xref: /linux/fs/f2fs/file.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_flags_t flags = vmf->vma->vm_flags;
43 	vm_fault_t ret;
44 
45 	ret = filemap_fault(vmf);
46 	if (ret & VM_FAULT_LOCKED)
47 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
48 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
49 
50 	trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
51 
52 	return ret;
53 }
54 
55 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
56 {
57 	struct page *page = vmf->page;
58 	struct inode *inode = file_inode(vmf->vma->vm_file);
59 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
60 	struct dnode_of_data dn;
61 	bool need_alloc = true;
62 	int err = 0;
63 	vm_fault_t ret;
64 
65 	if (unlikely(IS_IMMUTABLE(inode)))
66 		return VM_FAULT_SIGBUS;
67 
68 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
69 		err = -EIO;
70 		goto out;
71 	}
72 
73 	if (unlikely(f2fs_cp_error(sbi))) {
74 		err = -EIO;
75 		goto out;
76 	}
77 
78 	if (!f2fs_is_checkpoint_ready(sbi)) {
79 		err = -ENOSPC;
80 		goto out;
81 	}
82 
83 	err = f2fs_convert_inline_inode(inode);
84 	if (err)
85 		goto out;
86 
87 #ifdef CONFIG_F2FS_FS_COMPRESSION
88 	if (f2fs_compressed_file(inode)) {
89 		int ret = f2fs_is_compressed_cluster(inode, page->index);
90 
91 		if (ret < 0) {
92 			err = ret;
93 			goto out;
94 		} else if (ret) {
95 			need_alloc = false;
96 		}
97 	}
98 #endif
99 	/* should do out of any locked page */
100 	if (need_alloc)
101 		f2fs_balance_fs(sbi, true);
102 
103 	sb_start_pagefault(inode->i_sb);
104 
105 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
106 
107 	file_update_time(vmf->vma->vm_file);
108 	filemap_invalidate_lock_shared(inode->i_mapping);
109 	lock_page(page);
110 	if (unlikely(page->mapping != inode->i_mapping ||
111 			page_offset(page) > i_size_read(inode) ||
112 			!PageUptodate(page))) {
113 		unlock_page(page);
114 		err = -EFAULT;
115 		goto out_sem;
116 	}
117 
118 	if (need_alloc) {
119 		/* block allocation */
120 		set_new_dnode(&dn, inode, NULL, NULL, 0);
121 		err = f2fs_get_block_locked(&dn, page->index);
122 	}
123 
124 #ifdef CONFIG_F2FS_FS_COMPRESSION
125 	if (!need_alloc) {
126 		set_new_dnode(&dn, inode, NULL, NULL, 0);
127 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
128 		f2fs_put_dnode(&dn);
129 	}
130 #endif
131 	if (err) {
132 		unlock_page(page);
133 		goto out_sem;
134 	}
135 
136 	f2fs_wait_on_page_writeback(page, DATA, false, true);
137 
138 	/* wait for GCed page writeback via META_MAPPING */
139 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
140 
141 	/*
142 	 * check to see if the page is mapped already (no holes)
143 	 */
144 	if (PageMappedToDisk(page))
145 		goto out_sem;
146 
147 	/* page is wholly or partially inside EOF */
148 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
149 						i_size_read(inode)) {
150 		loff_t offset;
151 
152 		offset = i_size_read(inode) & ~PAGE_MASK;
153 		zero_user_segment(page, offset, PAGE_SIZE);
154 	}
155 	set_page_dirty(page);
156 
157 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
158 	f2fs_update_time(sbi, REQ_TIME);
159 
160 out_sem:
161 	filemap_invalidate_unlock_shared(inode->i_mapping);
162 
163 	sb_end_pagefault(inode->i_sb);
164 out:
165 	ret = vmf_fs_error(err);
166 
167 	trace_f2fs_vm_page_mkwrite(inode, page->index, vmf->vma->vm_flags, ret);
168 	return ret;
169 }
170 
171 static const struct vm_operations_struct f2fs_file_vm_ops = {
172 	.fault		= f2fs_filemap_fault,
173 	.map_pages	= filemap_map_pages,
174 	.page_mkwrite	= f2fs_vm_page_mkwrite,
175 };
176 
177 static int get_parent_ino(struct inode *inode, nid_t *pino)
178 {
179 	struct dentry *dentry;
180 
181 	/*
182 	 * Make sure to get the non-deleted alias.  The alias associated with
183 	 * the open file descriptor being fsync()'ed may be deleted already.
184 	 */
185 	dentry = d_find_alias(inode);
186 	if (!dentry)
187 		return 0;
188 
189 	*pino = parent_ino(dentry);
190 	dput(dentry);
191 	return 1;
192 }
193 
194 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
195 {
196 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
197 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
198 
199 	if (!S_ISREG(inode->i_mode))
200 		cp_reason = CP_NON_REGULAR;
201 	else if (f2fs_compressed_file(inode))
202 		cp_reason = CP_COMPRESSED;
203 	else if (inode->i_nlink != 1)
204 		cp_reason = CP_HARDLINK;
205 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
206 		cp_reason = CP_SB_NEED_CP;
207 	else if (file_wrong_pino(inode))
208 		cp_reason = CP_WRONG_PINO;
209 	else if (!f2fs_space_for_roll_forward(sbi))
210 		cp_reason = CP_NO_SPC_ROLL;
211 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
212 		cp_reason = CP_NODE_NEED_CP;
213 	else if (test_opt(sbi, FASTBOOT))
214 		cp_reason = CP_FASTBOOT_MODE;
215 	else if (F2FS_OPTION(sbi).active_logs == 2)
216 		cp_reason = CP_SPEC_LOG_NUM;
217 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
218 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
219 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
220 							TRANS_DIR_INO))
221 		cp_reason = CP_RECOVER_DIR;
222 
223 	return cp_reason;
224 }
225 
226 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
227 {
228 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
229 	bool ret = false;
230 	/* But we need to avoid that there are some inode updates */
231 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
232 		ret = true;
233 	f2fs_put_page(i, 0);
234 	return ret;
235 }
236 
237 static void try_to_fix_pino(struct inode *inode)
238 {
239 	struct f2fs_inode_info *fi = F2FS_I(inode);
240 	nid_t pino;
241 
242 	f2fs_down_write(&fi->i_sem);
243 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
244 			get_parent_ino(inode, &pino)) {
245 		f2fs_i_pino_write(inode, pino);
246 		file_got_pino(inode);
247 	}
248 	f2fs_up_write(&fi->i_sem);
249 }
250 
251 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
252 						int datasync, bool atomic)
253 {
254 	struct inode *inode = file->f_mapping->host;
255 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
256 	nid_t ino = inode->i_ino;
257 	int ret = 0;
258 	enum cp_reason_type cp_reason = 0;
259 	struct writeback_control wbc = {
260 		.sync_mode = WB_SYNC_ALL,
261 		.nr_to_write = LONG_MAX,
262 		.for_reclaim = 0,
263 	};
264 	unsigned int seq_id = 0;
265 
266 	if (unlikely(f2fs_readonly(inode->i_sb)))
267 		return 0;
268 
269 	trace_f2fs_sync_file_enter(inode);
270 
271 	if (S_ISDIR(inode->i_mode))
272 		goto go_write;
273 
274 	/* if fdatasync is triggered, let's do in-place-update */
275 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
276 		set_inode_flag(inode, FI_NEED_IPU);
277 	ret = file_write_and_wait_range(file, start, end);
278 	clear_inode_flag(inode, FI_NEED_IPU);
279 
280 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
281 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
282 		return ret;
283 	}
284 
285 	/* if the inode is dirty, let's recover all the time */
286 	if (!f2fs_skip_inode_update(inode, datasync)) {
287 		f2fs_write_inode(inode, NULL);
288 		goto go_write;
289 	}
290 
291 	/*
292 	 * if there is no written data, don't waste time to write recovery info.
293 	 */
294 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
295 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
296 
297 		/* it may call write_inode just prior to fsync */
298 		if (need_inode_page_update(sbi, ino))
299 			goto go_write;
300 
301 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
302 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
303 			goto flush_out;
304 		goto out;
305 	} else {
306 		/*
307 		 * for OPU case, during fsync(), node can be persisted before
308 		 * data when lower device doesn't support write barrier, result
309 		 * in data corruption after SPO.
310 		 * So for strict fsync mode, force to use atomic write semantics
311 		 * to keep write order in between data/node and last node to
312 		 * avoid potential data corruption.
313 		 */
314 		if (F2FS_OPTION(sbi).fsync_mode ==
315 				FSYNC_MODE_STRICT && !atomic)
316 			atomic = true;
317 	}
318 go_write:
319 	/*
320 	 * Both of fdatasync() and fsync() are able to be recovered from
321 	 * sudden-power-off.
322 	 */
323 	f2fs_down_read(&F2FS_I(inode)->i_sem);
324 	cp_reason = need_do_checkpoint(inode);
325 	f2fs_up_read(&F2FS_I(inode)->i_sem);
326 
327 	if (cp_reason) {
328 		/* all the dirty node pages should be flushed for POR */
329 		ret = f2fs_sync_fs(inode->i_sb, 1);
330 
331 		/*
332 		 * We've secured consistency through sync_fs. Following pino
333 		 * will be used only for fsynced inodes after checkpoint.
334 		 */
335 		try_to_fix_pino(inode);
336 		clear_inode_flag(inode, FI_APPEND_WRITE);
337 		clear_inode_flag(inode, FI_UPDATE_WRITE);
338 		goto out;
339 	}
340 sync_nodes:
341 	atomic_inc(&sbi->wb_sync_req[NODE]);
342 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
343 	atomic_dec(&sbi->wb_sync_req[NODE]);
344 	if (ret)
345 		goto out;
346 
347 	/* if cp_error was enabled, we should avoid infinite loop */
348 	if (unlikely(f2fs_cp_error(sbi))) {
349 		ret = -EIO;
350 		goto out;
351 	}
352 
353 	if (f2fs_need_inode_block_update(sbi, ino)) {
354 		f2fs_mark_inode_dirty_sync(inode, true);
355 		f2fs_write_inode(inode, NULL);
356 		goto sync_nodes;
357 	}
358 
359 	/*
360 	 * If it's atomic_write, it's just fine to keep write ordering. So
361 	 * here we don't need to wait for node write completion, since we use
362 	 * node chain which serializes node blocks. If one of node writes are
363 	 * reordered, we can see simply broken chain, resulting in stopping
364 	 * roll-forward recovery. It means we'll recover all or none node blocks
365 	 * given fsync mark.
366 	 */
367 	if (!atomic) {
368 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
369 		if (ret)
370 			goto out;
371 	}
372 
373 	/* once recovery info is written, don't need to tack this */
374 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
375 	clear_inode_flag(inode, FI_APPEND_WRITE);
376 flush_out:
377 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
378 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
379 		ret = f2fs_issue_flush(sbi, inode->i_ino);
380 	if (!ret) {
381 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
382 		clear_inode_flag(inode, FI_UPDATE_WRITE);
383 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
384 	}
385 	f2fs_update_time(sbi, REQ_TIME);
386 out:
387 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
388 	return ret;
389 }
390 
391 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
392 {
393 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
394 		return -EIO;
395 	return f2fs_do_sync_file(file, start, end, datasync, false);
396 }
397 
398 static bool __found_offset(struct address_space *mapping,
399 		struct dnode_of_data *dn, pgoff_t index, int whence)
400 {
401 	block_t blkaddr = f2fs_data_blkaddr(dn);
402 	struct inode *inode = mapping->host;
403 	bool compressed_cluster = false;
404 
405 	if (f2fs_compressed_file(inode)) {
406 		block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
407 		    ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
408 
409 		compressed_cluster = first_blkaddr == COMPRESS_ADDR;
410 	}
411 
412 	switch (whence) {
413 	case SEEK_DATA:
414 		if (__is_valid_data_blkaddr(blkaddr))
415 			return true;
416 		if (blkaddr == NEW_ADDR &&
417 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
418 			return true;
419 		if (compressed_cluster)
420 			return true;
421 		break;
422 	case SEEK_HOLE:
423 		if (compressed_cluster)
424 			return false;
425 		if (blkaddr == NULL_ADDR)
426 			return true;
427 		break;
428 	}
429 	return false;
430 }
431 
432 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
433 {
434 	struct inode *inode = file->f_mapping->host;
435 	loff_t maxbytes = inode->i_sb->s_maxbytes;
436 	struct dnode_of_data dn;
437 	pgoff_t pgofs, end_offset;
438 	loff_t data_ofs = offset;
439 	loff_t isize;
440 	int err = 0;
441 
442 	inode_lock_shared(inode);
443 
444 	isize = i_size_read(inode);
445 	if (offset >= isize)
446 		goto fail;
447 
448 	/* handle inline data case */
449 	if (f2fs_has_inline_data(inode)) {
450 		if (whence == SEEK_HOLE) {
451 			data_ofs = isize;
452 			goto found;
453 		} else if (whence == SEEK_DATA) {
454 			data_ofs = offset;
455 			goto found;
456 		}
457 	}
458 
459 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
460 
461 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
462 		set_new_dnode(&dn, inode, NULL, NULL, 0);
463 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
464 		if (err && err != -ENOENT) {
465 			goto fail;
466 		} else if (err == -ENOENT) {
467 			/* direct node does not exists */
468 			if (whence == SEEK_DATA) {
469 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
470 				continue;
471 			} else {
472 				goto found;
473 			}
474 		}
475 
476 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
477 
478 		/* find data/hole in dnode block */
479 		for (; dn.ofs_in_node < end_offset;
480 				dn.ofs_in_node++, pgofs++,
481 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
482 			block_t blkaddr;
483 
484 			blkaddr = f2fs_data_blkaddr(&dn);
485 
486 			if (__is_valid_data_blkaddr(blkaddr) &&
487 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
488 					blkaddr, DATA_GENERIC_ENHANCE)) {
489 				f2fs_put_dnode(&dn);
490 				goto fail;
491 			}
492 
493 			if (__found_offset(file->f_mapping, &dn,
494 							pgofs, whence)) {
495 				f2fs_put_dnode(&dn);
496 				goto found;
497 			}
498 		}
499 		f2fs_put_dnode(&dn);
500 	}
501 
502 	if (whence == SEEK_DATA)
503 		goto fail;
504 found:
505 	if (whence == SEEK_HOLE && data_ofs > isize)
506 		data_ofs = isize;
507 	inode_unlock_shared(inode);
508 	return vfs_setpos(file, data_ofs, maxbytes);
509 fail:
510 	inode_unlock_shared(inode);
511 	return -ENXIO;
512 }
513 
514 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
515 {
516 	struct inode *inode = file->f_mapping->host;
517 	loff_t maxbytes = inode->i_sb->s_maxbytes;
518 
519 	if (f2fs_compressed_file(inode))
520 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
521 
522 	switch (whence) {
523 	case SEEK_SET:
524 	case SEEK_CUR:
525 	case SEEK_END:
526 		return generic_file_llseek_size(file, offset, whence,
527 						maxbytes, i_size_read(inode));
528 	case SEEK_DATA:
529 	case SEEK_HOLE:
530 		if (offset < 0)
531 			return -ENXIO;
532 		return f2fs_seek_block(file, offset, whence);
533 	}
534 
535 	return -EINVAL;
536 }
537 
538 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
539 {
540 	struct inode *inode = file_inode(file);
541 
542 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
543 		return -EIO;
544 
545 	if (!f2fs_is_compress_backend_ready(inode))
546 		return -EOPNOTSUPP;
547 
548 	file_accessed(file);
549 	vma->vm_ops = &f2fs_file_vm_ops;
550 
551 	f2fs_down_read(&F2FS_I(inode)->i_sem);
552 	set_inode_flag(inode, FI_MMAP_FILE);
553 	f2fs_up_read(&F2FS_I(inode)->i_sem);
554 
555 	return 0;
556 }
557 
558 static int f2fs_file_open(struct inode *inode, struct file *filp)
559 {
560 	int err = fscrypt_file_open(inode, filp);
561 
562 	if (err)
563 		return err;
564 
565 	if (!f2fs_is_compress_backend_ready(inode))
566 		return -EOPNOTSUPP;
567 
568 	err = fsverity_file_open(inode, filp);
569 	if (err)
570 		return err;
571 
572 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
573 	filp->f_mode |= FMODE_CAN_ODIRECT;
574 
575 	return dquot_file_open(inode, filp);
576 }
577 
578 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
579 {
580 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
581 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
582 	__le32 *addr;
583 	bool compressed_cluster = false;
584 	int cluster_index = 0, valid_blocks = 0;
585 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
586 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
587 
588 	addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
589 
590 	/* Assumption: truncation starts with cluster */
591 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
592 		block_t blkaddr = le32_to_cpu(*addr);
593 
594 		if (f2fs_compressed_file(dn->inode) &&
595 					!(cluster_index & (cluster_size - 1))) {
596 			if (compressed_cluster)
597 				f2fs_i_compr_blocks_update(dn->inode,
598 							valid_blocks, false);
599 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
600 			valid_blocks = 0;
601 		}
602 
603 		if (blkaddr == NULL_ADDR)
604 			continue;
605 
606 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
607 
608 		if (__is_valid_data_blkaddr(blkaddr)) {
609 			if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
610 				continue;
611 			if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
612 						DATA_GENERIC_ENHANCE))
613 				continue;
614 			if (compressed_cluster)
615 				valid_blocks++;
616 		}
617 
618 		f2fs_invalidate_blocks(sbi, blkaddr);
619 
620 		if (!released || blkaddr != COMPRESS_ADDR)
621 			nr_free++;
622 	}
623 
624 	if (compressed_cluster)
625 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
626 
627 	if (nr_free) {
628 		pgoff_t fofs;
629 		/*
630 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
631 		 * we will invalidate all blkaddr in the whole range.
