1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/gc.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/init.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/kthread.h> 14 #include <linux/delay.h> 15 #include <linux/freezer.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include "segment.h" 20 #include "gc.h" 21 #include <trace/events/f2fs.h> 22 23 static int gc_thread_func(void *data) 24 { 25 struct f2fs_sb_info *sbi = data; 26 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 27 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head; 28 unsigned int wait_ms; 29 30 wait_ms = gc_th->min_sleep_time; 31 32 set_freezable(); 33 do { 34 wait_event_interruptible_timeout(*wq, 35 kthread_should_stop() || freezing(current) || 36 gc_th->gc_wake, 37 msecs_to_jiffies(wait_ms)); 38 39 /* give it a try one time */ 40 if (gc_th->gc_wake) 41 gc_th->gc_wake = 0; 42 43 if (try_to_freeze()) { 44 stat_other_skip_bggc_count(sbi); 45 continue; 46 } 47 if (kthread_should_stop()) 48 break; 49 50 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) { 51 increase_sleep_time(gc_th, &wait_ms); 52 stat_other_skip_bggc_count(sbi); 53 continue; 54 } 55 56 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 57 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 58 f2fs_stop_checkpoint(sbi, false); 59 } 60 61 if (!sb_start_write_trylock(sbi->sb)) { 62 stat_other_skip_bggc_count(sbi); 63 continue; 64 } 65 66 /* 67 * [GC triggering condition] 68 * 0. GC is not conducted currently. 69 * 1. There are enough dirty segments. 70 * 2. IO subsystem is idle by checking the # of writeback pages. 71 * 3. IO subsystem is idle by checking the # of requests in 72 * bdev's request list. 73 * 74 * Note) We have to avoid triggering GCs frequently. 75 * Because it is possible that some segments can be 76 * invalidated soon after by user update or deletion. 77 * So, I'd like to wait some time to collect dirty segments. 78 */ 79 if (sbi->gc_mode == GC_URGENT) { 80 wait_ms = gc_th->urgent_sleep_time; 81 mutex_lock(&sbi->gc_mutex); 82 goto do_gc; 83 } 84 85 if (!mutex_trylock(&sbi->gc_mutex)) { 86 stat_other_skip_bggc_count(sbi); 87 goto next; 88 } 89 90 if (!is_idle(sbi, GC_TIME)) { 91 increase_sleep_time(gc_th, &wait_ms); 92 mutex_unlock(&sbi->gc_mutex); 93 stat_io_skip_bggc_count(sbi); 94 goto next; 95 } 96 97 if (has_enough_invalid_blocks(sbi)) 98 decrease_sleep_time(gc_th, &wait_ms); 99 else 100 increase_sleep_time(gc_th, &wait_ms); 101 do_gc: 102 stat_inc_bggc_count(sbi); 103 104 /* if return value is not zero, no victim was selected */ 105 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC), true, NULL_SEGNO)) 106 wait_ms = gc_th->no_gc_sleep_time; 107 108 trace_f2fs_background_gc(sbi->sb, wait_ms, 109 prefree_segments(sbi), free_segments(sbi)); 110 111 /* balancing f2fs's metadata periodically */ 112 f2fs_balance_fs_bg(sbi); 113 next: 114 sb_end_write(sbi->sb); 115 116 } while (!kthread_should_stop()); 117 return 0; 118 } 119 120 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi) 121 { 122 struct f2fs_gc_kthread *gc_th; 123 dev_t dev = sbi->sb->s_bdev->bd_dev; 124 int err = 0; 125 126 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL); 127 if (!gc_th) { 128 err = -ENOMEM; 129 goto out; 130 } 131 132 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME; 133 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME; 134 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME; 135 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME; 136 137 gc_th->gc_wake= 0; 138 139 sbi->gc_thread = gc_th; 140 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head); 141 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi, 142 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev)); 143 if (IS_ERR(gc_th->f2fs_gc_task)) { 144 err = PTR_ERR(gc_th->f2fs_gc_task); 145 kvfree(gc_th); 146 sbi->gc_thread = NULL; 147 } 148 out: 149 return err; 150 } 151 152 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi) 153 { 154 struct f2fs_gc_kthread *gc_th = sbi->gc_thread; 155 if (!gc_th) 156 return; 157 kthread_stop(gc_th->f2fs_gc_task); 158 kvfree(gc_th); 159 sbi->gc_thread = NULL; 160 } 161 162 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type) 163 { 164 int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY; 165 166 switch (sbi->gc_mode) { 167 case GC_IDLE_CB: 168 gc_mode = GC_CB; 169 break; 170 case GC_IDLE_GREEDY: 171 case GC_URGENT: 172 gc_mode = GC_GREEDY; 173 break; 174 } 175 return gc_mode; 176 } 177 178 static void select_policy(struct f2fs_sb_info *sbi, int gc_type, 179 int type, struct victim_sel_policy *p) 180 { 181 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 182 183 if (p->alloc_mode == SSR) { 184 p->gc_mode = GC_GREEDY; 185 p->dirty_segmap = dirty_i->dirty_segmap[type]; 186 p->max_search = dirty_i->nr_dirty[type]; 187 p->ofs_unit = 1; 188 } else { 189 p->gc_mode = select_gc_type(sbi, gc_type); 190 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY]; 191 p->max_search = dirty_i->nr_dirty[DIRTY]; 192 p->ofs_unit = sbi->segs_per_sec; 193 } 194 195 /* we need to check every dirty segments in the FG_GC case */ 196 if (gc_type != FG_GC && 197 (sbi->gc_mode != GC_URGENT) && 198 p->max_search > sbi->max_victim_search) 199 p->max_search = sbi->max_victim_search; 200 201 /* let's select beginning hot/small space first in no_heap mode*/ 202 if (test_opt(sbi, NOHEAP) && 203 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 204 p->offset = 0; 205 else 206 p->offset = SIT_I(sbi)->last_victim[p->gc_mode]; 207 } 208 209 static unsigned int get_max_cost(struct f2fs_sb_info *sbi, 210 struct victim_sel_policy *p) 211 { 212 /* SSR allocates in a segment unit */ 213 if (p->alloc_mode == SSR) 214 return sbi->blocks_per_seg; 215 if (p->gc_mode == GC_GREEDY) 216 return 2 * sbi->blocks_per_seg * p->ofs_unit; 217 else if (p->gc_mode == GC_CB) 218 return UINT_MAX; 219 else /* No other gc_mode */ 220 return 0; 221 } 222 223 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi) 224 { 225 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 226 unsigned int secno; 227 228 /* 229 * If the gc_type is FG_GC, we can select victim segments 230 * selected by background GC before. 