_trylock(sbi->sb)) { 80 stat_other_skip_bggc_count(sbi); 81 continue; 82 } 83 84 gc_control.one_time = false; 85 86 /* 87 * [GC triggering condition] 88 * 0. GC is not conducted currently. 89 * 1. There are enough dirty segments. 90 * 2. IO subsystem is idle by checking the # of writeback pages. 91 * 3. IO subsystem is idle by checking the # of requests in 92 * bdev's request list. 93 * 94 * Note) We have to avoid triggering GCs frequently. 95 * Because it is possible that some segments can be 96 * invalidated soon after by user update or deletion. 97 * So, I'd like to wait some time to collect dirty segments. 98 */ 99 if (sbi->gc_mode == GC_URGENT_HIGH || 100 sbi->gc_mode == GC_URGENT_MID) { 101 wait_ms = gc_th->urgent_sleep_time; 102 f2fs_down_write(&sbi->gc_lock); 103 goto do_gc; 104 } 105 106 if (foreground) { 107 f2fs_down_write(&sbi->gc_lock); 108 goto do_gc; 109 } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 110 stat_other_skip_bggc_count(sbi); 111 goto next; 112 } 113 114 if (!is_idle(sbi, GC_TIME)) { 115 increase_sleep_time(gc_th, &wait_ms); 116 f2fs_up_write(&sbi->gc_lock); 117 stat_io_skip_bggc_count(sbi); 118 goto next; 119 } 120 121 if (f2fs_sb_has_blkzoned(sbi)) { 122 if (has_enough_free_blocks(sbi, 123 gc_th->no_zoned_gc_percent)) { 124 wait_ms = gc_th->no_gc_sleep_time; 125 f2fs_up_write(&sbi->gc_lock); 126 goto next; 127 } 128 if (wait_ms == gc_th->no_gc_sleep_time) 129 wait_ms = gc_th->max_sleep_time; 130 } 131 132 if (need_to_boost_gc(sbi)) { 133 decrease_sleep_time(gc_th, &wait_ms); 134 if (f2fs_sb_has_blkzoned(sbi)) 135 gc_control.one_time = true; 136 } else { 137 increase_sleep_time(gc_th, &wait_ms); 138 } 139 do_gc: 140 stat_inc_gc_call_count(sbi, foreground ? 141 FOREGROUND : BACKGROUND); 142 143 sync_mode = (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) || 144 gc_control.one_time; 145 146 /* foreground GC was been triggered via f2fs_balance_fs() */ 147 if (foreground) 148 sync_mode = false; 149 150 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC; 151 gc_control.no_bg_gc = foreground; 152 gc_control.nr_free_secs = foreground ? 1 : 0; 153 154 /* if return value is not zero, no victim was selected */ 155 if (f2fs_gc(sbi, &gc_control)) { 156 /* don't bother wait_ms by foreground gc */ 157 if (!foreground) 158 wait_ms = gc_th->no_gc_sleep_time; 159 } else { 160 /* reset wait_ms to default sleep time */ 161 if (wait_ms == gc_th->no_gc_sleep_time) 162 wait_ms = gc_th->min_sleep_time; 163 } 164 165 if (foreground) 166 wake_up_all(&gc_th->fggc_wq); 167 168 trace_f2fs_background_gc(sbi->sb, wait_ms, 169 prefree_segments(sbi), free_segments(sbi)); 170 171 /* balancing f2fs's metadata periodically */ 172 f2fs_balance_fs_bg(sbi, true); 173 next: 174 if (sbi->gc_mode != GC_NORMAL) { 175 spin_lock(&sbi->gc_remaining_trials_lock); 176 if (sbi->gc_remaining_trials) { 177 sbi->gc_remaining_trials--; 178 if (!sbi->gc_remaining_trials) 179 sbi->gc_mode = GC_NORMAL; 180 } 181 spin_unlock(&sbi->gc_remaining_trials_lock); 182 } 183 sb_end_write(sbi->sb); 184 185 } while (!kthread_should_stop()); 186 return 0; 187 } 188 189 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 190 { 191 struct f2fs_gc_kthread *gc_th; 192 dev_t dev = sbi->sb->s_bdev->bd_dev; 193 194 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 195 if (!gc_th) 196 return -ENOMEM; 197 198 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 199 gc_th->valid_thresh_ratio = DEF_GC_THREAD_VALID_THRESH_RATIO; 200 201 if (f2fs_sb_has_blkzoned(sbi)) { 202 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME_ZONED; 203 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME_ZONED; 204 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME_ZONED; 205 gc_th->no_zoned_gc_percent = LIMIT_NO_ZONED_GC; 206 gc_th->boost_zoned_gc_percent = LIMIT_BOOST_ZONED_GC; 207 } else { 208 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 209 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 210 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 211 gc_th->no_zoned_gc_percent = 0; 212 gc_th->boost_zoned_gc_percent = 0; 213 } 214 215 gc_th->gc_wake = false; 216 217 sbi->gc_thread = gc_th; 218 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 219 init_waitqueue_head(&sbi->gc_thread->fggc_wq); 220 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 221 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 222 if (IS_ERR(gc_th->f2fs_gc_task)) { 223 int err = PTR_ERR(gc_th->f2fs_gc_task); 224 225 kfree(gc_th); 226 sbi->gc_thread = NULL; 227 return err; 228 } 229 230 return 0; 231 } 232 233 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 234 { 235 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 236 237 if (!gc_th) 238 return; 239 kthread_stop(gc_th->f2fs_gc_task); 240 wake_up_all(&gc_th->fggc_wq); 241 kfree(gc_th); 242 sbi->gc_thread = NULL; 243 } 244 245 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 246 { 247 int gc_mode; 248 249 if (gc_type == BG_GC) { 250 if (sbi->am.atgc_enabled) 251 gc_mode = GC_AT; 252 else 253 gc_mode = GC_CB; 254 } else { 255 gc_mode = GC_GREEDY; 256 } 257 258 switch (sbi->gc_mode) { 259 case GC_IDLE_CB: 260 gc_mode = GC_CB; 261 break; 262 case GC_IDLE_GREEDY: 263 case GC_URGENT_HIGH: 264 gc_mode = GC_GREEDY; 265 break; 266 case GC_IDLE_AT: 267 gc_mode = GC_AT; 268 break; 269 } 270 271 return gc_mode; 272 } 273 274 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 275 int type, struct victim_sel_policy *p) 276 { 277 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 278 279 if (p->alloc_mode == SSR) { 280 p->gc_mode = GC_GREEDY; 281 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 282 p->max_search = dirty_i->nr_dirty[type]; 283 p->ofs_unit = 1; 284 } else if (p->alloc_mode == AT_SSR) { 285 p->gc_mode = GC_GREEDY; 286 p->dirty_bitmap = dirty_i->dirty_segmap[type]; 287 p->max_search = dirty_i->nr_dirty[type]; 288 p->ofs_unit = 1; 289 } else { 290 p->gc_mode = select_gc_type(sbi, gc_type); 291 p->ofs_unit = SEGS_PER_SEC(sbi); 292 if (__is_large_section(sbi)) { 293 p->dirty_bitmap = dirty_i->dirty_secmap; 294 p->max_search = count_bits(p->dirty_bitmap, 295 0, MAIN_SECS(sbi)); 296 } else { 297 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY]; 298 p->max_search = dirty_i->nr_dirty[DIRTY]; 299 } 300 } 301 302 /* 303 * adjust candidates range, should select all dirty segments for 304 * foreground GC and urgent GC cases. 305 */ 306 if (gc_type != FG_GC && 307 (sbi->gc_mode != GC_URGENT_HIGH) && 308 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) && 309 p->max_search > sbi->max_victim_search) 310 p->max_search = sbi->max_victim_search; 311 312 /* let's select beginning hot/small space first. */ 313 if (f2fs_need_rand_seg(sbi)) 314 p->offset = get_random_u32_below(MAIN_SECS(sbi) * 315 SEGS_PER_SEC(sbi)); 316 else if (type == CURSEG_HOT_DATA || IS_NODESEG(type)) 317 p->offset = 0; 318 else 319 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 320 } 321 322 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 323 struct victim_sel_policy *p) 324 { 325 /* SSR allocates in a segment unit */ 326 if (p->alloc_mode == SSR) 327 return BLKS_PER_SEG(sbi); 328 else if (p->alloc_mode == AT_SSR) 329 return UINT_MAX; 330 331 /* LFS */ 332 if (p->gc_mode == GC_GREEDY) 333 return SEGS_TO_BLKS(sbi, 2 * p->ofs_unit); 334 else if (p->gc_mode == GC_CB) 335 return UINT_MAX; 336 else if (p->gc_mode == GC_AT) 337 return UINT_MAX; 338 else /* No other gc_mode */ 339 return 0; 340 } 341 342 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 343 { 344 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 345 unsigned int secno; 346 347 /* 348 * If the gc_type is FG_GC, we can select victim segments 349 * selected by background GC before. 350 * Those segments guarantee they have small valid blocks. 