xref: /linux/fs/f2fs/file.c (revision ea04ef19ebdcd22e8a21054a19c2c8fefae011ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_flags_t flags = vmf->vma->vm_flags;
43 	vm_fault_t ret;
44 
45 	ret = filemap_fault(vmf);
46 	if (ret & VM_FAULT_LOCKED)
47 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
48 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
49 
50 	trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
51 
52 	return ret;
53 }
54 
55 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
56 {
57 	struct page *page = vmf->page;
58 	struct inode *inode = file_inode(vmf->vma->vm_file);
59 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
60 	struct dnode_of_data dn;
61 	bool need_alloc = !f2fs_is_pinned_file(inode);
62 	int err = 0;
63 	vm_fault_t ret;
64 
65 	if (unlikely(IS_IMMUTABLE(inode)))
66 		return VM_FAULT_SIGBUS;
67 
68 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
69 		err = -EIO;
70 		goto out;
71 	}
72 
73 	if (unlikely(f2fs_cp_error(sbi))) {
74 		err = -EIO;
75 		goto out;
76 	}
77 
78 	if (!f2fs_is_checkpoint_ready(sbi)) {
79 		err = -ENOSPC;
80 		goto out;
81 	}
82 
83 	err = f2fs_convert_inline_inode(inode);
84 	if (err)
85 		goto out;
86 
87 #ifdef CONFIG_F2FS_FS_COMPRESSION
88 	if (f2fs_compressed_file(inode)) {
89 		int ret = f2fs_is_compressed_cluster(inode, page->index);
90 
91 		if (ret < 0) {
92 			err = ret;
93 			goto out;
94 		} else if (ret) {
95 			need_alloc = false;
96 		}
97 	}
98 #endif
99 	/* should do out of any locked page */
100 	if (need_alloc)
101 		f2fs_balance_fs(sbi, true);
102 
103 	sb_start_pagefault(inode->i_sb);
104 
105 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
106 
107 	file_update_time(vmf->vma->vm_file);
108 	filemap_invalidate_lock_shared(inode->i_mapping);
109 	lock_page(page);
110 	if (unlikely(page->mapping != inode->i_mapping ||
111 			page_offset(page) > i_size_read(inode) ||
112 			!PageUptodate(page))) {
113 		unlock_page(page);
114 		err = -EFAULT;
115 		goto out_sem;
116 	}
117 
118 	set_new_dnode(&dn, inode, NULL, NULL, 0);
119 	if (need_alloc) {
120 		/* block allocation */
121 		err = f2fs_get_block_locked(&dn, page->index);
122 	} else {
123 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 		f2fs_put_dnode(&dn);
125 		if (f2fs_is_pinned_file(inode) &&
126 		    !__is_valid_data_blkaddr(dn.data_blkaddr))
127 			err = -EIO;
128 	}
129 
130 	if (err) {
131 		unlock_page(page);
132 		goto out_sem;
133 	}
134 
135 	f2fs_wait_on_page_writeback(page, DATA, false, true);
136 
137 	/* wait for GCed page writeback via META_MAPPING */
138 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
139 
140 	/*
141 	 * check to see if the page is mapped already (no holes)
142 	 */
143 	if (PageMappedToDisk(page))
144 		goto out_sem;
145 
146 	/* page is wholly or partially inside EOF */
147 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
148 						i_size_read(inode)) {
149 		loff_t offset;
150 
151 		offset = i_size_read(inode) & ~PAGE_MASK;
152 		zero_user_segment(page, offset, PAGE_SIZE);
153 	}
154 	set_page_dirty(page);
155 
156 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
157 	f2fs_update_time(sbi, REQ_TIME);
158 
159 out_sem:
160 	filemap_invalidate_unlock_shared(inode->i_mapping);
161 
162 	sb_end_pagefault(inode->i_sb);
163 out:
164 	ret = vmf_fs_error(err);
165 
166 	trace_f2fs_vm_page_mkwrite(inode, page->index, vmf->vma->vm_flags, ret);
167 	return ret;
168 }
169 
170 static const struct vm_operations_struct f2fs_file_vm_ops = {
171 	.fault		= f2fs_filemap_fault,
172 	.map_pages	= filemap_map_pages,
173 	.page_mkwrite	= f2fs_vm_page_mkwrite,
174 };
175 
176 static int get_parent_ino(struct inode *inode, nid_t *pino)
177 {
178 	struct dentry *dentry;
179 
180 	/*
181 	 * Make sure to get the non-deleted alias.  The alias associated with
182 	 * the open file descriptor being fsync()'ed may be deleted already.
183 	 */
184 	dentry = d_find_alias(inode);
185 	if (!dentry)
186 		return 0;
187 
188 	*pino = parent_ino(dentry);
189 	dput(dentry);
190 	return 1;
191 }
192 
193 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
194 {
195 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
196 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
197 
198 	if (!S_ISREG(inode->i_mode))
199 		cp_reason = CP_NON_REGULAR;
200 	else if (f2fs_compressed_file(inode))
201 		cp_reason = CP_COMPRESSED;
202 	else if (inode->i_nlink != 1)
203 		cp_reason = CP_HARDLINK;
204 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
205 		cp_reason = CP_SB_NEED_CP;
206 	else if (file_wrong_pino(inode))
207 		cp_reason = CP_WRONG_PINO;
208 	else if (!f2fs_space_for_roll_forward(sbi))
209 		cp_reason = CP_NO_SPC_ROLL;
210 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
211 		cp_reason = CP_NODE_NEED_CP;
212 	else if (test_opt(sbi, FASTBOOT))
213 		cp_reason = CP_FASTBOOT_MODE;
214 	else if (F2FS_OPTION(sbi).active_logs == 2)
215 		cp_reason = CP_SPEC_LOG_NUM;
216 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
217 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
218 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
219 							TRANS_DIR_INO))
220 		cp_reason = CP_RECOVER_DIR;
221 
222 	return cp_reason;
223 }
224 
225 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
226 {
227 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
228 	bool ret = false;
229 	/* But we need to avoid that there are some inode updates */
230 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
231 		ret = true;
232 	f2fs_put_page(i, 0);
233 	return ret;
234 }
235 
236 static void try_to_fix_pino(struct inode *inode)
237 {
238 	struct f2fs_inode_info *fi = F2FS_I(inode);
239 	nid_t pino;
240 
241 	f2fs_down_write(&fi->i_sem);
242 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
243 			get_parent_ino(inode, &pino)) {
244 		f2fs_i_pino_write(inode, pino);
245 		file_got_pino(inode);
246 	}
247 	f2fs_up_write(&fi->i_sem);
248 }
249 
250 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
251 						int datasync, bool atomic)
252 {
253 	struct inode *inode = file->f_mapping->host;
254 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255 	nid_t ino = inode->i_ino;
256 	int ret = 0;
257 	enum cp_reason_type cp_reason = 0;
258 	struct writeback_control wbc = {
259 		.sync_mode = WB_SYNC_ALL,
260 		.nr_to_write = LONG_MAX,
261 		.for_reclaim = 0,
262 	};
263 	unsigned int seq_id = 0;
264 
265 	if (unlikely(f2fs_readonly(inode->i_sb)))
266 		return 0;
267 
268 	trace_f2fs_sync_file_enter(inode);
269 
270 	if (S_ISDIR(inode->i_mode))
271 		goto go_write;
272 
273 	/* if fdatasync is triggered, let's do in-place-update */
274 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
275 		set_inode_flag(inode, FI_NEED_IPU);
276 	ret = file_write_and_wait_range(file, start, end);
277 	clear_inode_flag(inode, FI_NEED_IPU);
278 
279 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
280 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
281 		return ret;
282 	}
283 
284 	/* if the inode is dirty, let's recover all the time */
285 	if (!f2fs_skip_inode_update(inode, datasync)) {
286 		f2fs_write_inode(inode, NULL);
287 		goto go_write;
288 	}
289 
290 	/*
291 	 * if there is no written data, don't waste time to write recovery info.
292 	 */
293 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
294 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
295 
296 		/* it may call write_inode just prior to fsync */
297 		if (need_inode_page_update(sbi, ino))
298 			goto go_write;
299 
300 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
301 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
302 			goto flush_out;
303 		goto out;
304 	} else {
305 		/*
306 		 * for OPU case, during fsync(), node can be persisted before
307 		 * data when lower device doesn't support write barrier, result
308 		 * in data corruption after SPO.
309 		 * So for strict fsync mode, force to use atomic write semantics
310 		 * to keep write order in between data/node and last node to
311 		 * avoid potential data corruption.
312 		 */
313 		if (F2FS_OPTION(sbi).fsync_mode ==
314 				FSYNC_MODE_STRICT && !atomic)
315 			atomic = true;
316 	}
317 go_write:
318 	/*
319 	 * Both of fdatasync() and fsync() are able to be recovered from
320 	 * sudden-power-off.
321 	 */
322 	f2fs_down_read(&F2FS_I(inode)->i_sem);
323 	cp_reason = need_do_checkpoint(inode);
324 	f2fs_up_read(&F2FS_I(inode)->i_sem);
325 
326 	if (cp_reason) {
327 		/* all the dirty node pages should be flushed for POR */
328 		ret = f2fs_sync_fs(inode->i_sb, 1);
329 
330 		/*
331 		 * We've secured consistency through sync_fs. Following pino
332 		 * will be used only for fsynced inodes after checkpoint.
333 		 */
334 		try_to_fix_pino(inode);
335 		clear_inode_flag(inode, FI_APPEND_WRITE);
336 		clear_inode_flag(inode, FI_UPDATE_WRITE);
337 		goto out;
338 	}
339 sync_nodes:
340 	atomic_inc(&sbi->wb_sync_req[NODE]);
341 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
342 	atomic_dec(&sbi->wb_sync_req[NODE]);
343 	if (ret)
344 		goto out;
345 
346 	/* if cp_error was enabled, we should avoid infinite loop */
347 	if (unlikely(f2fs_cp_error(sbi))) {
348 		ret = -EIO;
349 		goto out;
350 	}
351 
352 	if (f2fs_need_inode_block_update(sbi, ino)) {
353 		f2fs_mark_inode_dirty_sync(inode, true);
354 		f2fs_write_inode(inode, NULL);
355 		goto sync_nodes;
356 	}
357 
358 	/*
359 	 * If it's atomic_write, it's just fine to keep write ordering. So
360 	 * here we don't need to wait for node write completion, since we use
361 	 * node chain which serializes node blocks. If one of node writes are
362 	 * reordered, we can see simply broken chain, resulting in stopping
363 	 * roll-forward recovery. It means we'll recover all or none node blocks
364 	 * given fsync mark.
365 	 */
366 	if (!atomic) {
367 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
368 		if (ret)
369 			goto out;
370 	}
371 
372 	/* once recovery info is written, don't need to tack this */
373 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
374 	clear_inode_flag(inode, FI_APPEND_WRITE);
375 flush_out:
376 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
377 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
378 		ret = f2fs_issue_flush(sbi, inode->i_ino);
379 	if (!ret) {
380 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
381 		clear_inode_flag(inode, FI_UPDATE_WRITE);
382 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
383 	}
384 	f2fs_update_time(sbi, REQ_TIME);
385 out:
386 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
387 	return ret;
388 }
389 
390 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
391 {
392 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
393 		return -EIO;
394 	return f2fs_do_sync_file(file, start, end, datasync, false);
395 }
396 
397 static bool __found_offset(struct address_space *mapping,
398 		struct dnode_of_data *dn, pgoff_t index, int whence)
399 {
400 	block_t blkaddr = f2fs_data_blkaddr(dn);
401 	struct inode *inode = mapping->host;
402 	bool compressed_cluster = false;
403 
404 	if (f2fs_compressed_file(inode)) {
405 		block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
406 		    ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
407 
408 		compressed_cluster = first_blkaddr == COMPRESS_ADDR;
409 	}
410 
411 	switch (whence) {
412 	case SEEK_DATA:
413 		if (__is_valid_data_blkaddr(blkaddr))
414 			return true;
415 		if (blkaddr == NEW_ADDR &&
416 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
417 			return true;
418 		if (compressed_cluster)
419 			return true;
420 		break;
421 	case SEEK_HOLE:
422 		if (compressed_cluster)
423 			return false;
424 		if (blkaddr == NULL_ADDR)
425 			return true;
426 		break;
427 	}
428 	return false;
429 }
430 
431 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
432 {
433 	struct inode *inode = file->f_mapping->host;
434 	loff_t maxbytes = inode->i_sb->s_maxbytes;
435 	struct dnode_of_data dn;
436 	pgoff_t pgofs, end_offset;
437 	loff_t data_ofs = offset;
438 	loff_t isize;
439 	int err = 0;
440 
441 	inode_lock_shared(inode);
442 
443 	isize = i_size_read(inode);
444 	if (offset >= isize)
445 		goto fail;
446 
447 	/* handle inline data case */
448 	if (f2fs_has_inline_data(inode)) {
449 		if (whence == SEEK_HOLE) {
450 			data_ofs = isize;
451 			goto found;
452 		} else if (whence == SEEK_DATA) {
453 			data_ofs = offset;
454 			goto found;
455 		}
456 	}
457 
458 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
459 
460 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461 		set_new_dnode(&dn, inode, NULL, NULL, 0);
462 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
463 		if (err && err != -ENOENT) {
464 			goto fail;
465 		} else if (err == -ENOENT) {
466 			/* direct node does not exists */
467 			if (whence == SEEK_DATA) {
468 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
469 				continue;
470 			} else {
471 				goto found;
472 			}
473 		}
474 
475 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
476 
477 		/* find data/hole in dnode block */
478 		for (; dn.ofs_in_node < end_offset;
479 				dn.ofs_in_node++, pgofs++,
480 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
481 			block_t blkaddr;
482 
483 			blkaddr = f2fs_data_blkaddr(&dn);
484 
485 			if (__is_valid_data_blkaddr(blkaddr) &&
486 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
487 					blkaddr, DATA_GENERIC_ENHANCE)) {
488 				f2fs_put_dnode(&dn);
489 				goto fail;
490 			}
491 
492 			if (__found_offset(file->f_mapping, &dn,
493 							pgofs, whence)) {
494 				f2fs_put_dnode(&dn);
495 				goto found;
496 			}
497 		}
498 		f2fs_put_dnode(&dn);
499 	}
500 
501 	if (whence == SEEK_DATA)
502 		goto fail;
503 found:
504 	if (whence == SEEK_HOLE && data_ofs > isize)
505 		data_ofs = isize;
506 	inode_unlock_shared(inode);
507 	return vfs_setpos(file, data_ofs, maxbytes);
508 fail:
509 	inode_unlock_shared(inode);
510 	return -ENXIO;
511 }
512 
513 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
514 {
515 	struct inode *inode = file->f_mapping->host;
516 	loff_t maxbytes = inode->i_sb->s_maxbytes;
517 
518 	if (f2fs_compressed_file(inode))
519 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
520 
521 	switch (whence) {
522 	case SEEK_SET:
523 	case SEEK_CUR:
524 	case SEEK_END:
525 		return generic_file_llseek_size(file, offset, whence,
526 						maxbytes, i_size_read(inode));
527 	case SEEK_DATA:
528 	case SEEK_HOLE:
529 		if (offset < 0)
530 			return -ENXIO;
531 		return f2fs_seek_block(file, offset, whence);
532 	}
533 
534 	return -EINVAL;
535 }
536 
537 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
538 {
539 	struct inode *inode = file_inode(file);
540 
541 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
542 		return -EIO;
543 
544 	if (!f2fs_is_compress_backend_ready(inode))
545 		return -EOPNOTSUPP;
546 
547 	file_accessed(file);
548 	vma->vm_ops = &f2fs_file_vm_ops;
549 
550 	f2fs_down_read(&F2FS_I(inode)->i_sem);
551 	set_inode_flag(inode, FI_MMAP_FILE);
552 	f2fs_up_read(&F2FS_I(inode)->i_sem);
553 
554 	return 0;
555 }
556 
557 static int f2fs_file_open(struct inode *inode, struct file *filp)
558 {
559 	int err = fscrypt_file_open(inode, filp);
560 
561 	if (err)
562 		return err;
563 
564 	if (!f2fs_is_compress_backend_ready(inode))
565 		return -EOPNOTSUPP;
566 
567 	err = fsverity_file_open(inode, filp);
568 	if (err)
569 		return err;
570 
571 	filp->f_mode |= FMODE_NOWAIT;
572 	filp->f_mode |= FMODE_CAN_ODIRECT;
573 
574 	return dquot_file_open(inode, filp);
575 }
576 
577 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
578 {
579 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
580 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
581 	__le32 *addr;
582 	bool compressed_cluster = false;
583 	int cluster_index = 0, valid_blocks = 0;
584 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
585 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
586 
587 	addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
588 
589 	/* Assumption: truncation starts with cluster */
590 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
591 		block_t blkaddr = le32_to_cpu(*addr);
592 
593 		if (f2fs_compressed_file(dn->inode) &&
594 					!(cluster_index & (cluster_size - 1))) {
595 			if (compressed_cluster)
596 				f2fs_i_compr_blocks_update(dn->inode,
597 							valid_blocks, false);
598 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
599 			valid_blocks = 0;
600 		}
601 
602 		if (blkaddr == NULL_ADDR)
603 			continue;
604 
605 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
606 
607 		if (__is_valid_data_blkaddr(blkaddr)) {
608 			if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
609 				continue;
610 			if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
611 						DATA_GENERIC_ENHANCE))
612 				continue;
613 			if (compressed_cluster)
614 				valid_blocks++;
615 		}
616 
617 		f2fs_invalidate_blocks(sbi, blkaddr);
618 
619 		if (!released || blkaddr != COMPRESS_ADDR)
620 			nr_free++;
621 	}
622 
623 	if (compressed_cluster)
624 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
625 
626 	if (nr_free) {
627 		pgoff_t fofs;
628 		/*
629 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
630 		 * we will invalidate all blkaddr in the whole range.
