xref: /linux/fs/f2fs/gc.c (revision 4c62e9764ab403d42f9b8871b1241fe7812f19d4)
1 /*
2  * fs/f2fs/gc.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/proc_fs.h>
15 #include <linux/init.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/kthread.h>
18 #include <linux/delay.h>
19 #include <linux/freezer.h>
20 #include <linux/blkdev.h>
21 
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "gc.h"
26 
27 static struct kmem_cache *winode_slab;
28 
29 static int gc_thread_func(void *data)
30 {
31 	struct f2fs_sb_info *sbi = data;
32 	wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
33 	long wait_ms;
34 
35 	wait_ms = GC_THREAD_MIN_SLEEP_TIME;
36 
37 	do {
38 		if (try_to_freeze())
39 			continue;
40 		else
41 			wait_event_interruptible_timeout(*wq,
42 						kthread_should_stop(),
43 						msecs_to_jiffies(wait_ms));
44 		if (kthread_should_stop())
45 			break;
46 
47 		f2fs_balance_fs(sbi);
48 
49 		if (!test_opt(sbi, BG_GC))
50 			continue;
51 
52 		/*
53 		 * [GC triggering condition]
54 		 * 0. GC is not conducted currently.
55 		 * 1. There are enough dirty segments.
56 		 * 2. IO subsystem is idle by checking the # of writeback pages.
57 		 * 3. IO subsystem is idle by checking the # of requests in
58 		 *    bdev's request list.
59 		 *
60 		 * Note) We have to avoid triggering GCs too much frequently.
61 		 * Because it is possible that some segments can be
62 		 * invalidated soon after by user update or deletion.
63 		 * So, I'd like to wait some time to collect dirty segments.
64 		 */
65 		if (!mutex_trylock(&sbi->gc_mutex))
66 			continue;
67 
68 		if (!is_idle(sbi)) {
69 			wait_ms = increase_sleep_time(wait_ms);
70 			mutex_unlock(&sbi->gc_mutex);
71 			continue;
72 		}
73 
74 		if (has_enough_invalid_blocks(sbi))
75 			wait_ms = decrease_sleep_time(wait_ms);
76 		else
77 			wait_ms = increase_sleep_time(wait_ms);
78 
79 		sbi->bg_gc++;
80 
81 		if (f2fs_gc(sbi, 1) == GC_NONE)
82 			wait_ms = GC_THREAD_NOGC_SLEEP_TIME;
83 		else if (wait_ms == GC_THREAD_NOGC_SLEEP_TIME)
84 			wait_ms = GC_THREAD_MAX_SLEEP_TIME;
85 
86 	} while (!kthread_should_stop());
87 	return 0;
88 }
89 
90 int start_gc_thread(struct f2fs_sb_info *sbi)
91 {
92 	struct f2fs_gc_kthread *gc_th;
93 
94 	gc_th = kmalloc(sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
95 	if (!gc_th)
96 		return -ENOMEM;
97 
98 	sbi->gc_thread = gc_th;
99 	init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
100 	sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
101 				GC_THREAD_NAME);
102 	if (IS_ERR(gc_th->f2fs_gc_task)) {
103 		kfree(gc_th);
104 		return -ENOMEM;
105 	}
106 	return 0;
107 }
108 
109 void stop_gc_thread(struct f2fs_sb_info *sbi)
110 {
111 	struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
112 	if (!gc_th)
113 		return;
114 	kthread_stop(gc_th->f2fs_gc_task);
115 	kfree(gc_th);
116 	sbi->gc_thread = NULL;
117 }
118 
119 static int select_gc_type(int gc_type)
120 {
121 	return (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
122 }
123 
124 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
125 			int type, struct victim_sel_policy *p)
126 {
127 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
128 
129 	if (p->alloc_mode) {
130 		p->gc_mode = GC_GREEDY;
131 		p->dirty_segmap = dirty_i->dirty_segmap[type];
132 		p->ofs_unit = 1;
133 	} else {
134 		p->gc_mode = select_gc_type(gc_type);
135 		p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
136 		p->ofs_unit = sbi->segs_per_sec;
137 	}
138 	p->offset = sbi->last_victim[p->gc_mode];
139 }
140 
141 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
142 				struct victim_sel_policy *p)
143 {
144 	if (p->gc_mode == GC_GREEDY)
145 		return (1 << sbi->log_blocks_per_seg) * p->ofs_unit;
146 	else if (p->gc_mode == GC_CB)
147 		return UINT_MAX;
148 	else /* No other gc_mode */
149 		return 0;
150 }
151 
152 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
153 {
154 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
155 	unsigned int segno;
156 
157 	/*
158 	 * If the gc_type is FG_GC, we can select victim segments
159 	 * selected by background GC before.