351 */ 352 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 353 if (sec_usage_check(sbi, secno)) 354 continue; 355 clear_bit(secno, dirty_i->victim_secmap); 356 return GET_SEG_FROM_SEC(sbi, secno); 357 } 358 return NULL_SEGNO; 359 } 360 361 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 362 { 363 struct sit_info *sit_i = SIT_I(sbi); 364 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 365 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 366 unsigned long long mtime = 0; 367 unsigned int vblocks; 368 unsigned char age = 0; 369 unsigned char u; 370 unsigned int i; 371 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi); 372 373 for (i = 0; i < usable_segs_per_sec; i++) 374 mtime += get_seg_entry(sbi, start + i)->mtime; 375 vblocks = get_valid_blocks(sbi, segno, true); 376 377 mtime = div_u64(mtime, usable_segs_per_sec); 378 vblocks = div_u64(vblocks, usable_segs_per_sec); 379 380 u = BLKS_TO_SEGS(sbi, vblocks * 100); 381 382 /* Handle if the system time has changed by the user */ 383 if (mtime < sit_i->min_mtime) 384 sit_i->min_mtime = mtime; 385 if (mtime > sit_i->max_mtime) 386 sit_i->max_mtime = mtime; 387 if (sit_i->max_mtime != sit_i->min_mtime) 388 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 389 sit_i->max_mtime - sit_i->min_mtime); 390 391 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 392 } 393 394 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 395 unsigned int segno, struct victim_sel_policy *p) 396 { 397 if (p->alloc_mode == SSR) 398 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 399 400 if (p->one_time_gc && (get_valid_blocks(sbi, segno, true) >= 401 CAP_BLKS_PER_SEC(sbi) * sbi->gc_thread->valid_thresh_ratio / 402 100)) 403 return UINT_MAX; 404 405 /* alloc_mode == LFS */ 406 if (p->gc_mode == GC_GREEDY) 407 return get_valid_blocks(sbi, segno, true); 408 else if (p->gc_mode == GC_CB) 409 return get_cb_cost(sbi, segno); 410 411 f2fs_bug_on(sbi, 1); 412 return 0; 413 } 414 415 static unsigned int count_bits(const unsigned long *addr, 416 unsigned int offset, unsigned int len) 417 { 418 unsigned int end = offset + len, sum = 0; 419 420 while (offset < end) { 421 if (test_bit(offset++, addr)) 422 ++sum; 423 } 424 return sum; 425 } 426 427 static bool f2fs_check_victim_tree(struct f2fs_sb_info *sbi, 428 struct rb_root_cached *root) 429 { 430 #ifdef CONFIG_F2FS_CHECK_FS 431 struct rb_node *cur = rb_first_cached(root), *next; 432 struct victim_entry *cur_ve, *next_ve; 433 434 while (cur) { 435 next = rb_next(cur); 436 if (!next) 437 return true; 438 439 cur_ve = rb_entry(cur, struct victim_entry, rb_node); 440 next_ve = rb_entry(next, struct victim_entry, rb_node); 441 442 if (cur_ve->mtime > next_ve->mtime) { 443 f2fs_info(sbi, "broken victim_rbtree, " 444 "cur_mtime(%llu) next_mtime(%llu)", 445 cur_ve->mtime, next_ve->mtime); 446 return false; 447 } 448 cur = next; 449 } 450 #endif 451 return true; 452 } 453 454 static struct victim_entry *__lookup_victim_entry(struct f2fs_sb_info *sbi, 455 unsigned long long mtime) 456 { 457 struct atgc_management *am = &sbi->am; 458 struct rb_node *node = am->root.rb_root.rb_node; 459 struct victim_entry *ve = NULL; 460 461 while (node) { 462 ve = rb_entry(node, struct victim_entry, rb_node); 463 464 if (mtime < ve->mtime) 465 node = node->rb_left; 466 else 467 node = node->rb_right; 468 } 469 return ve; 470 } 471 472 static struct victim_entry *__create_victim_entry(struct f2fs_sb_info *sbi, 473 unsigned long long mtime, unsigned int segno) 474 { 475 struct atgc_management *am = &sbi->am; 476 struct victim_entry *ve; 477 478 ve = f2fs_kmem_cache_alloc(victim_entry_slab, GFP_NOFS, true, NULL); 479 480 ve->mtime = mtime; 481 ve->segno = segno; 482 483 list_add_tail(&ve->list, &am->victim_list); 484 am->victim_count++; 485 486 return ve; 487 } 488 489 static void __insert_victim_entry(struct f2fs_sb_info *sbi, 490 unsigned long long mtime, unsigned int segno) 491 { 492 struct atgc_management *am = &sbi->am; 493 struct rb_root_cached *root = &am->root; 494 struct rb_node **p = &root->rb_root.rb_node; 495 struct rb_node *parent = NULL; 496 struct victim_entry *ve; 497 bool left_most = true; 498 499 /* look up rb tree to find parent node */ 500 while (*p) { 501 parent = *p; 502 ve = rb_entry(parent, struct victim_entry, rb_node); 503 504 if (mtime < ve->mtime) { 505 p = &(*p)->rb_left; 506 } else { 507 p = &(*p)->rb_right; 508 left_most = false; 509 } 510 } 511 512 ve = __create_victim_entry(sbi, mtime, segno); 513 514 rb_link_node(&ve->rb_node, parent, p); 515 rb_insert_color_cached(&ve->rb_node, root, left_most); 516 } 517 518 static void add_victim_entry(struct f2fs_sb_info *sbi, 519 struct victim_sel_policy *p, unsigned int segno) 520 { 521 struct sit_info *sit_i = SIT_I(sbi); 522 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 523 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 524 unsigned long long mtime = 0; 525 unsigned int i; 526 527 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 528 if (p->gc_mode == GC_AT && 529 get_valid_blocks(sbi, segno, true) == 0) 530 return; 531 } 532 533 for (i = 0; i < SEGS_PER_SEC(sbi); i++) 534 mtime += get_seg_entry(sbi, start + i)->mtime; 535 mtime = div_u64(mtime, SEGS_PER_SEC(sbi)); 536 537 /* Handle if the system time has changed by the user */ 538 if (mtime < sit_i->min_mtime) 539 sit_i->min_mtime = mtime; 540 if (mtime > sit_i->max_mtime) 541 sit_i->max_mtime = mtime; 542 if (mtime < sit_i->dirty_min_mtime) 543 sit_i->dirty_min_mtime = mtime; 544 if (mtime > sit_i->dirty_max_mtime) 545 sit_i->dirty_max_mtime = mtime; 546 547 /* don't choose young section as candidate */ 548 if (sit_i->dirty_max_mtime - mtime < p->age_threshold) 549 return; 550 551 __insert_victim_entry(sbi, mtime, segno); 552 } 553 554 static void atgc_lookup_victim(struct f2fs_sb_info *sbi, 555 struct victim_sel_policy *p) 556 { 557 struct sit_info *sit_i = SIT_I(sbi); 558 struct atgc_management *am = &sbi->am; 559 struct rb_root_cached *root = &am->root; 560 struct rb_node *node; 561 struct victim_entry *ve; 562 unsigned long long total_time; 563 unsigned long long age, u, accu; 564 unsigned long long max_mtime = sit_i->dirty_max_mtime; 565 unsigned long long min_mtime = sit_i->dirty_min_mtime; 566 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi); 567 unsigned int vblocks; 568 unsigned int dirty_threshold = max(am->max_candidate_count, 569 am->candidate_ratio * 570 am->victim_count / 100); 571 unsigned int age_weight = am->age_weight; 572 unsigned int cost; 573 unsigned int iter = 0; 574 575 if (max_mtime < min_mtime) 576 return; 577 578 max_mtime += 1; 579 total_time = max_mtime - min_mtime; 580 581 accu = div64_u64(ULLONG_MAX, total_time); 582 accu = min_t(unsigned long long, div_u64(accu, 100), 583 DEFAULT_ACCURACY_CLASS); 584 585 node = rb_first_cached(root); 586 next: 587 ve = rb_entry_safe(node, struct victim_entry, rb_node); 588 if (!ve) 589 return; 590 591 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 592 goto skip; 593 594 /* age = 10000 * x% * 60 */ 595 age = div64_u64(accu * (max_mtime - ve->mtime), total_time) * 596 age_weight; 597 598 vblocks = get_valid_blocks(sbi, ve->segno, true); 599 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks); 600 601 /* u = 10000 * x% * 40 */ 602 u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) * 603 (100 - age_weight); 604 605 f2fs_bug_on(sbi, age + u >= UINT_MAX); 606 607 cost = UINT_MAX - (age + u); 608 iter++; 609 610 if (cost < p->min_cost || 611 (cost == p->min_cost && age > p->oldest_age)) { 612 p->min_cost = cost; 613 p->oldest_age = age; 614 p->min_segno = ve->segno; 615 } 616 skip: 617 if (iter < dirty_threshold) { 618 node = rb_next(node); 619 goto next; 620 } 621 } 622 623 /* 624 * select candidates around source section in range of 625 * [target - dirty_threshold, target + dirty_threshold] 626 */ 627 static void atssr_lookup_victim(struct f2fs_sb_info *sbi, 628 struct victim_sel_policy *p) 629 { 630 struct sit_info *sit_i = SIT_I(sbi); 631 struct atgc_management *am = &sbi->am; 632 struct victim_entry *ve; 633 unsigned long long age; 634 unsigned long long max_mtime = sit_i->dirty_max_mtime; 