632 		 */
633 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
634 							dn->inode) + ofs;
635 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
636 		f2fs_update_age_extent_cache_range(dn, fofs, len);
637 		dec_valid_block_count(sbi, dn->inode, nr_free);
638 	}
639 	dn->ofs_in_node = ofs;
640 
641 	f2fs_update_time(sbi, REQ_TIME);
642 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
643 					 dn->ofs_in_node, nr_free);
644 }
645 
646 static int truncate_partial_data_page(struct inode *inode, u64 from,
647 								bool cache_only)
648 {
649 	loff_t offset = from & (PAGE_SIZE - 1);
650 	pgoff_t index = from >> PAGE_SHIFT;
651 	struct address_space *mapping = inode->i_mapping;
652 	struct page *page;
653 
654 	if (!offset && !cache_only)
655 		return 0;
656 
657 	if (cache_only) {
658 		page = find_lock_page(mapping, index);
659 		if (page && PageUptodate(page))
660 			goto truncate_out;
661 		f2fs_put_page(page, 1);
662 		return 0;
663 	}
664 
665 	page = f2fs_get_lock_data_page(inode, index, true);
666 	if (IS_ERR(page))
667 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
668 truncate_out:
669 	f2fs_wait_on_page_writeback(page, DATA, true, true);
670 	zero_user(page, offset, PAGE_SIZE - offset);
671 
672 	/* An encrypted inode should have a key and truncate the last page. */
673 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
674 	if (!cache_only)
675 		set_page_dirty(page);
676 	f2fs_put_page(page, 1);
677 	return 0;
678 }
679 
680 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
681 {
682 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
683 	struct dnode_of_data dn;
684 	pgoff_t free_from;
685 	int count = 0, err = 0;
686 	struct page *ipage;
687 	bool truncate_page = false;
688 
689 	trace_f2fs_truncate_blocks_enter(inode, from);
690 
691 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
692 
693 	if (free_from >= max_file_blocks(inode))
694 		goto free_partial;
695 
696 	if (lock)
697 		f2fs_lock_op(sbi);
698 
699 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
700 	if (IS_ERR(ipage)) {
701 		err = PTR_ERR(ipage);
702 		goto out;
703 	}
704 
705 	if (f2fs_has_inline_data(inode)) {
706 		f2fs_truncate_inline_inode(inode, ipage, from);
707 		f2fs_put_page(ipage, 1);
708 		truncate_page = true;
709 		goto out;
710 	}
711 
712 	set_new_dnode(&dn, inode, ipage, NULL, 0);
713 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
714 	if (err) {
715 		if (err == -ENOENT)
716 			goto free_next;
717 		goto out;
718 	}
719 
720 	count = ADDRS_PER_PAGE(dn.node_page, inode);
721 
722 	count -= dn.ofs_in_node;
723 	f2fs_bug_on(sbi, count < 0);
724 
725 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
726 		f2fs_truncate_data_blocks_range(&dn, count);
727 		free_from += count;
728 	}
729 
730 	f2fs_put_dnode(&dn);
731 free_next:
732 	err = f2fs_truncate_inode_blocks(inode, free_from);
733 out:
734 	if (lock)
735 		f2fs_unlock_op(sbi);
736 free_partial:
737 	/* lastly zero out the first data page */
738 	if (!err)
739 		err = truncate_partial_data_page(inode, from, truncate_page);
740 
741 	trace_f2fs_truncate_blocks_exit(inode, err);
742 	return err;
743 }
744 
745 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
746 {
747 	u64 free_from = from;
748 	int err;
749 
750 #ifdef CONFIG_F2FS_FS_COMPRESSION
751 	/*
752 	 * for compressed file, only support cluster size
753 	 * aligned truncation.
754 	 */
755 	if (f2fs_compressed_file(inode))
756 		free_from = round_up(from,
757 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
758 #endif
759 
760 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
761 	if (err)
762 		return err;
763 
764 #ifdef CONFIG_F2FS_FS_COMPRESSION
765 	/*
766 	 * For compressed file, after release compress blocks, don't allow write
767 	 * direct, but we should allow write direct after truncate to zero.
768 	 */
769 	if (f2fs_compressed_file(inode) && !free_from
770 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
771 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
772 
773 	if (from != free_from) {
774 		err = f2fs_truncate_partial_cluster(inode, from, lock);
775 		if (err)
776 			return err;
777 	}
778 #endif
779 
780 	return 0;
781 }
782 
783 int f2fs_truncate(struct inode *inode)
784 {
785 	int err;
786 
787 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
788 		return -EIO;
789 
790 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
791 				S_ISLNK(inode->i_mode)))
792 		return 0;
793 
794 	trace_f2fs_truncate(inode);
795 
796 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
797 		return -EIO;
798 
799 	err = f2fs_dquot_initialize(inode);
800 	if (err)
801 		return err;
802 
803 	/* we should check inline_data size */
804 	if (!f2fs_may_inline_data(inode)) {
805 		err = f2fs_convert_inline_inode(inode);
806 		if (err)
807 			return err;
808 	}
809 
810 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
811 	if (err)
812 		return err;
813 
814 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
815 	f2fs_mark_inode_dirty_sync(inode, false);
816 	return 0;
817 }
818 
819 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
820 {
821 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
822 
823 	if (!fscrypt_dio_supported(inode))
824 		return true;
825 	if (fsverity_active(inode))
826 		return true;
827 	if (f2fs_compressed_file(inode))
828 		return true;
829 
830 	/* disallow direct IO if any of devices has unaligned blksize */
831 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
832 		return true;
833 	/*
834 	 * for blkzoned device, fallback direct IO to buffered IO, so
835 	 * all IOs can be serialized by log-structured write.
836 	 */
837 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
838 		return true;
839 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
840 		return true;
841 
842 	return false;
843 }
844 
845 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
846 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
847 {
848 	struct inode *inode = d_inode(path->dentry);
849 	struct f2fs_inode_info *fi = F2FS_I(inode);
850 	struct f2fs_inode *ri = NULL;
851 	unsigned int flags;
852 
853 	if (f2fs_has_extra_attr(inode) &&
854 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
855 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
856 		stat->result_mask |= STATX_BTIME;
857 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
858 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
859 	}
860 
861 	/*
862 	 * Return the DIO alignment restrictions if requested.  We only return
863 	 * this information when requested, since on encrypted files it might
864 	 * take a fair bit of work to get if the file wasn't opened recently.
865 	 *
866 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
867 	 * cannot represent that, so in that case we report no DIO support.
868 	 */
869 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
870 		unsigned int bsize = i_blocksize(inode);
871 
872 		stat->result_mask |= STATX_DIOALIGN;
873 		if (!f2fs_force_buffered_io(inode, WRITE)) {
874 			stat->dio_mem_align = bsize;
875 			stat->dio_offset_align = bsize;
876 		}
877 	}
878 
879 	flags = fi->i_flags;
880 	if (flags & F2FS_COMPR_FL)
881 		stat->attributes |= STATX_ATTR_COMPRESSED;
882 	if (flags & F2FS_APPEND_FL)
883 		stat->attributes |= STATX_ATTR_APPEND;
884 	if (IS_ENCRYPTED(inode))
885 		stat->attributes |= STATX_ATTR_ENCRYPTED;
886 	if (flags & F2FS_IMMUTABLE_FL)
887 		stat->attributes |= STATX_ATTR_IMMUTABLE;
888 	if (flags & F2FS_NODUMP_FL)
889 		stat->attributes |= STATX_ATTR_NODUMP;
890 	if (IS_VERITY(inode))
891 		stat->attributes |= STATX_ATTR_VERITY;
892 
893 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
894 				  STATX_ATTR_APPEND |
895 				  STATX_ATTR_ENCRYPTED |
896 				  STATX_ATTR_IMMUTABLE |
897 				  STATX_ATTR_NODUMP |
898 				  STATX_ATTR_VERITY);
899 
900 	generic_fillattr(idmap, request_mask, inode, stat);
901 
902 	/* we need to show initial sectors used for inline_data/dentries */
903 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
904 					f2fs_has_inline_dentry(inode))
905 		stat->blocks += (stat->size + 511) >> 9;
906 
907 	return 0;
908 }
909 
910 #ifdef CONFIG_F2FS_FS_POSIX_ACL
911 static void __setattr_copy(struct mnt_idmap *idmap,
912 			   struct inode *inode, const struct iattr *attr)
913 {
914 	unsigned int ia_valid = attr->ia_valid;
915 
916 	i_uid_update(idmap, attr, inode);
917 	i_gid_update(idmap, attr, inode);
918 	if (ia_valid & ATTR_ATIME)
919 		inode_set_atime_to_ts(inode, attr->ia_atime);
920 	if (ia_valid & ATTR_MTIME)
921 		inode_set_mtime_to_ts(inode, attr->ia_mtime);
922 	if (ia_valid & ATTR_CTIME)
923 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
924 	if (ia_valid & ATTR_MODE) {
925 		umode_t mode = attr->ia_mode;
926 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
927 
928 		if (!vfsgid_in_group_p(vfsgid) &&
929 		    !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
930 			mode &= ~S_ISGID;
931 		set_acl_inode(inode, mode);
932 	}
933 }
934 #else
935 #define __setattr_copy setattr_copy
936 #endif
937 
938 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
939 		 struct iattr *attr)
940 {
941 	struct inode *inode = d_inode(dentry);
942 	int err;
943 
944 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
945 		return -EIO;
946 
947 	if (unlikely(IS_IMMUTABLE(inode)))
948 		return -EPERM;
949 
950 	if (unlikely(IS_APPEND(inode) &&
951 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
952 				  ATTR_GID | ATTR_TIMES_SET))))
953 		return -EPERM;
954 
955 	if ((attr->ia_valid & ATTR_SIZE) &&
956 		!f2fs_is_compress_backend_ready(inode))
957 		return -EOPNOTSUPP;
958 
959 	err = setattr_prepare(idmap, dentry, attr);
960 	if (err)
961 		return err;
962 
963 	err = fscrypt_prepare_setattr(dentry, attr);
964 	if (err)
965 		return err;
966 
967 	err = fsverity_prepare_setattr(dentry, attr);
968 	if (err)
969 		return err;
970 
971 	if (is_quota_modification(idmap, inode, attr)) {
972 		err = f2fs_dquot_initialize(inode);
973 		if (err)
974 			return err;
975 	}
976 	if (i_uid_needs_update(idmap, attr, inode) ||
977 	    i_gid_needs_update(idmap, attr, inode)) {
978 		f2fs_lock_op(F2FS_I_SB(inode));
979 		err = dquot_transfer(idmap, inode, attr);
980 		if (err) {
981 			set_sbi_flag(F2FS_I_SB(inode),
982 					SBI_QUOTA_NEED_REPAIR);
983 			f2fs_unlock_op(F2FS_I_SB(inode));
984 			return err;
985 		}
986 		/*
987 		 * update uid/gid under lock_op(), so that dquot and inode can
988 		 * be updated atomically.
989 		 */
990 		i_uid_update(idmap, attr, inode);
991 		i_gid_update(idmap, attr, inode);
992 		f2fs_mark_inode_dirty_sync(inode, true);
993 		f2fs_unlock_op(F2FS_I_SB(inode));
994 	}
995 
996 	if (attr->ia_valid & ATTR_SIZE) {
997 		loff_t old_size = i_size_read(inode);
998 
999 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1000 			/*
1001 			 * should convert inline inode before i_size_write to
1002 			 * keep smaller than inline_data size with inline flag.
1003 			 */
1004 			err = f2fs_convert_inline_inode(inode);
1005 			if (err)
1006 				return err;
1007 		}
1008 
1009 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1010 		filemap_invalidate_lock(inode->i_mapping);
1011 
1012 		truncate_setsize(inode, attr->ia_size);
1013 
1014 		if (attr->ia_size <= old_size)
1015 			err = f2fs_truncate(inode);
1016 		/*
1017 		 * do not trim all blocks after i_size if target size is
1018 		 * larger than i_size.