160 	 * Those segments guarantee they have small valid blocks.
161 	 */
162 	segno = find_next_bit(dirty_i->victim_segmap[BG_GC],
163 						TOTAL_SEGS(sbi), 0);
164 	if (segno < TOTAL_SEGS(sbi)) {
165 		clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
166 		return segno;
167 	}
168 	return NULL_SEGNO;
169 }
170 
171 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
172 {
173 	struct sit_info *sit_i = SIT_I(sbi);
174 	unsigned int secno = GET_SECNO(sbi, segno);
175 	unsigned int start = secno * sbi->segs_per_sec;
176 	unsigned long long mtime = 0;
177 	unsigned int vblocks;
178 	unsigned char age = 0;
179 	unsigned char u;
180 	unsigned int i;
181 
182 	for (i = 0; i < sbi->segs_per_sec; i++)
183 		mtime += get_seg_entry(sbi, start + i)->mtime;
184 	vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
185 
186 	mtime = div_u64(mtime, sbi->segs_per_sec);
187 	vblocks = div_u64(vblocks, sbi->segs_per_sec);
188 
189 	u = (vblocks * 100) >> sbi->log_blocks_per_seg;
190 
191 	/* Handle if the system time is changed by user */
192 	if (mtime < sit_i->min_mtime)
193 		sit_i->min_mtime = mtime;
194 	if (mtime > sit_i->max_mtime)
195 		sit_i->max_mtime = mtime;
196 	if (sit_i->max_mtime != sit_i->min_mtime)
197 		age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
198 				sit_i->max_mtime - sit_i->min_mtime);
199 
200 	return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
201 }
202 
203 static unsigned int get_gc_cost(struct f2fs_sb_info *sbi, unsigned int segno,
204 					struct victim_sel_policy *p)
205 {
206 	if (p->alloc_mode == SSR)
207 		return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
208 
209 	/* alloc_mode == LFS */
210 	if (p->gc_mode == GC_GREEDY)
211 		return get_valid_blocks(sbi, segno, sbi->segs_per_sec);
212 	else
213 		return get_cb_cost(sbi, segno);
214 }
215 
216 /*
217  * This function is called from two pathes.
218  * One is garbage collection and the other is SSR segment selection.
219  * When it is called during GC, it just gets a victim segment
220  * and it does not remove it from dirty seglist.
221  * When it is called from SSR segment selection, it finds a segment
222  * which has minimum valid blocks and removes it from dirty seglist.