635 unsigned long long min_mtime = sit_i->dirty_min_mtime; 636 unsigned int vblocks; 637 unsigned int dirty_threshold = max(am->max_candidate_count, 638 am->candidate_ratio * 639 am->victim_count / 100); 640 unsigned int cost, iter; 641 int stage = 0; 642 643 if (max_mtime < min_mtime) 644 return; 645 max_mtime += 1; 646 next_stage: 647 iter = 0; 648 ve = __lookup_victim_entry(sbi, p->age); 649 next_node: 650 if (!ve) { 651 if (stage++ == 0) 652 goto next_stage; 653 return; 654 } 655 656 if (ve->mtime >= max_mtime || ve->mtime < min_mtime) 657 goto skip_node; 658 659 age = max_mtime - ve->mtime; 660 661 vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks; 662 f2fs_bug_on(sbi, !vblocks); 663 664 /* rare case */ 665 if (vblocks == BLKS_PER_SEG(sbi)) 666 goto skip_node; 667 668 iter++; 669 670 age = max_mtime - abs(p->age - age); 671 cost = UINT_MAX - vblocks; 672 673 if (cost < p->min_cost || 674 (cost == p->min_cost && age > p->oldest_age)) { 675 p->min_cost = cost; 676 p->oldest_age = age; 677 p->min_segno = ve->segno; 678 } 679 skip_node: 680 if (iter < dirty_threshold) { 681 ve = rb_entry(stage == 0 ? rb_prev(&ve->rb_node) : 682 rb_next(&ve->rb_node), 683 struct victim_entry, rb_node); 684 goto next_node; 685 } 686 687 if (stage++ == 0) 688 goto next_stage; 689 } 690 691 static void lookup_victim_by_age(struct f2fs_sb_info *sbi, 692 struct victim_sel_policy *p) 693 { 694 f2fs_bug_on(sbi, !f2fs_check_victim_tree(sbi, &sbi->am.root)); 695 696 if (p->gc_mode == GC_AT) 697 atgc_lookup_victim(sbi, p); 698 else if (p->alloc_mode == AT_SSR) 699 atssr_lookup_victim(sbi, p); 700 else 701 f2fs_bug_on(sbi, 1); 702 } 703 704 static void release_victim_entry(struct f2fs_sb_info *sbi) 705 { 706 struct atgc_management *am = &sbi->am; 707 struct victim_entry *ve, *tmp; 708 709 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) { 710 list_del(&ve->list); 711 kmem_cache_free(victim_entry_slab, ve); 712 am->victim_count--; 713 } 714 715 am->root = RB_ROOT_CACHED; 716 717 f2fs_bug_on(sbi, am->victim_count); 718 f2fs_bug_on(sbi, !list_empty(&am->victim_list)); 719 } 720 721 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno) 722 { 723 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 724 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 725 726 if (!dirty_i->enable_pin_section) 727 return false; 728 if (!test_and_set_bit(secno, dirty_i->pinned_secmap)) 729 dirty_i->pinned_secmap_cnt++; 730 return true; 731 } 732 733 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i) 734 { 735 return dirty_i->pinned_secmap_cnt; 736 } 737 738 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i, 739 unsigned int secno) 740 { 741 return dirty_i->enable_pin_section && 742 f2fs_pinned_section_exists(dirty_i) && 743 test_bit(secno, dirty_i->pinned_secmap); 744 } 745 746 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable) 747 { 748 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 749 750 if (f2fs_pinned_section_exists(DIRTY_I(sbi))) { 751 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size); 752 DIRTY_I(sbi)->pinned_secmap_cnt = 0; 753 } 754 DIRTY_I(sbi)->enable_pin_section = enable; 755 } 756 757 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type, 758 unsigned int segno) 759 { 760 if (!f2fs_is_pinned_file(inode)) 761 return 0; 762 if (gc_type != FG_GC) 763 return -EBUSY; 764 if (!f2fs_pin_section(F2FS_I_SB(inode), segno)) 765 f2fs_pin_file_control(inode, true); 766 return -EAGAIN; 767 } 768 769 /* 770 * This function is called from two paths. 771 * One is garbage collection and the other is SSR segment selection. 772 * When it is called during GC, it just gets a victim segment 773 * and it does not remove it from dirty seglist. 774 * When it is called from SSR segment selection, it finds a segment 775 * which has minimum valid blocks and removes it from dirty seglist. 776 */ 777 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 778 int gc_type, int type, char alloc_mode, 779 unsigned long long age, bool one_time) 780 { 781 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 782 struct sit_info *sm = SIT_I(sbi); 783 struct victim_sel_policy p; 784 unsigned int secno, last_victim; 785 unsigned int last_segment; 786 unsigned int nsearched; 787 bool is_atgc; 788 int ret = 0; 789 790 mutex_lock(&dirty_i->seglist_lock); 791 last_segment = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi); 792 793 p.alloc_mode = alloc_mode; 794 p.age = age; 795 p.age_threshold = sbi->am.age_threshold; 796 p.one_time_gc = one_time; 797 798 retry: 799 select_policy(sbi, gc_type, type, &p); 800 p.min_segno = NULL_SEGNO; 801 p.oldest_age = 0; 802 p.min_cost = get_max_cost(sbi, &p); 803 804 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR); 805 nsearched = 0; 806 807 if (is_atgc) 808 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX; 809 810 if (*result != NULL_SEGNO) { 811 if (!get_valid_blocks(sbi, *result, false)) { 812 ret = -ENODATA; 813 goto out; 814 } 815 816 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 817 ret = -EBUSY; 818 else 819 p.min_segno = *result; 820 goto out; 821 } 822 823 ret = -ENODATA; 824 if (p.max_search == 0) 825 goto out; 826 827 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 828 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 829 p.min_segno = sbi->next_victim_seg[BG_GC]; 830 *result = p.min_segno; 831 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 832 goto got_result; 833 } 834 if (gc_type == FG_GC && 835 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 836 p.min_segno = sbi->next_victim_seg[FG_GC]; 837 *result = p.min_segno; 838 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 839 goto got_result; 840 } 841 } 842 843 last_victim = sm->last_victim[p.gc_mode]; 844 if (p.alloc_mode == LFS && gc_type == FG_GC) { 845 p.min_segno = check_bg_victims(sbi); 846 if (p.min_segno != NULL_SEGNO) 847 goto got_it; 848 } 849 850 while (1) { 851 unsigned long cost, *dirty_bitmap; 852 unsigned int unit_no, segno; 853 854 dirty_bitmap = p.dirty_bitmap; 855 unit_no = find_next_bit(dirty_bitmap, 856 last_segment / p.ofs_unit, 857 p.offset / p.ofs_unit); 858 segno = unit_no * p.ofs_unit; 859 if (segno >= last_segment) { 860 if (sm->last_victim[p.gc_mode]) { 861 last_segment = 862 sm->last_victim[p.gc_mode]; 863 sm->last_victim[p.gc_mode] = 0; 864 p.offset = 0; 865 continue; 866 } 867 break; 868 } 869 870 p.offset = segno + p.ofs_unit; 871 nsearched++; 872 873 #ifdef CONFIG_F2FS_CHECK_FS 874 /* 875 * skip selecting the invalid segno (that is failed due to block 876 * validity check failure during GC) to avoid endless GC loop in 877 * such cases. 878 */ 879 if (test_bit(segno, sm->invalid_segmap)) 880 goto next; 881 #endif 882 883 secno = GET_SEC_FROM_SEG(sbi, segno); 884 885 if (sec_usage_check(sbi, secno)) 886 goto next; 887 888 /* Don't touch checkpointed data */ 889 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 890 if (p.alloc_mode == LFS) { 891 /* 892 * LFS is set to find source section during GC. 893 * The victim should have no checkpointed data. 894 */ 895 if (get_ckpt_valid_blocks(sbi, segno, true)) 896 goto next; 897 } else { 898 /* 899 * SSR | AT_SSR are set to find target segment 900 * for writes which can be full by checkpointed 901 * and newly written blocks. 