1019 		 */
1020 		filemap_invalidate_unlock(inode->i_mapping);
1021 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1022 		if (err)
1023 			return err;
1024 
1025 		spin_lock(&F2FS_I(inode)->i_size_lock);
1026 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1027 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1028 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1029 	}
1030 
1031 	__setattr_copy(idmap, inode, attr);
1032 
1033 	if (attr->ia_valid & ATTR_MODE) {
1034 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1035 
1036 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1037 			if (!err)
1038 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1039 			clear_inode_flag(inode, FI_ACL_MODE);
1040 		}
1041 	}
1042 
1043 	/* file size may changed here */
1044 	f2fs_mark_inode_dirty_sync(inode, true);
1045 
1046 	/* inode change will produce dirty node pages flushed by checkpoint */
1047 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1048 
1049 	return err;
1050 }
1051 
1052 const struct inode_operations f2fs_file_inode_operations = {
1053 	.getattr	= f2fs_getattr,
1054 	.setattr	= f2fs_setattr,
1055 	.get_inode_acl	= f2fs_get_acl,
1056 	.set_acl	= f2fs_set_acl,
1057 	.listxattr	= f2fs_listxattr,
1058 	.fiemap		= f2fs_fiemap,
1059 	.fileattr_get	= f2fs_fileattr_get,
1060 	.fileattr_set	= f2fs_fileattr_set,
1061 };
1062 
1063 static int fill_zero(struct inode *inode, pgoff_t index,
1064 					loff_t start, loff_t len)
1065 {
1066 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1067 	struct page *page;
1068 
1069 	if (!len)
1070 		return 0;
1071 
1072 	f2fs_balance_fs(sbi, true);
1073 
1074 	f2fs_lock_op(sbi);
1075 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1076 	f2fs_unlock_op(sbi);
1077 
1078 	if (IS_ERR(page))
1079 		return PTR_ERR(page);
1080 
1081 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1082 	zero_user(page, start, len);
1083 	set_page_dirty(page);
1084 	f2fs_put_page(page, 1);
1085 	return 0;
1086 }
1087 
1088 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1089 {
1090 	int err;
1091 
1092 	while (pg_start < pg_end) {
1093 		struct dnode_of_data dn;
1094 		pgoff_t end_offset, count;
1095 
1096 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1097 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1098 		if (err) {
1099 			if (err == -ENOENT) {
1100 				pg_start = f2fs_get_next_page_offset(&dn,
1101 								pg_start);
1102 				continue;
1103 			}
1104 			return err;
1105 		}
1106 
1107 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1108 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1109 
1110 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1111 
1112 		f2fs_truncate_data_blocks_range(&dn, count);
1113 		f2fs_put_dnode(&dn);
1114 
1115 		pg_start += count;
1116 	}
1117 	return 0;
1118 }
1119 
1120 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1121 {
1122 	pgoff_t pg_start, pg_end;
1123 	loff_t off_start, off_end;
1124 	int ret;
1125 
1126 	ret = f2fs_convert_inline_inode(inode);
1127 	if (ret)
1128 		return ret;
1129 
1130 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1131 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1132 
1133 	off_start = offset & (PAGE_SIZE - 1);
1134 	off_end = (offset + len) & (PAGE_SIZE - 1);
1135 
1136 	if (pg_start == pg_end) {
1137 		ret = fill_zero(inode, pg_start, off_start,
1138 						off_end - off_start);
1139 		if (ret)
1140 			return ret;
1141 	} else {
1142 		if (off_start) {
1143 			ret = fill_zero(inode, pg_start++, off_start,
1144 						PAGE_SIZE - off_start);
1145 			if (ret)
1146 				return ret;
1147 		}
1148 		if (off_end) {
1149 			ret = fill_zero(inode, pg_end, 0, off_end);
1150 			if (ret)
1151 				return ret;
1152 		}
1153 
1154 		if (pg_start < pg_end) {
1155 			loff_t blk_start, blk_end;
1156 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1157 
1158 			f2fs_balance_fs(sbi, true);
1159 
1160 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1161 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1162 
1163 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1164 			filemap_invalidate_lock(inode->i_mapping);
1165 
1166 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1167 
1168 			f2fs_lock_op(sbi);
1169 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1170 			f2fs_unlock_op(sbi);
1171 
1172 			filemap_invalidate_unlock(inode->i_mapping);
1173 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1174 		}
1175 	}
1176 
1177 	return ret;
1178 }
1179 
1180 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1181 				int *do_replace, pgoff_t off, pgoff_t len)
1182 {
1183 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1184 	struct dnode_of_data dn;
1185 	int ret, done, i;
1186 
1187 next_dnode:
1188 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1189 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1190 	if (ret && ret != -ENOENT) {
1191 		return ret;
1192 	} else if (ret == -ENOENT) {
1193 		if (dn.max_level == 0)
1194 			return -ENOENT;
1195 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1196 						dn.ofs_in_node, len);
1197 		blkaddr += done;
1198 		do_replace += done;
1199 		goto next;
1200 	}
1201 
1202 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1203 							dn.ofs_in_node, len);
1204 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1205 		*blkaddr = f2fs_data_blkaddr(&dn);
1206 
1207 		if (__is_valid_data_blkaddr(*blkaddr) &&
1208 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1209 					DATA_GENERIC_ENHANCE)) {
1210 			f2fs_put_dnode(&dn);
1211 			return -EFSCORRUPTED;
1212 		}
1213 
1214 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1215 
1216 			if (f2fs_lfs_mode(sbi)) {
1217 				f2fs_put_dnode(&dn);
1218 				return -EOPNOTSUPP;
1219 			}
1220 
1221 			/* do not invalidate this block address */
1222 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1223 			*do_replace = 1;
1224 		}
1225 	}
1226 	f2fs_put_dnode(&dn);
1227 next:
1228 	len -= done;
1229 	off += done;
1230 	if (len)
1231 		goto next_dnode;
1232 	return 0;
1233 }
1234 
1235 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1236 				int *do_replace, pgoff_t off, int len)
1237 {
1238 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1239 	struct dnode_of_data dn;
1240 	int ret, i;
1241 
1242 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1243 		if (*do_replace == 0)
1244 			continue;
1245 
1246 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1247 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1248 		if (ret) {
1249 			dec_valid_block_count(sbi, inode, 1);
1250 			f2fs_invalidate_blocks(sbi, *blkaddr);
1251 		} else {
1252 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1253 		}
1254 		f2fs_put_dnode(&dn);
1255 	}
1256 	return 0;
1257 }
1258 
1259 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1260 			block_t *blkaddr, int *do_replace,
1261 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1262 {
1263 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1264 	pgoff_t i = 0;
1265 	int ret;
1266 
1267 	while (i < len) {
1268 		if (blkaddr[i] == NULL_ADDR && !full) {
1269 			i++;
1270 			continue;
1271 		}
1272 
1273 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1274 			struct dnode_of_data dn;
1275 			struct node_info ni;
1276 			size_t new_size;
1277 			pgoff_t ilen;
1278 
1279 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1280 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1281 			if (ret)
1282 				return ret;
1283 
1284 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1285 			if (ret) {
1286 				f2fs_put_dnode(&dn);
1287 				return ret;
1288 			}
1289 
1290 			ilen = min((pgoff_t)
1291 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1292 						dn.ofs_in_node, len - i);
1293 			do {
1294 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1295 				f2fs_truncate_data_blocks_range(&dn, 1);
1296 
1297 				if (do_replace[i]) {
1298 					f2fs_i_blocks_write(src_inode,
1299 							1, false, false);
1300 					f2fs_i_blocks_write(dst_inode,
1301 							1, true, false);
1302 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1303 					blkaddr[i], ni.version, true, false);
1304 
1305 					do_replace[i] = 0;
1306 				}
1307 				dn.ofs_in_node++;
1308 				i++;
1309 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1310 				if (dst_inode->i_size < new_size)
1311 					f2fs_i_size_write(dst_inode, new_size);
1312 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1313 
1314 			f2fs_put_dnode(&dn);
1315 		} else {
1316 			struct page *psrc, *pdst;
1317 
1318 			psrc = f2fs_get_lock_data_page(src_inode,
1319 							src + i, true);
1320 			if (IS_ERR(psrc))
1321 				return PTR_ERR(psrc);
1322 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1323 								true);
1324 			if (IS_ERR(pdst)) {
1325 				f2fs_put_page(psrc, 1);
1326 				return PTR_ERR(pdst);
1327 			}
1328 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1329 			set_page_dirty(pdst);
1330 			set_page_private_gcing(pdst);
1331 			f2fs_put_page(pdst, 1);
1332 			f2fs_put_page(psrc, 1);
1333 
1334 			ret = f2fs_truncate_hole(src_inode,
1335 						src + i, src + i + 1);
1336 			if (ret)
1337 				return ret;
1338 			i++;
1339 		}
1340 	}
1341 	return 0;
1342 }
1343 
1344 static int __exchange_data_block(struct inode *src_inode,
1345 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1346 			pgoff_t len, bool full)
1347 {
1348 	block_t *src_blkaddr;
1349 	int *do_replace;
1350 	pgoff_t olen;
1351 	int ret;
1352 
1353 	while (len) {
1354 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1355 
1356 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1357 					array_size(olen, sizeof(block_t)),
1358 					GFP_NOFS);
1359 		if (!src_blkaddr)
1360 			return -ENOMEM;
1361 
1362 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1363 					array_size(olen, sizeof(int)),
1364 					GFP_NOFS);
1365 		if (!do_replace) {
1366 			kvfree(src_blkaddr);
1367 			return -ENOMEM;
1368 		}
1369 
1370 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1371 					do_replace, src, olen);
1372 		if (ret)
1373 			goto roll_back;
1374 
1375 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1376 					do_replace, src, dst, olen, full);
1377 		if (ret)
1378 			goto roll_back;
1379 
1380 		src += olen;
1381 		dst += olen;
1382 		len -= olen;
1383 
1384 		kvfree(src_blkaddr);
1385 		kvfree(do_replace);
1386 	}
1387 	return 0;
1388 
1389 roll_back:
1390 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1391 	kvfree(src_blkaddr);
1392 	kvfree(do_replace);
1393 	return ret;
1394 }
1395 
1396 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1397 {
1398 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1399 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1400 	pgoff_t start = offset >> PAGE_SHIFT;
1401 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1402 	int ret;
1403 
1404 	f2fs_balance_fs(sbi, true);
1405 
1406 	/* avoid gc operation during block exchange */
1407 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1408 	filemap_invalidate_lock(inode->i_mapping);
1409 
1410 	f2fs_lock_op(sbi);
1411 	f2fs_drop_extent_tree(inode);
1412 	truncate_pagecache(inode, offset);
1413 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1414 	f2fs_unlock_op(sbi);
1415 
1416 	filemap_invalidate_unlock(inode->i_mapping);
1417 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1418 	return ret;
1419 }
1420 
1421 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1422 {
1423 	loff_t new_size;
1424 	int ret;
1425 
1426 	if (offset + len >= i_size_read(inode))
1427 		return -EINVAL;
1428 
1429 	/* collapse range should be aligned to block size of f2fs. */
1430 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1431 		return -EINVAL;
1432 
1433 	ret = f2fs_convert_inline_inode(inode);
1434 	if (ret)
1435 		return ret;
1436 
1437 	/* write out all dirty pages from offset */
1438 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1439 	if (ret)
1440 		return ret;
1441 
1442 	ret = f2fs_do_collapse(inode, offset, len);
1443 	if (ret)
1444 		return ret;
1445 
1446 	/* write out all moved pages, if possible */
1447 	filemap_invalidate_lock(inode->i_mapping);
1448 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1449 	truncate_pagecache(inode, offset);
1450 
1451 	new_size = i_size_read(inode) - len;
1452 	ret = f2fs_truncate_blocks(inode, new_size, true);
1453 	filemap_invalidate_unlock(inode->i_mapping);
1454 	if (!ret)
1455 		f2fs_i_size_write(inode, new_size);
1456 	return ret;
1457 }
1458 
1459 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1460 								pgoff_t end)
1461 {
1462 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1463 	pgoff_t index = start;
1464 	unsigned int ofs_in_node = dn->ofs_in_node;
1465 	blkcnt_t count = 0;
1466 	int ret;
1467 
1468 	for (; index < end; index++, dn->ofs_in_node++) {
1469 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1470 			count++;
1471 	}
1472 
1473 	dn->ofs_in_node = ofs_in_node;
1474 	ret = f2fs_reserve_new_blocks(dn, count);
1475 	if (ret)
1476 		return ret;
1477 
1478 	dn->ofs_in_node = ofs_in_node;
1479 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1480 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1481 		/*
1482 		 * f2fs_reserve_new_blocks will not guarantee entire block
1483 		 * allocation.