223  */
224 static int get_victim_by_default(struct f2fs_sb_info *sbi,
225 		unsigned int *result, int gc_type, int type, char alloc_mode)
226 {
227 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
228 	struct victim_sel_policy p;
229 	unsigned int segno;
230 	int nsearched = 0;
231 
232 	p.alloc_mode = alloc_mode;
233 	select_policy(sbi, gc_type, type, &p);
234 
235 	p.min_segno = NULL_SEGNO;
236 	p.min_cost = get_max_cost(sbi, &p);
237 
238 	mutex_lock(&dirty_i->seglist_lock);
239 
240 	if (p.alloc_mode == LFS && gc_type == FG_GC) {
241 		p.min_segno = check_bg_victims(sbi);
242 		if (p.min_segno != NULL_SEGNO)
243 			goto got_it;
244 	}
245 
246 	while (1) {
247 		unsigned long cost;
248 
249 		segno = find_next_bit(p.dirty_segmap,
250 						TOTAL_SEGS(sbi), p.offset);
251 		if (segno >= TOTAL_SEGS(sbi)) {
252 			if (sbi->last_victim[p.gc_mode]) {
253 				sbi->last_victim[p.gc_mode] = 0;
254 				p.offset = 0;
255 				continue;
256 			}
257 			break;
258 		}
259 		p.offset = ((segno / p.ofs_unit) * p.ofs_unit) + p.ofs_unit;
260 
261 		if (test_bit(segno, dirty_i->victim_segmap[FG_GC]))
262 			continue;
263 		if (gc_type == BG_GC &&
264 				test_bit(segno, dirty_i->victim_segmap[BG_GC]))
265 			continue;
266 		if (IS_CURSEC(sbi, GET_SECNO(sbi, segno)))
267 			continue;
268 
269 		cost = get_gc_cost(sbi, segno, &p);
270 
271 		if (p.min_cost > cost) {
272 			p.min_segno = segno;
273 			p.min_cost = cost;
274 		}
275 
276 		if (cost == get_max_cost(sbi, &p))
277 			continue;
278 
279 		if (nsearched++ >= MAX_VICTIM_SEARCH) {
280 			sbi->last_victim[p.gc_mode] = segno;
281 			break;
282 		}
283 	}
284 got_it:
285 	if (p.min_segno != NULL_SEGNO) {
286 		*result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
287 		if (p.alloc_mode == LFS) {
288 			int i;
289 			for (i = 0; i < p.ofs_unit; i++)
290 				set_bit(*result + i,
291 					dirty_i->victim_segmap[gc_type]);
292 		}
293 	}
294 	mutex_unlock(&dirty_i->seglist_lock);
295 
296 	return (p.min_segno == NULL_SEGNO) ? 0 : 1;
297 }
298 
299 static const struct victim_selection default_v_ops = {
300 	.get_victim = get_victim_by_default,
301 };
302 
303 static struct inode *find_gc_inode(nid_t ino, struct list_head *ilist)
304 {
305 	struct list_head *this;
306 	struct inode_entry *ie;
307 
308 	list_for_each(this, ilist) {
309 		ie = list_entry(this, struct inode_entry, list);
310 		if (ie->inode->i_ino == ino)
311 			return ie->inode;
312 	}
313 	return NULL;
314 }
315 
316 static void add_gc_inode(struct inode *inode, struct list_head *ilist)
317 {
318 	struct list_head *this;
319 	struct inode_entry *new_ie, *ie;
320 
321 	list_for_each(this, ilist) {
322 		ie = list_entry(this, struct inode_entry, list);
323 		if (ie->inode == inode) {
324 			iput(inode);
325 			return;
326 		}
327 	}
328 repeat:
329 	new_ie = kmem_cache_alloc(winode_slab, GFP_NOFS);
330 	if (!new_ie) {
331 		cond_resched();
332 		goto repeat;
333 	}
334 	new_ie->inode = inode;
335 	list_add_tail(&new_ie->list, ilist);
336 }
337 
338 static void put_gc_inode(struct list_head *ilist)
339 {
340 	struct inode_entry *ie, *next_ie;
341 	list_for_each_entry_safe(ie, next_ie, ilist, list) {
342 		iput(ie->inode);
343 		list_del(&ie->list);
344 		kmem_cache_free(winode_slab, ie);
345 	}
346 }
347 
348 static int check_valid_map(struct f2fs_sb_info *sbi,
349 				unsigned int segno, int offset)
350 {
351 	struct sit_info *sit_i = SIT_I(sbi);
352 	struct seg_entry *sentry;
353 	int ret;
354 
355 	mutex_lock(&sit_i->sentry_lock);
356 	sentry = get_seg_entry(sbi, segno);
357 	ret = f2fs_test_bit(offset, sentry->cur_valid_map);
358 	mutex_unlock(&sit_i->sentry_lock);
359 	return ret ? GC_OK : GC_NEXT;
360 }
361 
362 /*
363  * This function compares node address got in summary with that in NAT.
364  * On validity, copy that node with cold status, otherwise (invalid node)
365  * ignore that.