631 		 */
632 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
633 							dn->inode) + ofs;
634 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
635 		f2fs_update_age_extent_cache_range(dn, fofs, len);
636 		dec_valid_block_count(sbi, dn->inode, nr_free);
637 	}
638 	dn->ofs_in_node = ofs;
639 
640 	f2fs_update_time(sbi, REQ_TIME);
641 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
642 					 dn->ofs_in_node, nr_free);
643 }
644 
645 static int truncate_partial_data_page(struct inode *inode, u64 from,
646 								bool cache_only)
647 {
648 	loff_t offset = from & (PAGE_SIZE - 1);
649 	pgoff_t index = from >> PAGE_SHIFT;
650 	struct address_space *mapping = inode->i_mapping;
651 	struct page *page;
652 
653 	if (!offset && !cache_only)
654 		return 0;
655 
656 	if (cache_only) {
657 		page = find_lock_page(mapping, index);
658 		if (page && PageUptodate(page))
659 			goto truncate_out;
660 		f2fs_put_page(page, 1);
661 		return 0;
662 	}
663 
664 	page = f2fs_get_lock_data_page(inode, index, true);
665 	if (IS_ERR(page))
666 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
667 truncate_out:
668 	f2fs_wait_on_page_writeback(page, DATA, true, true);
669 	zero_user(page, offset, PAGE_SIZE - offset);
670 
671 	/* An encrypted inode should have a key and truncate the last page. */
672 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
673 	if (!cache_only)
674 		set_page_dirty(page);
675 	f2fs_put_page(page, 1);
676 	return 0;
677 }
678 
679 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
680 {
681 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
682 	struct dnode_of_data dn;
683 	pgoff_t free_from;
684 	int count = 0, err = 0;
685 	struct page *ipage;
686 	bool truncate_page = false;
687 
688 	trace_f2fs_truncate_blocks_enter(inode, from);
689 
690 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
691 
692 	if (free_from >= max_file_blocks(inode))
693 		goto free_partial;
694 
695 	if (lock)
696 		f2fs_lock_op(sbi);
697 
698 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
699 	if (IS_ERR(ipage)) {
700 		err = PTR_ERR(ipage);
701 		goto out;
702 	}
703 
704 	if (f2fs_has_inline_data(inode)) {
705 		f2fs_truncate_inline_inode(inode, ipage, from);
706 		f2fs_put_page(ipage, 1);
707 		truncate_page = true;
708 		goto out;
709 	}
710 
711 	set_new_dnode(&dn, inode, ipage, NULL, 0);
712 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
713 	if (err) {
714 		if (err == -ENOENT)
715 			goto free_next;
716 		goto out;
717 	}
718 
719 	count = ADDRS_PER_PAGE(dn.node_page, inode);
720 
721 	count -= dn.ofs_in_node;
722 	f2fs_bug_on(sbi, count < 0);
723 
724 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
725 		f2fs_truncate_data_blocks_range(&dn, count);
726 		free_from += count;
727 	}
728 
729 	f2fs_put_dnode(&dn);
730 free_next:
731 	err = f2fs_truncate_inode_blocks(inode, free_from);
732 out:
733 	if (lock)
734 		f2fs_unlock_op(sbi);
735 free_partial:
736 	/* lastly zero out the first data page */
737 	if (!err)
738 		err = truncate_partial_data_page(inode, from, truncate_page);
739 
740 	trace_f2fs_truncate_blocks_exit(inode, err);
741 	return err;
742 }
743 
744 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
745 {
746 	u64 free_from = from;
747 	int err;
748 
749 #ifdef CONFIG_F2FS_FS_COMPRESSION
750 	/*
751 	 * for compressed file, only support cluster size
752 	 * aligned truncation.
753 	 */
754 	if (f2fs_compressed_file(inode))
755 		free_from = round_up(from,
756 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
757 #endif
758 
759 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
760 	if (err)
761 		return err;
762 
763 #ifdef CONFIG_F2FS_FS_COMPRESSION
764 	/*
765 	 * For compressed file, after release compress blocks, don't allow write
766 	 * direct, but we should allow write direct after truncate to zero.
767 	 */
768 	if (f2fs_compressed_file(inode) && !free_from
769 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
770 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
771 
772 	if (from != free_from) {
773 		err = f2fs_truncate_partial_cluster(inode, from, lock);
774 		if (err)
775 			return err;
776 	}
777 #endif
778 
779 	return 0;
780 }
781 
782 int f2fs_truncate(struct inode *inode)
783 {
784 	int err;
785 
786 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
787 		return -EIO;
788 
789 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
790 				S_ISLNK(inode->i_mode)))
791 		return 0;
792 
793 	trace_f2fs_truncate(inode);
794 
795 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
796 		return -EIO;
797 
798 	err = f2fs_dquot_initialize(inode);
799 	if (err)
800 		return err;
801 
802 	/* we should check inline_data size */
803 	if (!f2fs_may_inline_data(inode)) {
804 		err = f2fs_convert_inline_inode(inode);
805 		if (err)
806 			return err;
807 	}
808 
809 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
810 	if (err)
811 		return err;
812 
813 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
814 	f2fs_mark_inode_dirty_sync(inode, false);
815 	return 0;
816 }
817 
818 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
819 {
820 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
821 
822 	if (!fscrypt_dio_supported(inode))
823 		return true;
824 	if (fsverity_active(inode))
825 		return true;
826 	if (f2fs_compressed_file(inode))
827 		return true;
828 
829 	/* disallow direct IO if any of devices has unaligned blksize */
830 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
831 		return true;
832 	/*
833 	 * for blkzoned device, fallback direct IO to buffered IO, so
834 	 * all IOs can be serialized by log-structured write.
835 	 */
836 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
837 	    !f2fs_is_pinned_file(inode))
838 		return true;
839 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
840 		return true;
841 
842 	return false;
843 }
844 
845 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
846 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
847 {
848 	struct inode *inode = d_inode(path->dentry);
849 	struct f2fs_inode_info *fi = F2FS_I(inode);
850 	struct f2fs_inode *ri = NULL;
851 	unsigned int flags;
852 
853 	if (f2fs_has_extra_attr(inode) &&
854 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
855 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
856 		stat->result_mask |= STATX_BTIME;
857 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
858 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
859 	}
860 
861 	/*
862 	 * Return the DIO alignment restrictions if requested.  We only return
863 	 * this information when requested, since on encrypted files it might
864 	 * take a fair bit of work to get if the file wasn't opened recently.
865 	 *
866 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
867 	 * cannot represent that, so in that case we report no DIO support.
868 	 */
869 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
870 		unsigned int bsize = i_blocksize(inode);
871 
872 		stat->result_mask |= STATX_DIOALIGN;
873 		if (!f2fs_force_buffered_io(inode, WRITE)) {
874 			stat->dio_mem_align = bsize;
875 			stat->dio_offset_align = bsize;
876 		}
877 	}
878 
879 	flags = fi->i_flags;
880 	if (flags & F2FS_COMPR_FL)
881 		stat->attributes |= STATX_ATTR_COMPRESSED;
882 	if (flags & F2FS_APPEND_FL)
883 		stat->attributes |= STATX_ATTR_APPEND;
884 	if (IS_ENCRYPTED(inode))
885 		stat->attributes |= STATX_ATTR_ENCRYPTED;
886 	if (flags & F2FS_IMMUTABLE_FL)
887 		stat->attributes |= STATX_ATTR_IMMUTABLE;
888 	if (flags & F2FS_NODUMP_FL)
889 		stat->attributes |= STATX_ATTR_NODUMP;
890 	if (IS_VERITY(inode))
891 		stat->attributes |= STATX_ATTR_VERITY;
892 
893 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
894 				  STATX_ATTR_APPEND |
895 				  STATX_ATTR_ENCRYPTED |
896 				  STATX_ATTR_IMMUTABLE |
897 				  STATX_ATTR_NODUMP |
898 				  STATX_ATTR_VERITY);
899 
900 	generic_fillattr(idmap, request_mask, inode, stat);
901 
902 	/* we need to show initial sectors used for inline_data/dentries */
903 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
904 					f2fs_has_inline_dentry(inode))
905 		stat->blocks += (stat->size + 511) >> 9;
906 
907 	return 0;
908 }
909 
910 #ifdef CONFIG_F2FS_FS_POSIX_ACL
911 static void __setattr_copy(struct mnt_idmap *idmap,
912 			   struct inode *inode, const struct iattr *attr)
913 {
914 	unsigned int ia_valid = attr->ia_valid;
915 
916 	i_uid_update(idmap, attr, inode);
917 	i_gid_update(idmap, attr, inode);
918 	if (ia_valid & ATTR_ATIME)
919 		inode_set_atime_to_ts(inode, attr->ia_atime);
920 	if (ia_valid & ATTR_MTIME)
921 		inode_set_mtime_to_ts(inode, attr->ia_mtime);
922 	if (ia_valid & ATTR_CTIME)
923 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
924 	if (ia_valid & ATTR_MODE) {
925 		umode_t mode = attr->ia_mode;
926 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
927 
928 		if (!vfsgid_in_group_p(vfsgid) &&
929 		    !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
930 			mode &= ~S_ISGID;
931 		set_acl_inode(inode, mode);
932 	}
933 }
934 #else
935 #define __setattr_copy setattr_copy
936 #endif
937 
938 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
939 		 struct iattr *attr)
940 {
941 	struct inode *inode = d_inode(dentry);
942 	int err;
943 
944 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
945 		return -EIO;
946 
947 	if (unlikely(IS_IMMUTABLE(inode)))
948 		return -EPERM;
949 
950 	if (unlikely(IS_APPEND(inode) &&
951 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
952 				  ATTR_GID | ATTR_TIMES_SET))))
953 		return -EPERM;
954 
955 	if ((attr->ia_valid & ATTR_SIZE)) {
956 		if (!f2fs_is_compress_backend_ready(inode))
957 			return -EOPNOTSUPP;
958 		if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
959 			!IS_ALIGNED(attr->ia_size,
960 			F2FS_BLK_TO_BYTES(F2FS_I(inode)->i_cluster_size)))
961 			return -EINVAL;
962 	}
963 
964 	err = setattr_prepare(idmap, dentry, attr);
965 	if (err)
966 		return err;
967 
968 	err = fscrypt_prepare_setattr(dentry, attr);
969 	if (err)
970 		return err;
971 
972 	err = fsverity_prepare_setattr(dentry, attr);
973 	if (err)
974 		return err;
975 
976 	if (is_quota_modification(idmap, inode, attr)) {
977 		err = f2fs_dquot_initialize(inode);
978 		if (err)
979 			return err;
980 	}
981 	if (i_uid_needs_update(idmap, attr, inode) ||
982 	    i_gid_needs_update(idmap, attr, inode)) {
983 		f2fs_lock_op(F2FS_I_SB(inode));
984 		err = dquot_transfer(idmap, inode, attr);
985 		if (err) {
986 			set_sbi_flag(F2FS_I_SB(inode),
987 					SBI_QUOTA_NEED_REPAIR);
988 			f2fs_unlock_op(F2FS_I_SB(inode));
989 			return err;
990 		}
991 		/*
992 		 * update uid/gid under lock_op(), so that dquot and inode can
993 		 * be updated atomically.
994 		 */
995 		i_uid_update(idmap, attr, inode);
996 		i_gid_update(idmap, attr, inode);
997 		f2fs_mark_inode_dirty_sync(inode, true);
998 		f2fs_unlock_op(F2FS_I_SB(inode));
999 	}
1000 
1001 	if (attr->ia_valid & ATTR_SIZE) {
1002 		loff_t old_size = i_size_read(inode);
1003 
1004 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1005 			/*
1006 			 * should convert inline inode before i_size_write to
1007 			 * keep smaller than inline_data size with inline flag.
1008 			 */
1009 			err = f2fs_convert_inline_inode(inode);
1010 			if (err)
1011 				return err;
1012 		}
1013 
1014 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1015 		filemap_invalidate_lock(inode->i_mapping);
1016 
1017 		truncate_setsize(inode, attr->ia_size);
1018 
1019 		if (attr->ia_size <= old_size)
1020 			err = f2fs_truncate(inode);
1021 		/*
1022 		 * do not trim all blocks after i_size if target size is
1023 		 * larger than i_size.
1024 		 */
1025 		filemap_invalidate_unlock(inode->i_mapping);
1026 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1027 		if (err)
1028 			return err;
1029 
1030 		spin_lock(&F2FS_I(inode)->i_size_lock);
1031 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1032 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1033 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1034 	}
1035 
1036 	__setattr_copy(idmap, inode, attr);
1037 
1038 	if (attr->ia_valid & ATTR_MODE) {
1039 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1040 
1041 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1042 			if (!err)
1043 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1044 			clear_inode_flag(inode, FI_ACL_MODE);
1045 		}
1046 	}
1047 
1048 	/* file size may changed here */
1049 	f2fs_mark_inode_dirty_sync(inode, true);
1050 
1051 	/* inode change will produce dirty node pages flushed by checkpoint */
1052 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1053 
1054 	return err;
1055 }
1056 
1057 const struct inode_operations f2fs_file_inode_operations = {
1058 	.getattr	= f2fs_getattr,
1059 	.setattr	= f2fs_setattr,
1060 	.get_inode_acl	= f2fs_get_acl,
1061 	.set_acl	= f2fs_set_acl,
1062 	.listxattr	= f2fs_listxattr,
1063 	.fiemap		= f2fs_fiemap,
1064 	.fileattr_get	= f2fs_fileattr_get,
1065 	.fileattr_set	= f2fs_fileattr_set,
1066 };
1067 
1068 static int fill_zero(struct inode *inode, pgoff_t index,
1069 					loff_t start, loff_t len)
1070 {
1071 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1072 	struct page *page;
1073 
1074 	if (!len)
1075 		return 0;
1076 
1077 	f2fs_balance_fs(sbi, true);
1078 
1079 	f2fs_lock_op(sbi);
1080 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1081 	f2fs_unlock_op(sbi);
1082 
1083 	if (IS_ERR(page))
1084 		return PTR_ERR(page);
1085 
1086 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1087 	zero_user(page, start, len);
1088 	set_page_dirty(page);
1089 	f2fs_put_page(page, 1);
1090 	return 0;
1091 }
1092 
1093 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1094 {
1095 	int err;
1096 
1097 	while (pg_start < pg_end) {
1098 		struct dnode_of_data dn;
1099 		pgoff_t end_offset, count;
1100 
1101 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1102 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1103 		if (err) {
1104 			if (err == -ENOENT) {
1105 				pg_start = f2fs_get_next_page_offset(&dn,
1106 								pg_start);
1107 				continue;
1108 			}
1109 			return err;
1110 		}
1111 
1112 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1113 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1114 
1115 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1116 
1117 		f2fs_truncate_data_blocks_range(&dn, count);
1118 		f2fs_put_dnode(&dn);
1119 
1120 		pg_start += count;
1121 	}
1122 	return 0;
1123 }
1124 
1125 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1126 {
1127 	pgoff_t pg_start, pg_end;
1128 	loff_t off_start, off_end;
1129 	int ret;
1130 
1131 	ret = f2fs_convert_inline_inode(inode);
1132 	if (ret)
1133 		return ret;
1134 
1135 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1136 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1137 
1138 	off_start = offset & (PAGE_SIZE - 1);
1139 	off_end = (offset + len) & (PAGE_SIZE - 1);
1140 
1141 	if (pg_start == pg_end) {
1142 		ret = fill_zero(inode, pg_start, off_start,
1143 						off_end - off_start);
1144 		if (ret)
1145 			return ret;
1146 	} else {
1147 		if (off_start) {
1148 			ret = fill_zero(inode, pg_start++, off_start,
1149 						PAGE_SIZE - off_start);
1150 			if (ret)
1151 				return ret;
1152 		}
1153 		if (off_end) {
1154 			ret = fill_zero(inode, pg_end, 0, off_end);
1155 			if (ret)
1156 				return ret;
1157 		}
1158 
1159 		if (pg_start < pg_end) {
1160 			loff_t blk_start, blk_end;
1161 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1162 
1163 			f2fs_balance_fs(sbi, true);
1164 
1165 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1166 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1167 
1168 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1169 			filemap_invalidate_lock(inode->i_mapping);
1170 
1171 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1172 
1173 			f2fs_lock_op(sbi);
1174 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1175 			f2fs_unlock_op(sbi);
1176 
1177 			filemap_invalidate_unlock(inode->i_mapping);
1178 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1179 		}
1180 	}
1181 
1182 	return ret;
1183 }
1184 
1185 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1186 				int *do_replace, pgoff_t off, pgoff_t len)
1187 {
1188 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1189 	struct dnode_of_data dn;
1190 	int ret, done, i;
1191 
1192 next_dnode:
1193 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1194 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1195 	if (ret && ret != -ENOENT) {
1196 		return ret;
1197 	} else if (ret == -ENOENT) {
1198 		if (dn.max_level == 0)
1199 			return -ENOENT;
1200 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1201 						dn.ofs_in_node, len);
1202 		blkaddr += done;
1203 		do_replace += done;
1204 		goto next;
1205 	}
1206 
1207 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1208 							dn.ofs_in_node, len);
1209 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1210 		*blkaddr = f2fs_data_blkaddr(&dn);
1211 
1212 		if (__is_valid_data_blkaddr(*blkaddr) &&
1213 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1214 					DATA_GENERIC_ENHANCE)) {
1215 			f2fs_put_dnode(&dn);
1216 			return -EFSCORRUPTED;
1217 		}
1218 
1219 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1220 
1221 			if (f2fs_lfs_mode(sbi)) {
1222 				f2fs_put_dnode(&dn);
1223 				return -EOPNOTSUPP;
1224 			}
1225 
1226 			/* do not invalidate this block address */
1227 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1228 			*do_replace = 1;
1229 		}
1230 	}
1231 	f2fs_put_dnode(&dn);
1232 next:
1233 	len -= done;
1234 	off += done;
1235 	if (len)
1236 		goto next_dnode;
1237 	return 0;
1238 }
1239 
1240 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1241 				int *do_replace, pgoff_t off, int len)
1242 {
1243 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1244 	struct dnode_of_data dn;
1245 	int ret, i;
1246 
1247 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1248 		if (*do_replace == 0)
1249 			continue;
1250 
1251 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1252 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1253 		if (ret) {
1254 			dec_valid_block_count(sbi, inode, 1);
1255 			f2fs_invalidate_blocks(sbi, *blkaddr);
1256 		} else {
1257 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1258 		}
1259 		f2fs_put_dnode(&dn);
1260 	}
1261 	return 0;
1262 }
1263 
1264 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1265 			block_t *blkaddr, int *do_replace,