231 * Those segments guarantee they have small valid blocks. 232 */ 233 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) { 234 if (sec_usage_check(sbi, secno)) 235 continue; 236 clear_bit(secno, dirty_i->victim_secmap); 237 return GET_SEG_FROM_SEC(sbi, secno); 238 } 239 return NULL_SEGNO; 240 } 241 242 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno) 243 { 244 struct sit_info *sit_i = SIT_I(sbi); 245 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 246 unsigned int start = GET_SEG_FROM_SEC(sbi, secno); 247 unsigned long long mtime = 0; 248 unsigned int vblocks; 249 unsigned char age = 0; 250 unsigned char u; 251 unsigned int i; 252 253 for (i = 0; i < sbi->segs_per_sec; i++) 254 mtime += get_seg_entry(sbi, start + i)->mtime; 255 vblocks = get_valid_blocks(sbi, segno, true); 256 257 mtime = div_u64(mtime, sbi->segs_per_sec); 258 vblocks = div_u64(vblocks, sbi->segs_per_sec); 259 260 u = (vblocks * 100) >> sbi->log_blocks_per_seg; 261 262 /* Handle if the system time has changed by the user */ 263 if (mtime < sit_i->min_mtime) 264 sit_i->min_mtime = mtime; 265 if (mtime > sit_i->max_mtime) 266 sit_i->max_mtime = mtime; 267 if (sit_i->max_mtime != sit_i->min_mtime) 268 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime), 269 sit_i->max_mtime - sit_i->min_mtime); 270 271 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u)); 272 } 273 274 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi, 275 unsigned int segno, struct victim_sel_policy *p) 276 { 277 if (p->alloc_mode == SSR) 278 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 279 280 /* alloc_mode == LFS */ 281 if (p->gc_mode == GC_GREEDY) 282 return get_valid_blocks(sbi, segno, true); 283 else 284 return get_cb_cost(sbi, segno); 285 } 286 287 static unsigned int count_bits(const unsigned long *addr, 288 unsigned int offset, unsigned int len) 289 { 290 unsigned int end = offset + len, sum = 0; 291 292 while (offset < end) { 293 if (test_bit(offset++, addr)) 294 ++sum; 295 } 296 return sum; 297 } 298 299 /* 300 * This function is called from two paths. 301 * One is garbage collection and the other is SSR segment selection. 302 * When it is called during GC, it just gets a victim segment 303 * and it does not remove it from dirty seglist. 304 * When it is called from SSR segment selection, it finds a segment 305 * which has minimum valid blocks and removes it from dirty seglist. 306 */ 307 static int get_victim_by_default(struct f2fs_sb_info *sbi, 308 unsigned int *result, int gc_type, int type, char alloc_mode) 309 { 310 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 311 struct sit_info *sm = SIT_I(sbi); 312 struct victim_sel_policy p; 313 unsigned int secno, last_victim; 314 unsigned int last_segment; 315 unsigned int nsearched = 0; 316 317 mutex_lock(&dirty_i->seglist_lock); 318 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec; 319 320 p.alloc_mode = alloc_mode; 321 select_policy(sbi, gc_type, type, &p); 322 323 p.min_segno = NULL_SEGNO; 324 p.min_cost = get_max_cost(sbi, &p); 325 326 if (*result != NULL_SEGNO) { 327 if (get_valid_blocks(sbi, *result, false) && 328 !sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result))) 329 p.min_segno = *result; 330 goto out; 331 } 332 333 if (p.max_search == 0) 334 goto out; 335 336 if (__is_large_section(sbi) && p.alloc_mode == LFS) { 337 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) { 338 p.min_segno = sbi->next_victim_seg[BG_GC]; 339 *result = p.min_segno; 340 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 341 goto got_result; 342 } 343 if (gc_type == FG_GC && 344 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) { 345 p.min_segno = sbi->next_victim_seg[FG_GC]; 346 *result = p.min_segno; 347 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 348 goto got_result; 349 } 350 } 351 352 last_victim = sm->last_victim[p.gc_mode]; 353 if (p.alloc_mode == LFS && gc_type == FG_GC) { 354 p.min_segno = check_bg_victims(sbi); 355 if (p.min_segno != NULL_SEGNO) 356 goto got_it; 357 } 358 359 while (1) { 360 unsigned long cost; 361 unsigned int segno; 362 363 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset); 364 if (segno >= last_segment) { 365 if (sm->last_victim[p.gc_mode]) { 366 last_segment = 367 sm->last_victim[p.gc_mode]; 368 sm->last_victim[p.gc_mode] = 0; 369 p.offset = 0; 370 continue; 371 } 372 break; 373 } 374 375 p.offset = segno + p.ofs_unit; 376 if (p.ofs_unit > 1) { 377 p.offset -= segno % p.ofs_unit; 378 nsearched += count_bits(p.dirty_segmap, 379 p.offset - p.ofs_unit, 380 p.ofs_unit); 381 } else { 382 nsearched++; 383 } 384 385 #ifdef CONFIG_F2FS_CHECK_FS 386 /* 387 * skip selecting the invalid segno (that is failed due to block 388 * validity check failure during GC) to avoid endless GC loop in 389 * such cases. 