366  */
367 static int gc_node_segment(struct f2fs_sb_info *sbi,
368 		struct f2fs_summary *sum, unsigned int segno, int gc_type)
369 {
370 	bool initial = true;
371 	struct f2fs_summary *entry;
372 	int off;
373 
374 next_step:
375 	entry = sum;
376 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
377 		nid_t nid = le32_to_cpu(entry->nid);
378 		struct page *node_page;
379 		int err;
380 
381 		/*
382 		 * It makes sure that free segments are able to write
383 		 * all the dirty node pages before CP after this CP.
384 		 * So let's check the space of dirty node pages.
385 		 */
386 		if (should_do_checkpoint(sbi)) {
387 			mutex_lock(&sbi->cp_mutex);
388 			block_operations(sbi);
389 			return GC_BLOCKED;
390 		}
391 
392 		err = check_valid_map(sbi, segno, off);
393 		if (err == GC_ERROR)
394 			return err;
395 		else if (err == GC_NEXT)
396 			continue;
397 
398 		if (initial) {
399 			ra_node_page(sbi, nid);
400 			continue;
401 		}
402 		node_page = get_node_page(sbi, nid);
403 		if (IS_ERR(node_page))
404 			continue;
405 
406 		/* set page dirty and write it */
407 		if (!PageWriteback(node_page))
408 			set_page_dirty(node_page);
409 		f2fs_put_page(node_page, 1);
410 		stat_inc_node_blk_count(sbi, 1);
411 	}
412 	if (initial) {
413 		initial = false;
414 		goto next_step;
415 	}
416 
417 	if (gc_type == FG_GC) {
418 		struct writeback_control wbc = {
419 			.sync_mode = WB_SYNC_ALL,
420 			.nr_to_write = LONG_MAX,
421 			.for_reclaim = 0,
422 		};
423 		sync_node_pages(sbi, 0, &wbc);
424 	}
425 	return GC_DONE;
426 }
427 
428 /*
429  * Calculate start block index that this node page contains
430  */
431 block_t start_bidx_of_node(unsigned int node_ofs)
432 {
433 	block_t start_bidx;
434 	unsigned int bidx, indirect_blks;
435 	int dec;
436 
437 	indirect_blks = 2 * NIDS_PER_BLOCK + 4;
438 
439 	start_bidx = 1;
440 	if (node_ofs == 0) {
441 		start_bidx = 0;
442 	} else if (node_ofs <= 2) {
443 		bidx = node_ofs - 1;
444 	} else if (node_ofs <= indirect_blks) {
445 		dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
446 		bidx = node_ofs - 2 - dec;
447 	} else {
448 		dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
449 		bidx = node_ofs - 5 - dec;
450 	}
451 
452 	if (start_bidx)
453 		start_bidx = bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE;
454 	return start_bidx;
455 }
456 
457 static int check_dnode(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
458 		struct node_info *dni, block_t blkaddr, unsigned int *nofs)
459 {
460 	struct page *node_page;
461 	nid_t nid;
462 	unsigned int ofs_in_node;
463 	block_t source_blkaddr;
464 
465 	nid = le32_to_cpu(sum->nid);
466 	ofs_in_node = le16_to_cpu(sum->ofs_in_node);
467 
468 	node_page = get_node_page(sbi, nid);
469 	if (IS_ERR(node_page))
470 		return GC_NEXT;
471 
472 	get_node_info(sbi, nid, dni);
473 
474 	if (sum->version != dni->version) {
475 		f2fs_put_page(node_page, 1);
476 		return GC_NEXT;
477 	}
478 
479 	*nofs = ofs_of_node(node_page);
480 	source_blkaddr = datablock_addr(node_page, ofs_in_node);
481 	f2fs_put_page(node_page, 1);
482 
483 	if (source_blkaddr != blkaddr)
484 		return GC_NEXT;
485 	return GC_OK;
486 }
487 
488 static void move_data_page(struct inode *inode, struct page *page, int gc_type)
489 {
490 	if (page->mapping != inode->i_mapping)
491 		goto out;
492 
493 	if (inode != page->mapping->host)
494 		goto out;
495 
496 	if (PageWriteback(page))
497 		goto out;
498 
499 	if (gc_type == BG_GC) {
500 		set_page_dirty(page);
501 		set_cold_data(page);
502 	} else {
503 		struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
504 		mutex_lock_op(sbi, DATA_WRITE);
505 		if (clear_page_dirty_for_io(page) &&
506 			S_ISDIR(inode->i_mode)) {
507 			dec_page_count(sbi, F2FS_DIRTY_DENTS);
508 			inode_dec_dirty_dents(inode);
509 		}
510 		set_cold_data(page);
511 		do_write_data_page(page);
512 		mutex_unlock_op(sbi, DATA_WRITE);
513 		clear_cold_data(page);
514 	}
515 out:
516 	f2fs_put_page(page, 1);
517 }
518 
519 /*
520  * This function tries to get parent node of victim data block, and identifies
521  * data block validity. If the block is valid, copy that with cold status and
522  * modify parent node.