1266 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1267 {
1268 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1269 	pgoff_t i = 0;
1270 	int ret;
1271 
1272 	while (i < len) {
1273 		if (blkaddr[i] == NULL_ADDR && !full) {
1274 			i++;
1275 			continue;
1276 		}
1277 
1278 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1279 			struct dnode_of_data dn;
1280 			struct node_info ni;
1281 			size_t new_size;
1282 			pgoff_t ilen;
1283 
1284 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1285 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1286 			if (ret)
1287 				return ret;
1288 
1289 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1290 			if (ret) {
1291 				f2fs_put_dnode(&dn);
1292 				return ret;
1293 			}
1294 
1295 			ilen = min((pgoff_t)
1296 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1297 						dn.ofs_in_node, len - i);
1298 			do {
1299 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1300 				f2fs_truncate_data_blocks_range(&dn, 1);
1301 
1302 				if (do_replace[i]) {
1303 					f2fs_i_blocks_write(src_inode,
1304 							1, false, false);
1305 					f2fs_i_blocks_write(dst_inode,
1306 							1, true, false);
1307 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1308 					blkaddr[i], ni.version, true, false);
1309 
1310 					do_replace[i] = 0;
1311 				}
1312 				dn.ofs_in_node++;
1313 				i++;
1314 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1315 				if (dst_inode->i_size < new_size)
1316 					f2fs_i_size_write(dst_inode, new_size);
1317 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1318 
1319 			f2fs_put_dnode(&dn);
1320 		} else {
1321 			struct page *psrc, *pdst;
1322 
1323 			psrc = f2fs_get_lock_data_page(src_inode,
1324 							src + i, true);
1325 			if (IS_ERR(psrc))
1326 				return PTR_ERR(psrc);
1327 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1328 								true);
1329 			if (IS_ERR(pdst)) {
1330 				f2fs_put_page(psrc, 1);
1331 				return PTR_ERR(pdst);
1332 			}
1333 
1334 			f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1335 
1336 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1337 			set_page_dirty(pdst);
1338 			set_page_private_gcing(pdst);
1339 			f2fs_put_page(pdst, 1);
1340 			f2fs_put_page(psrc, 1);
1341 
1342 			ret = f2fs_truncate_hole(src_inode,
1343 						src + i, src + i + 1);
1344 			if (ret)
1345 				return ret;
1346 			i++;
1347 		}
1348 	}
1349 	return 0;
1350 }
1351 
1352 static int __exchange_data_block(struct inode *src_inode,
1353 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1354 			pgoff_t len, bool full)
1355 {
1356 	block_t *src_blkaddr;
1357 	int *do_replace;
1358 	pgoff_t olen;
1359 	int ret;
1360 
1361 	while (len) {
1362 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1363 
1364 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1365 					array_size(olen, sizeof(block_t)),
1366 					GFP_NOFS);
1367 		if (!src_blkaddr)
1368 			return -ENOMEM;
1369 
1370 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1371 					array_size(olen, sizeof(int)),
1372 					GFP_NOFS);
1373 		if (!do_replace) {
1374 			kvfree(src_blkaddr);
1375 			return -ENOMEM;
1376 		}
1377 
1378 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1379 					do_replace, src, olen);
1380 		if (ret)
1381 			goto roll_back;
1382 
1383 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1384 					do_replace, src, dst, olen, full);
1385 		if (ret)
1386 			goto roll_back;
1387 
1388 		src += olen;
1389 		dst += olen;
1390 		len -= olen;
1391 
1392 		kvfree(src_blkaddr);
1393 		kvfree(do_replace);
1394 	}
1395 	return 0;
1396 
1397 roll_back:
1398 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1399 	kvfree(src_blkaddr);
1400 	kvfree(do_replace);
1401 	return ret;
1402 }
1403 
1404 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1405 {
1406 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1407 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1408 	pgoff_t start = offset >> PAGE_SHIFT;
1409 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1410 	int ret;
1411 
1412 	f2fs_balance_fs(sbi, true);
1413 
1414 	/* avoid gc operation during block exchange */
1415 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1416 	filemap_invalidate_lock(inode->i_mapping);
1417 
1418 	f2fs_lock_op(sbi);
1419 	f2fs_drop_extent_tree(inode);
1420 	truncate_pagecache(inode, offset);
1421 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1422 	f2fs_unlock_op(sbi);
1423 
1424 	filemap_invalidate_unlock(inode->i_mapping);
1425 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1426 	return ret;
1427 }
1428 
1429 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1430 {
1431 	loff_t new_size;
1432 	int ret;
1433 
1434 	if (offset + len >= i_size_read(inode))
1435 		return -EINVAL;
1436 
1437 	/* collapse range should be aligned to block size of f2fs. */
1438 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1439 		return -EINVAL;
1440 
1441 	ret = f2fs_convert_inline_inode(inode);
1442 	if (ret)
1443 		return ret;
1444 
1445 	/* write out all dirty pages from offset */
1446 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1447 	if (ret)
1448 		return ret;
1449 
1450 	ret = f2fs_do_collapse(inode, offset, len);
1451 	if (ret)
1452 		return ret;
1453 
1454 	/* write out all moved pages, if possible */
1455 	filemap_invalidate_lock(inode->i_mapping);
1456 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1457 	truncate_pagecache(inode, offset);
1458 
1459 	new_size = i_size_read(inode) - len;
1460 	ret = f2fs_truncate_blocks(inode, new_size, true);
1461 	filemap_invalidate_unlock(inode->i_mapping);
1462 	if (!ret)
1463 		f2fs_i_size_write(inode, new_size);
1464 	return ret;
1465 }
1466 
1467 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1468 								pgoff_t end)
1469 {
1470 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1471 	pgoff_t index = start;
1472 	unsigned int ofs_in_node = dn->ofs_in_node;
1473 	blkcnt_t count = 0;
1474 	int ret;
1475 
1476 	for (; index < end; index++, dn->ofs_in_node++) {
1477 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1478 			count++;
1479 	}
1480 
1481 	dn->ofs_in_node = ofs_in_node;
1482 	ret = f2fs_reserve_new_blocks(dn, count);
1483 	if (ret)
1484 		return ret;
1485 
1486 	dn->ofs_in_node = ofs_in_node;
1487 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1488 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1489 		/*
1490 		 * f2fs_reserve_new_blocks will not guarantee entire block
1491 		 * allocation.
1492 		 */
1493 		if (dn->data_blkaddr == NULL_ADDR) {
1494 			ret = -ENOSPC;
1495 			break;
1496 		}
1497 
1498 		if (dn->data_blkaddr == NEW_ADDR)
1499 			continue;
1500 
1501 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1502 					DATA_GENERIC_ENHANCE)) {
1503 			ret = -EFSCORRUPTED;
1504 			break;
1505 		}
1506 
1507 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1508 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1509 	}
1510 
1511 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1512 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1513 
1514 	return ret;
1515 }
1516 
1517 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1518 								int mode)
1519 {
1520 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1521 	struct address_space *mapping = inode->i_mapping;
1522 	pgoff_t index, pg_start, pg_end;
1523 	loff_t new_size = i_size_read(inode);
1524 	loff_t off_start, off_end;
1525 	int ret = 0;
1526 
1527 	ret = inode_newsize_ok(inode, (len + offset));
1528 	if (ret)
1529 		return ret;
1530 
1531 	ret = f2fs_convert_inline_inode(inode);
1532 	if (ret)
1533 		return ret;
1534 
1535 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1536 	if (ret)
1537 		return ret;
1538 
1539 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1540 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1541 
1542 	off_start = offset & (PAGE_SIZE - 1);
1543 	off_end = (offset + len) & (PAGE_SIZE - 1);
1544 
1545 	if (pg_start == pg_end) {
1546 		ret = fill_zero(inode, pg_start, off_start,
1547 						off_end - off_start);
1548 		if (ret)
1549 			return ret;
1550 
1551 		new_size = max_t(loff_t, new_size, offset + len);
1552 	} else {
1553 		if (off_start) {
1554 			ret = fill_zero(inode, pg_start++, off_start,
1555 						PAGE_SIZE - off_start);
1556 			if (ret)
1557 				return ret;
1558 
1559 			new_size = max_t(loff_t, new_size,
1560 					(loff_t)pg_start << PAGE_SHIFT);
1561 		}
1562 
1563 		for (index = pg_start; index < pg_end;) {
1564 			struct dnode_of_data dn;
1565 			unsigned int end_offset;
1566 			pgoff_t end;
1567 
1568 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1569 			filemap_invalidate_lock(mapping);
1570 
1571 			truncate_pagecache_range(inode,
1572 				(loff_t)index << PAGE_SHIFT,
1573 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1574 
1575 			f2fs_lock_op(sbi);
1576 
1577 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1578 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1579 			if (ret) {
1580 				f2fs_unlock_op(sbi);
1581 				filemap_invalidate_unlock(mapping);
1582 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1583 				goto out;
1584 			}
1585 
1586 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1587 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1588 
1589 			ret = f2fs_do_zero_range(&dn, index, end);
1590 			f2fs_put_dnode(&dn);
1591 
1592 			f2fs_unlock_op(sbi);
1593 			filemap_invalidate_unlock(mapping);
1594 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1595 
1596 			f2fs_balance_fs(sbi, dn.node_changed);
1597 
1598 			if (ret)
1599 				goto out;
1600 
1601 			index = end;
1602 			new_size = max_t(loff_t, new_size,
1603 					(loff_t)index << PAGE_SHIFT);
1604 		}
1605 
1606 		if (off_end) {
1607 			ret = fill_zero(inode, pg_end, 0, off_end);
1608 			if (ret)
1609 				goto out;
1610 
1611 			new_size = max_t(loff_t, new_size, offset + len);
1612 		}
1613 	}
1614 
1615 out:
1616 	if (new_size > i_size_read(inode)) {
1617 		if (mode & FALLOC_FL_KEEP_SIZE)
1618 			file_set_keep_isize(inode);
1619 		else
1620 			f2fs_i_size_write(inode, new_size);
1621 	}
1622 	return ret;
1623 }
1624 
1625 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1626 {
1627 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1628 	struct address_space *mapping = inode->i_mapping;
1629 	pgoff_t nr, pg_start, pg_end, delta, idx;
1630 	loff_t new_size;
1631 	int ret = 0;
1632 
1633 	new_size = i_size_read(inode) + len;
1634 	ret = inode_newsize_ok(inode, new_size);
1635 	if (ret)
1636 		return ret;
1637 
1638 	if (offset >= i_size_read(inode))
1639 		return -EINVAL;
1640 
1641 	/* insert range should be aligned to block size of f2fs. */
1642 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1643 		return -EINVAL;
1644 
1645 	ret = f2fs_convert_inline_inode(inode);
1646 	if (ret)
1647 		return ret;
1648 
1649 	f2fs_balance_fs(sbi, true);
1650 
1651 	filemap_invalidate_lock(mapping);
1652 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1653 	filemap_invalidate_unlock(mapping);
1654 	if (ret)
1655 		return ret;
1656 
1657 	/* write out all dirty pages from offset */
1658 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1659 	if (ret)
1660 		return ret;
1661 
1662 	pg_start = offset >> PAGE_SHIFT;
1663 	pg_end = (offset + len) >> PAGE_SHIFT;
1664 	delta = pg_end - pg_start;
1665 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1666 
1667 	/* avoid gc operation during block exchange */
1668 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1669 	filemap_invalidate_lock(mapping);
1670 	truncate_pagecache(inode, offset);
1671 
1672 	while (!ret && idx > pg_start) {
1673 		nr = idx - pg_start;
1674 		if (nr > delta)
1675 			nr = delta;
1676 		idx -= nr;
1677 
1678 		f2fs_lock_op(sbi);
1679 		f2fs_drop_extent_tree(inode);
1680 
1681 		ret = __exchange_data_block(inode, inode, idx,
1682 					idx + delta, nr, false);
1683 		f2fs_unlock_op(sbi);
1684 	}
1685 	filemap_invalidate_unlock(mapping);
1686 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1687 	if (ret)
1688 		return ret;
1689 
1690 	/* write out all moved pages, if possible */
1691 	filemap_invalidate_lock(mapping);
1692 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1693 	truncate_pagecache(inode, offset);
1694 	filemap_invalidate_unlock(mapping);
1695 
1696 	if (!ret)
1697 		f2fs_i_size_write(inode, new_size);
1698 	return ret;
1699 }
1700 
1701 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1702 					loff_t len, int mode)
1703 {
1704 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1705 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1706 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1707 			.m_may_create = true };
1708 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1709 			.init_gc_type = FG_GC,
1710 			.should_migrate_blocks = false,
1711 			.err_gc_skipped = true,
1712 			.nr_free_secs = 0 };
1713 	pgoff_t pg_start, pg_end;
1714 	loff_t new_size;
1715 	loff_t off_end;
1716 	block_t expanded = 0;
1717 	int err;
1718 
1719 	err = inode_newsize_ok(inode, (len + offset));
1720 	if (err)
1721 		return err;
1722 
1723 	err = f2fs_convert_inline_inode(inode);
1724 	if (err)
1725 		return err;
1726 
1727 	f2fs_balance_fs(sbi, true);
1728 
1729 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1730 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1731 	off_end = (offset + len) & (PAGE_SIZE - 1);
1732 
1733 	map.m_lblk = pg_start;
1734 	map.m_len = pg_end - pg_start;
1735 	if (off_end)
1736 		map.m_len++;
1737 
1738 	if (!map.m_len)
1739 		return 0;
1740 
1741 	if (f2fs_is_pinned_file(inode)) {
1742 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1743 		block_t sec_len = roundup(map.m_len, sec_blks);
1744 
1745 		map.m_len = sec_blks;
1746 next_alloc:
1747 		if (has_not_enough_free_secs(sbi, 0,
1748 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1749 			f2fs_down_write(&sbi->gc_lock);
1750 			stat_inc_gc_call_count(sbi, FOREGROUND);
1751 			err = f2fs_gc(sbi, &gc_control);
1752 			if (err && err != -ENODATA)
1753 				goto out_err;
1754 		}
1755 
1756 		f2fs_down_write(&sbi->pin_sem);
1757 
1758 		err = f2fs_allocate_pinning_section(sbi);
1759 		if (err) {
1760 			f2fs_up_write(&sbi->pin_sem);
1761 			goto out_err;
1762 		}
1763 
1764 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1765 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1766 		file_dont_truncate(inode);
1767 
1768 		f2fs_up_write(&sbi->pin_sem);
1769 
1770 		expanded += map.m_len;
1771 		sec_len -= map.m_len;
1772 		map.m_lblk += map.m_len;
1773 		if (!err && sec_len)
1774 			goto next_alloc;
1775 
1776 		map.m_len = expanded;
1777 	} else {
1778 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1779 		expanded = map.m_len;
1780 	}
1781 out_err:
1782 	if (err) {
1783 		pgoff_t last_off;
1784 
1785 		if (!expanded)
1786 			return err;
1787 
1788 		last_off = pg_start + expanded - 1;
1789 
1790 		/* update new size to the failed position */
1791 		new_size = (last_off == pg_end) ? offset + len :
1792 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1793 	} else {
1794 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1795 	}
1796 
1797 	if (new_size > i_size_read(inode)) {
1798 		if (mode & FALLOC_FL_KEEP_SIZE)
1799 			file_set_keep_isize(inode);
1800 		else
1801 			f2fs_i_size_write(inode, new_size);
1802 	}
1803 
1804 	return err;
1805 }
1806 
1807 static long f2fs_fallocate(struct file *file, int mode,
1808 				loff_t offset, loff_t len)
1809 {
1810 	struct inode *inode = file_inode(file);
1811 	long ret = 0;
1812 
1813 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1814 		return -EIO;
1815 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1816 		return -ENOSPC;
1817 	if (!f2fs_is_compress_backend_ready(inode))
1818 		return -EOPNOTSUPP;
1819 
1820 	/* f2fs only support ->fallocate for regular file */
1821 	if (!S_ISREG(inode->i_mode))
1822 		return -EINVAL;
1823 
1824 	if (IS_ENCRYPTED(inode) &&
1825 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1826 		return -EOPNOTSUPP;
1827 
1828 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1829 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1830 			FALLOC_FL_INSERT_RANGE))
1831 		return -EOPNOTSUPP;
1832 
1833 	inode_lock(inode);
1834 
1835 	/*
1836 	 * Pinned file should not support partial truncation since the block
1837 	 * can be used by applications.
1838 	 */
1839 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1840 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1841 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1842 		ret = -EOPNOTSUPP;
1843 		goto out;
1844 	}
1845 
1846 	ret = file_modified(file);
1847 	if (ret)
1848 		goto out;
1849 
1850 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1851 		if (offset >= inode->i_size)
1852 			goto out;
1853 
1854 		ret = f2fs_punch_hole(inode, offset, len);
1855 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1856 		ret = f2fs_collapse_range(inode, offset, len);
1857 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1858 		ret = f2fs_zero_range(inode, offset, len, mode);
1859 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1860 		ret = f2fs_insert_range(inode, offset, len);
1861 	} else {
1862 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1863 	}
1864 
1865 	if (!ret) {
1866 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1867 		f2fs_mark_inode_dirty_sync(inode, false);
1868 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1869 	}
1870 
1871 out:
1872 	inode_unlock(inode);
1873 
1874 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1875 	return ret;
1876 }
1877 
1878 static int f2fs_release_file(struct inode *inode, struct file *filp)
1879 {
1880 	/*
1881 	 * f2fs_release_file is called at every close calls. So we should
1882 	 * not drop any inmemory pages by close called by other process.
1883 	 */
1884 	if (!(filp->f_mode & FMODE_WRITE) ||
1885 			atomic_read(&inode->i_writecount) != 1)
1886 		return 0;
1887 
1888 	inode_lock(inode);
1889 	f2fs_abort_atomic_write(inode, true);
1890 	inode_unlock(inode);
1891 
1892 	return 0;
1893 }
1894 
1895 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1896 {
1897 	struct inode *inode = file_inode(file);
1898 
1899 	/*
1900 	 * If the process doing a transaction is crashed, we should do
1901 	 * roll-back. Otherwise, other reader/write can see corrupted database
1902 	 * until all the writers close its file. Since this should be done
1903 	 * before dropping file lock, it needs to do in ->flush.