1484 		 */
1485 		if (dn->data_blkaddr == NULL_ADDR) {
1486 			ret = -ENOSPC;
1487 			break;
1488 		}
1489 
1490 		if (dn->data_blkaddr == NEW_ADDR)
1491 			continue;
1492 
1493 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1494 					DATA_GENERIC_ENHANCE)) {
1495 			ret = -EFSCORRUPTED;
1496 			break;
1497 		}
1498 
1499 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1500 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1501 	}
1502 
1503 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1504 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1505 
1506 	return ret;
1507 }
1508 
1509 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1510 								int mode)
1511 {
1512 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1513 	struct address_space *mapping = inode->i_mapping;
1514 	pgoff_t index, pg_start, pg_end;
1515 	loff_t new_size = i_size_read(inode);
1516 	loff_t off_start, off_end;
1517 	int ret = 0;
1518 
1519 	ret = inode_newsize_ok(inode, (len + offset));
1520 	if (ret)
1521 		return ret;
1522 
1523 	ret = f2fs_convert_inline_inode(inode);
1524 	if (ret)
1525 		return ret;
1526 
1527 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1528 	if (ret)
1529 		return ret;
1530 
1531 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1532 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1533 
1534 	off_start = offset & (PAGE_SIZE - 1);
1535 	off_end = (offset + len) & (PAGE_SIZE - 1);
1536 
1537 	if (pg_start == pg_end) {
1538 		ret = fill_zero(inode, pg_start, off_start,
1539 						off_end - off_start);
1540 		if (ret)
1541 			return ret;
1542 
1543 		new_size = max_t(loff_t, new_size, offset + len);
1544 	} else {
1545 		if (off_start) {
1546 			ret = fill_zero(inode, pg_start++, off_start,
1547 						PAGE_SIZE - off_start);
1548 			if (ret)
1549 				return ret;
1550 
1551 			new_size = max_t(loff_t, new_size,
1552 					(loff_t)pg_start << PAGE_SHIFT);
1553 		}
1554 
1555 		for (index = pg_start; index < pg_end;) {
1556 			struct dnode_of_data dn;
1557 			unsigned int end_offset;
1558 			pgoff_t end;
1559 
1560 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1561 			filemap_invalidate_lock(mapping);
1562 
1563 			truncate_pagecache_range(inode,
1564 				(loff_t)index << PAGE_SHIFT,
1565 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1566 
1567 			f2fs_lock_op(sbi);
1568 
1569 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1570 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1571 			if (ret) {
1572 				f2fs_unlock_op(sbi);
1573 				filemap_invalidate_unlock(mapping);
1574 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1575 				goto out;
1576 			}
1577 
1578 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1579 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1580 
1581 			ret = f2fs_do_zero_range(&dn, index, end);
1582 			f2fs_put_dnode(&dn);
1583 
1584 			f2fs_unlock_op(sbi);
1585 			filemap_invalidate_unlock(mapping);
1586 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1587 
1588 			f2fs_balance_fs(sbi, dn.node_changed);
1589 
1590 			if (ret)
1591 				goto out;
1592 
1593 			index = end;
1594 			new_size = max_t(loff_t, new_size,
1595 					(loff_t)index << PAGE_SHIFT);
1596 		}
1597 
1598 		if (off_end) {
1599 			ret = fill_zero(inode, pg_end, 0, off_end);
1600 			if (ret)
1601 				goto out;
1602 
1603 			new_size = max_t(loff_t, new_size, offset + len);
1604 		}
1605 	}
1606 
1607 out:
1608 	if (new_size > i_size_read(inode)) {
1609 		if (mode & FALLOC_FL_KEEP_SIZE)
1610 			file_set_keep_isize(inode);
1611 		else
1612 			f2fs_i_size_write(inode, new_size);
1613 	}
1614 	return ret;
1615 }
1616 
1617 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1618 {
1619 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1620 	struct address_space *mapping = inode->i_mapping;
1621 	pgoff_t nr, pg_start, pg_end, delta, idx;
1622 	loff_t new_size;
1623 	int ret = 0;
1624 
1625 	new_size = i_size_read(inode) + len;
1626 	ret = inode_newsize_ok(inode, new_size);
1627 	if (ret)
1628 		return ret;
1629 
1630 	if (offset >= i_size_read(inode))
1631 		return -EINVAL;
1632 
1633 	/* insert range should be aligned to block size of f2fs. */
1634 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1635 		return -EINVAL;
1636 
1637 	ret = f2fs_convert_inline_inode(inode);
1638 	if (ret)
1639 		return ret;
1640 
1641 	f2fs_balance_fs(sbi, true);
1642 
1643 	filemap_invalidate_lock(mapping);
1644 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1645 	filemap_invalidate_unlock(mapping);
1646 	if (ret)
1647 		return ret;
1648 
1649 	/* write out all dirty pages from offset */
1650 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1651 	if (ret)
1652 		return ret;
1653 
1654 	pg_start = offset >> PAGE_SHIFT;
1655 	pg_end = (offset + len) >> PAGE_SHIFT;
1656 	delta = pg_end - pg_start;
1657 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1658 
1659 	/* avoid gc operation during block exchange */
1660 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1661 	filemap_invalidate_lock(mapping);
1662 	truncate_pagecache(inode, offset);
1663 
1664 	while (!ret && idx > pg_start) {
1665 		nr = idx - pg_start;
1666 		if (nr > delta)
1667 			nr = delta;
1668 		idx -= nr;
1669 
1670 		f2fs_lock_op(sbi);
1671 		f2fs_drop_extent_tree(inode);
1672 
1673 		ret = __exchange_data_block(inode, inode, idx,
1674 					idx + delta, nr, false);
1675 		f2fs_unlock_op(sbi);
1676 	}
1677 	filemap_invalidate_unlock(mapping);
1678 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1679 	if (ret)
1680 		return ret;
1681 
1682 	/* write out all moved pages, if possible */
1683 	filemap_invalidate_lock(mapping);
1684 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1685 	truncate_pagecache(inode, offset);
1686 	filemap_invalidate_unlock(mapping);
1687 
1688 	if (!ret)
1689 		f2fs_i_size_write(inode, new_size);
1690 	return ret;
1691 }
1692 
1693 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1694 					loff_t len, int mode)
1695 {
1696 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1697 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1698 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1699 			.m_may_create = true };
1700 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1701 			.init_gc_type = FG_GC,
1702 			.should_migrate_blocks = false,
1703 			.err_gc_skipped = true,
1704 			.nr_free_secs = 0 };
1705 	pgoff_t pg_start, pg_end;
1706 	loff_t new_size;
1707 	loff_t off_end;
1708 	block_t expanded = 0;
1709 	int err;
1710 
1711 	err = inode_newsize_ok(inode, (len + offset));
1712 	if (err)
1713 		return err;
1714 
1715 	err = f2fs_convert_inline_inode(inode);
1716 	if (err)
1717 		return err;
1718 
1719 	f2fs_balance_fs(sbi, true);
1720 
1721 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1722 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1723 	off_end = (offset + len) & (PAGE_SIZE - 1);
1724 
1725 	map.m_lblk = pg_start;
1726 	map.m_len = pg_end - pg_start;
1727 	if (off_end)
1728 		map.m_len++;
1729 
1730 	if (!map.m_len)
1731 		return 0;
1732 
1733 	if (f2fs_is_pinned_file(inode)) {
1734 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1735 		block_t sec_len = roundup(map.m_len, sec_blks);
1736 
1737 		map.m_len = sec_blks;
1738 next_alloc:
1739 		if (has_not_enough_free_secs(sbi, 0,
1740 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1741 			f2fs_down_write(&sbi->gc_lock);
1742 			stat_inc_gc_call_count(sbi, FOREGROUND);
1743 			err = f2fs_gc(sbi, &gc_control);
1744 			if (err && err != -ENODATA)
1745 				goto out_err;
1746 		}
1747 
1748 		f2fs_down_write(&sbi->pin_sem);
1749 
1750 		err = f2fs_allocate_pinning_section(sbi);
1751 		if (err) {
1752 			f2fs_up_write(&sbi->pin_sem);
1753 			goto out_err;
1754 		}
1755 
1756 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1757 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1758 		file_dont_truncate(inode);
1759 
1760 		f2fs_up_write(&sbi->pin_sem);
1761 
1762 		expanded += map.m_len;
1763 		sec_len -= map.m_len;
1764 		map.m_lblk += map.m_len;
1765 		if (!err && sec_len)
1766 			goto next_alloc;
1767 
1768 		map.m_len = expanded;
1769 	} else {
1770 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1771 		expanded = map.m_len;
1772 	}
1773 out_err:
1774 	if (err) {
1775 		pgoff_t last_off;
1776 
1777 		if (!expanded)
1778 			return err;
1779 
1780 		last_off = pg_start + expanded - 1;
1781 
1782 		/* update new size to the failed position */
1783 		new_size = (last_off == pg_end) ? offset + len :
1784 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1785 	} else {
1786 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1787 	}
1788 
1789 	if (new_size > i_size_read(inode)) {
1790 		if (mode & FALLOC_FL_KEEP_SIZE)
1791 			file_set_keep_isize(inode);
1792 		else
1793 			f2fs_i_size_write(inode, new_size);
1794 	}
1795 
1796 	return err;
1797 }
1798 
1799 static long f2fs_fallocate(struct file *file, int mode,
1800 				loff_t offset, loff_t len)
1801 {
1802 	struct inode *inode = file_inode(file);
1803 	long ret = 0;
1804 
1805 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1806 		return -EIO;
1807 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1808 		return -ENOSPC;
1809 	if (!f2fs_is_compress_backend_ready(inode))
1810 		return -EOPNOTSUPP;
1811 
1812 	/* f2fs only support ->fallocate for regular file */
1813 	if (!S_ISREG(inode->i_mode))
1814 		return -EINVAL;
1815 
1816 	if (IS_ENCRYPTED(inode) &&
1817 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1818 		return -EOPNOTSUPP;
1819 
1820 	/*
1821 	 * Pinned file should not support partial truncation since the block
1822 	 * can be used by applications.
1823 	 */
1824 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1825 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1826 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1827 		return -EOPNOTSUPP;
1828 
1829 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1830 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1831 			FALLOC_FL_INSERT_RANGE))
1832 		return -EOPNOTSUPP;
1833 
1834 	inode_lock(inode);
1835 
1836 	ret = file_modified(file);
1837 	if (ret)
1838 		goto out;
1839 
1840 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1841 		if (offset >= inode->i_size)
1842 			goto out;
1843 
1844 		ret = f2fs_punch_hole(inode, offset, len);
1845 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1846 		ret = f2fs_collapse_range(inode, offset, len);
1847 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1848 		ret = f2fs_zero_range(inode, offset, len, mode);
1849 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1850 		ret = f2fs_insert_range(inode, offset, len);
1851 	} else {
1852 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1853 	}
1854 
1855 	if (!ret) {
1856 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1857 		f2fs_mark_inode_dirty_sync(inode, false);
1858 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1859 	}
1860 
1861 out:
1862 	inode_unlock(inode);
1863 
1864 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1865 	return ret;
1866 }
1867 
1868 static int f2fs_release_file(struct inode *inode, struct file *filp)
1869 {
1870 	/*
1871 	 * f2fs_release_file is called at every close calls. So we should
1872 	 * not drop any inmemory pages by close called by other process.
1873 	 */
1874 	if (!(filp->f_mode & FMODE_WRITE) ||
1875 			atomic_read(&inode->i_writecount) != 1)
1876 		return 0;
1877 
1878 	inode_lock(inode);
1879 	f2fs_abort_atomic_write(inode, true);
1880 	inode_unlock(inode);
1881 
1882 	return 0;
1883 }
1884 
1885 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1886 {
1887 	struct inode *inode = file_inode(file);
1888 
1889 	/*
1890 	 * If the process doing a transaction is crashed, we should do
1891 	 * roll-back. Otherwise, other reader/write can see corrupted database
1892 	 * until all the writers close its file. Since this should be done
1893 	 * before dropping file lock, it needs to do in ->flush.
1894 	 */
1895 	if (F2FS_I(inode)->atomic_write_task == current &&
1896 				(current->flags & PF_EXITING)) {
1897 		inode_lock(inode);
1898 		f2fs_abort_atomic_write(inode, true);
1899 		inode_unlock(inode);
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1906 {
1907 	struct f2fs_inode_info *fi = F2FS_I(inode);
1908 	u32 masked_flags = fi->i_flags & mask;
1909 
1910 	/* mask can be shrunk by flags_valid selector */
1911 	iflags &= mask;
1912 
1913 	/* Is it quota file? Do not allow user to mess with it */
1914 	if (IS_NOQUOTA(inode))
1915 		return -EPERM;
1916 
1917 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1918 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1919 			return -EOPNOTSUPP;
1920 		if (!f2fs_empty_dir(inode))
1921 			return -ENOTEMPTY;
1922 	}
1923 
1924 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1925 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1926 			return -EOPNOTSUPP;
1927 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1928 			return -EINVAL;
1929 	}
1930 
1931 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1932 		if (masked_flags & F2FS_COMPR_FL) {
1933 			if (!f2fs_disable_compressed_file(inode))
1934 				return -EINVAL;
1935 		} else {
1936 			/* try to convert inline_data to support compression */
1937 			int err = f2fs_convert_inline_inode(inode);
1938 			if (err)
1939 				return err;
1940 
1941 			f2fs_down_write(&F2FS_I(inode)->i_sem);
1942 			if (!f2fs_may_compress(inode) ||
1943 					(S_ISREG(inode->i_mode) &&
1944 					F2FS_HAS_BLOCKS(inode))) {
1945 				f2fs_up_write(&F2FS_I(inode)->i_sem);
1946 				return -EINVAL;
1947 			}
1948 			err = set_compress_context(inode);
1949 			f2fs_up_write(&F2FS_I(inode)->i_sem);
1950 
1951 			if (err)
1952 				return err;
1953 		}
1954 	}
1955 
1956 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1957 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1958 					(fi->i_flags & F2FS_NOCOMP_FL));
1959 
1960 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1961 		set_inode_flag(inode, FI_PROJ_INHERIT);
1962 	else
1963 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1964 
1965 	inode_set_ctime_current(inode);
1966 	f2fs_set_inode_flags(inode);
1967 	f2fs_mark_inode_dirty_sync(inode, true);
1968 	return 0;
1969 }
1970 
1971 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1972 
1973 /*
1974  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1975  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1976  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1977  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1978  *
1979  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1980  * FS_IOC_FSSETXATTR is done by the VFS.
1981  */
1982 
1983 static const struct {
1984 	u32 iflag;
1985 	u32 fsflag;
1986 } f2fs_fsflags_map[] = {
1987 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1988 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1989 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1990 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1991 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1992 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1993 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1994 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1995 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1996 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1997 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1998 };
1999 
2000 #define F2FS_GETTABLE_FS_FL (		\
2001 		FS_COMPR_FL |		\
2002 		FS_SYNC_FL |		\
2003 		FS_IMMUTABLE_FL |	\
2004 		FS_APPEND_FL |		\
2005 		FS_NODUMP_FL |		\
2006 		FS_NOATIME_FL |		\
2007 		FS_NOCOMP_FL |		\
2008 		FS_INDEX_FL |		\
2009 		FS_DIRSYNC_FL |		\
2010 		FS_PROJINHERIT_FL |	\
2011 		FS_ENCRYPT_FL |		\
2012 		FS_INLINE_DATA_FL |	\
2013 		FS_NOCOW_FL |		\
2014 		FS_VERITY_FL |		\
2015 		FS_CASEFOLD_FL)
2016 
2017 #define F2FS_SETTABLE_FS_FL (		\
2018 		FS_COMPR_FL |		\
2019 		FS_SYNC_FL |		\
2020 		FS_IMMUTABLE_FL |	\
2021 		FS_APPEND_FL |		\
2022 		FS_NODUMP_FL |		\
2023 		FS_NOATIME_FL |		\
2024 		FS_NOCOMP_FL |		\
2025 		FS_DIRSYNC_FL |		\
2026 		FS_PROJINHERIT_FL |	\
2027 		FS_CASEFOLD_FL)
2028 
2029 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2030 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2031 {
2032 	u32 fsflags = 0;
2033 	int i;
2034 
2035 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2036 		if (iflags & f2fs_fsflags_map[i].iflag)
2037 			fsflags |= f2fs_fsflags_map[i].fsflag;
2038 
2039 	return fsflags;
2040 }
2041 
2042 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2043 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2044 {
2045 	u32 iflags = 0;
2046 	int i;
2047 
2048 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2049 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2050 			iflags |= f2fs_fsflags_map[i].iflag;
2051 
2052 	return iflags;
2053 }
2054 
2055 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2056 {
2057 	struct inode *inode = file_inode(filp);
2058 
2059 	return put_user(inode->i_generation, (int __user *)arg);
2060 }
2061 
2062 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2063 {
2064 	struct inode *inode = file_inode(filp);
2065 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2066 	struct f2fs_inode_info *fi = F2FS_I(inode);
2067 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2068 	struct inode *pinode;
2069 	loff_t isize;
2070 	int ret;
2071 
2072 	if (!inode_owner_or_capable(idmap, inode))
2073 		return -EACCES;
2074 
2075 	if (!S_ISREG(inode->i_mode))
2076 		return -EINVAL;
2077 
2078 	if (filp->f_flags & O_DIRECT)
2079 		return -EINVAL;
2080 
2081 	ret = mnt_want_write_file(filp);
2082 	if (ret)
2083 		return ret;
2084 
2085 	inode_lock(inode);
2086 
2087 	if (!f2fs_disable_compressed_file(inode) ||
2088 			f2fs_is_pinned_file(inode)) {
2089 		ret = -EINVAL;
2090 		goto out;
2091 	}
2092 
2093 	if (f2fs_is_atomic_file(inode))
2094 		goto out;
2095 
2096 	ret = f2fs_convert_inline_inode(inode);
2097 	if (ret)
2098 		goto out;
2099 
2100 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2101 
2102 	/*
2103 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2104 	 * f2fs_is_atomic_file.