902 */ 903 if (!f2fs_segment_has_free_slot(sbi, segno)) 904 goto next; 905 } 906 } 907 908 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 909 goto next; 910 911 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno)) 912 goto next; 913 914 if (is_atgc) { 915 add_victim_entry(sbi, &p, segno); 916 goto next; 917 } 918 919 cost = get_gc_cost(sbi, segno, &p); 920 921 if (p.min_cost > cost) { 922 p.min_segno = segno; 923 p.min_cost = cost; 924 } 925 next: 926 if (nsearched >= p.max_search) { 927 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 928 sm->last_victim[p.gc_mode] = 929 last_victim + p.ofs_unit; 930 else 931 sm->last_victim[p.gc_mode] = segno + p.ofs_unit; 932 sm->last_victim[p.gc_mode] %= 933 (MAIN_SECS(sbi) * SEGS_PER_SEC(sbi)); 934 break; 935 } 936 } 937 938 /* get victim for GC_AT/AT_SSR */ 939 if (is_atgc) { 940 lookup_victim_by_age(sbi, &p); 941 release_victim_entry(sbi); 942 } 943 944 if (is_atgc && p.min_segno == NULL_SEGNO && 945 sm->elapsed_time < p.age_threshold) { 946 p.age_threshold = 0; 947 goto retry; 948 } 949 950 if (p.min_segno != NULL_SEGNO) { 951 got_it: 952 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 953 got_result: 954 if (p.alloc_mode == LFS) { 955 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 956 if (gc_type == FG_GC) 957 sbi->cur_victim_sec = secno; 958 else 959 set_bit(secno, dirty_i->victim_secmap); 960 } 961 ret = 0; 962 963 } 964 out: 965 if (p.min_segno != NULL_SEGNO) 966 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 967 sbi->cur_victim_sec, 968 prefree_segments(sbi), free_segments(sbi)); 969 mutex_unlock(&dirty_i->seglist_lock); 970 971 return ret; 972 } 973 974 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 975 { 976 struct inode_entry *ie; 977 978 ie = radix_tree_lookup(&gc_list->iroot, ino); 979 if (ie) 980 return ie->inode; 981 return NULL; 982 } 983 984 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 985 { 986 struct inode_entry *new_ie; 987 988 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 989 iput(inode); 990 return; 991 } 992 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, 993 GFP_NOFS, true, NULL); 994 new_ie->inode = inode; 995 996 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 997 list_add_tail(&new_ie->list, &gc_list->ilist); 998 } 999 1000 static void put_gc_inode(struct gc_inode_list *gc_list) 1001 { 1002 struct inode_entry *ie, *next_ie; 1003 1004 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 1005 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 1006 iput(ie->inode); 1007 list_del(&ie->list); 1008 kmem_cache_free(f2fs_inode_entry_slab, ie); 1009 } 1010 } 1011 1012 static int check_valid_map(struct f2fs_sb_info *sbi, 1013 unsigned int segno, int offset) 1014 { 1015 struct sit_info *sit_i = SIT_I(sbi); 1016 struct seg_entry *sentry; 1017 int ret; 1018 1019 down_read(&sit_i->sentry_lock); 1020 sentry = get_seg_entry(sbi, segno); 1021 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 1022 up_read(&sit_i->sentry_lock); 1023 return ret; 1024 } 1025 1026 /* 1027 * This function compares node address got in summary with that in NAT. 1028 * On validity, copy that node with cold status, otherwise (invalid node) 1029 * ignore that. 1030 */ 1031 static int gc_node_segment(struct f2fs_sb_info *sbi, 1032 struct f2fs_summary *sum, unsigned int segno, int gc_type) 1033 { 1034 struct f2fs_summary *entry; 1035 block_t start_addr; 1036 int off; 1037 int phase = 0; 1038 bool fggc = (gc_type == FG_GC); 1039 int submitted = 0; 1040 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1041 1042 start_addr = START_BLOCK(sbi, segno); 1043 1044 next_step: 1045 entry = sum; 1046 1047 if (fggc && phase == 2) 1048 atomic_inc(&sbi->wb_sync_req[NODE]); 1049 1050 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1051 nid_t nid = le32_to_cpu(entry->nid); 1052 struct page *node_page; 1053 struct node_info ni; 1054 int err; 1055 1056 /* stop BG_GC if there is not enough free sections. */ 1057 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 1058 return submitted; 1059 1060 if (check_valid_map(sbi, segno, off) == 0) 1061 continue; 1062 1063 if (phase == 0) { 1064 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1065 META_NAT, true); 1066 continue; 1067 } 1068 1069 if (phase == 1) { 1070 f2fs_ra_node_page(sbi, nid); 1071 continue; 1072 } 1073 1074 /* phase == 2 */ 1075 node_page = f2fs_get_node_page(sbi, nid); 1076 if (IS_ERR(node_page)) 1077 continue; 1078 1079 /* block may become invalid during f2fs_get_node_page */ 1080 if (check_valid_map(sbi, segno, off) == 0) { 1081 f2fs_put_page(node_page, 1); 1082 continue; 1083 } 1084 1085 if (f2fs_get_node_info(sbi, nid, &ni, false)) { 1086 f2fs_put_page(node_page, 1); 1087 continue; 1088 } 1089 1090 if (ni.blk_addr != start_addr + off) { 1091 f2fs_put_page(node_page, 1); 1092 continue; 1093 } 1094 1095 err = f2fs_move_node_page(node_page, gc_type); 1096 if (!err && gc_type == FG_GC) 1097 submitted++; 1098 stat_inc_node_blk_count(sbi, 1, gc_type); 1099 } 1100 1101 if (++phase < 3) 1102 goto next_step; 1103 1104 if (fggc) 1105 atomic_dec(&sbi->wb_sync_req[NODE]); 1106 return submitted; 1107 } 1108 1109 /* 1110 * Calculate start block index indicating the given node offset. 1111 * Be careful, caller should give this node offset only indicating direct node 1112 * blocks. If any node offsets, which point the other types of node blocks such 1113 * as indirect or double indirect node blocks, are given, it must be a caller's 1114 * bug. 1115 */ 1116 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 1117 { 1118 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 1119 unsigned int bidx; 1120 1121 if (node_ofs == 0) 1122 return 0; 1123 1124 if (node_ofs <= 2) { 1125 bidx = node_ofs - 1; 1126 } else if (node_ofs <= indirect_blks) { 1127 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 1128 1129 bidx = node_ofs - 2 - dec; 1130 } else { 1131 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 1132 1133 bidx = node_ofs - 5 - dec; 1134 } 1135 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 1136 } 1137 1138 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1139 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 1140 { 1141 struct page *node_page; 1142 nid_t nid; 1143 unsigned int ofs_in_node, max_addrs, base; 1144 block_t source_blkaddr; 1145 1146 nid = le32_to_cpu(sum->nid); 1147 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 1148 1149 node_page = f2fs_get_node_page(sbi, nid); 1150 if (IS_ERR(node_page)) 1151 return false; 1152 1153 if (f2fs_get_node_info(sbi, nid, dni, false)) { 1154 f2fs_put_page(node_page, 1); 1155 return false; 1156 } 1157 1158 if (sum->version != dni->version) { 1159 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 1160 __func__); 1161 set_sbi_flag(sbi, SBI_NEED_FSCK); 1162 } 1163 1164 if (f2fs_check_nid_range(sbi, dni->ino)) { 1165 f2fs_put_page(node_page, 1); 1166 return false; 1167 } 1168 1169 if (IS_INODE(node_page)) { 1170 base = offset_in_addr(F2FS_INODE(node_page)); 1171 max_addrs = DEF_ADDRS_PER_INODE; 1172 } else { 1173 base = 0; 1174 max_addrs = DEF_ADDRS_PER_BLOCK; 1175 } 1176 1177 if (base + ofs_in_node >= max_addrs) { 1178 f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u", 1179 base, ofs_in_node, max_addrs, dni->ino, dni->nid); 1180 f2fs_put_page(node_page, 1); 1181 return false; 1182 } 1183 1184 *nofs = ofs_of_node(node_page); 1185 source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node); 1186 f2fs_put_page(node_page, 1); 1187 1188 if (source_blkaddr != blkaddr) { 1189 #ifdef CONFIG_F2FS_CHECK_FS 1190 unsigned int segno = GET_SEGNO(sbi, blkaddr); 1191 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1192 1193 if (unlikely(check_valid_map(sbi, segno, offset))) { 1194 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 1195 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u", 1196 blkaddr, source_blkaddr, segno); 1197 set_sbi_flag(sbi, SBI_NEED_FSCK); 1198 } 1199 } 1200 #endif 1201 return false; 1202 } 1203 return true; 1204 } 1205 1206 static int ra_data_block(struct inode *inode, pgoff_t index) 1207 { 1208 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1209 struct address_space *mapping = f2fs_is_cow_file(inode) ? 