390 */ 391 if (test_bit(segno, sm->invalid_segmap)) 392 goto next; 393 #endif 394 395 secno = GET_SEC_FROM_SEG(sbi, segno); 396 397 if (sec_usage_check(sbi, secno)) 398 goto next; 399 /* Don't touch checkpointed data */ 400 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 401 get_ckpt_valid_blocks(sbi, segno) && 402 p.alloc_mode != SSR)) 403 goto next; 404 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap)) 405 goto next; 406 407 cost = get_gc_cost(sbi, segno, &p); 408 409 if (p.min_cost > cost) { 410 p.min_segno = segno; 411 p.min_cost = cost; 412 } 413 next: 414 if (nsearched >= p.max_search) { 415 if (!sm->last_victim[p.gc_mode] && segno <= last_victim) 416 sm->last_victim[p.gc_mode] = last_victim + 1; 417 else 418 sm->last_victim[p.gc_mode] = segno + 1; 419 sm->last_victim[p.gc_mode] %= 420 (MAIN_SECS(sbi) * sbi->segs_per_sec); 421 break; 422 } 423 } 424 if (p.min_segno != NULL_SEGNO) { 425 got_it: 426 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit; 427 got_result: 428 if (p.alloc_mode == LFS) { 429 secno = GET_SEC_FROM_SEG(sbi, p.min_segno); 430 if (gc_type == FG_GC) 431 sbi->cur_victim_sec = secno; 432 else 433 set_bit(secno, dirty_i->victim_secmap); 434 } 435 436 } 437 out: 438 if (p.min_segno != NULL_SEGNO) 439 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p, 440 sbi->cur_victim_sec, 441 prefree_segments(sbi), free_segments(sbi)); 442 mutex_unlock(&dirty_i->seglist_lock); 443 444 return (p.min_segno == NULL_SEGNO) ? 0 : 1; 445 } 446 447 static const struct victim_selection default_v_ops = { 448 .get_victim = get_victim_by_default, 449 }; 450 451 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino) 452 { 453 struct inode_entry *ie; 454 455 ie = radix_tree_lookup(&gc_list->iroot, ino); 456 if (ie) 457 return ie->inode; 458 return NULL; 459 } 460 461 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode) 462 { 463 struct inode_entry *new_ie; 464 465 if (inode == find_gc_inode(gc_list, inode->i_ino)) { 466 iput(inode); 467 return; 468 } 469 new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab, GFP_NOFS); 470 new_ie->inode = inode; 471 472 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie); 473 list_add_tail(&new_ie->list, &gc_list->ilist); 474 } 475 476 static void put_gc_inode(struct gc_inode_list *gc_list) 477 { 478 struct inode_entry *ie, *next_ie; 479 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) { 480 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino); 481 iput(ie->inode); 482 list_del(&ie->list); 483 kmem_cache_free(f2fs_inode_entry_slab, ie); 484 } 485 } 486 487 static int check_valid_map(struct f2fs_sb_info *sbi, 488 unsigned int segno, int offset) 489 { 490 struct sit_info *sit_i = SIT_I(sbi); 491 struct seg_entry *sentry; 492 int ret; 493 494 down_read(&sit_i->sentry_lock); 495 sentry = get_seg_entry(sbi, segno); 496 ret = f2fs_test_bit(offset, sentry->cur_valid_map); 497 up_read(&sit_i->sentry_lock); 498 return ret; 499 } 500 501 /* 502 * This function compares node address got in summary with that in NAT. 503 * On validity, copy that node with cold status, otherwise (invalid node) 504 * ignore that. 505 */ 506 static int gc_node_segment(struct f2fs_sb_info *sbi, 507 struct f2fs_summary *sum, unsigned int segno, int gc_type) 508 { 509 struct f2fs_summary *entry; 510 block_t start_addr; 511 int off; 512 int phase = 0; 513 bool fggc = (gc_type == FG_GC); 514 int submitted = 0; 515 516 start_addr = START_BLOCK(sbi, segno); 517 518 next_step: 519 entry = sum; 520 521 if (fggc && phase == 2) 522 atomic_inc(&sbi->wb_sync_req[NODE]); 523 524 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { 525 nid_t nid = le32_to_cpu(entry->nid); 526 struct page *node_page; 527 struct node_info ni; 528 int err; 529 530 /* stop BG_GC if there is not enough free sections. */ 531 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) 532 return submitted; 533 534 if (check_valid_map(sbi, segno, off) == 0) 535 continue; 536 537 if (phase == 0) { 538 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 539 META_NAT, true); 540 continue; 541 } 542 543 if (phase == 1) { 544 f2fs_ra_node_page(sbi, nid); 545 continue; 546 } 547 548 /* phase == 2 */ 549 node_page = f2fs_get_node_page(sbi, nid); 550 if (IS_ERR(node_page)) 551 continue; 552 553 /* block may become invalid during f2fs_get_node_page */ 554 if (check_valid_map(sbi, segno, off) == 0) { 555 f2fs_put_page(node_page, 1); 556 continue; 557 } 558 559 if (f2fs_get_node_info(sbi, nid, &ni)) { 560 f2fs_put_page(node_page, 1); 561 continue; 562 } 563 564 if (ni.blk_addr != start_addr + off) { 565 f2fs_put_page(node_page, 1); 566 continue; 567 } 568 569 err = f2fs_move_node_page(node_page, gc_type); 570 if (!err && gc_type == FG_GC) 571 submitted++; 572 stat_inc_node_blk_count(sbi, 1, gc_type); 573 } 574 575 if (++phase < 3) 576 goto next_step; 577 578 if (fggc) 579 atomic_dec(&sbi->wb_sync_req[NODE]); 580 return submitted; 581 } 582 583 /* 584 * Calculate start block index indicating the given node offset. 