2105 	 */
2106 	if (get_dirty_pages(inode))
2107 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2108 			  inode->i_ino, get_dirty_pages(inode));
2109 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2110 	if (ret) {
2111 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2112 		goto out;
2113 	}
2114 
2115 	/* Check if the inode already has a COW inode */
2116 	if (fi->cow_inode == NULL) {
2117 		/* Create a COW inode for atomic write */
2118 		pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2119 		if (IS_ERR(pinode)) {
2120 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2121 			ret = PTR_ERR(pinode);
2122 			goto out;
2123 		}
2124 
2125 		ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2126 		iput(pinode);
2127 		if (ret) {
2128 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2129 			goto out;
2130 		}
2131 
2132 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2133 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2134 	} else {
2135 		/* Reuse the already created COW inode */
2136 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2137 		if (ret) {
2138 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2139 			goto out;
2140 		}
2141 	}
2142 
2143 	f2fs_write_inode(inode, NULL);
2144 
2145 	stat_inc_atomic_inode(inode);
2146 
2147 	set_inode_flag(inode, FI_ATOMIC_FILE);
2148 
2149 	isize = i_size_read(inode);
2150 	fi->original_i_size = isize;
2151 	if (truncate) {
2152 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2153 		truncate_inode_pages_final(inode->i_mapping);
2154 		f2fs_i_size_write(inode, 0);
2155 		isize = 0;
2156 	}
2157 	f2fs_i_size_write(fi->cow_inode, isize);
2158 
2159 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2160 
2161 	f2fs_update_time(sbi, REQ_TIME);
2162 	fi->atomic_write_task = current;
2163 	stat_update_max_atomic_write(inode);
2164 	fi->atomic_write_cnt = 0;
2165 out:
2166 	inode_unlock(inode);
2167 	mnt_drop_write_file(filp);
2168 	return ret;
2169 }
2170 
2171 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2172 {
2173 	struct inode *inode = file_inode(filp);
2174 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2175 	int ret;
2176 
2177 	if (!inode_owner_or_capable(idmap, inode))
2178 		return -EACCES;
2179 
2180 	ret = mnt_want_write_file(filp);
2181 	if (ret)
2182 		return ret;
2183 
2184 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2185 
2186 	inode_lock(inode);
2187 
2188 	if (f2fs_is_atomic_file(inode)) {
2189 		ret = f2fs_commit_atomic_write(inode);
2190 		if (!ret)
2191 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2192 
2193 		f2fs_abort_atomic_write(inode, ret);
2194 	} else {
2195 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2196 	}
2197 
2198 	inode_unlock(inode);
2199 	mnt_drop_write_file(filp);
2200 	return ret;
2201 }
2202 
2203 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2204 {
2205 	struct inode *inode = file_inode(filp);
2206 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2207 	int ret;
2208 
2209 	if (!inode_owner_or_capable(idmap, inode))
2210 		return -EACCES;
2211 
2212 	ret = mnt_want_write_file(filp);
2213 	if (ret)
2214 		return ret;
2215 
2216 	inode_lock(inode);
2217 
2218 	f2fs_abort_atomic_write(inode, true);
2219 
2220 	inode_unlock(inode);
2221 
2222 	mnt_drop_write_file(filp);
2223 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2224 	return ret;
2225 }
2226 
2227 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2228 {
2229 	struct inode *inode = file_inode(filp);
2230 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2231 	struct super_block *sb = sbi->sb;
2232 	__u32 in;
2233 	int ret = 0;
2234 
2235 	if (!capable(CAP_SYS_ADMIN))
2236 		return -EPERM;
2237 
2238 	if (get_user(in, (__u32 __user *)arg))
2239 		return -EFAULT;
2240 
2241 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2242 		ret = mnt_want_write_file(filp);
2243 		if (ret) {
2244 			if (ret == -EROFS) {
2245 				ret = 0;
2246 				f2fs_stop_checkpoint(sbi, false,
2247 						STOP_CP_REASON_SHUTDOWN);
2248 				trace_f2fs_shutdown(sbi, in, ret);
2249 			}
2250 			return ret;
2251 		}
2252 	}
2253 
2254 	switch (in) {
2255 	case F2FS_GOING_DOWN_FULLSYNC:
2256 		ret = bdev_freeze(sb->s_bdev);
2257 		if (ret)
2258 			goto out;
2259 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2260 		bdev_thaw(sb->s_bdev);
2261 		break;
2262 	case F2FS_GOING_DOWN_METASYNC:
2263 		/* do checkpoint only */
2264 		ret = f2fs_sync_fs(sb, 1);
2265 		if (ret) {
2266 			if (ret == -EIO)
2267 				ret = 0;
2268 			goto out;
2269 		}
2270 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2271 		break;
2272 	case F2FS_GOING_DOWN_NOSYNC:
2273 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2274 		break;
2275 	case F2FS_GOING_DOWN_METAFLUSH:
2276 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2277 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2278 		break;
2279 	case F2FS_GOING_DOWN_NEED_FSCK:
2280 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2281 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2282 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2283 		/* do checkpoint only */
2284 		ret = f2fs_sync_fs(sb, 1);
2285 		if (ret == -EIO)
2286 			ret = 0;
2287 		goto out;
2288 	default:
2289 		ret = -EINVAL;
2290 		goto out;
2291 	}
2292 
2293 	f2fs_stop_gc_thread(sbi);
2294 	f2fs_stop_discard_thread(sbi);
2295 
2296 	f2fs_drop_discard_cmd(sbi);
2297 	clear_opt(sbi, DISCARD);
2298 
2299 	f2fs_update_time(sbi, REQ_TIME);
2300 out:
2301 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2302 		mnt_drop_write_file(filp);
2303 
2304 	trace_f2fs_shutdown(sbi, in, ret);
2305 
2306 	return ret;
2307 }
2308 
2309 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2310 {
2311 	struct inode *inode = file_inode(filp);
2312 	struct super_block *sb = inode->i_sb;
2313 	struct fstrim_range range;
2314 	int ret;
2315 
2316 	if (!capable(CAP_SYS_ADMIN))
2317 		return -EPERM;
2318 
2319 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2320 		return -EOPNOTSUPP;
2321 
2322 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2323 				sizeof(range)))
2324 		return -EFAULT;
2325 
2326 	ret = mnt_want_write_file(filp);
2327 	if (ret)
2328 		return ret;
2329 
2330 	range.minlen = max((unsigned int)range.minlen,
2331 			   bdev_discard_granularity(sb->s_bdev));
2332 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2333 	mnt_drop_write_file(filp);
2334 	if (ret < 0)
2335 		return ret;
2336 
2337 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2338 				sizeof(range)))
2339 		return -EFAULT;
2340 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2341 	return 0;
2342 }
2343 
2344 static bool uuid_is_nonzero(__u8 u[16])
2345 {
2346 	int i;
2347 
2348 	for (i = 0; i < 16; i++)
2349 		if (u[i])
2350 			return true;
2351 	return false;
2352 }
2353 
2354 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2355 {
2356 	struct inode *inode = file_inode(filp);
2357 
2358 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2359 		return -EOPNOTSUPP;
2360 
2361 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2362 
2363 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2364 }
2365 
2366 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2367 {
2368 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2369 		return -EOPNOTSUPP;
2370 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2371 }
2372 
2373 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2374 {
2375 	struct inode *inode = file_inode(filp);
2376 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2377 	u8 encrypt_pw_salt[16];
2378 	int err;
2379 
2380 	if (!f2fs_sb_has_encrypt(sbi))
2381 		return -EOPNOTSUPP;
2382 
2383 	err = mnt_want_write_file(filp);
2384 	if (err)
2385 		return err;
2386 
2387 	f2fs_down_write(&sbi->sb_lock);
2388 
2389 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2390 		goto got_it;
2391 
2392 	/* update superblock with uuid */
2393 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2394 
2395 	err = f2fs_commit_super(sbi, false);
2396 	if (err) {
2397 		/* undo new data */
2398 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2399 		goto out_err;
2400 	}
2401 got_it:
2402 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2403 out_err:
2404 	f2fs_up_write(&sbi->sb_lock);
2405 	mnt_drop_write_file(filp);
2406 
2407 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2408 		err = -EFAULT;
2409 
2410 	return err;
2411 }
2412 
2413 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2414 					     unsigned long arg)
2415 {
2416 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2417 		return -EOPNOTSUPP;
2418 
2419 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2420 }
2421 
2422 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2423 {
2424 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2425 		return -EOPNOTSUPP;
2426 
2427 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2428 }
2429 
2430 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2431 {
2432 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2433 		return -EOPNOTSUPP;
2434 
2435 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2436 }
2437 
2438 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2439 						    unsigned long arg)
2440 {
2441 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2442 		return -EOPNOTSUPP;
2443 
2444 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2445 }
2446 
2447 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2448 					      unsigned long arg)
2449 {
2450 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2451 		return -EOPNOTSUPP;
2452 
2453 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2454 }
2455 
2456 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2457 {
2458 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2459 		return -EOPNOTSUPP;
2460 
2461 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2462 }
2463 
2464 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2465 {
2466 	struct inode *inode = file_inode(filp);
2467 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2468 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2469 			.no_bg_gc = false,
2470 			.should_migrate_blocks = false,
2471 			.nr_free_secs = 0 };
2472 	__u32 sync;
2473 	int ret;
2474 
2475 	if (!capable(CAP_SYS_ADMIN))
2476 		return -EPERM;
2477 
2478 	if (get_user(sync, (__u32 __user *)arg))
2479 		return -EFAULT;
2480 
2481 	if (f2fs_readonly(sbi->sb))
2482 		return -EROFS;
2483 
2484 	ret = mnt_want_write_file(filp);
2485 	if (ret)
2486 		return ret;
2487 
2488 	if (!sync) {
2489 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2490 			ret = -EBUSY;
2491 			goto out;
2492 		}
2493 	} else {
2494 		f2fs_down_write(&sbi->gc_lock);
2495 	}
2496 
2497 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2498 	gc_control.err_gc_skipped = sync;
2499 	stat_inc_gc_call_count(sbi, FOREGROUND);
2500 	ret = f2fs_gc(sbi, &gc_control);
2501 out:
2502 	mnt_drop_write_file(filp);
2503 	return ret;
2504 }
2505 
2506 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2507 {
2508 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2509 	struct f2fs_gc_control gc_control = {
2510 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2511 			.no_bg_gc = false,
2512 			.should_migrate_blocks = false,
2513 			.err_gc_skipped = range->sync,
2514 			.nr_free_secs = 0 };
2515 	u64 end;
2516 	int ret;
2517 
2518 	if (!capable(CAP_SYS_ADMIN))
2519 		return -EPERM;
2520 	if (f2fs_readonly(sbi->sb))
2521 		return -EROFS;
2522 
2523 	end = range->start + range->len;
2524 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2525 					end >= MAX_BLKADDR(sbi))
2526 		return -EINVAL;
2527 
2528 	ret = mnt_want_write_file(filp);
2529 	if (ret)
2530 		return ret;
2531 
2532 do_more:
2533 	if (!range->sync) {
2534 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2535 			ret = -EBUSY;
2536 			goto out;
2537 		}
2538 	} else {
2539 		f2fs_down_write(&sbi->gc_lock);
2540 	}
2541 
2542 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2543 	stat_inc_gc_call_count(sbi, FOREGROUND);
2544 	ret = f2fs_gc(sbi, &gc_control);
2545 	if (ret) {
2546 		if (ret == -EBUSY)
2547 			ret = -EAGAIN;
2548 		goto out;
2549 	}
2550 	range->start += CAP_BLKS_PER_SEC(sbi);
2551 	if (range->start <= end)
2552 		goto do_more;
2553 out:
2554 	mnt_drop_write_file(filp);
2555 	return ret;
2556 }
2557 
2558 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2559 {
2560 	struct f2fs_gc_range range;
2561 
2562 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2563 							sizeof(range)))
2564 		return -EFAULT;
2565 	return __f2fs_ioc_gc_range(filp, &range);
2566 }
2567 
2568 static int f2fs_ioc_write_checkpoint(struct file *filp)
2569 {
2570 	struct inode *inode = file_inode(filp);
2571 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2572 	int ret;
2573 
2574 	if (!capable(CAP_SYS_ADMIN))
2575 		return -EPERM;
2576 
2577 	if (f2fs_readonly(sbi->sb))
2578 		return -EROFS;
2579 
2580 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2581 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2582 		return -EINVAL;
2583 	}
2584 
2585 	ret = mnt_want_write_file(filp);
2586 	if (ret)
2587 		return ret;
2588 
2589 	ret = f2fs_sync_fs(sbi->sb, 1);
2590 
2591 	mnt_drop_write_file(filp);
2592 	return ret;
2593 }
2594 
2595 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2596 					struct file *filp,
2597 					struct f2fs_defragment *range)
2598 {
2599 	struct inode *inode = file_inode(filp);
2600 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2601 					.m_seg_type = NO_CHECK_TYPE,
2602 					.m_may_create = false };
2603 	struct extent_info ei = {};
2604 	pgoff_t pg_start, pg_end, next_pgofs;
2605 	unsigned int total = 0, sec_num;
2606 	block_t blk_end = 0;
2607 	bool fragmented = false;
2608 	int err;
2609 
2610 	pg_start = range->start >> PAGE_SHIFT;
2611 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2612 
2613 	f2fs_balance_fs(sbi, true);
2614 
2615 	inode_lock(inode);
2616 
2617 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2618 		err = -EINVAL;
2619 		goto unlock_out;
2620 	}
2621 
2622 	/* if in-place-update policy is enabled, don't waste time here */
2623 	set_inode_flag(inode, FI_OPU_WRITE);
2624 	if (f2fs_should_update_inplace(inode, NULL)) {
2625 		err = -EINVAL;
2626 		goto out;
2627 	}
2628 
2629 	/* writeback all dirty pages in the range */
2630 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2631 						range->start + range->len - 1);
2632 	if (err)
2633 		goto out;
2634 
2635 	/*
2636 	 * lookup mapping info in extent cache, skip defragmenting if physical
2637 	 * block addresses are continuous.
2638 	 */
2639 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2640 		if (ei.fofs + ei.len >= pg_end)
2641 			goto out;
2642 	}
2643 
2644 	map.m_lblk = pg_start;
2645 	map.m_next_pgofs = &next_pgofs;
2646 
2647 	/*
2648 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2649 	 * physical block addresses are continuous even if there are hole(s)
2650 	 * in logical blocks.