1210 F2FS_I(inode)->atomic_inode->i_mapping : inode->i_mapping; 1211 struct dnode_of_data dn; 1212 struct page *page; 1213 struct f2fs_io_info fio = { 1214 .sbi = sbi, 1215 .ino = inode->i_ino, 1216 .type = DATA, 1217 .temp = COLD, 1218 .op = REQ_OP_READ, 1219 .op_flags = 0, 1220 .encrypted_page = NULL, 1221 .in_list = 0, 1222 }; 1223 int err; 1224 1225 page = f2fs_grab_cache_page(mapping, index, true); 1226 if (!page) 1227 return -ENOMEM; 1228 1229 if (f2fs_lookup_read_extent_cache_block(inode, index, 1230 &dn.data_blkaddr)) { 1231 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1232 DATA_GENERIC_ENHANCE_READ))) { 1233 err = -EFSCORRUPTED; 1234 goto put_page; 1235 } 1236 goto got_it; 1237 } 1238 1239 set_new_dnode(&dn, inode, NULL, NULL, 0); 1240 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1241 if (err) 1242 goto put_page; 1243 f2fs_put_dnode(&dn); 1244 1245 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 1246 err = -ENOENT; 1247 goto put_page; 1248 } 1249 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 1250 DATA_GENERIC_ENHANCE))) { 1251 err = -EFSCORRUPTED; 1252 goto put_page; 1253 } 1254 got_it: 1255 /* read page */ 1256 fio.page = page; 1257 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1258 1259 /* 1260 * don't cache encrypted data into meta inode until previous dirty 1261 * data were writebacked to avoid racing between GC and flush. 1262 */ 1263 f2fs_wait_on_page_writeback(page, DATA, true, true); 1264 1265 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1266 1267 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 1268 dn.data_blkaddr, 1269 FGP_LOCK | FGP_CREAT, GFP_NOFS); 1270 if (!fio.encrypted_page) { 1271 err = -ENOMEM; 1272 goto put_page; 1273 } 1274 1275 err = f2fs_submit_page_bio(&fio); 1276 if (err) 1277 goto put_encrypted_page; 1278 f2fs_put_page(fio.encrypted_page, 0); 1279 f2fs_put_page(page, 1); 1280 1281 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 1282 f2fs_update_iostat(sbi, NULL, FS_GDATA_READ_IO, F2FS_BLKSIZE); 1283 1284 return 0; 1285 put_encrypted_page: 1286 f2fs_put_page(fio.encrypted_page, 1); 1287 put_page: 1288 f2fs_put_page(page, 1); 1289 return err; 1290 } 1291 1292 /* 1293 * Move data block via META_MAPPING while keeping locked data page. 1294 * This can be used to move blocks, aka LBAs, directly on disk. 1295 */ 1296 static int move_data_block(struct inode *inode, block_t bidx, 1297 int gc_type, unsigned int segno, int off) 1298 { 1299 struct address_space *mapping = f2fs_is_cow_file(inode) ? 1300 F2FS_I(inode)->atomic_inode->i_mapping : inode->i_mapping; 1301 struct f2fs_io_info fio = { 1302 .sbi = F2FS_I_SB(inode), 1303 .ino = inode->i_ino, 1304 .type = DATA, 1305 .temp = COLD, 1306 .op = REQ_OP_READ, 1307 .op_flags = 0, 1308 .encrypted_page = NULL, 1309 .in_list = 0, 1310 }; 1311 struct dnode_of_data dn; 1312 struct f2fs_summary sum; 1313 struct node_info ni; 1314 struct page *page, *mpage; 1315 block_t newaddr; 1316 int err = 0; 1317 bool lfs_mode = f2fs_lfs_mode(fio.sbi); 1318 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) && 1319 (fio.sbi->gc_mode != GC_URGENT_HIGH) ? 1320 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA; 1321 1322 /* do not read out */ 1323 page = f2fs_grab_cache_page(mapping, bidx, false); 1324 if (!page) 1325 return -ENOMEM; 1326 1327 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1328 err = -ENOENT; 1329 goto out; 1330 } 1331 1332 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1333 if (err) 1334 goto out; 1335 1336 set_new_dnode(&dn, inode, NULL, NULL, 0); 1337 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 1338 if (err) 1339 goto out; 1340 1341 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1342 ClearPageUptodate(page); 1343 err = -ENOENT; 1344 goto put_out; 1345 } 1346 1347 /* 1348 * don't cache encrypted data into meta inode until previous dirty 1349 * data were writebacked to avoid racing between GC and flush. 1350 */ 1351 f2fs_wait_on_page_writeback(page, DATA, true, true); 1352 1353 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 1354 1355 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false); 1356 if (err) 1357 goto put_out; 1358 1359 /* read page */ 1360 fio.page = page; 1361 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 1362 1363 if (lfs_mode) 1364 f2fs_down_write(&fio.sbi->io_order_lock); 1365 1366 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 1367 fio.old_blkaddr, false); 1368 if (!mpage) { 1369 err = -ENOMEM; 1370 goto up_out; 1371 } 1372 1373 fio.encrypted_page = mpage; 1374 1375 /* read source block in mpage */ 1376 if (!PageUptodate(mpage)) { 1377 err = f2fs_submit_page_bio(&fio); 1378 if (err) { 1379 f2fs_put_page(mpage, 1); 1380 goto up_out; 1381 } 1382 1383 f2fs_update_iostat(fio.sbi, inode, FS_DATA_READ_IO, 1384 F2FS_BLKSIZE); 1385 f2fs_update_iostat(fio.sbi, NULL, FS_GDATA_READ_IO, 1386 F2FS_BLKSIZE); 1387 1388 lock_page(mpage); 1389 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 1390 !PageUptodate(mpage))) { 1391 err = -EIO; 1392 f2fs_put_page(mpage, 1); 1393 goto up_out; 1394 } 1395 } 1396 1397 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 1398 1399 /* allocate block address */ 1400 err = f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 1401 &sum, type, NULL); 1402 if (err) { 1403 f2fs_put_page(mpage, 1); 1404 /* filesystem should shutdown, no need to recovery block */ 1405 goto up_out; 1406 } 1407 1408 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 1409 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 1410 if (!fio.encrypted_page) { 1411 err = -ENOMEM; 1412 f2fs_put_page(mpage, 1); 1413 goto recover_block; 1414 } 1415 1416 /* write target block */ 1417 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 1418 memcpy(page_address(fio.encrypted_page), 1419 page_address(mpage), PAGE_SIZE); 1420 f2fs_put_page(mpage, 1); 1421 1422 f2fs_invalidate_internal_cache(fio.sbi, fio.old_blkaddr); 1423 1424 set_page_dirty(fio.encrypted_page); 1425 if (clear_page_dirty_for_io(fio.encrypted_page)) 1426 dec_page_count(fio.sbi, F2FS_DIRTY_META); 1427 1428 set_page_writeback(fio.encrypted_page); 1429 1430 fio.op = REQ_OP_WRITE; 1431 fio.op_flags = REQ_SYNC; 1432 fio.new_blkaddr = newaddr; 1433 f2fs_submit_page_write(&fio); 1434 1435 f2fs_update_iostat(fio.sbi, NULL, FS_GC_DATA_IO, F2FS_BLKSIZE); 1436 1437 f2fs_update_data_blkaddr(&dn, newaddr); 1438 set_inode_flag(inode, FI_APPEND_WRITE); 1439 1440 f2fs_put_page(fio.encrypted_page, 1); 1441 recover_block: 1442 if (err) 1443 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 1444 true, true, true); 1445 up_out: 1446 if (lfs_mode) 1447 f2fs_up_write(&fio.sbi->io_order_lock); 1448 put_out: 1449 f2fs_put_dnode(&dn); 1450 out: 1451 f2fs_put_page(page, 1); 1452 return err; 1453 } 1454 1455 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 1456 unsigned int segno, int off) 1457 { 1458 struct page *page; 1459 int err = 0; 1460 1461 page = f2fs_get_lock_data_page(inode, bidx, true); 1462 if (IS_ERR(page)) 1463 return PTR_ERR(page); 1464 1465 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 1466 err = -ENOENT; 1467 goto out; 1468 } 1469 1470 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1471 if (err) 1472 goto out; 1473 1474 if (gc_type == BG_GC) { 1475 if (folio_test_writeback(page_folio(page))) { 1476 err = -EAGAIN; 1477 goto out; 1478 } 1479 set_page_dirty(page); 1480 set_page_private_gcing(page); 1481 } else { 1482 struct f2fs_io_info fio = { 1483 .sbi = F2FS_I_SB(inode), 1484 .ino = inode->i_ino, 1485 .type = DATA, 1486 .temp = COLD, 1487 .op = REQ_OP_WRITE, 1488 .op_flags = REQ_SYNC, 1489 .old_blkaddr = NULL_ADDR, 1490 .page = page, 1491 .encrypted_page = NULL, 1492 .need_lock = LOCK_REQ, 1493 .io_type = FS_GC_DATA_IO, 1494 }; 1495 bool is_dirty = PageDirty(page); 1496 1497 retry: 1498 f2fs_wait_on_page_writeback(page, DATA, true, true); 1499 1500 set_page_dirty(page); 1501 if (clear_page_dirty_for_io(page)) { 1502 inode_dec_dirty_pages(inode); 1503 f2fs_remove_dirty_inode(inode); 1504 } 1505 1506 set_page_private_gcing(page); 1507 1508 err = f2fs_do_write_data_page(&fio); 1509 if (err) { 1510 clear_page_private_gcing(page); 1511 if (err == -ENOMEM) { 1512 memalloc_retry_wait(GFP_NOFS); 1513 goto retry; 1514 } 1515 if (is_dirty) 1516 set_page_dirty(page); 1517 } 1518 } 1519 out: 1520 f2fs_put_page(page, 1); 1521 return err; 1522 } 1523 1524 /* 1525 * This function tries to get parent node of victim data block, and identifies 1526 * data block validity. If the block is valid, copy that with cold status and 1527 * modify parent node. 1528 * If the parent node is not valid or the data block address is different, 1529 * the victim data block is ignored. 