585 * Be careful, caller should give this node offset only indicating direct node 586 * blocks. If any node offsets, which point the other types of node blocks such 587 * as indirect or double indirect node blocks, are given, it must be a caller's 588 * bug. 589 */ 590 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode) 591 { 592 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4; 593 unsigned int bidx; 594 595 if (node_ofs == 0) 596 return 0; 597 598 if (node_ofs <= 2) { 599 bidx = node_ofs - 1; 600 } else if (node_ofs <= indirect_blks) { 601 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1); 602 bidx = node_ofs - 2 - dec; 603 } else { 604 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1); 605 bidx = node_ofs - 5 - dec; 606 } 607 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode); 608 } 609 610 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 611 struct node_info *dni, block_t blkaddr, unsigned int *nofs) 612 { 613 struct page *node_page; 614 nid_t nid; 615 unsigned int ofs_in_node; 616 block_t source_blkaddr; 617 618 nid = le32_to_cpu(sum->nid); 619 ofs_in_node = le16_to_cpu(sum->ofs_in_node); 620 621 node_page = f2fs_get_node_page(sbi, nid); 622 if (IS_ERR(node_page)) 623 return false; 624 625 if (f2fs_get_node_info(sbi, nid, dni)) { 626 f2fs_put_page(node_page, 1); 627 return false; 628 } 629 630 if (sum->version != dni->version) { 631 f2fs_warn(sbi, "%s: valid data with mismatched node version.", 632 __func__); 633 set_sbi_flag(sbi, SBI_NEED_FSCK); 634 } 635 636 *nofs = ofs_of_node(node_page); 637 source_blkaddr = datablock_addr(NULL, node_page, ofs_in_node); 638 f2fs_put_page(node_page, 1); 639 640 if (source_blkaddr != blkaddr) { 641 #ifdef CONFIG_F2FS_CHECK_FS 642 unsigned int segno = GET_SEGNO(sbi, blkaddr); 643 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 644 645 if (unlikely(check_valid_map(sbi, segno, offset))) { 646 if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) { 647 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u\n", 648 blkaddr, source_blkaddr, segno); 649 f2fs_bug_on(sbi, 1); 650 } 651 } 652 #endif 653 return false; 654 } 655 return true; 656 } 657 658 static int ra_data_block(struct inode *inode, pgoff_t index) 659 { 660 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 661 struct address_space *mapping = inode->i_mapping; 662 struct dnode_of_data dn; 663 struct page *page; 664 struct extent_info ei = {0, 0, 0}; 665 struct f2fs_io_info fio = { 666 .sbi = sbi, 667 .ino = inode->i_ino, 668 .type = DATA, 669 .temp = COLD, 670 .op = REQ_OP_READ, 671 .op_flags = 0, 672 .encrypted_page = NULL, 673 .in_list = false, 674 .retry = false, 675 }; 676 int err; 677 678 page = f2fs_grab_cache_page(mapping, index, true); 679 if (!page) 680 return -ENOMEM; 681 682 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 683 dn.data_blkaddr = ei.blk + index - ei.fofs; 684 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 685 DATA_GENERIC_ENHANCE_READ))) { 686 err = -EFSCORRUPTED; 687 goto put_page; 688 } 689 goto got_it; 690 } 691 692 set_new_dnode(&dn, inode, NULL, NULL, 0); 693 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 694 if (err) 695 goto put_page; 696 f2fs_put_dnode(&dn); 697 698 if (!__is_valid_data_blkaddr(dn.data_blkaddr)) { 699 err = -ENOENT; 700 goto put_page; 701 } 702 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr, 703 DATA_GENERIC_ENHANCE))) { 704 err = -EFSCORRUPTED; 705 goto put_page; 706 } 707 got_it: 708 /* read page */ 709 fio.page = page; 710 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 711 712 /* 713 * don't cache encrypted data into meta inode until previous dirty 714 * data were writebacked to avoid racing between GC and flush. 715 */ 716 f2fs_wait_on_page_writeback(page, DATA, true, true); 717 718 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 719 720 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi), 721 dn.data_blkaddr, 722 FGP_LOCK | FGP_CREAT, GFP_NOFS); 723 if (!fio.encrypted_page) { 724 err = -ENOMEM; 725 goto put_page; 726 } 727 728 err = f2fs_submit_page_bio(&fio); 729 if (err) 730 goto put_encrypted_page; 731 f2fs_put_page(fio.encrypted_page, 0); 732 f2fs_put_page(page, 1); 733 return 0; 734 put_encrypted_page: 735 f2fs_put_page(fio.encrypted_page, 1); 736 put_page: 737 f2fs_put_page(page, 1); 738 return err; 739 } 740 741 /* 742 * Move data block via META_MAPPING while keeping locked data page. 743 * This can be used to move blocks, aka LBAs, directly on disk. 744 */ 745 static int move_data_block(struct inode *inode, block_t bidx, 746 int gc_type, unsigned int segno, int off) 747 { 748 struct f2fs_io_info fio = { 749 .sbi = F2FS_I_SB(inode), 750 .ino = inode->i_ino, 751 .type = DATA, 752 .temp = COLD, 753 .op = REQ_OP_READ, 754 .op_flags = 0, 755 .encrypted_page = NULL, 756 .in_list = false, 757 .retry = false, 758 }; 759 struct dnode_of_data dn; 760 struct f2fs_summary sum; 761 struct node_info ni; 762 struct page *page, *mpage; 763 block_t newaddr; 764 int err = 0; 765 bool lfs_mode = test_opt(fio.sbi, LFS); 766 767 /* do not read out */ 768 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false); 769 if (!page) 770 return -ENOMEM; 771 772 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 773 err = -ENOENT; 774 goto out; 775 } 776 777 if (f2fs_is_atomic_file(inode)) { 778 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 779 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 780 err = -EAGAIN; 781 goto out; 782 } 783 784 if (f2fs_is_pinned_file(inode)) { 785 f2fs_pin_file_control(inode, true); 786 err = -EAGAIN; 787 goto out; 788 } 789 790 set_new_dnode(&dn, inode, NULL, NULL, 0); 791 err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE); 792 if (err) 793 goto out; 794 795 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 796 ClearPageUptodate(page); 797 err = -ENOENT; 798 goto put_out; 799 } 800 801 /* 802 * don't cache encrypted data into meta inode until previous dirty 803 * data were writebacked to avoid racing between GC and flush. 