523  * If the parent node is not valid or the data block address is different,
524  * the victim data block is ignored.
525  */
526 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
527 		struct list_head *ilist, unsigned int segno, int gc_type)
528 {
529 	struct super_block *sb = sbi->sb;
530 	struct f2fs_summary *entry;
531 	block_t start_addr;
532 	int err, off;
533 	int phase = 0;
534 
535 	start_addr = START_BLOCK(sbi, segno);
536 
537 next_step:
538 	entry = sum;
539 	for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
540 		struct page *data_page;
541 		struct inode *inode;
542 		struct node_info dni; /* dnode info for the data */
543 		unsigned int ofs_in_node, nofs;
544 		block_t start_bidx;
545 
546 		/*
547 		 * It makes sure that free segments are able to write
548 		 * all the dirty node pages before CP after this CP.
549 		 * So let's check the space of dirty node pages.
550 		 */
551 		if (should_do_checkpoint(sbi)) {
552 			mutex_lock(&sbi->cp_mutex);
553 			block_operations(sbi);
554 			err = GC_BLOCKED;
555 			goto stop;
556 		}
557 
558 		err = check_valid_map(sbi, segno, off);
559 		if (err == GC_ERROR)
560 			goto stop;
561 		else if (err == GC_NEXT)
562 			continue;
563 
564 		if (phase == 0) {
565 			ra_node_page(sbi, le32_to_cpu(entry->nid));
566 			continue;
567 		}
568 
569 		/* Get an inode by ino with checking validity */
570 		err = check_dnode(sbi, entry, &dni, start_addr + off, &nofs);
571 		if (err == GC_ERROR)
572 			goto stop;
573 		else if (err == GC_NEXT)
574 			continue;
575 
576 		if (phase == 1) {
577 			ra_node_page(sbi, dni.ino);
578 			continue;
579 		}
580 
581 		start_bidx = start_bidx_of_node(nofs);
582 		ofs_in_node = le16_to_cpu(entry->ofs_in_node);
583 
584 		if (phase == 2) {
585 			inode = f2fs_iget_nowait(sb, dni.ino);
586 			if (IS_ERR(inode))
587 				continue;
588 
589 			data_page = find_data_page(inode,
590 					start_bidx + ofs_in_node);
591 			if (IS_ERR(data_page))
592 				goto next_iput;
593 
594 			f2fs_put_page(data_page, 0);
595 			add_gc_inode(inode, ilist);
596 		} else {
597 			inode = find_gc_inode(dni.ino, ilist);
598 			if (inode) {
599 				data_page = get_lock_data_page(inode,
600 						start_bidx + ofs_in_node);
601 				if (IS_ERR(data_page))
602 					continue;
603 				move_data_page(inode, data_page, gc_type);
604 				stat_inc_data_blk_count(sbi, 1);
605 			}
606 		}
607 		continue;
608 next_iput:
609 		iput(inode);
610 	}
611 	if (++phase < 4)
612 		goto next_step;
613 	err = GC_DONE;
614 stop:
615 	if (gc_type == FG_GC)
616 		f2fs_submit_bio(sbi, DATA, true);
617 	return err;
618 }
619 
620 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
621 						int gc_type, int type)
622 {
623 	struct sit_info *sit_i = SIT_I(sbi);
624 	int ret;
625 	mutex_lock(&sit_i->sentry_lock);
626 	ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type, type, LFS);
627 	mutex_unlock(&sit_i->sentry_lock);
628 	return ret;
629 }
630 
631 static int do_garbage_collect(struct f2fs_sb_info *sbi, unsigned int segno,
632 				struct list_head *ilist, int gc_type)
633 {
634 	struct page *sum_page;
635 	struct f2fs_summary_block *sum;
636 	int ret = GC_DONE;
637 
638 	/* read segment summary of victim */
639 	sum_page = get_sum_page(sbi, segno);
640 	if (IS_ERR(sum_page))
641 		return GC_ERROR;
642 
643 	/*
644 	 * CP needs to lock sum_page. In this time, we don't need
645 	 * to lock this page, because this summary page is not gone anywhere.