1904 	 */
1905 	if (F2FS_I(inode)->atomic_write_task == current &&
1906 				(current->flags & PF_EXITING)) {
1907 		inode_lock(inode);
1908 		f2fs_abort_atomic_write(inode, true);
1909 		inode_unlock(inode);
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1916 {
1917 	struct f2fs_inode_info *fi = F2FS_I(inode);
1918 	u32 masked_flags = fi->i_flags & mask;
1919 
1920 	/* mask can be shrunk by flags_valid selector */
1921 	iflags &= mask;
1922 
1923 	/* Is it quota file? Do not allow user to mess with it */
1924 	if (IS_NOQUOTA(inode))
1925 		return -EPERM;
1926 
1927 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1928 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1929 			return -EOPNOTSUPP;
1930 		if (!f2fs_empty_dir(inode))
1931 			return -ENOTEMPTY;
1932 	}
1933 
1934 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1935 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1936 			return -EOPNOTSUPP;
1937 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1938 			return -EINVAL;
1939 	}
1940 
1941 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1942 		if (masked_flags & F2FS_COMPR_FL) {
1943 			if (!f2fs_disable_compressed_file(inode))
1944 				return -EINVAL;
1945 		} else {
1946 			/* try to convert inline_data to support compression */
1947 			int err = f2fs_convert_inline_inode(inode);
1948 			if (err)
1949 				return err;
1950 
1951 			f2fs_down_write(&F2FS_I(inode)->i_sem);
1952 			if (!f2fs_may_compress(inode) ||
1953 					(S_ISREG(inode->i_mode) &&
1954 					F2FS_HAS_BLOCKS(inode))) {
1955 				f2fs_up_write(&F2FS_I(inode)->i_sem);
1956 				return -EINVAL;
1957 			}
1958 			err = set_compress_context(inode);
1959 			f2fs_up_write(&F2FS_I(inode)->i_sem);
1960 
1961 			if (err)
1962 				return err;
1963 		}
1964 	}
1965 
1966 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1967 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1968 					(fi->i_flags & F2FS_NOCOMP_FL));
1969 
1970 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1971 		set_inode_flag(inode, FI_PROJ_INHERIT);
1972 	else
1973 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1974 
1975 	inode_set_ctime_current(inode);
1976 	f2fs_set_inode_flags(inode);
1977 	f2fs_mark_inode_dirty_sync(inode, true);
1978 	return 0;
1979 }
1980 
1981 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1982 
1983 /*
1984  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1985  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1986  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1987  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1988  *
1989  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1990  * FS_IOC_FSSETXATTR is done by the VFS.
1991  */
1992 
1993 static const struct {
1994 	u32 iflag;
1995 	u32 fsflag;
1996 } f2fs_fsflags_map[] = {
1997 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1998 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1999 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
2000 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
2001 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
2002 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
2003 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
2004 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
2005 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
2006 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
2007 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
2008 };
2009 
2010 #define F2FS_GETTABLE_FS_FL (		\
2011 		FS_COMPR_FL |		\
2012 		FS_SYNC_FL |		\
2013 		FS_IMMUTABLE_FL |	\
2014 		FS_APPEND_FL |		\
2015 		FS_NODUMP_FL |		\
2016 		FS_NOATIME_FL |		\
2017 		FS_NOCOMP_FL |		\
2018 		FS_INDEX_FL |		\
2019 		FS_DIRSYNC_FL |		\
2020 		FS_PROJINHERIT_FL |	\
2021 		FS_ENCRYPT_FL |		\
2022 		FS_INLINE_DATA_FL |	\
2023 		FS_NOCOW_FL |		\
2024 		FS_VERITY_FL |		\
2025 		FS_CASEFOLD_FL)
2026 
2027 #define F2FS_SETTABLE_FS_FL (		\
2028 		FS_COMPR_FL |		\
2029 		FS_SYNC_FL |		\
2030 		FS_IMMUTABLE_FL |	\
2031 		FS_APPEND_FL |		\
2032 		FS_NODUMP_FL |		\
2033 		FS_NOATIME_FL |		\
2034 		FS_NOCOMP_FL |		\
2035 		FS_DIRSYNC_FL |		\
2036 		FS_PROJINHERIT_FL |	\
2037 		FS_CASEFOLD_FL)
2038 
2039 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2040 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2041 {
2042 	u32 fsflags = 0;
2043 	int i;
2044 
2045 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2046 		if (iflags & f2fs_fsflags_map[i].iflag)
2047 			fsflags |= f2fs_fsflags_map[i].fsflag;
2048 
2049 	return fsflags;
2050 }
2051 
2052 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2053 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2054 {
2055 	u32 iflags = 0;
2056 	int i;
2057 
2058 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2059 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2060 			iflags |= f2fs_fsflags_map[i].iflag;
2061 
2062 	return iflags;
2063 }
2064 
2065 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2066 {
2067 	struct inode *inode = file_inode(filp);
2068 
2069 	return put_user(inode->i_generation, (int __user *)arg);
2070 }
2071 
2072 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2073 {
2074 	struct inode *inode = file_inode(filp);
2075 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2076 	struct f2fs_inode_info *fi = F2FS_I(inode);
2077 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2078 	struct inode *pinode;
2079 	loff_t isize;
2080 	int ret;
2081 
2082 	if (!inode_owner_or_capable(idmap, inode))
2083 		return -EACCES;
2084 
2085 	if (!S_ISREG(inode->i_mode))
2086 		return -EINVAL;
2087 
2088 	if (filp->f_flags & O_DIRECT)
2089 		return -EINVAL;
2090 
2091 	ret = mnt_want_write_file(filp);
2092 	if (ret)
2093 		return ret;
2094 
2095 	inode_lock(inode);
2096 
2097 	if (!f2fs_disable_compressed_file(inode) ||
2098 			f2fs_is_pinned_file(inode)) {
2099 		ret = -EINVAL;
2100 		goto out;
2101 	}
2102 
2103 	if (f2fs_is_atomic_file(inode))
2104 		goto out;
2105 
2106 	ret = f2fs_convert_inline_inode(inode);
2107 	if (ret)
2108 		goto out;
2109 
2110 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2111 
2112 	/*
2113 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2114 	 * f2fs_is_atomic_file.
2115 	 */
2116 	if (get_dirty_pages(inode))
2117 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2118 			  inode->i_ino, get_dirty_pages(inode));
2119 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2120 	if (ret) {
2121 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2122 		goto out;
2123 	}
2124 
2125 	/* Check if the inode already has a COW inode */
2126 	if (fi->cow_inode == NULL) {
2127 		/* Create a COW inode for atomic write */
2128 		pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2129 		if (IS_ERR(pinode)) {
2130 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2131 			ret = PTR_ERR(pinode);
2132 			goto out;
2133 		}
2134 
2135 		ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2136 		iput(pinode);
2137 		if (ret) {
2138 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2139 			goto out;
2140 		}
2141 
2142 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2143 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2144 	} else {
2145 		/* Reuse the already created COW inode */
2146 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2147 		if (ret) {
2148 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2149 			goto out;
2150 		}
2151 	}
2152 
2153 	f2fs_write_inode(inode, NULL);
2154 
2155 	stat_inc_atomic_inode(inode);
2156 
2157 	set_inode_flag(inode, FI_ATOMIC_FILE);
2158 
2159 	isize = i_size_read(inode);
2160 	fi->original_i_size = isize;
2161 	if (truncate) {
2162 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2163 		truncate_inode_pages_final(inode->i_mapping);
2164 		f2fs_i_size_write(inode, 0);
2165 		isize = 0;
2166 	}
2167 	f2fs_i_size_write(fi->cow_inode, isize);
2168 
2169 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2170 
2171 	f2fs_update_time(sbi, REQ_TIME);
2172 	fi->atomic_write_task = current;
2173 	stat_update_max_atomic_write(inode);
2174 	fi->atomic_write_cnt = 0;
2175 out:
2176 	inode_unlock(inode);
2177 	mnt_drop_write_file(filp);
2178 	return ret;
2179 }
2180 
2181 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2182 {
2183 	struct inode *inode = file_inode(filp);
2184 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2185 	int ret;
2186 
2187 	if (!inode_owner_or_capable(idmap, inode))
2188 		return -EACCES;
2189 
2190 	ret = mnt_want_write_file(filp);
2191 	if (ret)
2192 		return ret;
2193 
2194 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2195 
2196 	inode_lock(inode);
2197 
2198 	if (f2fs_is_atomic_file(inode)) {
2199 		ret = f2fs_commit_atomic_write(inode);
2200 		if (!ret)
2201 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2202 
2203 		f2fs_abort_atomic_write(inode, ret);
2204 	} else {
2205 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2206 	}
2207 
2208 	inode_unlock(inode);
2209 	mnt_drop_write_file(filp);
2210 	return ret;
2211 }
2212 
2213 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2214 {
2215 	struct inode *inode = file_inode(filp);
2216 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2217 	int ret;
2218 
2219 	if (!inode_owner_or_capable(idmap, inode))
2220 		return -EACCES;
2221 
2222 	ret = mnt_want_write_file(filp);
2223 	if (ret)
2224 		return ret;
2225 
2226 	inode_lock(inode);
2227 
2228 	f2fs_abort_atomic_write(inode, true);
2229 
2230 	inode_unlock(inode);
2231 
2232 	mnt_drop_write_file(filp);
2233 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2234 	return ret;
2235 }
2236 
2237 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2238 							bool readonly)
2239 {
2240 	struct super_block *sb = sbi->sb;
2241 	int ret = 0;
2242 
2243 	switch (flag) {
2244 	case F2FS_GOING_DOWN_FULLSYNC:
2245 		ret = bdev_freeze(sb->s_bdev);
2246 		if (ret)
2247 			goto out;
2248 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2249 		bdev_thaw(sb->s_bdev);
2250 		break;
2251 	case F2FS_GOING_DOWN_METASYNC:
2252 		/* do checkpoint only */
2253 		ret = f2fs_sync_fs(sb, 1);
2254 		if (ret) {
2255 			if (ret == -EIO)
2256 				ret = 0;
2257 			goto out;
2258 		}
2259 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2260 		break;
2261 	case F2FS_GOING_DOWN_NOSYNC:
2262 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2263 		break;
2264 	case F2FS_GOING_DOWN_METAFLUSH:
2265 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2266 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2267 		break;
2268 	case F2FS_GOING_DOWN_NEED_FSCK:
2269 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2270 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2271 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2272 		/* do checkpoint only */
2273 		ret = f2fs_sync_fs(sb, 1);
2274 		if (ret == -EIO)
2275 			ret = 0;
2276 		goto out;
2277 	default:
2278 		ret = -EINVAL;
2279 		goto out;
2280 	}
2281 
2282 	if (readonly)
2283 		goto out;
2284 
2285 	f2fs_stop_gc_thread(sbi);
2286 	f2fs_stop_discard_thread(sbi);
2287 
2288 	f2fs_drop_discard_cmd(sbi);
2289 	clear_opt(sbi, DISCARD);
2290 
2291 	f2fs_update_time(sbi, REQ_TIME);
2292 out:
2293 
2294 	trace_f2fs_shutdown(sbi, flag, ret);
2295 
2296 	return ret;
2297 }
2298 
2299 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2300 {
2301 	struct inode *inode = file_inode(filp);
2302 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2303 	__u32 in;
2304 	int ret;
2305 	bool need_drop = false, readonly = false;
2306 
2307 	if (!capable(CAP_SYS_ADMIN))
2308 		return -EPERM;
2309 
2310 	if (get_user(in, (__u32 __user *)arg))
2311 		return -EFAULT;
2312 
2313 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2314 		ret = mnt_want_write_file(filp);
2315 		if (ret) {
2316 			if (ret != -EROFS)
2317 				return ret;
2318 
2319 			/* fallback to nosync shutdown for readonly fs */
2320 			in = F2FS_GOING_DOWN_NOSYNC;
2321 			readonly = true;
2322 		} else {
2323 			need_drop = true;
2324 		}
2325 	}
2326 
2327 	ret = f2fs_do_shutdown(sbi, in, readonly);
2328 
2329 	if (need_drop)
2330 		mnt_drop_write_file(filp);
2331 
2332 	return ret;
2333 }
2334 
2335 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2336 {
2337 	struct inode *inode = file_inode(filp);
2338 	struct super_block *sb = inode->i_sb;
2339 	struct fstrim_range range;
2340 	int ret;
2341 
2342 	if (!capable(CAP_SYS_ADMIN))
2343 		return -EPERM;
2344 
2345 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2346 		return -EOPNOTSUPP;
2347 
2348 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2349 				sizeof(range)))
2350 		return -EFAULT;
2351 
2352 	ret = mnt_want_write_file(filp);
2353 	if (ret)
2354 		return ret;
2355 
2356 	range.minlen = max((unsigned int)range.minlen,
2357 			   bdev_discard_granularity(sb->s_bdev));
2358 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2359 	mnt_drop_write_file(filp);
2360 	if (ret < 0)
2361 		return ret;
2362 
2363 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2364 				sizeof(range)))
2365 		return -EFAULT;
2366 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2367 	return 0;
2368 }
2369 
2370 static bool uuid_is_nonzero(__u8 u[16])
2371 {
2372 	int i;
2373 
2374 	for (i = 0; i < 16; i++)
2375 		if (u[i])
2376 			return true;
2377 	return false;
2378 }
2379 
2380 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2381 {
2382 	struct inode *inode = file_inode(filp);
2383 	int ret;
2384 
2385 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2386 		return -EOPNOTSUPP;
2387 
2388 	ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2389 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2390 	return ret;
2391 }
2392 
2393 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2394 {
2395 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2396 		return -EOPNOTSUPP;
2397 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2398 }
2399 
2400 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2401 {
2402 	struct inode *inode = file_inode(filp);
2403 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2404 	u8 encrypt_pw_salt[16];
2405 	int err;
2406 
2407 	if (!f2fs_sb_has_encrypt(sbi))
2408 		return -EOPNOTSUPP;
2409 
2410 	err = mnt_want_write_file(filp);
2411 	if (err)
2412 		return err;
2413 
2414 	f2fs_down_write(&sbi->sb_lock);
2415 
2416 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2417 		goto got_it;
2418 
2419 	/* update superblock with uuid */
2420 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2421 
2422 	err = f2fs_commit_super(sbi, false);
2423 	if (err) {
2424 		/* undo new data */
2425 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2426 		goto out_err;
2427 	}
2428 got_it:
2429 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2430 out_err:
2431 	f2fs_up_write(&sbi->sb_lock);
2432 	mnt_drop_write_file(filp);
2433 
2434 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2435 		err = -EFAULT;
2436 
2437 	return err;
2438 }
2439 
2440 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2441 					     unsigned long arg)
2442 {
2443 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2444 		return -EOPNOTSUPP;
2445 
2446 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2447 }
2448 
2449 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2450 {
2451 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2452 		return -EOPNOTSUPP;
2453 
2454 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2455 }
2456 
2457 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2458 {
2459 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2460 		return -EOPNOTSUPP;
2461 
2462 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2463 }
2464 
2465 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2466 						    unsigned long arg)
2467 {
2468 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2469 		return -EOPNOTSUPP;
2470 
2471 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2472 }
2473 
2474 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2475 					      unsigned long arg)
2476 {
2477 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2478 		return -EOPNOTSUPP;
2479 
2480 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2481 }
2482 
2483 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2484 {
2485 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2486 		return -EOPNOTSUPP;
2487 
2488 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2489 }
2490 
2491 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2492 {
2493 	struct inode *inode = file_inode(filp);
2494 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2495 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2496 			.no_bg_gc = false,
2497 			.should_migrate_blocks = false,
2498 			.nr_free_secs = 0 };
2499 	__u32 sync;
2500 	int ret;
2501 
2502 	if (!capable(CAP_SYS_ADMIN))
2503 		return -EPERM;
2504 
2505 	if (get_user(sync, (__u32 __user *)arg))
2506 		return -EFAULT;
2507 
2508 	if (f2fs_readonly(sbi->sb))
2509 		return -EROFS;
2510 
2511 	ret = mnt_want_write_file(filp);
2512 	if (ret)
2513 		return ret;
2514 
2515 	if (!sync) {
2516 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2517 			ret = -EBUSY;
2518 			goto out;
2519 		}
2520 	} else {
2521 		f2fs_down_write(&sbi->gc_lock);
2522 	}
2523 
2524 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2525 	gc_control.err_gc_skipped = sync;
2526 	stat_inc_gc_call_count(sbi, FOREGROUND);
2527 	ret = f2fs_gc(sbi, &gc_control);
2528 out:
2529 	mnt_drop_write_file(filp);
2530 	return ret;
2531 }
2532 
2533 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2534 {
2535 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2536 	struct f2fs_gc_control gc_control = {
2537 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2538 			.no_bg_gc = false,
2539 			.should_migrate_blocks = false,
2540 			.err_gc_skipped = range->sync,
2541 			.nr_free_secs = 0 };
2542 	u64 end;
2543 	int ret;
2544 
2545 	if (!capable(CAP_SYS_ADMIN))
2546 		return -EPERM;
2547 	if (f2fs_readonly(sbi->sb))
2548 		return -EROFS;
2549 
2550 	end = range->start + range->len;
2551 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2552 					end >= MAX_BLKADDR(sbi))
2553 		return -EINVAL;
2554 
2555 	ret = mnt_want_write_file(filp);
2556 	if (ret)
2557 		return ret;
2558 
2559 do_more:
2560 	if (!range->sync) {
2561 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2562 			ret = -EBUSY;
2563 			goto out;
2564 		}
2565 	} else {
2566 		f2fs_down_write(&sbi->gc_lock);
2567 	}
2568 
2569 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2570 	stat_inc_gc_call_count(sbi, FOREGROUND);
2571 	ret = f2fs_gc(sbi, &gc_control);
2572 	if (ret) {
2573 		if (ret == -EBUSY)
2574 			ret = -EAGAIN;
2575 		goto out;
2576 	}
2577 	range->start += CAP_BLKS_PER_SEC(sbi);
2578 	if (range->start <= end)
2579 		goto do_more;
2580 out:
2581 	mnt_drop_write_file(filp);
2582 	return ret;
2583 }
2584 
2585 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2586 {
2587 	struct f2fs_gc_range range;
2588 
2589 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2590 							sizeof(range)))
2591 		return -EFAULT;
2592 	return __f2fs_ioc_gc_range(filp, &range);
2593 }
2594 
2595 static int f2fs_ioc_write_checkpoint(struct file *filp)
2596 {
2597 	struct inode *inode = file_inode(filp);
2598 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2599 	int ret;
2600 
2601 	if (!capable(CAP_SYS_ADMIN))
2602 		return -EPERM;
2603 
2604 	if (f2fs_readonly(sbi->sb))
2605 		return -EROFS;
2606 
2607 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2608 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2609 		return -EINVAL;
2610 	}
2611 
2612 	ret = mnt_want_write_file(filp);
2613 	if (ret)
2614 		return ret;
2615 
2616 	ret = f2fs_sync_fs(sbi->sb, 1);
2617 
2618 	mnt_drop_write_file(filp);
2619 	return ret;
2620 }
2621 
2622 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2623 					struct file *filp,
2624 					struct f2fs_defragment *range)
2625 {
2626 	struct inode *inode = file_inode(filp);
2627 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2628 					.m_seg_type = NO_CHECK_TYPE,
2629 					.m_may_create = false };
2630 	struct extent_info ei = {};
2631 	pgoff_t pg_start, pg_end, next_pgofs;
2632 	unsigned int total = 0, sec_num;
2633 	block_t blk_end = 0;
2634 	bool fragmented = false;
2635 	int err;
2636 
2637 	f2fs_balance_fs(sbi, true);
2638 
2639 	inode_lock(inode);
2640 	pg_start = range->start >> PAGE_SHIFT;
2641 	pg_end = min_t(pgoff_t,
2642 				(range->start + range->len) >> PAGE_SHIFT,
2643 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2644 
2645 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2646 		err = -EINVAL;
2647 		goto unlock_out;
2648 	}
2649 
2650 	/* if in-place-update policy is enabled, don't waste time here */
2651 	set_inode_flag(inode, FI_OPU_WRITE);
2652 	if (f2fs_should_update_inplace(inode, NULL)) {
2653 		err = -EINVAL;
2654 		goto out;
2655 	}
2656 
2657 	/* writeback all dirty pages in the range */
2658 	err = filemap_write_and_wait_range(inode->i_mapping,
2659 						pg_start << PAGE_SHIFT,
2660 						(pg_end << PAGE_SHIFT) - 1);
2661 	if (err)
2662 		goto out;
2663 
2664 	/*
2665 	 * lookup mapping info in extent cache, skip defragmenting if physical
2666 	 * block addresses are continuous.