804 */ 805 f2fs_wait_on_page_writeback(page, DATA, true, true); 806 807 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 808 809 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni); 810 if (err) 811 goto put_out; 812 813 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version); 814 815 /* read page */ 816 fio.page = page; 817 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 818 819 if (lfs_mode) 820 down_write(&fio.sbi->io_order_lock); 821 822 mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi), 823 fio.old_blkaddr, false); 824 if (!mpage) 825 goto up_out; 826 827 fio.encrypted_page = mpage; 828 829 /* read source block in mpage */ 830 if (!PageUptodate(mpage)) { 831 err = f2fs_submit_page_bio(&fio); 832 if (err) { 833 f2fs_put_page(mpage, 1); 834 goto up_out; 835 } 836 lock_page(mpage); 837 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) || 838 !PageUptodate(mpage))) { 839 err = -EIO; 840 f2fs_put_page(mpage, 1); 841 goto up_out; 842 } 843 } 844 845 f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr, 846 &sum, CURSEG_COLD_DATA, NULL, false); 847 848 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi), 849 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS); 850 if (!fio.encrypted_page) { 851 err = -ENOMEM; 852 f2fs_put_page(mpage, 1); 853 goto recover_block; 854 } 855 856 /* write target block */ 857 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true); 858 memcpy(page_address(fio.encrypted_page), 859 page_address(mpage), PAGE_SIZE); 860 f2fs_put_page(mpage, 1); 861 invalidate_mapping_pages(META_MAPPING(fio.sbi), 862 fio.old_blkaddr, fio.old_blkaddr); 863 864 set_page_dirty(fio.encrypted_page); 865 if (clear_page_dirty_for_io(fio.encrypted_page)) 866 dec_page_count(fio.sbi, F2FS_DIRTY_META); 867 868 set_page_writeback(fio.encrypted_page); 869 ClearPageError(page); 870 871 /* allocate block address */ 872 f2fs_wait_on_page_writeback(dn.node_page, NODE, true, true); 873 874 fio.op = REQ_OP_WRITE; 875 fio.op_flags = REQ_SYNC; 876 fio.new_blkaddr = newaddr; 877 f2fs_submit_page_write(&fio); 878 if (fio.retry) { 879 err = -EAGAIN; 880 if (PageWriteback(fio.encrypted_page)) 881 end_page_writeback(fio.encrypted_page); 882 goto put_page_out; 883 } 884 885 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE); 886 887 f2fs_update_data_blkaddr(&dn, newaddr); 888 set_inode_flag(inode, FI_APPEND_WRITE); 889 if (page->index == 0) 890 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 891 put_page_out: 892 f2fs_put_page(fio.encrypted_page, 1); 893 recover_block: 894 if (err) 895 f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr, 896 true, true); 897 up_out: 898 if (lfs_mode) 899 up_write(&fio.sbi->io_order_lock); 900 put_out: 901 f2fs_put_dnode(&dn); 902 out: 903 f2fs_put_page(page, 1); 904 return err; 905 } 906 907 static int move_data_page(struct inode *inode, block_t bidx, int gc_type, 908 unsigned int segno, int off) 909 { 910 struct page *page; 911 int err = 0; 912 913 page = f2fs_get_lock_data_page(inode, bidx, true); 914 if (IS_ERR(page)) 915 return PTR_ERR(page); 916 917 if (!check_valid_map(F2FS_I_SB(inode), segno, off)) { 918 err = -ENOENT; 919 goto out; 920 } 921 922 if (f2fs_is_atomic_file(inode)) { 923 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC]++; 924 F2FS_I_SB(inode)->skipped_atomic_files[gc_type]++; 925 err = -EAGAIN; 926 goto out; 927 } 928 if (f2fs_is_pinned_file(inode)) { 929 if (gc_type == FG_GC) 930 f2fs_pin_file_control(inode, true); 931 err = -EAGAIN; 932 goto out; 933 } 934 935 if (gc_type == BG_GC) { 936 if (PageWriteback(page)) { 937 err = -EAGAIN; 938 goto out; 939 } 940 set_page_dirty(page); 941 set_cold_data(page); 942 } else { 943 struct f2fs_io_info fio = { 944 .sbi = F2FS_I_SB(inode), 945 .ino = inode->i_ino, 946 .type = DATA, 947 .temp = COLD, 948 .op = REQ_OP_WRITE, 949 .op_flags = REQ_SYNC, 950 .old_blkaddr = NULL_ADDR, 951 .page = page, 952 .encrypted_page = NULL, 953 .need_lock = LOCK_REQ, 954 .io_type = FS_GC_DATA_IO, 955 }; 956 bool is_dirty = PageDirty(page); 957 958 retry: 959 f2fs_wait_on_page_writeback(page, DATA, true, true); 960 961 set_page_dirty(page); 962 if (clear_page_dirty_for_io(page)) { 963 inode_dec_dirty_pages(inode); 964 f2fs_remove_dirty_inode(inode); 965 } 966 967 set_cold_data(page); 968 969 err = f2fs_do_write_data_page(&fio); 970 if (err) { 971 clear_cold_data(page); 972 if (err == -ENOMEM) { 973 congestion_wait(BLK_RW_ASYNC, HZ/50); 974 goto retry; 975 } 976 if (is_dirty) 977 set_page_dirty(page); 978 } 979 } 980 out: 981 f2fs_put_page(page, 1); 982 return err; 983 } 984 985 /* 986 * This function tries to get parent node of victim data block, and identifies 987 * data block validity. If the block is valid, copy that with cold status and 988 * modify parent node. 989 * If the parent node is not valid or the data block address is different, 990 * the victim data block is ignored. 991 */ 992 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 993 struct gc_inode_list *gc_list, unsigned int segno, int gc_type) 994 { 995 struct super_block *sb = sbi->sb; 996 struct f2fs_summary *entry; 997 block_t start_addr; 998 int off; 999 int phase = 0; 1000 int submitted = 0; 1001 1002 start_addr = START_BLOCK(sbi, segno); 1003 1004 next_step: 1005 entry = sum; 1006 1007 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) { 1008 struct page *data_page; 1009 struct inode *inode; 1010 struct node_info dni; /* dnode info for the data */ 1011 unsigned int ofs_in_node, nofs; 1012 block_t start_bidx; 1013 nid_t nid = le32_to_cpu(entry->nid); 1014 1015 /* 1016 * stop BG_GC if there is not enough free sections. 1017 * Or, stop GC if the segment becomes fully valid caused by 1018 * race condition along with SSR block allocation. 