2651 	 */
2652 	while (map.m_lblk < pg_end) {
2653 		map.m_len = pg_end - map.m_lblk;
2654 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2655 		if (err)
2656 			goto out;
2657 
2658 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2659 			map.m_lblk = next_pgofs;
2660 			continue;
2661 		}
2662 
2663 		if (blk_end && blk_end != map.m_pblk)
2664 			fragmented = true;
2665 
2666 		/* record total count of block that we're going to move */
2667 		total += map.m_len;
2668 
2669 		blk_end = map.m_pblk + map.m_len;
2670 
2671 		map.m_lblk += map.m_len;
2672 	}
2673 
2674 	if (!fragmented) {
2675 		total = 0;
2676 		goto out;
2677 	}
2678 
2679 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2680 
2681 	/*
2682 	 * make sure there are enough free section for LFS allocation, this can
2683 	 * avoid defragment running in SSR mode when free section are allocated
2684 	 * intensively
2685 	 */
2686 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2687 		err = -EAGAIN;
2688 		goto out;
2689 	}
2690 
2691 	map.m_lblk = pg_start;
2692 	map.m_len = pg_end - pg_start;
2693 	total = 0;
2694 
2695 	while (map.m_lblk < pg_end) {
2696 		pgoff_t idx;
2697 		int cnt = 0;
2698 
2699 do_map:
2700 		map.m_len = pg_end - map.m_lblk;
2701 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2702 		if (err)
2703 			goto clear_out;
2704 
2705 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2706 			map.m_lblk = next_pgofs;
2707 			goto check;
2708 		}
2709 
2710 		set_inode_flag(inode, FI_SKIP_WRITES);
2711 
2712 		idx = map.m_lblk;
2713 		while (idx < map.m_lblk + map.m_len &&
2714 						cnt < BLKS_PER_SEG(sbi)) {
2715 			struct page *page;
2716 
2717 			page = f2fs_get_lock_data_page(inode, idx, true);
2718 			if (IS_ERR(page)) {
2719 				err = PTR_ERR(page);
2720 				goto clear_out;
2721 			}
2722 
2723 			set_page_dirty(page);
2724 			set_page_private_gcing(page);
2725 			f2fs_put_page(page, 1);
2726 
2727 			idx++;
2728 			cnt++;
2729 			total++;
2730 		}
2731 
2732 		map.m_lblk = idx;
2733 check:
2734 		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2735 			goto do_map;
2736 
2737 		clear_inode_flag(inode, FI_SKIP_WRITES);
2738 
2739 		err = filemap_fdatawrite(inode->i_mapping);
2740 		if (err)
2741 			goto out;
2742 	}
2743 clear_out:
2744 	clear_inode_flag(inode, FI_SKIP_WRITES);
2745 out:
2746 	clear_inode_flag(inode, FI_OPU_WRITE);
2747 unlock_out:
2748 	inode_unlock(inode);
2749 	if (!err)
2750 		range->len = (u64)total << PAGE_SHIFT;
2751 	return err;
2752 }
2753 
2754 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2755 {
2756 	struct inode *inode = file_inode(filp);
2757 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2758 	struct f2fs_defragment range;
2759 	int err;
2760 
2761 	if (!capable(CAP_SYS_ADMIN))
2762 		return -EPERM;
2763 
2764 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2765 		return -EINVAL;
2766 
2767 	if (f2fs_readonly(sbi->sb))
2768 		return -EROFS;
2769 
2770 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2771 							sizeof(range)))
2772 		return -EFAULT;
2773 
2774 	/* verify alignment of offset & size */
2775 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2776 		return -EINVAL;
2777 
2778 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2779 					max_file_blocks(inode)))
2780 		return -EINVAL;
2781 
2782 	err = mnt_want_write_file(filp);
2783 	if (err)
2784 		return err;
2785 
2786 	err = f2fs_defragment_range(sbi, filp, &range);
2787 	mnt_drop_write_file(filp);
2788 
2789 	f2fs_update_time(sbi, REQ_TIME);
2790 	if (err < 0)
2791 		return err;
2792 
2793 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2794 							sizeof(range)))
2795 		return -EFAULT;
2796 
2797 	return 0;
2798 }
2799 
2800 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2801 			struct file *file_out, loff_t pos_out, size_t len)
2802 {
2803 	struct inode *src = file_inode(file_in);
2804 	struct inode *dst = file_inode(file_out);
2805 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2806 	size_t olen = len, dst_max_i_size = 0;
2807 	size_t dst_osize;
2808 	int ret;
2809 
2810 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2811 				src->i_sb != dst->i_sb)
2812 		return -EXDEV;
2813 
2814 	if (unlikely(f2fs_readonly(src->i_sb)))
2815 		return -EROFS;
2816 
2817 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2818 		return -EINVAL;
2819 
2820 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2821 		return -EOPNOTSUPP;
2822 
2823 	if (pos_out < 0 || pos_in < 0)
2824 		return -EINVAL;
2825 
2826 	if (src == dst) {
2827 		if (pos_in == pos_out)
2828 			return 0;
2829 		if (pos_out > pos_in && pos_out < pos_in + len)
2830 			return -EINVAL;
2831 	}
2832 
2833 	inode_lock(src);
2834 	if (src != dst) {
2835 		ret = -EBUSY;
2836 		if (!inode_trylock(dst))
2837 			goto out;
2838 	}
2839 
2840 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst)) {
2841 		ret = -EOPNOTSUPP;
2842 		goto out_unlock;
2843 	}
2844 
2845 	ret = -EINVAL;
2846 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2847 		goto out_unlock;
2848 	if (len == 0)
2849 		olen = len = src->i_size - pos_in;
2850 	if (pos_in + len == src->i_size)
2851 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2852 	if (len == 0) {
2853 		ret = 0;
2854 		goto out_unlock;
2855 	}
2856 
2857 	dst_osize = dst->i_size;
2858 	if (pos_out + olen > dst->i_size)
2859 		dst_max_i_size = pos_out + olen;
2860 
2861 	/* verify the end result is block aligned */
2862 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2863 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2864 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2865 		goto out_unlock;
2866 
2867 	ret = f2fs_convert_inline_inode(src);
2868 	if (ret)
2869 		goto out_unlock;
2870 
2871 	ret = f2fs_convert_inline_inode(dst);
2872 	if (ret)
2873 		goto out_unlock;
2874 
2875 	/* write out all dirty pages from offset */
2876 	ret = filemap_write_and_wait_range(src->i_mapping,
2877 					pos_in, pos_in + len);
2878 	if (ret)
2879 		goto out_unlock;
2880 
2881 	ret = filemap_write_and_wait_range(dst->i_mapping,
2882 					pos_out, pos_out + len);
2883 	if (ret)
2884 		goto out_unlock;
2885 
2886 	f2fs_balance_fs(sbi, true);
2887 
2888 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2889 	if (src != dst) {
2890 		ret = -EBUSY;
2891 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2892 			goto out_src;
2893 	}
2894 
2895 	f2fs_lock_op(sbi);
2896 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2897 				pos_out >> F2FS_BLKSIZE_BITS,
2898 				len >> F2FS_BLKSIZE_BITS, false);
2899 
2900 	if (!ret) {
2901 		if (dst_max_i_size)
2902 			f2fs_i_size_write(dst, dst_max_i_size);
2903 		else if (dst_osize != dst->i_size)
2904 			f2fs_i_size_write(dst, dst_osize);
2905 	}
2906 	f2fs_unlock_op(sbi);
2907 
2908 	if (src != dst)
2909 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2910 out_src:
2911 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2912 	if (ret)
2913 		goto out_unlock;
2914 
2915 	inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
2916 	f2fs_mark_inode_dirty_sync(src, false);
2917 	if (src != dst) {
2918 		inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
2919 		f2fs_mark_inode_dirty_sync(dst, false);
2920 	}
2921 	f2fs_update_time(sbi, REQ_TIME);
2922 
2923 out_unlock:
2924 	if (src != dst)
2925 		inode_unlock(dst);
2926 out:
2927 	inode_unlock(src);
2928 	return ret;
2929 }
2930 
2931 static int __f2fs_ioc_move_range(struct file *filp,
2932 				struct f2fs_move_range *range)
2933 {
2934 	struct fd dst;
2935 	int err;
2936 
2937 	if (!(filp->f_mode & FMODE_READ) ||
2938 			!(filp->f_mode & FMODE_WRITE))
2939 		return -EBADF;
2940 
2941 	dst = fdget(range->dst_fd);
2942 	if (!dst.file)
2943 		return -EBADF;
2944 
2945 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2946 		err = -EBADF;
2947 		goto err_out;
2948 	}
2949 
2950 	err = mnt_want_write_file(filp);
2951 	if (err)
2952 		goto err_out;
2953 
2954 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2955 					range->pos_out, range->len);
2956 
2957 	mnt_drop_write_file(filp);
2958 err_out:
2959 	fdput(dst);
2960 	return err;
2961 }
2962 
2963 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2964 {
2965 	struct f2fs_move_range range;
2966 
2967 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2968 							sizeof(range)))
2969 		return -EFAULT;
2970 	return __f2fs_ioc_move_range(filp, &range);
2971 }
2972 
2973 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2974 {
2975 	struct inode *inode = file_inode(filp);
2976 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2977 	struct sit_info *sm = SIT_I(sbi);
2978 	unsigned int start_segno = 0, end_segno = 0;
2979 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2980 	struct f2fs_flush_device range;
2981 	struct f2fs_gc_control gc_control = {
2982 			.init_gc_type = FG_GC,
2983 			.should_migrate_blocks = true,
2984 			.err_gc_skipped = true,
2985 			.nr_free_secs = 0 };
2986 	int ret;
2987 
2988 	if (!capable(CAP_SYS_ADMIN))
2989 		return -EPERM;
2990 
2991 	if (f2fs_readonly(sbi->sb))
2992 		return -EROFS;
2993 
2994 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2995 		return -EINVAL;
2996 
2997 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2998 							sizeof(range)))
2999 		return -EFAULT;
3000 
3001 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3002 			__is_large_section(sbi)) {
3003 		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3004 			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3005 		return -EINVAL;
3006 	}
3007 
3008 	ret = mnt_want_write_file(filp);
3009 	if (ret)
3010 		return ret;
3011 
3012 	if (range.dev_num != 0)
3013 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3014 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3015 
3016 	start_segno = sm->last_victim[FLUSH_DEVICE];
3017 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3018 		start_segno = dev_start_segno;
3019 	end_segno = min(start_segno + range.segments, dev_end_segno);
3020 
3021 	while (start_segno < end_segno) {
3022 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3023 			ret = -EBUSY;
3024 			goto out;
3025 		}
3026 		sm->last_victim[GC_CB] = end_segno + 1;
3027 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3028 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3029 
3030 		gc_control.victim_segno = start_segno;
3031 		stat_inc_gc_call_count(sbi, FOREGROUND);
3032 		ret = f2fs_gc(sbi, &gc_control);
3033 		if (ret == -EAGAIN)
3034 			ret = 0;
3035 		else if (ret < 0)
3036 			break;
3037 		start_segno++;
3038 	}
3039 out:
3040 	mnt_drop_write_file(filp);
3041 	return ret;
3042 }
3043 
3044 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3045 {
3046 	struct inode *inode = file_inode(filp);
3047 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3048 
3049 	/* Must validate to set it with SQLite behavior in Android. */
3050 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3051 
3052 	return put_user(sb_feature, (u32 __user *)arg);
3053 }
3054 
3055 #ifdef CONFIG_QUOTA
3056 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3057 {
3058 	struct dquot *transfer_to[MAXQUOTAS] = {};
3059 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3060 	struct super_block *sb = sbi->sb;
3061 	int err;
3062 
3063 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3064 	if (IS_ERR(transfer_to[PRJQUOTA]))
3065 		return PTR_ERR(transfer_to[PRJQUOTA]);
3066 
3067 	err = __dquot_transfer(inode, transfer_to);
3068 	if (err)
3069 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3070 	dqput(transfer_to[PRJQUOTA]);
3071 	return err;
3072 }
3073 
3074 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3075 {
3076 	struct f2fs_inode_info *fi = F2FS_I(inode);
3077 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3078 	struct f2fs_inode *ri = NULL;
3079 	kprojid_t kprojid;
3080 	int err;
3081 
3082 	if (!f2fs_sb_has_project_quota(sbi)) {
3083 		if (projid != F2FS_DEF_PROJID)
3084 			return -EOPNOTSUPP;
3085 		else
3086 			return 0;
3087 	}
3088 
3089 	if (!f2fs_has_extra_attr(inode))
3090 		return -EOPNOTSUPP;
3091 
3092 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3093 
3094 	if (projid_eq(kprojid, fi->i_projid))
3095 		return 0;
3096 
3097 	err = -EPERM;
3098 	/* Is it quota file? Do not allow user to mess with it */
3099 	if (IS_NOQUOTA(inode))
3100 		return err;
3101 
3102 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3103 		return -EOVERFLOW;
3104 
3105 	err = f2fs_dquot_initialize(inode);
3106 	if (err)
3107 		return err;
3108 
3109 	f2fs_lock_op(sbi);
3110 	err = f2fs_transfer_project_quota(inode, kprojid);
3111 	if (err)
3112 		goto out_unlock;
3113 
3114 	fi->i_projid = kprojid;
3115 	inode_set_ctime_current(inode);
3116 	f2fs_mark_inode_dirty_sync(inode, true);
3117 out_unlock:
3118 	f2fs_unlock_op(sbi);
3119 	return err;
3120 }
3121 #else
3122 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3123 {
3124 	return 0;
3125 }
3126 
3127 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3128 {
3129 	if (projid != F2FS_DEF_PROJID)
3130 		return -EOPNOTSUPP;
3131 	return 0;
3132 }
3133 #endif
3134 
3135 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3136 {
3137 	struct inode *inode = d_inode(dentry);
3138 	struct f2fs_inode_info *fi = F2FS_I(inode);
3139 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3140 
3141 	if (IS_ENCRYPTED(inode))
3142 		fsflags |= FS_ENCRYPT_FL;
3143 	if (IS_VERITY(inode))
3144 		fsflags |= FS_VERITY_FL;
3145 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3146 		fsflags |= FS_INLINE_DATA_FL;
3147 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3148 		fsflags |= FS_NOCOW_FL;
3149 
3150 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3151 
3152 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3153 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3154 
3155 	return 0;
3156 }
3157 
3158 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3159 		      struct dentry *dentry, struct fileattr *fa)
3160 {
3161 	struct inode *inode = d_inode(dentry);
3162 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3163 	u32 iflags;
3164 	int err;
3165 
3166 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3167 		return -EIO;
3168 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3169 		return -ENOSPC;
3170 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3171 		return -EOPNOTSUPP;
3172 	fsflags &= F2FS_SETTABLE_FS_FL;
3173 	if (!fa->flags_valid)
3174 		mask &= FS_COMMON_FL;
3175 
3176 	iflags = f2fs_fsflags_to_iflags(fsflags);
3177 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3178 		return -EOPNOTSUPP;
3179 
3180 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3181 	if (!err)
3182 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3183 
3184 	return err;
3185 }
3186 
3187 int f2fs_pin_file_control(struct inode *inode, bool inc)
3188 {
3189 	struct f2fs_inode_info *fi = F2FS_I(inode);
3190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3191 
3192 	/* Use i_gc_failures for normal file as a risk signal. */
3193 	if (inc)
3194 		f2fs_i_gc_failures_write(inode,
3195 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3196 
3197 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3198 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3199 			  __func__, inode->i_ino,
3200 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3201 		clear_inode_flag(inode, FI_PIN_FILE);
3202 		return -EAGAIN;
3203 	}
3204 	return 0;
3205 }
3206 
3207 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3208 {
3209 	struct inode *inode = file_inode(filp);
3210 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3211 	__u32 pin;
3212 	int ret = 0;
3213 
3214 	if (get_user(pin, (__u32 __user *)arg))
3215 		return -EFAULT;
3216 
3217 	if (!S_ISREG(inode->i_mode))
3218 		return -EINVAL;
3219 
3220 	if (f2fs_readonly(sbi->sb))
3221 		return -EROFS;
3222 
3223 	ret = mnt_want_write_file(filp);
3224 	if (ret)
3225 		return ret;
3226 
3227 	inode_lock(inode);
3228 
3229 	if (!pin) {
3230 		clear_inode_flag(inode, FI_PIN_FILE);
3231 		f2fs_i_gc_failures_write(inode, 0);
3232 		goto done;
3233 	} else if (f2fs_is_pinned_file(inode)) {
3234 		goto done;
3235 	}
3236 
3237 	if (f2fs_sb_has_blkzoned(sbi) && F2FS_HAS_BLOCKS(inode)) {
3238 		ret = -EFBIG;
3239 		goto out;
3240 	}
3241 
3242 	/* Let's allow file pinning on zoned device. */
3243 	if (!f2fs_sb_has_blkzoned(sbi) &&
3244 	    f2fs_should_update_outplace(inode, NULL)) {
3245 		ret = -EINVAL;
3246 		goto out;
3247 	}
3248 
3249 	if (f2fs_pin_file_control(inode, false)) {
3250 		ret = -EAGAIN;
3251 		goto out;
3252 	}
3253 
3254 	ret = f2fs_convert_inline_inode(inode);
3255 	if (ret)
3256 		goto out;
3257 
3258 	if (!f2fs_disable_compressed_file(inode)) {
3259 		ret = -EOPNOTSUPP;