2667 	 */
2668 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2669 		if (ei.fofs + ei.len >= pg_end)
2670 			goto out;
2671 	}
2672 
2673 	map.m_lblk = pg_start;
2674 	map.m_next_pgofs = &next_pgofs;
2675 
2676 	/*
2677 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2678 	 * physical block addresses are continuous even if there are hole(s)
2679 	 * in logical blocks.
2680 	 */
2681 	while (map.m_lblk < pg_end) {
2682 		map.m_len = pg_end - map.m_lblk;
2683 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2684 		if (err)
2685 			goto out;
2686 
2687 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2688 			map.m_lblk = next_pgofs;
2689 			continue;
2690 		}
2691 
2692 		if (blk_end && blk_end != map.m_pblk)
2693 			fragmented = true;
2694 
2695 		/* record total count of block that we're going to move */
2696 		total += map.m_len;
2697 
2698 		blk_end = map.m_pblk + map.m_len;
2699 
2700 		map.m_lblk += map.m_len;
2701 	}
2702 
2703 	if (!fragmented) {
2704 		total = 0;
2705 		goto out;
2706 	}
2707 
2708 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2709 
2710 	/*
2711 	 * make sure there are enough free section for LFS allocation, this can
2712 	 * avoid defragment running in SSR mode when free section are allocated
2713 	 * intensively
2714 	 */
2715 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2716 		err = -EAGAIN;
2717 		goto out;
2718 	}
2719 
2720 	map.m_lblk = pg_start;
2721 	map.m_len = pg_end - pg_start;
2722 	total = 0;
2723 
2724 	while (map.m_lblk < pg_end) {
2725 		pgoff_t idx;
2726 		int cnt = 0;
2727 
2728 do_map:
2729 		map.m_len = pg_end - map.m_lblk;
2730 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2731 		if (err)
2732 			goto clear_out;
2733 
2734 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2735 			map.m_lblk = next_pgofs;
2736 			goto check;
2737 		}
2738 
2739 		set_inode_flag(inode, FI_SKIP_WRITES);
2740 
2741 		idx = map.m_lblk;
2742 		while (idx < map.m_lblk + map.m_len &&
2743 						cnt < BLKS_PER_SEG(sbi)) {
2744 			struct page *page;
2745 
2746 			page = f2fs_get_lock_data_page(inode, idx, true);
2747 			if (IS_ERR(page)) {
2748 				err = PTR_ERR(page);
2749 				goto clear_out;
2750 			}
2751 
2752 			set_page_dirty(page);
2753 			set_page_private_gcing(page);
2754 			f2fs_put_page(page, 1);
2755 
2756 			idx++;
2757 			cnt++;
2758 			total++;
2759 		}
2760 
2761 		map.m_lblk = idx;
2762 check:
2763 		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2764 			goto do_map;
2765 
2766 		clear_inode_flag(inode, FI_SKIP_WRITES);
2767 
2768 		err = filemap_fdatawrite(inode->i_mapping);
2769 		if (err)
2770 			goto out;
2771 	}
2772 clear_out:
2773 	clear_inode_flag(inode, FI_SKIP_WRITES);
2774 out:
2775 	clear_inode_flag(inode, FI_OPU_WRITE);
2776 unlock_out:
2777 	inode_unlock(inode);
2778 	if (!err)
2779 		range->len = (u64)total << PAGE_SHIFT;
2780 	return err;
2781 }
2782 
2783 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2784 {
2785 	struct inode *inode = file_inode(filp);
2786 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2787 	struct f2fs_defragment range;
2788 	int err;
2789 
2790 	if (!capable(CAP_SYS_ADMIN))
2791 		return -EPERM;
2792 
2793 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2794 		return -EINVAL;
2795 
2796 	if (f2fs_readonly(sbi->sb))
2797 		return -EROFS;
2798 
2799 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2800 							sizeof(range)))
2801 		return -EFAULT;
2802 
2803 	/* verify alignment of offset & size */
2804 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2805 		return -EINVAL;
2806 
2807 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2808 					max_file_blocks(inode)))
2809 		return -EINVAL;
2810 
2811 	err = mnt_want_write_file(filp);
2812 	if (err)
2813 		return err;
2814 
2815 	err = f2fs_defragment_range(sbi, filp, &range);
2816 	mnt_drop_write_file(filp);
2817 
2818 	if (range.len)
2819 		f2fs_update_time(sbi, REQ_TIME);
2820 	if (err < 0)
2821 		return err;
2822 
2823 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2824 							sizeof(range)))
2825 		return -EFAULT;
2826 
2827 	return 0;
2828 }
2829 
2830 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2831 			struct file *file_out, loff_t pos_out, size_t len)
2832 {
2833 	struct inode *src = file_inode(file_in);
2834 	struct inode *dst = file_inode(file_out);
2835 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2836 	size_t olen = len, dst_max_i_size = 0;
2837 	size_t dst_osize;
2838 	int ret;
2839 
2840 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2841 				src->i_sb != dst->i_sb)
2842 		return -EXDEV;
2843 
2844 	if (unlikely(f2fs_readonly(src->i_sb)))
2845 		return -EROFS;
2846 
2847 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2848 		return -EINVAL;
2849 
2850 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2851 		return -EOPNOTSUPP;
2852 
2853 	if (pos_out < 0 || pos_in < 0)
2854 		return -EINVAL;
2855 
2856 	if (src == dst) {
2857 		if (pos_in == pos_out)
2858 			return 0;
2859 		if (pos_out > pos_in && pos_out < pos_in + len)
2860 			return -EINVAL;
2861 	}
2862 
2863 	inode_lock(src);
2864 	if (src != dst) {
2865 		ret = -EBUSY;
2866 		if (!inode_trylock(dst))
2867 			goto out;
2868 	}
2869 
2870 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2871 		f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2872 		ret = -EOPNOTSUPP;
2873 		goto out_unlock;
2874 	}
2875 
2876 	ret = -EINVAL;
2877 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2878 		goto out_unlock;
2879 	if (len == 0)
2880 		olen = len = src->i_size - pos_in;
2881 	if (pos_in + len == src->i_size)
2882 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2883 	if (len == 0) {
2884 		ret = 0;
2885 		goto out_unlock;
2886 	}
2887 
2888 	dst_osize = dst->i_size;
2889 	if (pos_out + olen > dst->i_size)
2890 		dst_max_i_size = pos_out + olen;
2891 
2892 	/* verify the end result is block aligned */
2893 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2894 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2895 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2896 		goto out_unlock;
2897 
2898 	ret = f2fs_convert_inline_inode(src);
2899 	if (ret)
2900 		goto out_unlock;
2901 
2902 	ret = f2fs_convert_inline_inode(dst);
2903 	if (ret)
2904 		goto out_unlock;
2905 
2906 	/* write out all dirty pages from offset */
2907 	ret = filemap_write_and_wait_range(src->i_mapping,
2908 					pos_in, pos_in + len);
2909 	if (ret)
2910 		goto out_unlock;
2911 
2912 	ret = filemap_write_and_wait_range(dst->i_mapping,
2913 					pos_out, pos_out + len);
2914 	if (ret)
2915 		goto out_unlock;
2916 
2917 	f2fs_balance_fs(sbi, true);
2918 
2919 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2920 	if (src != dst) {
2921 		ret = -EBUSY;
2922 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2923 			goto out_src;
2924 	}
2925 
2926 	f2fs_lock_op(sbi);
2927 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2928 				pos_out >> F2FS_BLKSIZE_BITS,
2929 				len >> F2FS_BLKSIZE_BITS, false);
2930 
2931 	if (!ret) {
2932 		if (dst_max_i_size)
2933 			f2fs_i_size_write(dst, dst_max_i_size);
2934 		else if (dst_osize != dst->i_size)
2935 			f2fs_i_size_write(dst, dst_osize);
2936 	}
2937 	f2fs_unlock_op(sbi);
2938 
2939 	if (src != dst)
2940 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2941 out_src:
2942 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2943 	if (ret)
2944 		goto out_unlock;
2945 
2946 	inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
2947 	f2fs_mark_inode_dirty_sync(src, false);
2948 	if (src != dst) {
2949 		inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
2950 		f2fs_mark_inode_dirty_sync(dst, false);
2951 	}
2952 	f2fs_update_time(sbi, REQ_TIME);
2953 
2954 out_unlock:
2955 	if (src != dst)
2956 		inode_unlock(dst);
2957 out:
2958 	inode_unlock(src);
2959 	return ret;
2960 }
2961 
2962 static int __f2fs_ioc_move_range(struct file *filp,
2963 				struct f2fs_move_range *range)
2964 {
2965 	struct fd dst;
2966 	int err;
2967 
2968 	if (!(filp->f_mode & FMODE_READ) ||
2969 			!(filp->f_mode & FMODE_WRITE))
2970 		return -EBADF;
2971 
2972 	dst = fdget(range->dst_fd);
2973 	if (!dst.file)
2974 		return -EBADF;
2975 
2976 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2977 		err = -EBADF;
2978 		goto err_out;
2979 	}
2980 
2981 	err = mnt_want_write_file(filp);
2982 	if (err)
2983 		goto err_out;
2984 
2985 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2986 					range->pos_out, range->len);
2987 
2988 	mnt_drop_write_file(filp);
2989 err_out:
2990 	fdput(dst);
2991 	return err;
2992 }
2993 
2994 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2995 {
2996 	struct f2fs_move_range range;
2997 
2998 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2999 							sizeof(range)))
3000 		return -EFAULT;
3001 	return __f2fs_ioc_move_range(filp, &range);
3002 }
3003 
3004 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3005 {
3006 	struct inode *inode = file_inode(filp);
3007 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3008 	struct sit_info *sm = SIT_I(sbi);
3009 	unsigned int start_segno = 0, end_segno = 0;
3010 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
3011 	struct f2fs_flush_device range;
3012 	struct f2fs_gc_control gc_control = {
3013 			.init_gc_type = FG_GC,
3014 			.should_migrate_blocks = true,
3015 			.err_gc_skipped = true,
3016 			.nr_free_secs = 0 };
3017 	int ret;
3018 
3019 	if (!capable(CAP_SYS_ADMIN))
3020 		return -EPERM;
3021 
3022 	if (f2fs_readonly(sbi->sb))
3023 		return -EROFS;
3024 
3025 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3026 		return -EINVAL;
3027 
3028 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3029 							sizeof(range)))
3030 		return -EFAULT;
3031 
3032 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3033 			__is_large_section(sbi)) {
3034 		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3035 			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3036 		return -EINVAL;
3037 	}
3038 
3039 	ret = mnt_want_write_file(filp);
3040 	if (ret)
3041 		return ret;
3042 
3043 	if (range.dev_num != 0)
3044 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3045 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3046 
3047 	start_segno = sm->last_victim[FLUSH_DEVICE];
3048 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3049 		start_segno = dev_start_segno;
3050 	end_segno = min(start_segno + range.segments, dev_end_segno);
3051 
3052 	while (start_segno < end_segno) {
3053 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3054 			ret = -EBUSY;
3055 			goto out;
3056 		}
3057 		sm->last_victim[GC_CB] = end_segno + 1;
3058 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3059 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3060 
3061 		gc_control.victim_segno = start_segno;
3062 		stat_inc_gc_call_count(sbi, FOREGROUND);
3063 		ret = f2fs_gc(sbi, &gc_control);
3064 		if (ret == -EAGAIN)
3065 			ret = 0;
3066 		else if (ret < 0)
3067 			break;
3068 		start_segno++;
3069 	}
3070 out:
3071 	mnt_drop_write_file(filp);
3072 	return ret;
3073 }
3074 
3075 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3076 {
3077 	struct inode *inode = file_inode(filp);
3078 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3079 
3080 	/* Must validate to set it with SQLite behavior in Android. */
3081 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3082 
3083 	return put_user(sb_feature, (u32 __user *)arg);
3084 }
3085 
3086 #ifdef CONFIG_QUOTA
3087 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3088 {
3089 	struct dquot *transfer_to[MAXQUOTAS] = {};
3090 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3091 	struct super_block *sb = sbi->sb;
3092 	int err;
3093 
3094 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3095 	if (IS_ERR(transfer_to[PRJQUOTA]))
3096 		return PTR_ERR(transfer_to[PRJQUOTA]);
3097 
3098 	err = __dquot_transfer(inode, transfer_to);
3099 	if (err)
3100 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3101 	dqput(transfer_to[PRJQUOTA]);
3102 	return err;
3103 }
3104 
3105 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3106 {
3107 	struct f2fs_inode_info *fi = F2FS_I(inode);
3108 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3109 	struct f2fs_inode *ri = NULL;
3110 	kprojid_t kprojid;
3111 	int err;
3112 
3113 	if (!f2fs_sb_has_project_quota(sbi)) {
3114 		if (projid != F2FS_DEF_PROJID)
3115 			return -EOPNOTSUPP;
3116 		else
3117 			return 0;
3118 	}
3119 
3120 	if (!f2fs_has_extra_attr(inode))
3121 		return -EOPNOTSUPP;
3122 
3123 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3124 
3125 	if (projid_eq(kprojid, fi->i_projid))
3126 		return 0;
3127 
3128 	err = -EPERM;
3129 	/* Is it quota file? Do not allow user to mess with it */
3130 	if (IS_NOQUOTA(inode))
3131 		return err;
3132 
3133 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3134 		return -EOVERFLOW;
3135 
3136 	err = f2fs_dquot_initialize(inode);
3137 	if (err)
3138 		return err;
3139 
3140 	f2fs_lock_op(sbi);
3141 	err = f2fs_transfer_project_quota(inode, kprojid);
3142 	if (err)
3143 		goto out_unlock;
3144 
3145 	fi->i_projid = kprojid;
3146 	inode_set_ctime_current(inode);
3147 	f2fs_mark_inode_dirty_sync(inode, true);
3148 out_unlock:
3149 	f2fs_unlock_op(sbi);
3150 	return err;
3151 }
3152 #else
3153 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3154 {
3155 	return 0;
3156 }
3157 
3158 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3159 {
3160 	if (projid != F2FS_DEF_PROJID)
3161 		return -EOPNOTSUPP;
3162 	return 0;
3163 }
3164 #endif
3165 
3166 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3167 {
3168 	struct inode *inode = d_inode(dentry);
3169 	struct f2fs_inode_info *fi = F2FS_I(inode);
3170 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3171 
3172 	if (IS_ENCRYPTED(inode))
3173 		fsflags |= FS_ENCRYPT_FL;
3174 	if (IS_VERITY(inode))
3175 		fsflags |= FS_VERITY_FL;
3176 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3177 		fsflags |= FS_INLINE_DATA_FL;
3178 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3179 		fsflags |= FS_NOCOW_FL;
3180 
3181 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3182 
3183 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3184 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3185 
3186 	return 0;
3187 }
3188 
3189 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3190 		      struct dentry *dentry, struct fileattr *fa)
3191 {
3192 	struct inode *inode = d_inode(dentry);
3193 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3194 	u32 iflags;
3195 	int err;
3196 
3197 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3198 		return -EIO;
3199 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3200 		return -ENOSPC;
3201 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3202 		return -EOPNOTSUPP;
3203 	fsflags &= F2FS_SETTABLE_FS_FL;
3204 	if (!fa->flags_valid)
3205 		mask &= FS_COMMON_FL;
3206 
3207 	iflags = f2fs_fsflags_to_iflags(fsflags);
3208 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3209 		return -EOPNOTSUPP;
3210 
3211 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3212 	if (!err)
3213 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3214 
3215 	return err;
3216 }
3217 
3218 int f2fs_pin_file_control(struct inode *inode, bool inc)
3219 {
3220 	struct f2fs_inode_info *fi = F2FS_I(inode);
3221 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3222 
3223 	if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3224 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3225 			  __func__, inode->i_ino, fi->i_gc_failures);
3226 		clear_inode_flag(inode, FI_PIN_FILE);
3227 		return -EAGAIN;
3228 	}
3229 
3230 	/* Use i_gc_failures for normal file as a risk signal. */
3231 	if (inc)
3232 		f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3233 
3234 	return 0;
3235 }
3236 
3237 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3238 {
3239 	struct inode *inode = file_inode(filp);
3240 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3241 	__u32 pin;
3242 	int ret = 0;
3243 
3244 	if (get_user(pin, (__u32 __user *)arg))
3245 		return -EFAULT;
3246 
3247 	if (!S_ISREG(inode->i_mode))
3248 		return -EINVAL;
3249 
3250 	if (f2fs_readonly(sbi->sb))
3251 		return -EROFS;
3252 
3253 	ret = mnt_want_write_file(filp);
3254 	if (ret)
3255 		return ret;
3256 
3257 	inode_lock(inode);
3258 
3259 	if (!pin) {
3260 		clear_inode_flag(inode, FI_PIN_FILE);
3261 		f2fs_i_gc_failures_write(inode, 0);
3262 		goto done;
3263 	} else if (f2fs_is_pinned_file(inode)) {
3264 		goto done;
3265 	}
3266 
3267 	if (F2FS_HAS_BLOCKS(inode)) {
3268 		ret = -EFBIG;
3269 		goto out;
3270 	}
3271 
3272 	/* Let's allow file pinning on zoned device. */
3273 	if (!f2fs_sb_has_blkzoned(sbi) &&
3274 	    f2fs_should_update_outplace(inode, NULL)) {
3275 		ret = -EINVAL;
3276 		goto out;
3277 	}
3278 
3279 	if (f2fs_pin_file_control(inode, false)) {
3280 		ret = -EAGAIN;
3281 		goto out;
3282 	}
3283 
3284 	ret = f2fs_convert_inline_inode(inode);
3285 	if (ret)
3286 		goto out;
3287 
3288 	if (!f2fs_disable_compressed_file(inode)) {
3289 		ret = -EOPNOTSUPP;
3290 		goto out;
3291 	}
3292 