646 	 * Also, this page is not gonna be updated before GC is done.
647 	 */
648 	unlock_page(sum_page);
649 	sum = page_address(sum_page);
650 
651 	switch (GET_SUM_TYPE((&sum->footer))) {
652 	case SUM_TYPE_NODE:
653 		ret = gc_node_segment(sbi, sum->entries, segno, gc_type);
654 		break;
655 	case SUM_TYPE_DATA:
656 		ret = gc_data_segment(sbi, sum->entries, ilist, segno, gc_type);
657 		break;
658 	}
659 	stat_inc_seg_count(sbi, GET_SUM_TYPE((&sum->footer)));
660 	stat_inc_call_count(sbi->stat_info);
661 
662 	f2fs_put_page(sum_page, 0);
663 	return ret;
664 }
665 
666 int f2fs_gc(struct f2fs_sb_info *sbi, int nGC)
667 {
668 	unsigned int segno;
669 	int old_free_secs, cur_free_secs;
670 	int gc_status, nfree;
671 	struct list_head ilist;
672 	int gc_type = BG_GC;
673 
674 	INIT_LIST_HEAD(&ilist);
675 gc_more:
676 	nfree = 0;
677 	gc_status = GC_NONE;
678 
679 	if (has_not_enough_free_secs(sbi))
680 		old_free_secs = reserved_sections(sbi);
681 	else
682 		old_free_secs = free_sections(sbi);
683 
684 	while (sbi->sb->s_flags & MS_ACTIVE) {
685 		int i;
686 		if (has_not_enough_free_secs(sbi))
687 			gc_type = FG_GC;
688 
689 		cur_free_secs = free_sections(sbi) + nfree;
690 
691 		/* We got free space successfully. */
692 		if (nGC < cur_free_secs - old_free_secs)
693 			break;
694 
695 		if (!__get_victim(sbi, &segno, gc_type, NO_CHECK_TYPE))
696 			break;
697 
698 		for (i = 0; i < sbi->segs_per_sec; i++) {
699 			/*
700 			 * do_garbage_collect will give us three gc_status:
701 			 * GC_ERROR, GC_DONE, and GC_BLOCKED.
702 			 * If GC is finished uncleanly, we have to return
703 			 * the victim to dirty segment list.
704 			 */
705 			gc_status = do_garbage_collect(sbi, segno + i,
706 					&ilist, gc_type);
707 			if (gc_status != GC_DONE)
708 				goto stop;
709 			nfree++;
710 		}
711 	}
712 stop:
713 	if (has_not_enough_free_secs(sbi) || gc_status == GC_BLOCKED) {
714 		write_checkpoint(sbi, (gc_status == GC_BLOCKED), false);
715 		if (nfree)
716 			goto gc_more;
717 	}
718 	mutex_unlock(&sbi->gc_mutex);
719 
720 	put_gc_inode(&ilist);
721 	BUG_ON(!list_empty(&ilist));
722 	return gc_status;
723 }
724 
725 void build_gc_manager(struct f2fs_sb_info *sbi)
726 {
727 	DIRTY_I(sbi)->v_ops = &default_v_ops;
728 }
729 
730 int create_gc_caches(void)
731 {
732 	winode_slab = f2fs_kmem_cache_create("f2fs_gc_inodes",
733 			sizeof(struct inode_entry), NULL);
734 	if (!winode_slab)
735 		return -ENOMEM;
736 	return 0;
737 }
738 
739 void destroy_gc_caches(void)
740 {
741 	kmem_cache_destroy(winode_slab);
742 }
743