3260 		goto out;
3261 	}
3262 
3263 	set_inode_flag(inode, FI_PIN_FILE);
3264 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3265 done:
3266 	f2fs_update_time(sbi, REQ_TIME);
3267 out:
3268 	inode_unlock(inode);
3269 	mnt_drop_write_file(filp);
3270 	return ret;
3271 }
3272 
3273 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3274 {
3275 	struct inode *inode = file_inode(filp);
3276 	__u32 pin = 0;
3277 
3278 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3279 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3280 	return put_user(pin, (u32 __user *)arg);
3281 }
3282 
3283 int f2fs_precache_extents(struct inode *inode)
3284 {
3285 	struct f2fs_inode_info *fi = F2FS_I(inode);
3286 	struct f2fs_map_blocks map;
3287 	pgoff_t m_next_extent;
3288 	loff_t end;
3289 	int err;
3290 
3291 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3292 		return -EOPNOTSUPP;
3293 
3294 	map.m_lblk = 0;
3295 	map.m_pblk = 0;
3296 	map.m_next_pgofs = NULL;
3297 	map.m_next_extent = &m_next_extent;
3298 	map.m_seg_type = NO_CHECK_TYPE;
3299 	map.m_may_create = false;
3300 	end = F2FS_BLK_ALIGN(i_size_read(inode));
3301 
3302 	while (map.m_lblk < end) {
3303 		map.m_len = end - map.m_lblk;
3304 
3305 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3306 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3307 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3308 		if (err || !map.m_len)
3309 			return err;
3310 
3311 		map.m_lblk = m_next_extent;
3312 	}
3313 
3314 	return 0;
3315 }
3316 
3317 static int f2fs_ioc_precache_extents(struct file *filp)
3318 {
3319 	return f2fs_precache_extents(file_inode(filp));
3320 }
3321 
3322 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3323 {
3324 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3325 	__u64 block_count;
3326 
3327 	if (!capable(CAP_SYS_ADMIN))
3328 		return -EPERM;
3329 
3330 	if (f2fs_readonly(sbi->sb))
3331 		return -EROFS;
3332 
3333 	if (copy_from_user(&block_count, (void __user *)arg,
3334 			   sizeof(block_count)))
3335 		return -EFAULT;
3336 
3337 	return f2fs_resize_fs(filp, block_count);
3338 }
3339 
3340 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3341 {
3342 	struct inode *inode = file_inode(filp);
3343 
3344 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3345 
3346 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3347 		f2fs_warn(F2FS_I_SB(inode),
3348 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3349 			  inode->i_ino);
3350 		return -EOPNOTSUPP;
3351 	}
3352 
3353 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3354 }
3355 
3356 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3357 {
3358 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3359 		return -EOPNOTSUPP;
3360 
3361 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3362 }
3363 
3364 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3365 {
3366 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3367 		return -EOPNOTSUPP;
3368 
3369 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3370 }
3371 
3372 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3373 {
3374 	struct inode *inode = file_inode(filp);
3375 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3376 	char *vbuf;
3377 	int count;
3378 	int err = 0;
3379 
3380 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3381 	if (!vbuf)
3382 		return -ENOMEM;
3383 
3384 	f2fs_down_read(&sbi->sb_lock);
3385 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3386 			ARRAY_SIZE(sbi->raw_super->volume_name),
3387 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3388 	f2fs_up_read(&sbi->sb_lock);
3389 
3390 	if (copy_to_user((char __user *)arg, vbuf,
3391 				min(FSLABEL_MAX, count)))
3392 		err = -EFAULT;
3393 
3394 	kfree(vbuf);
3395 	return err;
3396 }
3397 
3398 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3399 {
3400 	struct inode *inode = file_inode(filp);
3401 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3402 	char *vbuf;
3403 	int err = 0;
3404 
3405 	if (!capable(CAP_SYS_ADMIN))
3406 		return -EPERM;
3407 
3408 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3409 	if (IS_ERR(vbuf))
3410 		return PTR_ERR(vbuf);
3411 
3412 	err = mnt_want_write_file(filp);
3413 	if (err)
3414 		goto out;
3415 
3416 	f2fs_down_write(&sbi->sb_lock);
3417 
3418 	memset(sbi->raw_super->volume_name, 0,
3419 			sizeof(sbi->raw_super->volume_name));
3420 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3421 			sbi->raw_super->volume_name,
3422 			ARRAY_SIZE(sbi->raw_super->volume_name));
3423 
3424 	err = f2fs_commit_super(sbi, false);
3425 
3426 	f2fs_up_write(&sbi->sb_lock);
3427 
3428 	mnt_drop_write_file(filp);
3429 out:
3430 	kfree(vbuf);
3431 	return err;
3432 }
3433 
3434 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3435 {
3436 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3437 		return -EOPNOTSUPP;
3438 
3439 	if (!f2fs_compressed_file(inode))
3440 		return -EINVAL;
3441 
3442 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3443 
3444 	return 0;
3445 }
3446 
3447 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3448 {
3449 	struct inode *inode = file_inode(filp);
3450 	__u64 blocks;
3451 	int ret;
3452 
3453 	ret = f2fs_get_compress_blocks(inode, &blocks);
3454 	if (ret < 0)
3455 		return ret;
3456 
3457 	return put_user(blocks, (u64 __user *)arg);
3458 }
3459 
3460 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3461 {
3462 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3463 	unsigned int released_blocks = 0;
3464 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3465 	block_t blkaddr;
3466 	int i;
3467 
3468 	for (i = 0; i < count; i++) {
3469 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3470 						dn->ofs_in_node + i);
3471 
3472 		if (!__is_valid_data_blkaddr(blkaddr))
3473 			continue;
3474 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3475 					DATA_GENERIC_ENHANCE)))
3476 			return -EFSCORRUPTED;
3477 	}
3478 
3479 	while (count) {
3480 		int compr_blocks = 0;
3481 
3482 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3483 			blkaddr = f2fs_data_blkaddr(dn);
3484 
3485 			if (i == 0) {
3486 				if (blkaddr == COMPRESS_ADDR)
3487 					continue;
3488 				dn->ofs_in_node += cluster_size;
3489 				goto next;
3490 			}
3491 
3492 			if (__is_valid_data_blkaddr(blkaddr))
3493 				compr_blocks++;
3494 
3495 			if (blkaddr != NEW_ADDR)
3496 				continue;
3497 
3498 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3499 		}
3500 
3501 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3502 		dec_valid_block_count(sbi, dn->inode,
3503 					cluster_size - compr_blocks);
3504 
3505 		released_blocks += cluster_size - compr_blocks;
3506 next:
3507 		count -= cluster_size;
3508 	}
3509 
3510 	return released_blocks;
3511 }
3512 
3513 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3514 {
3515 	struct inode *inode = file_inode(filp);
3516 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3517 	pgoff_t page_idx = 0, last_idx;
3518 	unsigned int released_blocks = 0;
3519 	int ret;
3520 	int writecount;
3521 
3522 	if (!f2fs_sb_has_compression(sbi))
3523 		return -EOPNOTSUPP;
3524 
3525 	if (!f2fs_compressed_file(inode))
3526 		return -EINVAL;
3527 
3528 	if (f2fs_readonly(sbi->sb))
3529 		return -EROFS;
3530 
3531 	ret = mnt_want_write_file(filp);
3532 	if (ret)
3533 		return ret;
3534 
3535 	f2fs_balance_fs(sbi, true);
3536 
3537 	inode_lock(inode);
3538 
3539 	writecount = atomic_read(&inode->i_writecount);
3540 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3541 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3542 		ret = -EBUSY;
3543 		goto out;
3544 	}
3545 
3546 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3547 		ret = -EINVAL;
3548 		goto out;
3549 	}
3550 
3551 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3552 	if (ret)
3553 		goto out;
3554 
3555 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3556 		ret = -EPERM;
3557 		goto out;
3558 	}
3559 
3560 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3561 	inode_set_ctime_current(inode);
3562 	f2fs_mark_inode_dirty_sync(inode, true);
3563 
3564 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3565 	filemap_invalidate_lock(inode->i_mapping);
3566 
3567 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3568 
3569 	while (page_idx < last_idx) {
3570 		struct dnode_of_data dn;
3571 		pgoff_t end_offset, count;
3572 
3573 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3574 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3575 		if (ret) {
3576 			if (ret == -ENOENT) {
3577 				page_idx = f2fs_get_next_page_offset(&dn,
3578 								page_idx);
3579 				ret = 0;
3580 				continue;
3581 			}
3582 			break;
3583 		}
3584 
3585 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3586 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3587 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3588 
3589 		ret = release_compress_blocks(&dn, count);
3590 
3591 		f2fs_put_dnode(&dn);
3592 
3593 		if (ret < 0)
3594 			break;
3595 
3596 		page_idx += count;
3597 		released_blocks += ret;
3598 	}
3599 
3600 	filemap_invalidate_unlock(inode->i_mapping);
3601 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3602 out:
3603 	inode_unlock(inode);
3604 
3605 	mnt_drop_write_file(filp);
3606 
3607 	if (ret >= 0) {
3608 		ret = put_user(released_blocks, (u64 __user *)arg);
3609 	} else if (released_blocks &&
3610 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3611 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3612 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3613 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3614 			"run fsck to fix.",
3615 			__func__, inode->i_ino, inode->i_blocks,
3616 			released_blocks,
3617 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3618 	}
3619 
3620 	return ret;
3621 }
3622 
3623 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3624 		unsigned int *reserved_blocks)
3625 {
3626 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3627 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3628 	block_t blkaddr;
3629 	int i;
3630 
3631 	for (i = 0; i < count; i++) {
3632 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3633 						dn->ofs_in_node + i);
3634 
3635 		if (!__is_valid_data_blkaddr(blkaddr))
3636 			continue;
3637 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3638 					DATA_GENERIC_ENHANCE)))
3639 			return -EFSCORRUPTED;
3640 	}
3641 
3642 	while (count) {
3643 		int compr_blocks = 0;
3644 		blkcnt_t reserved;
3645 		int ret;
3646 
3647 		for (i = 0; i < cluster_size; i++) {
3648 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
3649 						dn->ofs_in_node + i);
3650 
3651 			if (i == 0) {
3652 				if (blkaddr != COMPRESS_ADDR) {
3653 					dn->ofs_in_node += cluster_size;
3654 					goto next;
3655 				}
3656 				continue;
3657 			}
3658 
3659 			/*
3660 			 * compressed cluster was not released due to it
3661 			 * fails in release_compress_blocks(), so NEW_ADDR
3662 			 * is a possible case.
3663 			 */
3664 			if (blkaddr == NEW_ADDR ||
3665 				__is_valid_data_blkaddr(blkaddr)) {
3666 				compr_blocks++;
3667 				continue;
3668 			}
3669 		}
3670 
3671 		reserved = cluster_size - compr_blocks;
3672 
3673 		/* for the case all blocks in cluster were reserved */
3674 		if (reserved == 1)
3675 			goto next;
3676 
3677 		ret = inc_valid_block_count(sbi, dn->inode, &reserved, false);
3678 		if (unlikely(ret))
3679 			return ret;
3680 
3681 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3682 			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3683 				f2fs_set_data_blkaddr(dn, NEW_ADDR);
3684 		}
3685 
3686 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3687 
3688 		*reserved_blocks += reserved;
3689 next:
3690 		count -= cluster_size;
3691 	}
3692 
3693 	return 0;
3694 }
3695 
3696 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3697 {
3698 	struct inode *inode = file_inode(filp);
3699 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3700 	pgoff_t page_idx = 0, last_idx;
3701 	unsigned int reserved_blocks = 0;
3702 	int ret;
3703 
3704 	if (!f2fs_sb_has_compression(sbi))
3705 		return -EOPNOTSUPP;
3706 
3707 	if (!f2fs_compressed_file(inode))
3708 		return -EINVAL;
3709 
3710 	if (f2fs_readonly(sbi->sb))
3711 		return -EROFS;
3712 
3713 	ret = mnt_want_write_file(filp);
3714 	if (ret)
3715 		return ret;
3716 
3717 	f2fs_balance_fs(sbi, true);
3718 
3719 	inode_lock(inode);
3720 
3721 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3722 		ret = -EINVAL;
3723 		goto unlock_inode;
3724 	}
3725 
3726 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3727 		goto unlock_inode;
3728 
3729 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3730 	filemap_invalidate_lock(inode->i_mapping);
3731 
3732 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3733 
3734 	while (page_idx < last_idx) {
3735 		struct dnode_of_data dn;
3736 		pgoff_t end_offset, count;
3737 
3738 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3739 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3740 		if (ret) {
3741 			if (ret == -ENOENT) {
3742 				page_idx = f2fs_get_next_page_offset(&dn,
3743 								page_idx);
3744 				ret = 0;
3745 				continue;
3746 			}
3747 			break;
3748 		}
3749 
3750 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3751 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3752 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3753 
3754 		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3755 
3756 		f2fs_put_dnode(&dn);
3757 
3758 		if (ret < 0)
3759 			break;
3760 
3761 		page_idx += count;
3762 	}
3763 
3764 	filemap_invalidate_unlock(inode->i_mapping);
3765 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3766 
3767 	if (!ret) {
3768 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3769 		inode_set_ctime_current(inode);
3770 		f2fs_mark_inode_dirty_sync(inode, true);
3771 	}
3772 unlock_inode:
3773 	inode_unlock(inode);
3774 	mnt_drop_write_file(filp);
3775 
3776 	if (!ret) {
3777 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3778 	} else if (reserved_blocks &&
3779 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3780 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3781 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3782 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3783 			"run fsck to fix.",
3784 			__func__, inode->i_ino, inode->i_blocks,
3785 			reserved_blocks,
3786 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3787 	}
3788 
3789 	return ret;
3790 }
3791 
3792 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3793 		pgoff_t off, block_t block, block_t len, u32 flags)
3794 {
3795 	sector_t sector = SECTOR_FROM_BLOCK(block);
3796 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3797 	int ret = 0;
3798 
3799 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3800 		if (bdev_max_secure_erase_sectors(bdev))
3801 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3802 					GFP_NOFS);
3803 		else
3804 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3805 					GFP_NOFS);
3806 	}
3807 
3808 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3809 		if (IS_ENCRYPTED(inode))
3810 			ret = fscrypt_zeroout_range(inode, off, block, len);
3811 		else
3812 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3813 					GFP_NOFS, 0);
3814 	}
3815 
3816 	return ret;
3817 }
3818 
3819 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3820 {
3821 	struct inode *inode = file_inode(filp);
3822 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3823 	struct address_space *mapping = inode->i_mapping;
3824 	struct block_device *prev_bdev = NULL;
3825 	struct f2fs_sectrim_range range;
3826 	pgoff_t index, pg_end, prev_index = 0;
3827 	block_t prev_block = 0, len = 0;
3828 	loff_t end_addr;
3829 	bool to_end = false;
3830 	int ret = 0;
3831 
3832 	if (!(filp->f_mode & FMODE_WRITE))
3833 		return -EBADF;
3834 
3835 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3836 				sizeof(range)))
3837 		return -EFAULT;
3838 
3839 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3840 			!S_ISREG(inode->i_mode))
3841 		return -EINVAL;
3842 
3843 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3844 			!f2fs_hw_support_discard(sbi)) ||
3845 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3846 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3847 		return -EOPNOTSUPP;
3848 
3849 	file_start_write(filp);
3850 	inode_lock(inode);
3851 
3852 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3853 			range.start >= inode->i_size) {
3854 		ret = -EINVAL;
3855 		goto err;
3856 	}
3857 
3858 	if (range.len == 0)
3859 		goto err;
3860 
3861 	if (inode->i_size - range.start > range.len) {
3862 		end_addr = range.start + range.len;
3863 	} else {
3864 		end_addr = range.len == (u64)-1 ?