1019 */ 1020 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) || 1021 get_valid_blocks(sbi, segno, false) == 1022 sbi->blocks_per_seg) 1023 return submitted; 1024 1025 if (check_valid_map(sbi, segno, off) == 0) 1026 continue; 1027 1028 if (phase == 0) { 1029 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1, 1030 META_NAT, true); 1031 continue; 1032 } 1033 1034 if (phase == 1) { 1035 f2fs_ra_node_page(sbi, nid); 1036 continue; 1037 } 1038 1039 /* Get an inode by ino with checking validity */ 1040 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs)) 1041 continue; 1042 1043 if (phase == 2) { 1044 f2fs_ra_node_page(sbi, dni.ino); 1045 continue; 1046 } 1047 1048 ofs_in_node = le16_to_cpu(entry->ofs_in_node); 1049 1050 if (phase == 3) { 1051 inode = f2fs_iget(sb, dni.ino); 1052 if (IS_ERR(inode) || is_bad_inode(inode)) 1053 continue; 1054 1055 if (!down_write_trylock( 1056 &F2FS_I(inode)->i_gc_rwsem[WRITE])) { 1057 iput(inode); 1058 sbi->skipped_gc_rwsem++; 1059 continue; 1060 } 1061 1062 start_bidx = f2fs_start_bidx_of_node(nofs, inode) + 1063 ofs_in_node; 1064 1065 if (f2fs_post_read_required(inode)) { 1066 int err = ra_data_block(inode, start_bidx); 1067 1068 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1069 if (err) { 1070 iput(inode); 1071 continue; 1072 } 1073 add_gc_inode(gc_list, inode); 1074 continue; 1075 } 1076 1077 data_page = f2fs_get_read_data_page(inode, 1078 start_bidx, REQ_RAHEAD, true); 1079 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1080 if (IS_ERR(data_page)) { 1081 iput(inode); 1082 continue; 1083 } 1084 1085 f2fs_put_page(data_page, 0); 1086 add_gc_inode(gc_list, inode); 1087 continue; 1088 } 1089 1090 /* phase 4 */ 1091 inode = find_gc_inode(gc_list, dni.ino); 1092 if (inode) { 1093 struct f2fs_inode_info *fi = F2FS_I(inode); 1094 bool locked = false; 1095 int err; 1096 1097 if (S_ISREG(inode->i_mode)) { 1098 if (!down_write_trylock(&fi->i_gc_rwsem[READ])) 1099 continue; 1100 if (!down_write_trylock( 1101 &fi->i_gc_rwsem[WRITE])) { 1102 sbi->skipped_gc_rwsem++; 1103 up_write(&fi->i_gc_rwsem[READ]); 1104 continue; 1105 } 1106 locked = true; 1107 1108 /* wait for all inflight aio data */ 1109 inode_dio_wait(inode); 1110 } 1111 1112 start_bidx = f2fs_start_bidx_of_node(nofs, inode) 1113 + ofs_in_node; 1114 if (f2fs_post_read_required(inode)) 1115 err = move_data_block(inode, start_bidx, 1116 gc_type, segno, off); 1117 else 1118 err = move_data_page(inode, start_bidx, gc_type, 1119 segno, off); 1120 1121 if (!err && (gc_type == FG_GC || 1122 f2fs_post_read_required(inode))) 1123 submitted++; 1124 1125 if (locked) { 1126 up_write(&fi->i_gc_rwsem[WRITE]); 1127 up_write(&fi->i_gc_rwsem[READ]); 1128 } 1129 1130 stat_inc_data_blk_count(sbi, 1, gc_type); 1131 } 1132 } 1133 1134 if (++phase < 5) 1135 goto next_step; 1136 1137 return submitted; 1138 } 1139 1140 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim, 1141 int gc_type) 1142 { 1143 struct sit_info *sit_i = SIT_I(sbi); 1144 int ret; 1145 1146 down_write(&sit_i->sentry_lock); 1147 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, 1148 NO_CHECK_TYPE, LFS); 1149 up_write(&sit_i->sentry_lock); 1150 return ret; 1151 } 1152 1153 static int do_garbage_collect(struct f2fs_sb_info *sbi, 1154 unsigned int start_segno, 1155 struct gc_inode_list *gc_list, int gc_type) 1156 { 1157 struct page *sum_page; 1158 struct f2fs_summary_block *sum; 1159 struct blk_plug plug; 1160 unsigned int segno = start_segno; 1161 unsigned int end_segno = start_segno + sbi->segs_per_sec; 1162 int seg_freed = 0, migrated = 0; 1163 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ? 1164 SUM_TYPE_DATA : SUM_TYPE_NODE; 1165 int submitted = 0; 1166 1167 if (__is_large_section(sbi)) 1168 end_segno = rounddown(end_segno, sbi->segs_per_sec); 1169 1170 /* readahead multi ssa blocks those have contiguous address */ 1171 if (__is_large_section(sbi)) 1172 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno), 1173 end_segno - segno, META_SSA, true); 1174 1175 /* reference all summary page */ 1176 while (segno < end_segno) { 1177 sum_page = f2fs_get_sum_page(sbi, segno++); 1178 if (IS_ERR(sum_page)) { 1179 int err = PTR_ERR(sum_page); 1180 1181 end_segno = segno - 1; 1182 for (segno = start_segno; segno < end_segno; segno++) { 1183 sum_page = find_get_page(META_MAPPING(sbi), 1184 GET_SUM_BLOCK(sbi, segno)); 1185 f2fs_put_page(sum_page, 0); 1186 f2fs_put_page(sum_page, 0); 1187 } 1188 return err; 1189 } 1190 unlock_page(sum_page); 1191 } 1192 1193 blk_start_plug(&plug); 1194 1195 for (segno = start_segno; segno < end_segno; segno++) { 1196 1197 /* find segment summary of victim */ 1198 sum_page = find_get_page(META_MAPPING(sbi), 1199 GET_SUM_BLOCK(sbi, segno)); 1200 f2fs_put_page(sum_page, 0); 1201 1202 if (get_valid_blocks(sbi, segno, false) == 0) 1203 goto freed; 1204 if (__is_large_section(sbi) && 1205 migrated >= sbi->migration_granularity) 1206 goto skip; 1207 if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi))) 1208 goto skip; 1209 1210 sum = page_address(sum_page); 1211 if (type != GET_SUM_TYPE((&sum->footer))) { 1212 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT", 1213 segno, type, GET_SUM_TYPE((&sum->footer))); 1214 set_sbi_flag(sbi, SBI_NEED_FSCK); 1215 f2fs_stop_checkpoint(sbi, false); 1216 goto skip; 1217 } 1218 1219 /* 1220 * this is to avoid deadlock: 1221 * - lock_page(sum_page) - f2fs_replace_block 1222 * - check_valid_map() - down_write(sentry_lock) 1223 * - down_read(sentry_lock) - change_curseg() 1224 * - lock_page(sum_page) 1225 */ 1226 if (type == SUM_TYPE_NODE) 1227 submitted += gc_node_segment(sbi, sum->entries, segno, 1228 gc_type); 1229 else 1230 submitted += gc_data_segment(sbi, sum->entries, gc_list, 1231 segno, gc_type); 1232 1233 stat_inc_seg_count(sbi, type, gc_type); 1234 1235 freed: 1236 if (gc_type == FG_GC && 1237 get_valid_blocks(sbi, segno, false) == 0) 1238 seg_freed++; 1239 migrated++; 1240 1241 if (__is_large_section(sbi) && segno + 1 < end_segno) 1242 sbi->next_victim_seg[gc_type] = segno + 1; 1243 skip: 1244 f2fs_put_page(sum_page, 0); 1245 } 1246 1247 if (submitted) 1248 f2fs_submit_merged_write(sbi, 1249 (type == SUM_TYPE_NODE) ? NODE : DATA); 1250 1251 blk_finish_plug(&plug); 1252 1253 stat_inc_call_count(sbi->stat_info); 1254 1255 return seg_freed; 1256 } 1257 1258 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, 1259 bool background, unsigned int segno) 1260 { 1261 int gc_type = sync ? FG_GC : BG_GC; 1262 int sec_freed = 0, seg_freed = 0, total_freed = 0; 1263 int ret = 0; 1264 struct cp_control cpc; 1265 unsigned int init_segno = segno; 1266 struct gc_inode_list gc_list = { 1267 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1268 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1269 }; 1270 unsigned long long last_skipped = sbi->skipped_atomic_files[FG_GC]; 1271 unsigned long long first_skipped; 1272 unsigned int skipped_round = 0, round = 0; 1273 1274 trace_f2fs_gc_begin(sbi->sb, sync, background, 1275 get_pages(sbi, F2FS_DIRTY_NODES), 1276 get_pages(sbi, F2FS_DIRTY_DENTS), 1277 get_pages(sbi, F2FS_DIRTY_IMETA), 1278 free_sections(sbi), 1279 free_segments(sbi), 1280 reserved_segments(sbi), 1281 prefree_segments(sbi)); 1282 1283 cpc.reason = __get_cp_reason(sbi); 1284 sbi->skipped_gc_rwsem = 0; 1285 first_skipped = last_skipped; 1286 gc_more: 1287 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) { 1288 ret = -EINVAL; 1289 goto stop; 1290 } 1291 if (unlikely(f2fs_cp_error(sbi))) { 1292 ret = -EIO; 1293 goto stop; 1294 } 1295 1296 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) { 1297 /* 1298 * For example, if there are many prefree_segments below given 1299 * threshold, we can make them free by checkpoint. Then, we 1300 * secure free segments which doesn't need fggc any more. 1301 */ 1302 if (prefree_segments(sbi) && 1303 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 1304 ret = f2fs_write_checkpoint(sbi, &cpc); 1305 if (ret) 1306 goto stop; 1307 } 1308 if (has_not_enough_free_secs(sbi, 0, 0)) 1309 gc_type = FG_GC; 1310 } 1311 1312 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */ 1313 if (gc_type == BG_GC && !background) { 1314 ret = -EINVAL; 1315 goto stop; 1316 } 1317 if (!__get_victim(sbi, &segno, gc_type)) { 1318 ret = -ENODATA; 1319 goto stop; 1320 } 1321 1322 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type); 1323 if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec) 1324 sec_freed++; 1325 total_freed += seg_freed; 1326 1327 if (gc_type == FG_GC) { 1328 if (sbi->skipped_atomic_files[FG_GC] > last_skipped || 1329 sbi->skipped_gc_rwsem) 1330 skipped_round++; 1331 last_skipped = sbi->skipped_atomic_files[FG_GC]; 1332 round++; 1333 } 1334 1335 if (gc_type == FG_GC && seg_freed) 1336 sbi->cur_victim_sec = NULL_SEGNO; 1337 1338 if (sync) 1339 goto stop; 1340 1341 if (has_not_enough_free_secs(sbi, sec_freed, 0)) { 1342 if (skipped_round <= MAX_SKIP_GC_COUNT || 1343 skipped_round * 2 < round) { 1344 segno = NULL_SEGNO; 1345 goto gc_more; 1346 } 1347 1348 if (first_skipped < last_skipped && 1349 (last_skipped - first_skipped) > 1350 sbi->skipped_gc_rwsem) { 1351 f2fs_drop_inmem_pages_all(sbi, true); 1352 segno = NULL_SEGNO; 1353 goto gc_more; 1354 } 1355 if (gc_type == FG_GC && !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 1356 ret = f2fs_write_checkpoint(sbi, &cpc); 1357 } 1358 stop: 1359 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0; 1360 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno; 1361 1362 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed, 1363 get_pages(sbi, F2FS_DIRTY_NODES), 1364 get_pages(sbi, F2FS_DIRTY_DENTS), 1365 get_pages(sbi, F2FS_DIRTY_IMETA), 1366 free_sections(sbi), 1367 free_segments(sbi), 1368 reserved_segments(sbi), 1369 prefree_segments(sbi)); 1370 1371 mutex_unlock(&sbi->gc_mutex); 1372 1373 put_gc_inode(&gc_list); 1374 1375 if (sync && !ret) 1376 ret = sec_freed ? 0 : -EAGAIN; 1377 return ret; 1378 } 1379 1380 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi) 1381 { 1382 DIRTY_I(sbi)->v_ops = &default_v_ops; 1383 1384 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES; 1385 1386 /* give warm/cold data area from slower device */ 1387 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi)) 1388 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 1389 GET_SEGNO(sbi, FDEV(0).end_blk) + 1; 1390 } 1391 1392 static int free_segment_range(struct f2fs_sb_info *sbi, unsigned int start, 1393 unsigned int end) 1394 { 1395 int type; 1396 unsigned int segno, next_inuse; 1397 int err = 0; 1398 1399 /* Move out cursegs from the target range */ 1400 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_TYPE; type++) 1401 allocate_segment_for_resize(sbi, type, start, end); 1402 1403 /* do GC to move out valid blocks in the range */ 1404 for (segno = start; segno <= end; segno += sbi->segs_per_sec) { 1405 struct gc_inode_list gc_list = { 1406 .ilist = LIST_HEAD_INIT(gc_list.ilist), 1407 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS), 1408 }; 1409 1410 mutex_lock(&sbi->gc_mutex); 1411 do_garbage_collect(sbi, segno, &gc_list, FG_GC); 1412 mutex_unlock(&sbi->gc_mutex); 1413 put_gc_inode(&gc_list); 1414 1415 if (get_valid_blocks(sbi, segno, true)) 1416 return -EAGAIN; 1417 } 1418 1419 err = f2fs_sync_fs(sbi->sb, 