3293 	set_inode_flag(inode, FI_PIN_FILE);
3294 	ret = F2FS_I(inode)->i_gc_failures;
3295 done:
3296 	f2fs_update_time(sbi, REQ_TIME);
3297 out:
3298 	inode_unlock(inode);
3299 	mnt_drop_write_file(filp);
3300 	return ret;
3301 }
3302 
3303 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3304 {
3305 	struct inode *inode = file_inode(filp);
3306 	__u32 pin = 0;
3307 
3308 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3309 		pin = F2FS_I(inode)->i_gc_failures;
3310 	return put_user(pin, (u32 __user *)arg);
3311 }
3312 
3313 int f2fs_precache_extents(struct inode *inode)
3314 {
3315 	struct f2fs_inode_info *fi = F2FS_I(inode);
3316 	struct f2fs_map_blocks map;
3317 	pgoff_t m_next_extent;
3318 	loff_t end;
3319 	int err;
3320 
3321 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3322 		return -EOPNOTSUPP;
3323 
3324 	map.m_lblk = 0;
3325 	map.m_pblk = 0;
3326 	map.m_next_pgofs = NULL;
3327 	map.m_next_extent = &m_next_extent;
3328 	map.m_seg_type = NO_CHECK_TYPE;
3329 	map.m_may_create = false;
3330 	end = F2FS_BLK_ALIGN(i_size_read(inode));
3331 
3332 	while (map.m_lblk < end) {
3333 		map.m_len = end - map.m_lblk;
3334 
3335 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3336 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3337 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3338 		if (err || !map.m_len)
3339 			return err;
3340 
3341 		map.m_lblk = m_next_extent;
3342 	}
3343 
3344 	return 0;
3345 }
3346 
3347 static int f2fs_ioc_precache_extents(struct file *filp)
3348 {
3349 	return f2fs_precache_extents(file_inode(filp));
3350 }
3351 
3352 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3353 {
3354 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3355 	__u64 block_count;
3356 
3357 	if (!capable(CAP_SYS_ADMIN))
3358 		return -EPERM;
3359 
3360 	if (f2fs_readonly(sbi->sb))
3361 		return -EROFS;
3362 
3363 	if (copy_from_user(&block_count, (void __user *)arg,
3364 			   sizeof(block_count)))
3365 		return -EFAULT;
3366 
3367 	return f2fs_resize_fs(filp, block_count);
3368 }
3369 
3370 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3371 {
3372 	struct inode *inode = file_inode(filp);
3373 
3374 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3375 
3376 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3377 		f2fs_warn(F2FS_I_SB(inode),
3378 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3379 			  inode->i_ino);
3380 		return -EOPNOTSUPP;
3381 	}
3382 
3383 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3384 }
3385 
3386 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3387 {
3388 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3389 		return -EOPNOTSUPP;
3390 
3391 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3392 }
3393 
3394 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3395 {
3396 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3397 		return -EOPNOTSUPP;
3398 
3399 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3400 }
3401 
3402 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3403 {
3404 	struct inode *inode = file_inode(filp);
3405 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3406 	char *vbuf;
3407 	int count;
3408 	int err = 0;
3409 
3410 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3411 	if (!vbuf)
3412 		return -ENOMEM;
3413 
3414 	f2fs_down_read(&sbi->sb_lock);
3415 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3416 			ARRAY_SIZE(sbi->raw_super->volume_name),
3417 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3418 	f2fs_up_read(&sbi->sb_lock);
3419 
3420 	if (copy_to_user((char __user *)arg, vbuf,
3421 				min(FSLABEL_MAX, count)))
3422 		err = -EFAULT;
3423 
3424 	kfree(vbuf);
3425 	return err;
3426 }
3427 
3428 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3429 {
3430 	struct inode *inode = file_inode(filp);
3431 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3432 	char *vbuf;
3433 	int err = 0;
3434 
3435 	if (!capable(CAP_SYS_ADMIN))
3436 		return -EPERM;
3437 
3438 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3439 	if (IS_ERR(vbuf))
3440 		return PTR_ERR(vbuf);
3441 
3442 	err = mnt_want_write_file(filp);
3443 	if (err)
3444 		goto out;
3445 
3446 	f2fs_down_write(&sbi->sb_lock);
3447 
3448 	memset(sbi->raw_super->volume_name, 0,
3449 			sizeof(sbi->raw_super->volume_name));
3450 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3451 			sbi->raw_super->volume_name,
3452 			ARRAY_SIZE(sbi->raw_super->volume_name));
3453 
3454 	err = f2fs_commit_super(sbi, false);
3455 
3456 	f2fs_up_write(&sbi->sb_lock);
3457 
3458 	mnt_drop_write_file(filp);
3459 out:
3460 	kfree(vbuf);
3461 	return err;
3462 }
3463 
3464 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3465 {
3466 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3467 		return -EOPNOTSUPP;
3468 
3469 	if (!f2fs_compressed_file(inode))
3470 		return -EINVAL;
3471 
3472 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3473 
3474 	return 0;
3475 }
3476 
3477 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3478 {
3479 	struct inode *inode = file_inode(filp);
3480 	__u64 blocks;
3481 	int ret;
3482 
3483 	ret = f2fs_get_compress_blocks(inode, &blocks);
3484 	if (ret < 0)
3485 		return ret;
3486 
3487 	return put_user(blocks, (u64 __user *)arg);
3488 }
3489 
3490 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3491 {
3492 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3493 	unsigned int released_blocks = 0;
3494 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3495 	block_t blkaddr;
3496 	int i;
3497 
3498 	for (i = 0; i < count; i++) {
3499 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3500 						dn->ofs_in_node + i);
3501 
3502 		if (!__is_valid_data_blkaddr(blkaddr))
3503 			continue;
3504 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3505 					DATA_GENERIC_ENHANCE)))
3506 			return -EFSCORRUPTED;
3507 	}
3508 
3509 	while (count) {
3510 		int compr_blocks = 0;
3511 
3512 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3513 			blkaddr = f2fs_data_blkaddr(dn);
3514 
3515 			if (i == 0) {
3516 				if (blkaddr == COMPRESS_ADDR)
3517 					continue;
3518 				dn->ofs_in_node += cluster_size;
3519 				goto next;
3520 			}
3521 
3522 			if (__is_valid_data_blkaddr(blkaddr))
3523 				compr_blocks++;
3524 
3525 			if (blkaddr != NEW_ADDR)
3526 				continue;
3527 
3528 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3529 		}
3530 
3531 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3532 		dec_valid_block_count(sbi, dn->inode,
3533 					cluster_size - compr_blocks);
3534 
3535 		released_blocks += cluster_size - compr_blocks;
3536 next:
3537 		count -= cluster_size;
3538 	}
3539 
3540 	return released_blocks;
3541 }
3542 
3543 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3544 {
3545 	struct inode *inode = file_inode(filp);
3546 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3547 	pgoff_t page_idx = 0, last_idx;
3548 	unsigned int released_blocks = 0;
3549 	int ret;
3550 	int writecount;
3551 
3552 	if (!f2fs_sb_has_compression(sbi))
3553 		return -EOPNOTSUPP;
3554 
3555 	if (f2fs_readonly(sbi->sb))
3556 		return -EROFS;
3557 
3558 	ret = mnt_want_write_file(filp);
3559 	if (ret)
3560 		return ret;
3561 
3562 	f2fs_balance_fs(sbi, true);
3563 
3564 	inode_lock(inode);
3565 
3566 	writecount = atomic_read(&inode->i_writecount);
3567 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3568 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3569 		ret = -EBUSY;
3570 		goto out;
3571 	}
3572 
3573 	if (!f2fs_compressed_file(inode) ||
3574 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3575 		ret = -EINVAL;
3576 		goto out;
3577 	}
3578 
3579 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3580 	if (ret)
3581 		goto out;
3582 
3583 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3584 		ret = -EPERM;
3585 		goto out;
3586 	}
3587 
3588 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3589 	inode_set_ctime_current(inode);
3590 	f2fs_mark_inode_dirty_sync(inode, true);
3591 
3592 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3593 	filemap_invalidate_lock(inode->i_mapping);
3594 
3595 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3596 
3597 	while (page_idx < last_idx) {
3598 		struct dnode_of_data dn;
3599 		pgoff_t end_offset, count;
3600 
3601 		f2fs_lock_op(sbi);
3602 
3603 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3604 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3605 		if (ret) {
3606 			f2fs_unlock_op(sbi);
3607 			if (ret == -ENOENT) {
3608 				page_idx = f2fs_get_next_page_offset(&dn,
3609 								page_idx);
3610 				ret = 0;
3611 				continue;
3612 			}
3613 			break;
3614 		}
3615 
3616 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3617 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3618 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3619 
3620 		ret = release_compress_blocks(&dn, count);
3621 
3622 		f2fs_put_dnode(&dn);
3623 
3624 		f2fs_unlock_op(sbi);
3625 
3626 		if (ret < 0)
3627 			break;
3628 
3629 		page_idx += count;
3630 		released_blocks += ret;
3631 	}
3632 
3633 	filemap_invalidate_unlock(inode->i_mapping);
3634 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3635 out:
3636 	if (released_blocks)
3637 		f2fs_update_time(sbi, REQ_TIME);
3638 	inode_unlock(inode);
3639 
3640 	mnt_drop_write_file(filp);
3641 
3642 	if (ret >= 0) {
3643 		ret = put_user(released_blocks, (u64 __user *)arg);
3644 	} else if (released_blocks &&
3645 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3646 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3647 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3648 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3649 			"run fsck to fix.",
3650 			__func__, inode->i_ino, inode->i_blocks,
3651 			released_blocks,
3652 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3653 	}
3654 
3655 	return ret;
3656 }
3657 
3658 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3659 		unsigned int *reserved_blocks)
3660 {
3661 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3662 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3663 	block_t blkaddr;
3664 	int i;
3665 
3666 	for (i = 0; i < count; i++) {
3667 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3668 						dn->ofs_in_node + i);
3669 
3670 		if (!__is_valid_data_blkaddr(blkaddr))
3671 			continue;
3672 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3673 					DATA_GENERIC_ENHANCE)))
3674 			return -EFSCORRUPTED;
3675 	}
3676 
3677 	while (count) {
3678 		int compr_blocks = 0;
3679 		blkcnt_t reserved = 0;
3680 		blkcnt_t to_reserved;
3681 		int ret;
3682 
3683 		for (i = 0; i < cluster_size; i++) {
3684 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
3685 						dn->ofs_in_node + i);
3686 
3687 			if (i == 0) {
3688 				if (blkaddr != COMPRESS_ADDR) {
3689 					dn->ofs_in_node += cluster_size;
3690 					goto next;
3691 				}
3692 				continue;
3693 			}
3694 
3695 			/*
3696 			 * compressed cluster was not released due to it
3697 			 * fails in release_compress_blocks(), so NEW_ADDR
3698 			 * is a possible case.
3699 			 */
3700 			if (blkaddr == NEW_ADDR) {
3701 				reserved++;
3702 				continue;
3703 			}
3704 			if (__is_valid_data_blkaddr(blkaddr)) {
3705 				compr_blocks++;
3706 				continue;
3707 			}
3708 		}
3709 
3710 		to_reserved = cluster_size - compr_blocks - reserved;
3711 
3712 		/* for the case all blocks in cluster were reserved */
3713 		if (to_reserved == 1) {
3714 			dn->ofs_in_node += cluster_size;
3715 			goto next;
3716 		}
3717 
3718 		ret = inc_valid_block_count(sbi, dn->inode,
3719 						&to_reserved, false);
3720 		if (unlikely(ret))
3721 			return ret;
3722 
3723 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3724 			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3725 				f2fs_set_data_blkaddr(dn, NEW_ADDR);
3726 		}
3727 
3728 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3729 
3730 		*reserved_blocks += to_reserved;
3731 next:
3732 		count -= cluster_size;
3733 	}
3734 
3735 	return 0;
3736 }
3737 
3738 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3739 {
3740 	struct inode *inode = file_inode(filp);
3741 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3742 	pgoff_t page_idx = 0, last_idx;
3743 	unsigned int reserved_blocks = 0;
3744 	int ret;
3745 
3746 	if (!f2fs_sb_has_compression(sbi))
3747 		return -EOPNOTSUPP;
3748 
3749 	if (f2fs_readonly(sbi->sb))
3750 		return -EROFS;
3751 
3752 	ret = mnt_want_write_file(filp);
3753 	if (ret)
3754 		return ret;
3755 
3756 	f2fs_balance_fs(sbi, true);
3757 
3758 	inode_lock(inode);
3759 
3760 	if (!f2fs_compressed_file(inode) ||
3761 		!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3762 		ret = -EINVAL;
3763 		goto unlock_inode;
3764 	}
3765 
3766 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3767 		goto unlock_inode;
3768 
3769 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3770 	filemap_invalidate_lock(inode->i_mapping);
3771 
3772 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3773 
3774 	while (page_idx < last_idx) {
3775 		struct dnode_of_data dn;
3776 		pgoff_t end_offset, count;
3777 
3778 		f2fs_lock_op(sbi);
3779 
3780 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3781 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3782 		if (ret) {
3783 			f2fs_unlock_op(sbi);
3784 			if (ret == -ENOENT) {
3785 				page_idx = f2fs_get_next_page_offset(&dn,
3786 								page_idx);
3787 				ret = 0;
3788 				continue;
3789 			}
3790 			break;
3791 		}
3792 
3793 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3794 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3795 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3796 
3797 		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3798 
3799 		f2fs_put_dnode(&dn);
3800 
3801 		f2fs_unlock_op(sbi);
3802 
3803 		if (ret < 0)
3804 			break;
3805 
3806 		page_idx += count;
3807 	}
3808 
3809 	filemap_invalidate_unlock(inode->i_mapping);
3810 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3811 
3812 	if (!ret) {
3813 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3814 		inode_set_ctime_current(inode);
3815 		f2fs_mark_inode_dirty_sync(inode, true);
3816 	}
3817 unlock_inode:
3818 	if (reserved_blocks)
3819 		f2fs_update_time(sbi, REQ_TIME);
3820 	inode_unlock(inode);
3821 	mnt_drop_write_file(filp);
3822 
3823 	if (!ret) {
3824 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3825 	} else if (reserved_blocks &&
3826 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3827 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3828 		f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
3829 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3830 			"run fsck to fix.",
3831 			__func__, inode->i_ino, inode->i_blocks,
3832 			reserved_blocks,
3833 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3834 	}
3835 
3836 	return ret;
3837 }
3838 
3839 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3840 		pgoff_t off, block_t block, block_t len, u32 flags)
3841 {
3842 	sector_t sector = SECTOR_FROM_BLOCK(block);
3843 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3844 	int ret = 0;
3845 
3846 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3847 		if (bdev_max_secure_erase_sectors(bdev))
3848 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3849 					GFP_NOFS);
3850 		else
3851 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3852 					GFP_NOFS);
3853 	}
3854 
3855 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3856 		if (IS_ENCRYPTED(inode))
3857 			ret = fscrypt_zeroout_range(inode, off, block, len);
3858 		else
3859 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3860 					GFP_NOFS, 0);
3861 	}
3862 
3863 	return ret;
3864 }
3865 
3866 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3867 {
3868 	struct inode *inode = file_inode(filp);
3869 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3870 	struct address_space *mapping = inode->i_mapping;
3871 	struct block_device *prev_bdev = NULL;
3872 	struct f2fs_sectrim_range range;
3873 	pgoff_t index, pg_end, prev_index = 0;
3874 	block_t prev_block = 0, len = 0;
3875 	loff_t end_addr;
3876 	bool to_end = false;
3877 	int ret = 0;
3878 
3879 	if (!(filp->f_mode & FMODE_WRITE))
3880 		return -EBADF;
3881 
3882 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3883 				sizeof(range)))
3884 		return -EFAULT;
3885 
3886 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3887 			!S_ISREG(inode->i_mode))
3888 		return -EINVAL;
3889 
3890 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3891 			!f2fs_hw_support_discard(sbi)) ||
3892 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3893 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3894 		return -EOPNOTSUPP;
3895 
3896 	file_start_write(filp);
3897 	inode_lock(inode);
3898 
3899 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3900 			range.start >= inode->i_size) {
3901 		ret = -EINVAL;
3902 		goto err;
3903 	}
3904 
3905 	if (range.len == 0)
3906 		goto err;
3907 
3908 	if (inode->i_size - range.start > range.len) {
3909 		end_addr = range.start + range.len;
3910 	} else {
3911 		end_addr = range.len == (u64)-1 ?