1530 */ 1531 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1532 struct gc_inode_list *gc_list, unsigned int segno, int gc_type, 1533 bool force_migrate) 1534 { 1535 struct super_block *sb = sbi->sb; 1536 struct f2fs_summary *entry; 1537 block_t start_addr; 1538 int off; 1539 int phase = 0; 1540 int submitted = 0; 1541 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 1542 1543 start_addr = START_BLOCK(sbi, segno); 1544 1545 next_step: 1546 entry = sum; 1547 1548 for (off = 0; off < usable_blks_in_seg; off++, entry++) { 1549 struct page *data_page; 1550 struct inode *inode; 1551 struct node_info dni; /* dnode info for the data */ 1552 unsigned int ofs_in_node, nofs; 1553 block_t start_bidx; 1554 nid_t nid = le32_to_cpu(entry->nid); 1555 1556 /* 1557 * stop BG_GC if there is not enough free sections. 1558 * Or, stop GC if the segment becomes fully valid caused by 1559 * race condition along with SSR block allocation. 1560 */ 1561 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1562 (!force_migrate && get_valid_blocks(sbi, segno, true) == 1563 CAP_BLKS_PER_SEC(sbi))) 1564 return submitted; 1565 1566 if (check_valid_map(sbi, segno, off) == 0) 1567 continue; 1568 1569 if (phase == 0) { 1570 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1571 META_NAT, true); 1572 continue; 1573 } 1574 1575 if (phase == 1) { 1576 f2fs_ra_node_page(sbi, nid); 1577 continue; 1578 } 1579 1580 /* Get an inode by ino with checking validity */ 1581 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1582 continue; 1583 1584 if (phase == 2) { 1585 f2fs_ra_node_page(sbi, dni.ino); 1586 continue; 1587 } 1588 1589 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1590 1591 if (phase == 3) { 1592 int err; 1593 1594 inode = f2fs_iget(sb, dni.ino); 1595 if (IS_ERR(inode)) 1596 continue; 1597 1598 if (is_bad_inode(inode) || 1599 special_file(inode->i_mode)) { 1600 iput(inode); 1601 continue; 1602 } 1603 1604 if (f2fs_has_inline_data(inode)) { 1605 iput(inode); 1606 set_sbi_flag(sbi, SBI_NEED_FSCK); 1607 f2fs_err_ratelimited(sbi, 1608 "inode %lx has both inline_data flag and " 1609 "data block, nid=%u, ofs_in_node=%u", 1610 inode->i_ino, dni.nid, ofs_in_node); 1611 continue; 1612 } 1613 1614 err = f2fs_gc_pinned_control(inode, gc_type, segno); 1615 if (err == -EAGAIN) { 1616 iput(inode); 1617 return submitted; 1618 } 1619 1620 if (!f2fs_down_write_trylock( 1621 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1622 iput(inode); 1623 sbi->skipped_gc_rwsem++; 1624 continue; 1625 } 1626 1627 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1628 ofs_in_node; 1629 1630 if (f2fs_meta_inode_gc_required(inode)) { 1631 int err = ra_data_block(inode, start_bidx); 1632 1633 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1634 if (err) { 1635 iput(inode); 1636 continue; 1637 } 1638 add_gc_inode(gc_list, inode); 1639 continue; 1640 } 1641 1642 data_page = f2fs_get_read_data_page(inode, start_bidx, 1643 REQ_RAHEAD, true, NULL); 1644 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1645 if (IS_ERR(data_page)) { 1646 iput(inode); 1647 continue; 1648 } 1649 1650 f2fs_put_page(data_page, 0); 1651 add_gc_inode(gc_list, inode); 1652 continue; 1653 } 1654 1655 /* phase 4 */ 1656 inode = find_gc_inode(gc_list, dni.ino); 1657 if (inode) { 1658 struct f2fs_inode_info *fi = F2FS_I(inode); 1659 bool locked = false; 1660 int err; 1661 1662 if (S_ISREG(inode->i_mode)) { 1663 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[WRITE])) { 1664 sbi->skipped_gc_rwsem++; 1665 continue; 1666 } 1667 if (!f2fs_down_write_trylock( 1668 &fi->i_gc_rwsem[READ])) { 1669 sbi->skipped_gc_rwsem++; 1670 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1671 continue; 1672 } 1673 locked = true; 1674 1675 /* wait for all inflight aio data */ 1676 inode_dio_wait(inode); 1677 } 1678 1679 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1680 + ofs_in_node; 1681 if (f2fs_meta_inode_gc_required(inode)) 1682 err = move_data_block(inode, start_bidx, 1683 gc_type, segno, off); 1684 else 1685 err = move_data_page(inode, start_bidx, gc_type, 1686 segno, off); 1687 1688 if (!err && (gc_type == FG_GC || 1689 f2fs_meta_inode_gc_required(inode))) 1690 submitted++; 1691 1692 if (locked) { 1693 f2fs_up_write(&fi->i_gc_rwsem[READ]); 1694 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1695 } 1696 1697 stat_inc_data_blk_count(sbi, 1, gc_type); 1698 } 1699 } 1700 1701 if (++phase < 5) 1702 goto next_step; 1703 1704 return submitted; 1705 } 1706 1707 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1708 int gc_type, bool one_time) 1709 { 1710 struct sit_info *sit_i = SIT_I(sbi); 1711 int ret; 1712 1713 down_write(&sit_i->sentry_lock); 1714 ret = f2fs_get_victim(sbi, victim, gc_type, NO_CHECK_TYPE, 1715 LFS, 0, one_time); 1716 up_write(&sit_i->sentry_lock); 1717 return ret; 1718 } 1719 1720 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1721 unsigned int start_segno, 1722 struct gc_inode_list *gc_list, int gc_type, 1723 bool force_migrate, bool one_time) 1724 { 1725 struct page *sum_page; 1726 struct f2fs_summary_block *sum; 1727 struct blk_plug plug; 1728 unsigned int segno = start_segno; 1729 unsigned int end_segno = start_segno + SEGS_PER_SEC(sbi); 1730 unsigned int sec_end_segno; 1731 int seg_freed = 0, migrated = 0; 1732 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1733 SUM_TYPE_DATA : SUM_TYPE_NODE; 1734 unsigned char data_type = (type == SUM_TYPE_DATA) ? DATA : NODE; 1735 int submitted = 0; 1736 1737 if (__is_large_section(sbi)) { 1738 sec_end_segno = rounddown(end_segno, SEGS_PER_SEC(sbi)); 1739 1740 /* 1741 * zone-capacity can be less than zone-size in zoned devices, 1742 * resulting in less than expected usable segments in the zone, 1743 * calculate the end segno in the zone which can be garbage 1744 * collected 1745 */ 1746 if (f2fs_sb_has_blkzoned(sbi)) 1747 sec_end_segno -= SEGS_PER_SEC(sbi) - 1748 f2fs_usable_segs_in_sec(sbi); 1749 1750 if (gc_type == BG_GC || one_time) { 1751 unsigned int window_granularity = 1752 sbi->migration_window_granularity; 1753 1754 if (f2fs_sb_has_blkzoned(sbi) && 1755 !has_enough_free_blocks(sbi, 1756 sbi->gc_thread->boost_zoned_gc_percent)) 1757 window_granularity *= 1758 BOOST_GC_MULTIPLE; 1759 1760 end_segno = start_segno + window_granularity; 1761 } 1762 1763 if (end_segno > sec_end_segno) 1764 end_segno = sec_end_segno; 1765 } 1766 1767 sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type); 1768 1769 /* readahead multi ssa blocks those have contiguous address */ 1770 if (__is_large_section(sbi)) 1771 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1772 end_segno - segno, META_SSA, true); 1773 1774 /* reference all summary page */ 1775 while (segno < end_segno) { 1776 sum_page = f2fs_get_sum_page(sbi, segno++); 1777 if (IS_ERR(sum_page)) { 1778 int err = PTR_ERR(sum_page); 1779 1780 end_segno = segno - 1; 1781 for (segno = start_segno; segno < end_segno; segno++) { 1782 sum_page = find_get_page(META_MAPPING(sbi), 1783 GET_SUM_BLOCK(sbi, segno)); 1784 f2fs_put_page(sum_page, 0); 1785 f2fs_put_page(sum_page, 0); 1786 } 1787 return err; 1788 } 1789 unlock_page(sum_page); 1790 } 1791 1792 blk_start_plug(&plug); 1793 1794 for (segno = start_segno; segno < end_segno; segno++) { 1795 1796 /* find segment summary of victim */ 1797 sum_page = find_get_page(META_MAPPING(sbi), 1798 GET_SUM_BLOCK(sbi, segno)); 1799 f2fs_put_page(sum_page, 0); 1800 1801 if (get_valid_blocks(sbi, segno, false) == 0) 1802 goto freed; 1803 if (gc_type == BG_GC && __is_large_section(sbi) && 1804 migrated >= sbi->migration_granularity) 1805 goto skip; 1806 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1807 goto skip; 1808 1809 sum = page_address(sum_page); 1810 if (type != GET_SUM_TYPE((&sum->footer))) { 1811 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1812 segno, type, GET_SUM_TYPE((&sum->footer))); 1813 f2fs_stop_checkpoint(sbi, false, 1814 STOP_CP_REASON_CORRUPTED_SUMMARY); 1815 goto skip; 1816 } 1817 1818 /* 1819 * this is to avoid deadlock: 1820 * - lock_page(sum_page) - f2fs_replace_block 1821 * - check_valid_map() - down_write(sentry_lock) 1822 * - down_read(sentry_lock) - change_curseg() 1823 * - lock_page(sum_page) 1824 */ 1825 if (type == SUM_TYPE_NODE) 1826 submitted += gc_node_segment(sbi, sum->entries, segno, 1827 gc_type); 1828 else 1829 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1830 segno, gc_type, 1831 force_migrate); 1832 1833 stat_inc_gc_seg_count(sbi, data_type, gc_type); 1834 sbi->gc_reclaimed_segs[sbi->gc_mode]++; 1835 migrated++; 1836 1837 freed: 1838 if (gc_type == FG_GC && 1839 get_valid_blocks(sbi, segno, false) == 0) 1840 seg_freed++; 1841 1842 if (__is_large_section(sbi)) 1843 sbi->next_victim_seg[gc_type] = 1844 (segno + 1 < sec_end_segno) ? 