1); 1420 if (err) 1421 return err; 1422 1423 next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start); 1424 if (next_inuse <= end) { 1425 f2fs_err(sbi, "segno %u should be free but still inuse!", 1426 next_inuse); 1427 f2fs_bug_on(sbi, 1); 1428 } 1429 return err; 1430 } 1431 1432 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs) 1433 { 1434 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi); 1435 int section_count = le32_to_cpu(raw_sb->section_count); 1436 int segment_count = le32_to_cpu(raw_sb->segment_count); 1437 int segment_count_main = le32_to_cpu(raw_sb->segment_count_main); 1438 long long block_count = le64_to_cpu(raw_sb->block_count); 1439 int segs = secs * sbi->segs_per_sec; 1440 1441 raw_sb->section_count = cpu_to_le32(section_count + secs); 1442 raw_sb->segment_count = cpu_to_le32(segment_count + segs); 1443 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs); 1444 raw_sb->block_count = cpu_to_le64(block_count + 1445 (long long)segs * sbi->blocks_per_seg); 1446 if (f2fs_is_multi_device(sbi)) { 1447 int last_dev = sbi->s_ndevs - 1; 1448 int dev_segs = 1449 le32_to_cpu(raw_sb->devs[last_dev].total_segments); 1450 1451 raw_sb->devs[last_dev].total_segments = 1452 cpu_to_le32(dev_segs + segs); 1453 } 1454 } 1455 1456 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs) 1457 { 1458 int segs = secs * sbi->segs_per_sec; 1459 long long blks = (long long)segs * sbi->blocks_per_seg; 1460 long long user_block_count = 1461 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count); 1462 1463 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs; 1464 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs; 1465 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs; 1466 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs; 1467 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks); 1468 1469 if (f2fs_is_multi_device(sbi)) { 1470 int last_dev = sbi->s_ndevs - 1; 1471 1472 FDEV(last_dev).total_segments = 1473 (int)FDEV(last_dev).total_segments + segs; 1474 FDEV(last_dev).end_blk = 1475 (long long)FDEV(last_dev).end_blk + blks; 1476 #ifdef CONFIG_BLK_DEV_ZONED 1477 FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz + 1478 (int)(blks >> sbi->log_blocks_per_blkz); 1479 #endif 1480 } 1481 } 1482 1483 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count) 1484 { 1485 __u64 old_block_count, shrunk_blocks; 1486 unsigned int secs; 1487 int gc_mode, gc_type; 1488 int err = 0; 1489 __u32 rem; 1490 1491 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count); 1492 if (block_count > old_block_count) 1493 return -EINVAL; 1494 1495 if (f2fs_is_multi_device(sbi)) { 1496 int last_dev = sbi->s_ndevs - 1; 1497 __u64 last_segs = FDEV(last_dev).total_segments; 1498 1499 if (block_count + last_segs * sbi->blocks_per_seg <= 1500 old_block_count) 1501 return -EINVAL; 1502 } 1503 1504 /* new fs size should align to section size */ 1505 div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem); 1506 if (rem) 1507 return -EINVAL; 1508 1509 if (block_count == old_block_count) 1510 return 0; 1511 1512 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1513 f2fs_err(sbi, "Should run fsck to repair first."); 1514 return -EFSCORRUPTED; 1515 } 1516 1517 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1518 f2fs_err(sbi, "Checkpoint should be enabled."); 1519 return -EINVAL; 1520 } 1521 1522 freeze_bdev(sbi->sb->s_bdev); 1523 1524 shrunk_blocks = old_block_count - block_count; 1525 secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi)); 1526 spin_lock(&sbi->stat_lock); 1527 if (shrunk_blocks + valid_user_blocks(sbi) + 1528 sbi->current_reserved_blocks + sbi->unusable_block_count + 1529 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count) 1530 err = -ENOSPC; 1531 else 1532 sbi->user_block_count -= shrunk_blocks; 1533 spin_unlock(&sbi->stat_lock); 1534 if (err) { 1535 thaw_bdev(sbi->sb->s_bdev, sbi->sb); 1536 return err; 1537 } 1538 1539 mutex_lock(&sbi->resize_mutex); 1540 set_sbi_flag(sbi, SBI_IS_RESIZEFS); 1541 1542 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 1543 1544 MAIN_SECS(sbi) -= secs; 1545 1546 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++) 1547 if (SIT_I(sbi)->last_victim[gc_mode] >= 1548 MAIN_SECS(sbi) * sbi->segs_per_sec) 1549 SIT_I(sbi)->last_victim[gc_mode] = 0; 1550 1551 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++) 1552 if (sbi->next_victim_seg[gc_type] >= 1553 MAIN_SECS(sbi) * sbi->segs_per_sec) 1554 sbi->next_victim_seg[gc_type] = NULL_SEGNO; 1555 1556 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 1557 1558 err = free_segment_range(sbi, MAIN_SECS(sbi) * sbi->segs_per_sec, 1559 MAIN_SEGS(sbi) - 1); 1560 if (err) 1561 goto out; 1562 1563 update_sb_metadata(sbi, -secs); 1564 1565 err = f2fs_commit_super(sbi, false); 1566 if (err) { 1567 update_sb_metadata(sbi, secs); 1568 goto out; 1569 } 1570 1571 update_fs_metadata(sbi, -secs); 1572 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 1573 err = f2fs_sync_fs(sbi->sb, 1); 1574 if (err) { 1575 update_fs_metadata(sbi, secs); 1576 update_sb_metadata(sbi, secs); 1577 f2fs_commit_super(sbi, false); 1578 } 1579 out: 1580 if (err) { 1581 set_sbi_flag(sbi, SBI_NEED_FSCK); 1582 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!"); 1583 1584 MAIN_SECS(sbi) += secs; 1585 spin_lock(&sbi->stat_lock); 1586 sbi->user_block_count += shrunk_blocks; 1587 spin_unlock(&sbi->stat_lock); 1588 } 1589 clear_sbi_flag(sbi, SBI_IS_RESIZEFS); 1590 mutex_unlock(&sbi->resize_mutex); 1591 thaw_bdev(sbi->sb->s_bdev, sbi->sb); 1592 return err; 1593 } 1594