3912 			sbi->sb->s_maxbytes : inode->i_size;
3913 		to_end = true;
3914 	}
3915 
3916 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3917 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3918 		ret = -EINVAL;
3919 		goto err;
3920 	}
3921 
3922 	index = F2FS_BYTES_TO_BLK(range.start);
3923 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3924 
3925 	ret = f2fs_convert_inline_inode(inode);
3926 	if (ret)
3927 		goto err;
3928 
3929 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3930 	filemap_invalidate_lock(mapping);
3931 
3932 	ret = filemap_write_and_wait_range(mapping, range.start,
3933 			to_end ? LLONG_MAX : end_addr - 1);
3934 	if (ret)
3935 		goto out;
3936 
3937 	truncate_inode_pages_range(mapping, range.start,
3938 			to_end ? -1 : end_addr - 1);
3939 
3940 	while (index < pg_end) {
3941 		struct dnode_of_data dn;
3942 		pgoff_t end_offset, count;
3943 		int i;
3944 
3945 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3946 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3947 		if (ret) {
3948 			if (ret == -ENOENT) {
3949 				index = f2fs_get_next_page_offset(&dn, index);
3950 				continue;
3951 			}
3952 			goto out;
3953 		}
3954 
3955 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3956 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3957 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3958 			struct block_device *cur_bdev;
3959 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3960 
3961 			if (!__is_valid_data_blkaddr(blkaddr))
3962 				continue;
3963 
3964 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3965 						DATA_GENERIC_ENHANCE)) {
3966 				ret = -EFSCORRUPTED;
3967 				f2fs_put_dnode(&dn);
3968 				goto out;
3969 			}
3970 
3971 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3972 			if (f2fs_is_multi_device(sbi)) {
3973 				int di = f2fs_target_device_index(sbi, blkaddr);
3974 
3975 				blkaddr -= FDEV(di).start_blk;
3976 			}
3977 
3978 			if (len) {
3979 				if (prev_bdev == cur_bdev &&
3980 						index == prev_index + len &&
3981 						blkaddr == prev_block + len) {
3982 					len++;
3983 				} else {
3984 					ret = f2fs_secure_erase(prev_bdev,
3985 						inode, prev_index, prev_block,
3986 						len, range.flags);
3987 					if (ret) {
3988 						f2fs_put_dnode(&dn);
3989 						goto out;
3990 					}
3991 
3992 					len = 0;
3993 				}
3994 			}
3995 
3996 			if (!len) {
3997 				prev_bdev = cur_bdev;
3998 				prev_index = index;
3999 				prev_block = blkaddr;
4000 				len = 1;
4001 			}
4002 		}
4003 
4004 		f2fs_put_dnode(&dn);
4005 
4006 		if (fatal_signal_pending(current)) {
4007 			ret = -EINTR;
4008 			goto out;
4009 		}
4010 		cond_resched();
4011 	}
4012 
4013 	if (len)
4014 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4015 				prev_block, len, range.flags);
4016 	f2fs_update_time(sbi, REQ_TIME);
4017 out:
4018 	filemap_invalidate_unlock(mapping);
4019 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4020 err:
4021 	inode_unlock(inode);
4022 	file_end_write(filp);
4023 
4024 	return ret;
4025 }
4026 
4027 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4028 {
4029 	struct inode *inode = file_inode(filp);
4030 	struct f2fs_comp_option option;
4031 
4032 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4033 		return -EOPNOTSUPP;
4034 
4035 	inode_lock_shared(inode);
4036 
4037 	if (!f2fs_compressed_file(inode)) {
4038 		inode_unlock_shared(inode);
4039 		return -ENODATA;
4040 	}
4041 
4042 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4043 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4044 
4045 	inode_unlock_shared(inode);
4046 
4047 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4048 				sizeof(option)))
4049 		return -EFAULT;
4050 
4051 	return 0;
4052 }
4053 
4054 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4055 {
4056 	struct inode *inode = file_inode(filp);
4057 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4058 	struct f2fs_comp_option option;
4059 	int ret = 0;
4060 
4061 	if (!f2fs_sb_has_compression(sbi))
4062 		return -EOPNOTSUPP;
4063 
4064 	if (!(filp->f_mode & FMODE_WRITE))
4065 		return -EBADF;
4066 
4067 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4068 				sizeof(option)))
4069 		return -EFAULT;
4070 
4071 	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4072 		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4073 		option.algorithm >= COMPRESS_MAX)
4074 		return -EINVAL;
4075 
4076 	file_start_write(filp);
4077 	inode_lock(inode);
4078 
4079 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4080 	if (!f2fs_compressed_file(inode)) {
4081 		ret = -EINVAL;
4082 		goto out;
4083 	}
4084 
4085 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4086 		ret = -EBUSY;
4087 		goto out;
4088 	}
4089 
4090 	if (F2FS_HAS_BLOCKS(inode)) {
4091 		ret = -EFBIG;
4092 		goto out;
4093 	}
4094 
4095 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4096 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4097 	F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4098 	/* Set default level */
4099 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4100 		F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4101 	else
4102 		F2FS_I(inode)->i_compress_level = 0;
4103 	/* Adjust mount option level */
4104 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4105 	    F2FS_OPTION(sbi).compress_level)
4106 		F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4107 	f2fs_mark_inode_dirty_sync(inode, true);
4108 
4109 	if (!f2fs_is_compress_backend_ready(inode))
4110 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4111 			"but current kernel doesn't support this algorithm.");
4112 out:
4113 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4114 	inode_unlock(inode);
4115 	file_end_write(filp);
4116 
4117 	return ret;
4118 }
4119 
4120 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4121 {
4122 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4123 	struct address_space *mapping = inode->i_mapping;
4124 	struct page *page;
4125 	pgoff_t redirty_idx = page_idx;
4126 	int i, page_len = 0, ret = 0;
4127 
4128 	page_cache_ra_unbounded(&ractl, len, 0);
4129 
4130 	for (i = 0; i < len; i++, page_idx++) {
4131 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4132 		if (IS_ERR(page)) {
4133 			ret = PTR_ERR(page);
4134 			break;
4135 		}
4136 		page_len++;
4137 	}
4138 
4139 	for (i = 0; i < page_len; i++, redirty_idx++) {
4140 		page = find_lock_page(mapping, redirty_idx);
4141 
4142 		/* It will never fail, when page has pinned above */
4143 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4144 
4145 		set_page_dirty(page);
4146 		set_page_private_gcing(page);
4147 		f2fs_put_page(page, 1);
4148 		f2fs_put_page(page, 0);
4149 	}
4150 
4151 	return ret;
4152 }
4153 
4154 static int f2fs_ioc_decompress_file(struct file *filp)
4155 {
4156 	struct inode *inode = file_inode(filp);
4157 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4158 	struct f2fs_inode_info *fi = F2FS_I(inode);
4159 	pgoff_t page_idx = 0, last_idx;
4160 	int cluster_size = fi->i_cluster_size;
4161 	int count, ret;
4162 
4163 	if (!f2fs_sb_has_compression(sbi) ||
4164 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4165 		return -EOPNOTSUPP;
4166 
4167 	if (!(filp->f_mode & FMODE_WRITE))
4168 		return -EBADF;
4169 
4170 	f2fs_balance_fs(sbi, true);
4171 
4172 	file_start_write(filp);
4173 	inode_lock(inode);
4174 
4175 	if (!f2fs_is_compress_backend_ready(inode)) {
4176 		ret = -EOPNOTSUPP;
4177 		goto out;
4178 	}
4179 
4180 	if (!f2fs_compressed_file(inode) ||
4181 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4182 		ret = -EINVAL;
4183 		goto out;
4184 	}
4185 
4186 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4187 	if (ret)
4188 		goto out;
4189 
4190 	if (!atomic_read(&fi->i_compr_blocks))
4191 		goto out;
4192 
4193 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4194 
4195 	count = last_idx - page_idx;
4196 	while (count && count >= cluster_size) {
4197 		ret = redirty_blocks(inode, page_idx, cluster_size);
4198 		if (ret < 0)
4199 			break;
4200 
4201 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4202 			ret = filemap_fdatawrite(inode->i_mapping);
4203 			if (ret < 0)
4204 				break;
4205 		}
4206 
4207 		count -= cluster_size;
4208 		page_idx += cluster_size;
4209 
4210 		cond_resched();
4211 		if (fatal_signal_pending(current)) {
4212 			ret = -EINTR;
4213 			break;
4214 		}
4215 	}
4216 
4217 	if (!ret)
4218 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4219 							LLONG_MAX);
4220 
4221 	if (ret)
4222 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4223 			  __func__, ret);
4224 	f2fs_update_time(sbi, REQ_TIME);
4225 out:
4226 	inode_unlock(inode);
4227 	file_end_write(filp);
4228 
4229 	return ret;
4230 }
4231 
4232 static int f2fs_ioc_compress_file(struct file *filp)
4233 {
4234 	struct inode *inode = file_inode(filp);
4235 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4236 	pgoff_t page_idx = 0, last_idx;
4237 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4238 	int count, ret;
4239 
4240 	if (!f2fs_sb_has_compression(sbi) ||
4241 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4242 		return -EOPNOTSUPP;
4243 
4244 	if (!(filp->f_mode & FMODE_WRITE))
4245 		return -EBADF;
4246 
4247 	f2fs_balance_fs(sbi, true);
4248 
4249 	file_start_write(filp);
4250 	inode_lock(inode);
4251 
4252 	if (!f2fs_is_compress_backend_ready(inode)) {
4253 		ret = -EOPNOTSUPP;
4254 		goto out;
4255 	}
4256 
4257 	if (!f2fs_compressed_file(inode) ||
4258 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4259 		ret = -EINVAL;
4260 		goto out;
4261 	}
4262 
4263 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4264 	if (ret)
4265 		goto out;
4266 
4267 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4268 
4269 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4270 
4271 	count = last_idx - page_idx;
4272 	while (count && count >= cluster_size) {
4273 		ret = redirty_blocks(inode, page_idx, cluster_size);
4274 		if (ret < 0)
4275 			break;
4276 
4277 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4278 			ret = filemap_fdatawrite(inode->i_mapping);
4279 			if (ret < 0)
4280 				break;
4281 		}
4282 
4283 		count -= cluster_size;
4284 		page_idx += cluster_size;
4285 
4286 		cond_resched();
4287 		if (fatal_signal_pending(current)) {
4288 			ret = -EINTR;
4289 			break;
4290 		}
4291 	}
4292 
4293 	if (!ret)
4294 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4295 							LLONG_MAX);
4296 
4297 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4298 
4299 	if (ret)
4300 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4301 			  __func__, ret);
4302 	f2fs_update_time(sbi, REQ_TIME);
4303 out:
4304 	inode_unlock(inode);
4305 	file_end_write(filp);
4306 
4307 	return ret;
4308 }
4309 
4310 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4311 {
4312 	switch (cmd) {
4313 	case FS_IOC_GETVERSION:
4314 		return f2fs_ioc_getversion(filp, arg);
4315 	case F2FS_IOC_START_ATOMIC_WRITE:
4316 		return f2fs_ioc_start_atomic_write(filp, false);
4317 	case F2FS_IOC_START_ATOMIC_REPLACE:
4318 		return f2fs_ioc_start_atomic_write(filp, true);
4319 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4320 		return f2fs_ioc_commit_atomic_write(filp);
4321 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4322 		return f2fs_ioc_abort_atomic_write(filp);
4323 	case F2FS_IOC_START_VOLATILE_WRITE:
4324 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4325 		return -EOPNOTSUPP;
4326 	case F2FS_IOC_SHUTDOWN:
4327 		return f2fs_ioc_shutdown(filp, arg);
4328 	case FITRIM:
4329 		return f2fs_ioc_fitrim(filp, arg);
4330 	case FS_IOC_SET_ENCRYPTION_POLICY:
4331 		return f2fs_ioc_set_encryption_policy(filp, arg);
4332 	case FS_IOC_GET_ENCRYPTION_POLICY:
4333 		return f2fs_ioc_get_encryption_policy(filp, arg);
4334 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4335 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4336 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4337 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4338 	case FS_IOC_ADD_ENCRYPTION_KEY:
4339 		return f2fs_ioc_add_encryption_key(filp, arg);
4340 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4341 		return f2fs_ioc_remove_encryption_key(filp, arg);
4342 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4343 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4344 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4345 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4346 	case FS_IOC_GET_ENCRYPTION_NONCE:
4347 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4348 	case F2FS_IOC_GARBAGE_COLLECT:
4349 		return f2fs_ioc_gc(filp, arg);
4350 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4351 		return f2fs_ioc_gc_range(filp, arg);
4352 	case F2FS_IOC_WRITE_CHECKPOINT:
4353 		return f2fs_ioc_write_checkpoint(filp);
4354 	case F2FS_IOC_DEFRAGMENT:
4355 		return f2fs_ioc_defragment(filp, arg);
4356 	case F2FS_IOC_MOVE_RANGE:
4357 		return f2fs_ioc_move_range(filp, arg);
4358 	case F2FS_IOC_FLUSH_DEVICE:
4359 		return f2fs_ioc_flush_device(filp, arg);
4360 	case F2FS_IOC_GET_FEATURES:
4361 		return f2fs_ioc_get_features(filp, arg);
4362 	case F2FS_IOC_GET_PIN_FILE:
4363 		return f2fs_ioc_get_pin_file(filp, arg);
4364 	case F2FS_IOC_SET_PIN_FILE:
4365 		return f2fs_ioc_set_pin_file(filp, arg);
4366 	case F2FS_IOC_PRECACHE_EXTENTS:
4367 		return f2fs_ioc_precache_extents(filp);
4368 	case F2FS_IOC_RESIZE_FS:
4369 		return f2fs_ioc_resize_fs(filp, arg);
4370 	case FS_IOC_ENABLE_VERITY:
4371 		return f2fs_ioc_enable_verity(filp, arg);
4372 	case FS_IOC_MEASURE_VERITY:
4373 		return f2fs_ioc_measure_verity(filp, arg);
4374 	case FS_IOC_READ_VERITY_METADATA:
4375 		return f2fs_ioc_read_verity_metadata(filp, arg);
4376 	case FS_IOC_GETFSLABEL:
4377 		return f2fs_ioc_getfslabel(filp, arg);
4378 	case FS_IOC_SETFSLABEL:
4379 		return f2fs_ioc_setfslabel(filp, arg);
4380 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4381 		return f2fs_ioc_get_compress_blocks(filp, arg);
4382 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4383 		return f2fs_release_compress_blocks(filp, arg);
4384 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4385 		return f2fs_reserve_compress_blocks(filp, arg);
4386 	case F2FS_IOC_SEC_TRIM_FILE:
4387 		return f2fs_sec_trim_file(filp, arg);
4388 	case F2FS_IOC_GET_COMPRESS_OPTION:
4389 		return f2fs_ioc_get_compress_option(filp, arg);
4390 	case F2FS_IOC_SET_COMPRESS_OPTION:
4391 		return f2fs_ioc_set_compress_option(filp, arg);
4392 	case F2FS_IOC_DECOMPRESS_FILE:
4393 		return f2fs_ioc_decompress_file(filp);
4394 	case F2FS_IOC_COMPRESS_FILE:
4395 		return f2fs_ioc_compress_file(filp);
4396 	default:
4397 		return -ENOTTY;
4398 	}
4399 }
4400 
4401 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4402 {
4403 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4404 		return -EIO;
4405 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4406 		return -ENOSPC;
4407 
4408 	return __f2fs_ioctl(filp, cmd, arg);
4409 }
4410 
4411 /*
4412  * Return %true if the given read or write request should use direct I/O, or
4413  * %false if it should use buffered I/O.
4414  */
4415 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4416 				struct iov_iter *iter)
4417 {
4418 	unsigned int align;
4419 
4420 	if (!(iocb->ki_flags & IOCB_DIRECT))
4421 		return false;
4422 
4423 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4424 		return false;
4425 
4426 	/*
4427 	 * Direct I/O not aligned to the disk's logical_block_size will be
4428 	 * attempted, but will fail with -EINVAL.
4429 	 *
4430 	 * f2fs additionally requires that direct I/O be aligned to the
4431 	 * filesystem block size, which is often a stricter requirement.
4432 	 * However, f2fs traditionally falls back to buffered I/O on requests
4433 	 * that are logical_block_size-aligned but not fs-block aligned.
4434 	 *
4435 	 * The below logic implements this behavior.
4436 	 */
4437 	align = iocb->ki_pos | iov_iter_alignment(iter);
4438 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4439 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4440 		return false;
4441 
4442 	return true;
4443 }
4444 
4445 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4446 				unsigned int flags)
4447 {
4448 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4449 
4450 	dec_page_count(sbi, F2FS_DIO_READ);
4451 	if (error)
4452 		return error;
4453 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4454 	return 0;
4455 }
4456 
4457 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4458 	.end_io = f2fs_dio_read_end_io,
4459 };
4460 
4461 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4462 {
4463 	struct file *file = iocb->ki_filp;
4464 	struct inode *inode = file_inode(file);
4465 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4466 	struct f2fs_inode_info *fi = F2FS_I(inode);
4467 	const loff_t pos = iocb->ki_pos;
4468 	const size_t count = iov_iter_count(to);
4469 	struct iomap_dio *dio;
4470 	ssize_t ret;
4471 
4472 	if (count == 0)
4473 		return 0; /* skip atime update */
4474 
4475 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4476 
4477 	if (iocb->ki_flags & IOCB_NOWAIT) {
4478 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4479 			ret = -EAGAIN;
4480 			goto out;
4481 		}
4482 	} else {
4483 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4484 	}
4485 
4486 	/*
4487 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4488 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4489 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4490 	 */
4491 	inc_page_count(sbi, F2FS_DIO_READ);
4492 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4493 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4494 	if (IS_ERR_OR_NULL(dio)) {
4495 		ret = PTR_ERR_OR_ZERO(dio);
4496 		if (ret != -EIOCBQUEUED)
4497 			dec_page_count(sbi, F2FS_DIO_READ);
4498 	} else {
4499 		ret = iomap_dio_complete(dio);
4500 	}
4501 
4502 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4503 
4504 	file_accessed(file);
4505 out:
4506 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4507 	return ret;
4508 }
4509 
4510 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4511 				    int rw)
4512 {
4513 	struct inode *inode = file_inode(file);
4514 	char *buf, *path;
4515 
4516 	buf = f2fs_getname(F2FS_I_SB(inode));
4517 	if (!buf)
4518 		return;
4519 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4520 	if (IS_ERR(path))
4521 		goto free_buf;
4522 	if (rw == WRITE)
4523 		trace_f2fs_datawrite_start(inode, pos, count,
4524 				current->pid, path, current->comm);
4525 	else
4526 		trace_f2fs_dataread_start(inode, pos, count,
4527 				current->pid, path, current->comm);
4528 free_buf:
4529 	f2fs_putname(buf);
4530 }
4531 
4532 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4533 {
4534 	struct inode *inode = file_inode(iocb->ki_filp);
4535 	const loff_t pos = iocb->ki_pos;
4536 	ssize_t ret;
4537 
4538 	if (!f2fs_is_compress_backend_ready(inode))
4539 		return -EOPNOTSUPP;
4540 
4541 	if (trace_f2fs_dataread_start_enabled())
4542 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4543 					iov_iter_count(to), READ);
4544 
4545 	if (f2fs_should_use_dio(inode, iocb, to)) {
4546 		ret = f2fs_dio_read_iter(iocb, to);
4547 	} else {
4548 		ret = filemap_read(iocb, to, 0);
4549 		if (ret > 0)
4550 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4551 						APP_BUFFERED_READ_IO, ret);
4552 	}
4553 	if (trace_f2fs_dataread_end_enabled())
4554 		trace_f2fs_dataread_end(inode, pos, ret);
4555 	return ret;
4556 }
4557 
4558 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4559 				     struct pipe_inode_info *pipe,
4560 				     size_t len, unsigned int flags)
4561 {
4562 	struct inode *inode = file_inode(in);
4563 	const loff_t pos = *ppos;
4564 	ssize_t ret;
4565 
4566 	if (!f2fs_is_compress_backend_ready(inode))
4567 		return -EOPNOTSUPP;
4568 
4569 	if (trace_f2fs_dataread_start_enabled())
4570 		f2fs_trace_rw_file_path(in, pos, len, READ);
4571 
4572 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4573 	if (ret > 0)
4574 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4575 				   APP_BUFFERED_READ_IO, ret);
4576 
4577 	if (trace_f2fs_dataread_end_enabled())
4578 		trace_f2fs_dataread_end(inode, pos, ret);
4579 	return ret;
4580 }
4581 
4582 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4583 {
4584 	struct file *file = iocb->ki_filp;
4585 	struct inode *inode = file_inode(file);
4586 	ssize_t count;
4587 	int err;
4588 
4589 	if (IS_IMMUTABLE(inode))
4590 		return -EPERM;
4591 
4592 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4593 		return -EPERM;
4594 
4595 	count = generic_write_checks(iocb, from);
4596 	if (count <= 0)
4597 		return count;
4598 
4599 	err = file_modified(file);
4600 	if (err)
4601 		return err;
4602 	return count;
4603 }
4604 
4605 /*
4606  * Preallocate blocks for a write request, if it is possible and helpful to do
4607  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4608  * blocks were preallocated, or a negative errno value if something went
4609  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4610  * requested blocks (not just some of them) have been allocated.