1845 segno + 1 : NULL_SEGNO; 1846 skip: 1847 f2fs_put_page(sum_page, 0); 1848 } 1849 1850 if (submitted) 1851 f2fs_submit_merged_write(sbi, data_type); 1852 1853 blk_finish_plug(&plug); 1854 1855 if (migrated) 1856 stat_inc_gc_sec_count(sbi, data_type, gc_type); 1857 1858 return seg_freed; 1859 } 1860 1861 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control) 1862 { 1863 int gc_type = gc_control->init_gc_type; 1864 unsigned int segno = gc_control->victim_segno; 1865 int sec_freed = 0, seg_freed = 0, total_freed = 0, total_sec_freed = 0; 1866 int ret = 0; 1867 struct cp_control cpc; 1868 struct gc_inode_list gc_list = { 1869 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1870 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1871 }; 1872 unsigned int skipped_round = 0, round = 0; 1873 unsigned int upper_secs; 1874 1875 trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc, 1876 gc_control->nr_free_secs, 1877 get_pages(sbi, F2FS_DIRTY_NODES), 1878 get_pages(sbi, F2FS_DIRTY_DENTS), 1879 get_pages(sbi, F2FS_DIRTY_IMETA), 1880 free_sections(sbi), 1881 free_segments(sbi), 1882 reserved_segments(sbi), 1883 prefree_segments(sbi)); 1884 1885 cpc.reason = __get_cp_reason(sbi); 1886 gc_more: 1887 sbi->skipped_gc_rwsem = 0; 1888 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1889 ret = -EINVAL; 1890 goto stop; 1891 } 1892 if (unlikely(f2fs_cp_error(sbi))) { 1893 ret = -EIO; 1894 goto stop; 1895 } 1896 1897 /* Let's run FG_GC, if we don't have enough space. */ 1898 if (has_not_enough_free_secs(sbi, 0, 0)) { 1899 gc_type = FG_GC; 1900 1901 /* 1902 * For example, if there are many prefree_segments below given 1903 * threshold, we can make them free by checkpoint. Then, we 1904 * secure free segments which doesn't need fggc any more. 1905 */ 1906 if (prefree_segments(sbi)) { 1907 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1908 ret = f2fs_write_checkpoint(sbi, &cpc); 1909 if (ret) 1910 goto stop; 1911 /* Reset due to checkpoint */ 1912 sec_freed = 0; 1913 } 1914 } 1915 1916 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1917 if (gc_type == BG_GC && gc_control->no_bg_gc) { 1918 ret = -EINVAL; 1919 goto stop; 1920 } 1921 retry: 1922 ret = __get_victim(sbi, &segno, gc_type, gc_control->one_time); 1923 if (ret) { 1924 /* allow to search victim from sections has pinned data */ 1925 if (ret == -ENODATA && gc_type == FG_GC && 1926 f2fs_pinned_section_exists(DIRTY_I(sbi))) { 1927 f2fs_unpin_all_sections(sbi, false); 1928 goto retry; 1929 } 1930 goto stop; 1931 } 1932 1933 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type, 1934 gc_control->should_migrate_blocks, 1935 gc_control->one_time); 1936 if (seg_freed < 0) 1937 goto stop; 1938 1939 total_freed += seg_freed; 1940 1941 if (seg_freed == f2fs_usable_segs_in_sec(sbi)) { 1942 sec_freed++; 1943 total_sec_freed++; 1944 } 1945 1946 if (gc_control->one_time) 1947 goto stop; 1948 1949 if (gc_type == FG_GC) { 1950 sbi->cur_victim_sec = NULL_SEGNO; 1951 1952 if (has_enough_free_secs(sbi, sec_freed, 0)) { 1953 if (!gc_control->no_bg_gc && 1954 total_sec_freed < gc_control->nr_free_secs) 1955 goto go_gc_more; 1956 goto stop; 1957 } 1958 if (sbi->skipped_gc_rwsem) 1959 skipped_round++; 1960 round++; 1961 if (skipped_round > MAX_SKIP_GC_COUNT && 1962 skipped_round * 2 >= round) { 1963 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1964 ret = f2fs_write_checkpoint(sbi, &cpc); 1965 goto stop; 1966 } 1967 } else if (has_enough_free_secs(sbi, 0, 0)) { 1968 goto stop; 1969 } 1970 1971 __get_secs_required(sbi, NULL, &upper_secs, NULL); 1972 1973 /* 1974 * Write checkpoint to reclaim prefree segments. 1975 * We need more three extra sections for writer's data/node/dentry. 1976 */ 1977 if (free_sections(sbi) <= upper_secs + NR_GC_CHECKPOINT_SECS && 1978 prefree_segments(sbi)) { 1979 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1980 ret = f2fs_write_checkpoint(sbi, &cpc); 1981 if (ret) 1982 goto stop; 1983 /* Reset due to checkpoint */ 1984 sec_freed = 0; 1985 } 1986 go_gc_more: 1987 segno = NULL_SEGNO; 1988 goto gc_more; 1989 1990 stop: 1991 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1992 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno; 1993 1994 if (gc_type == FG_GC) 1995 f2fs_unpin_all_sections(sbi, true); 1996 1997 trace_f2fs_gc_end(sbi->sb, ret, total_freed, total_sec_freed, 1998 get_pages(sbi, F2FS_DIRTY_NODES), 1999 get_pages(sbi, F2FS_DIRTY_DENTS), 2000 get_pages(sbi, F2FS_DIRTY_IMETA), 2001 free_sections(sbi), 2002 free_segments(sbi), 2003 reserved_segments(sbi), 2004 prefree_segments(sbi)); 2005 2006 f2fs_up_write(&sbi->gc_lock); 2007 2008 put_gc_inode(&gc_list); 2009 2010 if (gc_control->err_gc_skipped && !ret) 2011 ret = total_sec_freed ? 0 : -EAGAIN; 2012 return ret; 2013 } 2014 2015 int __init f2fs_create_garbage_collection_cache(void) 2016 { 2017 victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry", 2018 sizeof(struct victim_entry)); 2019 return victim_entry_slab ? 0 : -ENOMEM; 2020 } 2021 2022 void f2fs_destroy_garbage_collection_cache(void) 2023 { 2024 kmem_cache_destroy(victim_entry_slab); 2025 } 2026 2027 static void init_atgc_management(struct f2fs_sb_info *sbi) 2028 { 2029 struct atgc_management *am = &sbi->am; 2030 2031 if (test_opt(sbi, ATGC) && 2032 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD) 2033 am->atgc_enabled = true; 2034 2035 am->root = RB_ROOT_CACHED; 2036 INIT_LIST_HEAD(&am->victim_list); 2037 am->victim_count = 0; 2038 2039 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO; 2040 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT; 2041 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT; 2042 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD; 2043 } 2044 2045 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 2046 { 2047 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 2048 2049 /* give warm/cold data area from slower device */ 2050 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 2051 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 2052 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 2053 2054 init_atgc_management(sbi); 2055 } 2056 2057 int f2fs_gc_range(struct f2fs_sb_info *sbi, 2058 unsigned int start_seg, unsigned int end_seg, 2059 bool dry_run, unsigned int dry_run_sections) 2060 { 2061 unsigned int segno; 2062 unsigned int gc_secs = dry_run_sections; 2063 2064 if (unlikely(f2fs_cp_error(sbi))) 2065 return -EIO; 2066 2067 for (segno = start_seg; segno <= end_seg; segno += SEGS_PER_SEC(sbi)) { 2068 struct gc_inode_list gc_list = { 2069 .ilist = LIST_HEAD_INIT(gc_list.ilist), 2070 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 2071 }; 2072 2073 do_garbage_collect(sbi, segno, &gc_list, FG_GC, true, false); 2074 put_gc_inode(&gc_list); 2075 2076 if (!dry_run && get_valid_blocks(sbi, segno, true)) 2077 return -EAGAIN; 2078 if (dry_run && dry_run_sections && 2079 !get_valid_blocks(sbi, segno, true) && --gc_secs == 0) 2080 break; 2081 2082 if (fatal_signal_pending(current)) 2083 return -ERESTARTSYS; 2084 } 2085 2086 return 0; 2087 } 2088 2089 static int free_segment_range(struct f2fs_sb_info *sbi, 2090 unsigned int secs, bool dry_run) 2091 { 2092 unsigned int next_inuse, start, end; 2093 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2094 int gc_mode, gc_type; 2095 int err = 0; 2096 int type; 2097 2098 /* Force block allocation for GC */ 2099 MAIN_SECS(sbi) -= secs; 2100 start = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi); 2101 end = MAIN_SEGS(sbi) - 1; 2102 2103 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2104 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 2105 if (SIT_I(sbi)->last_victim[gc_mode] >= start) 2106 SIT_I(sbi)->last_victim[gc_mode] = 0; 2107 2108 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 2109 if (sbi->next_victim_seg[gc_type] >= start) 2110 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 2111 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2112 2113 /* Move out cursegs from the target range */ 2114 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) { 2115 err = f2fs_allocate_segment_for_resize(sbi, type, start, end); 2116 if (err) 2117 goto out; 2118 } 2119 2120 /* do GC to move out valid blocks in the range */ 2121 err = f2fs_gc_range(sbi, start, end, dry_run, 0); 2122 if (err || dry_run) 2123 goto out; 2124 2125 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2126 err = f2fs_write_checkpoint(sbi, &cpc); 2127 if (err) 2128 goto out; 2129 2130 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 2131 if (next_inuse <= end) { 2132 f2fs_err(sbi, "segno %u should be free but still inuse!", 2133 next_inuse); 2134 f2fs_bug_on(sbi, 1); 2135 } 2136 out: 2137 MAIN_SECS(sbi) += secs; 2138 return err; 2139 } 2140 2141 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 2142 { 2143 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 2144 int section_count; 2145 int segment_count; 2146 int segment_count_main; 2147 long long block_count; 2148 int segs = secs * SEGS_PER_SEC(sbi); 2149 2150 f2fs_down_write(&sbi->sb_lock); 2151 2152 section_count = le32_to_cpu(raw_sb->section_count); 2153 segment_count = le32_to_cpu(raw_sb->segment_count); 2154 segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 2155 block_count = le64_to_cpu(raw_sb->block_count); 2156 2157 raw_sb->section_count = cpu_to_le32(section_count + secs); 2158 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 2159 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 2160 raw_sb->block_count = cpu_to_le64(block_count + 2161 (long long)SEGS_TO_BLKS(sbi, segs)); 2162 if (f2fs_is_multi_device(sbi)) { 2163 int last_dev = sbi->s_ndevs - 1; 2164 int dev_segs = 2165 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 2166 2167 raw_sb->devs[last_dev].total_segments = 2168 cpu_to_le32(dev_segs + segs); 2169 } 2170 2171 f2fs_up_write(&sbi->sb_lock); 2172 } 2173 2174 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 2175 { 2176 int segs = secs * SEGS_PER_SEC(sbi); 2177 long long blks = SEGS_TO_BLKS(sbi, segs); 2178 long long user_block_count = 2179 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 2180 2181 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 2182 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 2183 MAIN_SECS(sbi) += secs; 2184 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 2185 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 2186 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 2187 2188 if (f2fs_is_multi_device(sbi)) { 2189 int last_dev = sbi->s_ndevs - 1; 2190 2191 FDEV(last_dev).total_segments = 2192 (int)FDEV(last_dev).total_segments + segs; 2193 FDEV(last_dev).end_blk = 2194 (long long)FDEV(last_dev).end_blk + blks; 2195 #ifdef CONFIG_BLK_DEV_ZONED 2196 FDEV(last_dev).nr_blkz = FDEV(last_dev).nr_blkz + 2197 div_u64(blks, sbi->blocks_per_blkz); 2198 #endif 2199 } 2200 } 2201 2202 int f2fs_resize_fs(struct file *filp, __u64 block_count) 2203 { 2204 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2205 __u64 old_block_count, shrunk_blocks; 2206 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 }; 2207 unsigned int secs; 2208 int err = 0; 2209 __u32 rem; 2210 2211 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 2212 if (block_count > old_block_count) 2213 return -EINVAL; 2214 2215 if (f2fs_is_multi_device(sbi)) { 2216 int last_dev = sbi->s_ndevs - 1; 2217 __u64 last_segs = FDEV(last_dev).total_segments; 2218 2219 if (block_count + SEGS_TO_BLKS(sbi, last_segs) <= 2220 old_block_count) 2221 return -EINVAL; 2222 } 2223 2224 /* new fs size should align to section size */ 2225 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 2226 if (rem) 2227 return -EINVAL; 2228 2229 if (block_count == old_block_count) 2230 return 0; 2231 2232 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2233 f2fs_err(sbi, "Should run fsck to repair first."); 2234 return -EFSCORRUPTED; 2235 } 2236 2237 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2238 f2fs_err(sbi, "Checkpoint should be enabled."); 2239 return -EINVAL; 2240 } 2241 2242 err = mnt_want_write_file(filp); 2243 if (err) 2244 return err; 2245 2246 shrunk_blocks = old_block_count - block_count; 2247 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 2248 2249 /* stop other GC */ 2250 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2251 err = -EAGAIN; 2252 goto out_drop_write; 2253 } 2254 2255 /* stop CP to protect MAIN_SEC in free_segment_range */ 2256 f2fs_lock_op(sbi); 2257 2258 spin_lock(&sbi->stat_lock); 2259 if (shrunk_blocks + valid_user_blocks(sbi) + 2260 sbi->current_reserved_blocks + sbi->unusable_block_count + 2261 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2262 err = -ENOSPC; 2263 spin_unlock(&sbi->stat_lock); 2264 2265 if (err) 2266 goto out_unlock; 2267 2268 err = free_segment_range(sbi, secs, true); 2269 2270 out_unlock: 2271 f2fs_unlock_op(sbi); 2272 f2fs_up_write(&sbi->gc_lock); 2273 out_drop_write: 2274 mnt_drop_write_file(filp); 2275 if (err) 2276 return err; 2277 2278 err = freeze_super(sbi->sb, FREEZE_HOLDER_USERSPACE); 2279 if (err) 2280 return err; 2281 2282 if (f2fs_readonly(sbi->sb)) { 2283 err = thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE); 2284 if (err) 2285 return err; 2286 return -EROFS; 2287 } 2288 2289 f2fs_down_write(&sbi->gc_lock); 2290 f2fs_down_write(&sbi->cp_global_sem); 2291 2292 spin_lock(&sbi->stat_lock); 2293 if (shrunk_blocks + valid_user_blocks(sbi) + 2294 sbi->current_reserved_blocks + sbi->unusable_block_count + 2295 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 2296 err = -ENOSPC; 2297 else 2298 sbi->user_block_count -= shrunk_blocks; 2299 spin_unlock(&sbi->stat_lock); 2300 if (err) 2301 goto out_err; 2302 2303 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 2304 err = free_segment_range(sbi, secs, false); 2305 if (err) 2306 goto recover_out; 2307 2308 update_sb_metadata(sbi, -secs); 2309 2310 err = f2fs_commit_super(sbi, false); 2311 if (err) { 2312 update_sb_metadata(sbi, secs); 2313 goto recover_out; 2314 } 2315 2316 update_fs_metadata(sbi, -secs); 2317 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2318 set_sbi_flag(sbi, SBI_IS_DIRTY); 2319 2320 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2321 err = f2fs_write_checkpoint(sbi, &cpc); 2322 if (err) { 2323 update_fs_metadata(sbi, secs); 2324 update_sb_metadata(sbi, secs); 2325 f2fs_commit_super(sbi, false); 2326 } 2327 recover_out: 2328 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 2329 if (err) { 2330 set_sbi_flag(sbi, SBI_NEED_FSCK); 2331 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 2332 2333 spin_lock(&sbi->stat_lock); 2334 sbi->user_block_count += shrunk_blocks; 2335 spin_unlock(&sbi->stat_lock); 2336 } 2337 out_err: 2338 f2fs_up_write(&sbi->cp_global_sem); 2339 f2fs_up_write(&sbi->gc_lock); 2340 thaw_super(sbi->sb, FREEZE_HOLDER_USERSPACE); 2341 return err; 2342 } 2343