4611  */
4612 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4613 				   bool dio)
4614 {
4615 	struct inode *inode = file_inode(iocb->ki_filp);
4616 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4617 	const loff_t pos = iocb->ki_pos;
4618 	const size_t count = iov_iter_count(iter);
4619 	struct f2fs_map_blocks map = {};
4620 	int flag;
4621 	int ret;
4622 
4623 	/* If it will be an out-of-place direct write, don't bother. */
4624 	if (dio && f2fs_lfs_mode(sbi))
4625 		return 0;
4626 	/*
4627 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4628 	 * buffered IO, if DIO meets any holes.
4629 	 */
4630 	if (dio && i_size_read(inode) &&
4631 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4632 		return 0;
4633 
4634 	/* No-wait I/O can't allocate blocks. */
4635 	if (iocb->ki_flags & IOCB_NOWAIT)
4636 		return 0;
4637 
4638 	/* If it will be a short write, don't bother. */
4639 	if (fault_in_iov_iter_readable(iter, count))
4640 		return 0;
4641 
4642 	if (f2fs_has_inline_data(inode)) {
4643 		/* If the data will fit inline, don't bother. */
4644 		if (pos + count <= MAX_INLINE_DATA(inode))
4645 			return 0;
4646 		ret = f2fs_convert_inline_inode(inode);
4647 		if (ret)
4648 			return ret;
4649 	}
4650 
4651 	/* Do not preallocate blocks that will be written partially in 4KB. */
4652 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4653 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4654 	if (map.m_len > map.m_lblk)
4655 		map.m_len -= map.m_lblk;
4656 	else
4657 		return 0;
4658 
4659 	map.m_may_create = true;
4660 	if (dio) {
4661 		map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4662 						inode->i_write_hint);
4663 		flag = F2FS_GET_BLOCK_PRE_DIO;
4664 	} else {
4665 		map.m_seg_type = NO_CHECK_TYPE;
4666 		flag = F2FS_GET_BLOCK_PRE_AIO;
4667 	}
4668 
4669 	ret = f2fs_map_blocks(inode, &map, flag);
4670 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4671 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4672 		return ret;
4673 	if (ret == 0)
4674 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4675 	return map.m_len;
4676 }
4677 
4678 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4679 					struct iov_iter *from)
4680 {
4681 	struct file *file = iocb->ki_filp;
4682 	struct inode *inode = file_inode(file);
4683 	ssize_t ret;
4684 
4685 	if (iocb->ki_flags & IOCB_NOWAIT)
4686 		return -EOPNOTSUPP;
4687 
4688 	ret = generic_perform_write(iocb, from);
4689 
4690 	if (ret > 0) {
4691 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4692 						APP_BUFFERED_IO, ret);
4693 	}
4694 	return ret;
4695 }
4696 
4697 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4698 				 unsigned int flags)
4699 {
4700 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4701 
4702 	dec_page_count(sbi, F2FS_DIO_WRITE);
4703 	if (error)
4704 		return error;
4705 	f2fs_update_time(sbi, REQ_TIME);
4706 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4707 	return 0;
4708 }
4709 
4710 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
4711 					struct bio *bio, loff_t file_offset)
4712 {
4713 	struct inode *inode = iter->inode;
4714 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4715 	int seg_type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
4716 	enum temp_type temp = f2fs_get_segment_temp(seg_type);
4717 
4718 	bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
4719 	submit_bio(bio);
4720 }
4721 
4722 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4723 	.end_io		= f2fs_dio_write_end_io,
4724 	.submit_io	= f2fs_dio_write_submit_io,
4725 };
4726 
4727 static void f2fs_flush_buffered_write(struct address_space *mapping,
4728 				      loff_t start_pos, loff_t end_pos)
4729 {
4730 	int ret;
4731 
4732 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4733 	if (ret < 0)
4734 		return;
4735 	invalidate_mapping_pages(mapping,
4736 				 start_pos >> PAGE_SHIFT,
4737 				 end_pos >> PAGE_SHIFT);
4738 }
4739 
4740 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4741 				   bool *may_need_sync)
4742 {
4743 	struct file *file = iocb->ki_filp;
4744 	struct inode *inode = file_inode(file);
4745 	struct f2fs_inode_info *fi = F2FS_I(inode);
4746 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4747 	const bool do_opu = f2fs_lfs_mode(sbi);
4748 	const loff_t pos = iocb->ki_pos;
4749 	const ssize_t count = iov_iter_count(from);
4750 	unsigned int dio_flags;
4751 	struct iomap_dio *dio;
4752 	ssize_t ret;
4753 
4754 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4755 
4756 	if (iocb->ki_flags & IOCB_NOWAIT) {
4757 		/* f2fs_convert_inline_inode() and block allocation can block */
4758 		if (f2fs_has_inline_data(inode) ||
4759 		    !f2fs_overwrite_io(inode, pos, count)) {
4760 			ret = -EAGAIN;
4761 			goto out;
4762 		}
4763 
4764 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4765 			ret = -EAGAIN;
4766 			goto out;
4767 		}
4768 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4769 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4770 			ret = -EAGAIN;
4771 			goto out;
4772 		}
4773 	} else {
4774 		ret = f2fs_convert_inline_inode(inode);
4775 		if (ret)
4776 			goto out;
4777 
4778 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4779 		if (do_opu)
4780 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4781 	}
4782 
4783 	/*
4784 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4785 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4786 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4787 	 */
4788 	inc_page_count(sbi, F2FS_DIO_WRITE);
4789 	dio_flags = 0;
4790 	if (pos + count > inode->i_size)
4791 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4792 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4793 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4794 	if (IS_ERR_OR_NULL(dio)) {
4795 		ret = PTR_ERR_OR_ZERO(dio);
4796 		if (ret == -ENOTBLK)
4797 			ret = 0;
4798 		if (ret != -EIOCBQUEUED)
4799 			dec_page_count(sbi, F2FS_DIO_WRITE);
4800 	} else {
4801 		ret = iomap_dio_complete(dio);
4802 	}
4803 
4804 	if (do_opu)
4805 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4806 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4807 
4808 	if (ret < 0)
4809 		goto out;
4810 	if (pos + ret > inode->i_size)
4811 		f2fs_i_size_write(inode, pos + ret);
4812 	if (!do_opu)
4813 		set_inode_flag(inode, FI_UPDATE_WRITE);
4814 
4815 	if (iov_iter_count(from)) {
4816 		ssize_t ret2;
4817 		loff_t bufio_start_pos = iocb->ki_pos;
4818 
4819 		/*
4820 		 * The direct write was partial, so we need to fall back to a
4821 		 * buffered write for the remainder.
4822 		 */
4823 
4824 		ret2 = f2fs_buffered_write_iter(iocb, from);
4825 		if (iov_iter_count(from))
4826 			f2fs_write_failed(inode, iocb->ki_pos);
4827 		if (ret2 < 0)
4828 			goto out;
4829 
4830 		/*
4831 		 * Ensure that the pagecache pages are written to disk and
4832 		 * invalidated to preserve the expected O_DIRECT semantics.
4833 		 */
4834 		if (ret2 > 0) {
4835 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4836 
4837 			ret += ret2;
4838 
4839 			f2fs_flush_buffered_write(file->f_mapping,
4840 						  bufio_start_pos,
4841 						  bufio_end_pos);
4842 		}
4843 	} else {
4844 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4845 		*may_need_sync = false;
4846 	}
4847 out:
4848 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4849 	return ret;
4850 }
4851 
4852 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4853 {
4854 	struct inode *inode = file_inode(iocb->ki_filp);
4855 	const loff_t orig_pos = iocb->ki_pos;
4856 	const size_t orig_count = iov_iter_count(from);
4857 	loff_t target_size;
4858 	bool dio;
4859 	bool may_need_sync = true;
4860 	int preallocated;
4861 	const loff_t pos = iocb->ki_pos;
4862 	const ssize_t count = iov_iter_count(from);
4863 	ssize_t ret;
4864 
4865 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4866 		ret = -EIO;
4867 		goto out;
4868 	}
4869 
4870 	if (!f2fs_is_compress_backend_ready(inode)) {
4871 		ret = -EOPNOTSUPP;
4872 		goto out;
4873 	}
4874 
4875 	if (iocb->ki_flags & IOCB_NOWAIT) {
4876 		if (!inode_trylock(inode)) {
4877 			ret = -EAGAIN;
4878 			goto out;
4879 		}
4880 	} else {
4881 		inode_lock(inode);
4882 	}
4883 
4884 	if (f2fs_is_pinned_file(inode) &&
4885 	    !f2fs_overwrite_io(inode, pos, count)) {
4886 		ret = -EIO;
4887 		goto out_unlock;
4888 	}
4889 
4890 	ret = f2fs_write_checks(iocb, from);
4891 	if (ret <= 0)
4892 		goto out_unlock;
4893 
4894 	/* Determine whether we will do a direct write or a buffered write. */
4895 	dio = f2fs_should_use_dio(inode, iocb, from);
4896 
4897 	/* Possibly preallocate the blocks for the write. */
4898 	target_size = iocb->ki_pos + iov_iter_count(from);
4899 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4900 	if (preallocated < 0) {
4901 		ret = preallocated;
4902 	} else {
4903 		if (trace_f2fs_datawrite_start_enabled())
4904 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4905 						orig_count, WRITE);
4906 
4907 		/* Do the actual write. */
4908 		ret = dio ?
4909 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4910 			f2fs_buffered_write_iter(iocb, from);
4911 
4912 		if (trace_f2fs_datawrite_end_enabled())
4913 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4914 	}
4915 
4916 	/* Don't leave any preallocated blocks around past i_size. */
4917 	if (preallocated && i_size_read(inode) < target_size) {
4918 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4919 		filemap_invalidate_lock(inode->i_mapping);
4920 		if (!f2fs_truncate(inode))
4921 			file_dont_truncate(inode);
4922 		filemap_invalidate_unlock(inode->i_mapping);
4923 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4924 	} else {
4925 		file_dont_truncate(inode);
4926 	}
4927 
4928 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4929 out_unlock:
4930 	inode_unlock(inode);
4931 out:
4932 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4933 
4934 	if (ret > 0 && may_need_sync)
4935 		ret = generic_write_sync(iocb, ret);
4936 
4937 	/* If buffered IO was forced, flush and drop the data from
4938 	 * the page cache to preserve O_DIRECT semantics
4939 	 */
4940 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4941 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4942 					  orig_pos,
4943 					  orig_pos + ret - 1);
4944 
4945 	return ret;
4946 }
4947 
4948 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4949 		int advice)
4950 {
4951 	struct address_space *mapping;
4952 	struct backing_dev_info *bdi;
4953 	struct inode *inode = file_inode(filp);
4954 	int err;
4955 
4956 	if (advice == POSIX_FADV_SEQUENTIAL) {
4957 		if (S_ISFIFO(inode->i_mode))
4958 			return -ESPIPE;
4959 
4960 		mapping = filp->f_mapping;
4961 		if (!mapping || len < 0)
4962 			return -EINVAL;
4963 
4964 		bdi = inode_to_bdi(mapping->host);
4965 		filp->f_ra.ra_pages = bdi->ra_pages *
4966 			F2FS_I_SB(inode)->seq_file_ra_mul;
4967 		spin_lock(&filp->f_lock);
4968 		filp->f_mode &= ~FMODE_RANDOM;
4969 		spin_unlock(&filp->f_lock);
4970 		return 0;
4971 	} else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
4972 		/* Load extent cache at the first readahead. */
4973 		f2fs_precache_extents(inode);
4974 	}
4975 
4976 	err = generic_fadvise(filp, offset, len, advice);
4977 	if (!err && advice == POSIX_FADV_DONTNEED &&
4978 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4979 		f2fs_compressed_file(inode))
4980 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4981 
4982 	return err;
4983 }
4984 
4985 #ifdef CONFIG_COMPAT
4986 struct compat_f2fs_gc_range {
4987 	u32 sync;
4988 	compat_u64 start;
4989 	compat_u64 len;
4990 };
4991 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4992 						struct compat_f2fs_gc_range)
4993 
4994 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4995 {
4996 	struct compat_f2fs_gc_range __user *urange;
4997 	struct f2fs_gc_range range;
4998 	int err;
4999 
5000 	urange = compat_ptr(arg);
5001 	err = get_user(range.sync, &urange->sync);
5002 	err |= get_user(range.start, &urange->start);
5003 	err |= get_user(range.len, &urange->len);
5004 	if (err)
5005 		return -EFAULT;
5006 
5007 	return __f2fs_ioc_gc_range(file, &range);
5008 }
5009 
5010 struct compat_f2fs_move_range {
5011 	u32 dst_fd;
5012 	compat_u64 pos_in;
5013 	compat_u64 pos_out;
5014 	compat_u64 len;
5015 };
5016 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
5017 					struct compat_f2fs_move_range)
5018 
5019 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5020 {
5021 	struct compat_f2fs_move_range __user *urange;
5022 	struct f2fs_move_range range;
5023 	int err;
5024 
5025 	urange = compat_ptr(arg);
5026 	err = get_user(range.dst_fd, &urange->dst_fd);
5027 	err |= get_user(range.pos_in, &urange->pos_in);
5028 	err |= get_user(range.pos_out, &urange->pos_out);
5029 	err |= get_user(range.len, &urange->len);
5030 	if (err)
5031 		return -EFAULT;
5032 
5033 	return __f2fs_ioc_move_range(file, &range);
5034 }
5035 
5036 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5037 {
5038 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5039 		return -EIO;
5040 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5041 		return -ENOSPC;
5042 
5043 	switch (cmd) {
5044 	case FS_IOC32_GETVERSION:
5045 		cmd = FS_IOC_GETVERSION;
5046 		break;
5047 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5048 		return f2fs_compat_ioc_gc_range(file, arg);
5049 	case F2FS_IOC32_MOVE_RANGE:
5050 		return f2fs_compat_ioc_move_range(file, arg);
5051 	case F2FS_IOC_START_ATOMIC_WRITE:
5052 	case F2FS_IOC_START_ATOMIC_REPLACE:
5053 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5054 	case F2FS_IOC_START_VOLATILE_WRITE:
5055 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5056 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
5057 	case F2FS_IOC_SHUTDOWN:
5058 	case FITRIM:
5059 	case FS_IOC_SET_ENCRYPTION_POLICY:
5060 	case FS_IOC_GET_ENCRYPTION_PWSALT:
5061 	case FS_IOC_GET_ENCRYPTION_POLICY:
5062 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5063 	case FS_IOC_ADD_ENCRYPTION_KEY:
5064 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
5065 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5066 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5067 	case FS_IOC_GET_ENCRYPTION_NONCE:
5068 	case F2FS_IOC_GARBAGE_COLLECT:
5069 	case F2FS_IOC_WRITE_CHECKPOINT:
5070 	case F2FS_IOC_DEFRAGMENT:
5071 	case F2FS_IOC_FLUSH_DEVICE:
5072 	case F2FS_IOC_GET_FEATURES:
5073 	case F2FS_IOC_GET_PIN_FILE:
5074 	case F2FS_IOC_SET_PIN_FILE:
5075 	case F2FS_IOC_PRECACHE_EXTENTS:
5076 	case F2FS_IOC_RESIZE_FS:
5077 	case FS_IOC_ENABLE_VERITY:
5078 	case FS_IOC_MEASURE_VERITY:
5079 	case FS_IOC_READ_VERITY_METADATA:
5080 	case FS_IOC_GETFSLABEL:
5081 	case FS_IOC_SETFSLABEL:
5082 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5083 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5084 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5085 	case F2FS_IOC_SEC_TRIM_FILE:
5086 	case F2FS_IOC_GET_COMPRESS_OPTION:
5087 	case F2FS_IOC_SET_COMPRESS_OPTION:
5088 	case F2FS_IOC_DECOMPRESS_FILE:
5089 	case F2FS_IOC_COMPRESS_FILE:
5090 		break;
5091 	default:
5092 		return -ENOIOCTLCMD;
5093 	}
5094 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5095 }
5096 #endif
5097 
5098 const struct file_operations f2fs_file_operations = {
5099 	.llseek		= f2fs_llseek,
5100 	.read_iter	= f2fs_file_read_iter,
5101 	.write_iter	= f2fs_file_write_iter,
5102 	.iopoll		= iocb_bio_iopoll,
5103 	.open		= f2fs_file_open,
5104 	.release	= f2fs_release_file,
5105 	.mmap		= f2fs_file_mmap,
5106 	.flush		= f2fs_file_flush,
5107 	.fsync		= f2fs_sync_file,
5108 	.fallocate	= f2fs_fallocate,
5109 	.unlocked_ioctl	= f2fs_ioctl,
5110 #ifdef CONFIG_COMPAT
5111 	.compat_ioctl	= f2fs_compat_ioctl,
5112 #endif
5113 	.splice_read	= f2fs_file_splice_read,
5114 	.splice_write	= iter_file_splice_write,
5115 	.fadvise	= f2fs_file_fadvise,
5116 	.fop_flags	= FOP_BUFFER_RASYNC,
5117 };
5118