3865 			sbi->sb->s_maxbytes : inode->i_size;
3866 		to_end = true;
3867 	}
3868 
3869 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3870 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3871 		ret = -EINVAL;
3872 		goto err;
3873 	}
3874 
3875 	index = F2FS_BYTES_TO_BLK(range.start);
3876 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3877 
3878 	ret = f2fs_convert_inline_inode(inode);
3879 	if (ret)
3880 		goto err;
3881 
3882 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3883 	filemap_invalidate_lock(mapping);
3884 
3885 	ret = filemap_write_and_wait_range(mapping, range.start,
3886 			to_end ? LLONG_MAX : end_addr - 1);
3887 	if (ret)
3888 		goto out;
3889 
3890 	truncate_inode_pages_range(mapping, range.start,
3891 			to_end ? -1 : end_addr - 1);
3892 
3893 	while (index < pg_end) {
3894 		struct dnode_of_data dn;
3895 		pgoff_t end_offset, count;
3896 		int i;
3897 
3898 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3899 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3900 		if (ret) {
3901 			if (ret == -ENOENT) {
3902 				index = f2fs_get_next_page_offset(&dn, index);
3903 				continue;
3904 			}
3905 			goto out;
3906 		}
3907 
3908 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3909 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3910 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3911 			struct block_device *cur_bdev;
3912 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3913 
3914 			if (!__is_valid_data_blkaddr(blkaddr))
3915 				continue;
3916 
3917 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3918 						DATA_GENERIC_ENHANCE)) {
3919 				ret = -EFSCORRUPTED;
3920 				f2fs_put_dnode(&dn);
3921 				goto out;
3922 			}
3923 
3924 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3925 			if (f2fs_is_multi_device(sbi)) {
3926 				int di = f2fs_target_device_index(sbi, blkaddr);
3927 
3928 				blkaddr -= FDEV(di).start_blk;
3929 			}
3930 
3931 			if (len) {
3932 				if (prev_bdev == cur_bdev &&
3933 						index == prev_index + len &&
3934 						blkaddr == prev_block + len) {
3935 					len++;
3936 				} else {
3937 					ret = f2fs_secure_erase(prev_bdev,
3938 						inode, prev_index, prev_block,
3939 						len, range.flags);
3940 					if (ret) {
3941 						f2fs_put_dnode(&dn);
3942 						goto out;
3943 					}
3944 
3945 					len = 0;
3946 				}
3947 			}
3948 
3949 			if (!len) {
3950 				prev_bdev = cur_bdev;
3951 				prev_index = index;
3952 				prev_block = blkaddr;
3953 				len = 1;
3954 			}
3955 		}
3956 
3957 		f2fs_put_dnode(&dn);
3958 
3959 		if (fatal_signal_pending(current)) {
3960 			ret = -EINTR;
3961 			goto out;
3962 		}
3963 		cond_resched();
3964 	}
3965 
3966 	if (len)
3967 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3968 				prev_block, len, range.flags);
3969 out:
3970 	filemap_invalidate_unlock(mapping);
3971 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3972 err:
3973 	inode_unlock(inode);
3974 	file_end_write(filp);
3975 
3976 	return ret;
3977 }
3978 
3979 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3980 {
3981 	struct inode *inode = file_inode(filp);
3982 	struct f2fs_comp_option option;
3983 
3984 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3985 		return -EOPNOTSUPP;
3986 
3987 	inode_lock_shared(inode);
3988 
3989 	if (!f2fs_compressed_file(inode)) {
3990 		inode_unlock_shared(inode);
3991 		return -ENODATA;
3992 	}
3993 
3994 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3995 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3996 
3997 	inode_unlock_shared(inode);
3998 
3999 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4000 				sizeof(option)))
4001 		return -EFAULT;
4002 
4003 	return 0;
4004 }
4005 
4006 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4007 {
4008 	struct inode *inode = file_inode(filp);
4009 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4010 	struct f2fs_comp_option option;
4011 	int ret = 0;
4012 
4013 	if (!f2fs_sb_has_compression(sbi))
4014 		return -EOPNOTSUPP;
4015 
4016 	if (!(filp->f_mode & FMODE_WRITE))
4017 		return -EBADF;
4018 
4019 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4020 				sizeof(option)))
4021 		return -EFAULT;
4022 
4023 	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4024 		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4025 		option.algorithm >= COMPRESS_MAX)
4026 		return -EINVAL;
4027 
4028 	file_start_write(filp);
4029 	inode_lock(inode);
4030 
4031 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4032 	if (!f2fs_compressed_file(inode)) {
4033 		ret = -EINVAL;
4034 		goto out;
4035 	}
4036 
4037 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4038 		ret = -EBUSY;
4039 		goto out;
4040 	}
4041 
4042 	if (F2FS_HAS_BLOCKS(inode)) {
4043 		ret = -EFBIG;
4044 		goto out;
4045 	}
4046 
4047 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4048 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4049 	F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4050 	/* Set default level */
4051 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4052 		F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4053 	else
4054 		F2FS_I(inode)->i_compress_level = 0;
4055 	/* Adjust mount option level */
4056 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4057 	    F2FS_OPTION(sbi).compress_level)
4058 		F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4059 	f2fs_mark_inode_dirty_sync(inode, true);
4060 
4061 	if (!f2fs_is_compress_backend_ready(inode))
4062 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4063 			"but current kernel doesn't support this algorithm.");
4064 out:
4065 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4066 	inode_unlock(inode);
4067 	file_end_write(filp);
4068 
4069 	return ret;
4070 }
4071 
4072 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4073 {
4074 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4075 	struct address_space *mapping = inode->i_mapping;
4076 	struct page *page;
4077 	pgoff_t redirty_idx = page_idx;
4078 	int i, page_len = 0, ret = 0;
4079 
4080 	page_cache_ra_unbounded(&ractl, len, 0);
4081 
4082 	for (i = 0; i < len; i++, page_idx++) {
4083 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4084 		if (IS_ERR(page)) {
4085 			ret = PTR_ERR(page);
4086 			break;
4087 		}
4088 		page_len++;
4089 	}
4090 
4091 	for (i = 0; i < page_len; i++, redirty_idx++) {
4092 		page = find_lock_page(mapping, redirty_idx);
4093 
4094 		/* It will never fail, when page has pinned above */
4095 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4096 
4097 		set_page_dirty(page);
4098 		set_page_private_gcing(page);
4099 		f2fs_put_page(page, 1);
4100 		f2fs_put_page(page, 0);
4101 	}
4102 
4103 	return ret;
4104 }
4105 
4106 static int f2fs_ioc_decompress_file(struct file *filp)
4107 {
4108 	struct inode *inode = file_inode(filp);
4109 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4110 	struct f2fs_inode_info *fi = F2FS_I(inode);
4111 	pgoff_t page_idx = 0, last_idx;
4112 	int cluster_size = fi->i_cluster_size;
4113 	int count, ret;
4114 
4115 	if (!f2fs_sb_has_compression(sbi) ||
4116 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4117 		return -EOPNOTSUPP;
4118 
4119 	if (!(filp->f_mode & FMODE_WRITE))
4120 		return -EBADF;
4121 
4122 	if (!f2fs_compressed_file(inode))
4123 		return -EINVAL;
4124 
4125 	f2fs_balance_fs(sbi, true);
4126 
4127 	file_start_write(filp);
4128 	inode_lock(inode);
4129 
4130 	if (!f2fs_is_compress_backend_ready(inode)) {
4131 		ret = -EOPNOTSUPP;
4132 		goto out;
4133 	}
4134 
4135 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4136 		ret = -EINVAL;
4137 		goto out;
4138 	}
4139 
4140 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4141 	if (ret)
4142 		goto out;
4143 
4144 	if (!atomic_read(&fi->i_compr_blocks))
4145 		goto out;
4146 
4147 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4148 
4149 	count = last_idx - page_idx;
4150 	while (count && count >= cluster_size) {
4151 		ret = redirty_blocks(inode, page_idx, cluster_size);
4152 		if (ret < 0)
4153 			break;
4154 
4155 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4156 			ret = filemap_fdatawrite(inode->i_mapping);
4157 			if (ret < 0)
4158 				break;
4159 		}
4160 
4161 		count -= cluster_size;
4162 		page_idx += cluster_size;
4163 
4164 		cond_resched();
4165 		if (fatal_signal_pending(current)) {
4166 			ret = -EINTR;
4167 			break;
4168 		}
4169 	}
4170 
4171 	if (!ret)
4172 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4173 							LLONG_MAX);
4174 
4175 	if (ret)
4176 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4177 			  __func__, ret);
4178 out:
4179 	inode_unlock(inode);
4180 	file_end_write(filp);
4181 
4182 	return ret;
4183 }
4184 
4185 static int f2fs_ioc_compress_file(struct file *filp)
4186 {
4187 	struct inode *inode = file_inode(filp);
4188 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4189 	pgoff_t page_idx = 0, last_idx;
4190 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4191 	int count, ret;
4192 
4193 	if (!f2fs_sb_has_compression(sbi) ||
4194 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4195 		return -EOPNOTSUPP;
4196 
4197 	if (!(filp->f_mode & FMODE_WRITE))
4198 		return -EBADF;
4199 
4200 	if (!f2fs_compressed_file(inode))
4201 		return -EINVAL;
4202 
4203 	f2fs_balance_fs(sbi, true);
4204 
4205 	file_start_write(filp);
4206 	inode_lock(inode);
4207 
4208 	if (!f2fs_is_compress_backend_ready(inode)) {
4209 		ret = -EOPNOTSUPP;
4210 		goto out;
4211 	}
4212 
4213 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4214 		ret = -EINVAL;
4215 		goto out;
4216 	}
4217 
4218 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4219 	if (ret)
4220 		goto out;
4221 
4222 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4223 
4224 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4225 
4226 	count = last_idx - page_idx;
4227 	while (count && count >= cluster_size) {
4228 		ret = redirty_blocks(inode, page_idx, cluster_size);
4229 		if (ret < 0)
4230 			break;
4231 
4232 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4233 			ret = filemap_fdatawrite(inode->i_mapping);
4234 			if (ret < 0)
4235 				break;
4236 		}
4237 
4238 		count -= cluster_size;
4239 		page_idx += cluster_size;
4240 
4241 		cond_resched();
4242 		if (fatal_signal_pending(current)) {
4243 			ret = -EINTR;
4244 			break;
4245 		}
4246 	}
4247 
4248 	if (!ret)
4249 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4250 							LLONG_MAX);
4251 
4252 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4253 
4254 	if (ret)
4255 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4256 			  __func__, ret);
4257 out:
4258 	inode_unlock(inode);
4259 	file_end_write(filp);
4260 
4261 	return ret;
4262 }
4263 
4264 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4265 {
4266 	switch (cmd) {
4267 	case FS_IOC_GETVERSION:
4268 		return f2fs_ioc_getversion(filp, arg);
4269 	case F2FS_IOC_START_ATOMIC_WRITE:
4270 		return f2fs_ioc_start_atomic_write(filp, false);
4271 	case F2FS_IOC_START_ATOMIC_REPLACE:
4272 		return f2fs_ioc_start_atomic_write(filp, true);
4273 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4274 		return f2fs_ioc_commit_atomic_write(filp);
4275 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4276 		return f2fs_ioc_abort_atomic_write(filp);
4277 	case F2FS_IOC_START_VOLATILE_WRITE:
4278 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4279 		return -EOPNOTSUPP;
4280 	case F2FS_IOC_SHUTDOWN:
4281 		return f2fs_ioc_shutdown(filp, arg);
4282 	case FITRIM:
4283 		return f2fs_ioc_fitrim(filp, arg);
4284 	case FS_IOC_SET_ENCRYPTION_POLICY:
4285 		return f2fs_ioc_set_encryption_policy(filp, arg);
4286 	case FS_IOC_GET_ENCRYPTION_POLICY:
4287 		return f2fs_ioc_get_encryption_policy(filp, arg);
4288 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4289 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4290 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4291 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4292 	case FS_IOC_ADD_ENCRYPTION_KEY:
4293 		return f2fs_ioc_add_encryption_key(filp, arg);
4294 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4295 		return f2fs_ioc_remove_encryption_key(filp, arg);
4296 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4297 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4298 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4299 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4300 	case FS_IOC_GET_ENCRYPTION_NONCE:
4301 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4302 	case F2FS_IOC_GARBAGE_COLLECT:
4303 		return f2fs_ioc_gc(filp, arg);
4304 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4305 		return f2fs_ioc_gc_range(filp, arg);
4306 	case F2FS_IOC_WRITE_CHECKPOINT:
4307 		return f2fs_ioc_write_checkpoint(filp);
4308 	case F2FS_IOC_DEFRAGMENT:
4309 		return f2fs_ioc_defragment(filp, arg);
4310 	case F2FS_IOC_MOVE_RANGE:
4311 		return f2fs_ioc_move_range(filp, arg);
4312 	case F2FS_IOC_FLUSH_DEVICE:
4313 		return f2fs_ioc_flush_device(filp, arg);
4314 	case F2FS_IOC_GET_FEATURES:
4315 		return f2fs_ioc_get_features(filp, arg);
4316 	case F2FS_IOC_GET_PIN_FILE:
4317 		return f2fs_ioc_get_pin_file(filp, arg);
4318 	case F2FS_IOC_SET_PIN_FILE:
4319 		return f2fs_ioc_set_pin_file(filp, arg);
4320 	case F2FS_IOC_PRECACHE_EXTENTS:
4321 		return f2fs_ioc_precache_extents(filp);
4322 	case F2FS_IOC_RESIZE_FS:
4323 		return f2fs_ioc_resize_fs(filp, arg);
4324 	case FS_IOC_ENABLE_VERITY:
4325 		return f2fs_ioc_enable_verity(filp, arg);
4326 	case FS_IOC_MEASURE_VERITY:
4327 		return f2fs_ioc_measure_verity(filp, arg);
4328 	case FS_IOC_READ_VERITY_METADATA:
4329 		return f2fs_ioc_read_verity_metadata(filp, arg);
4330 	case FS_IOC_GETFSLABEL:
4331 		return f2fs_ioc_getfslabel(filp, arg);
4332 	case FS_IOC_SETFSLABEL:
4333 		return f2fs_ioc_setfslabel(filp, arg);
4334 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4335 		return f2fs_ioc_get_compress_blocks(filp, arg);
4336 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4337 		return f2fs_release_compress_blocks(filp, arg);
4338 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4339 		return f2fs_reserve_compress_blocks(filp, arg);
4340 	case F2FS_IOC_SEC_TRIM_FILE:
4341 		return f2fs_sec_trim_file(filp, arg);
4342 	case F2FS_IOC_GET_COMPRESS_OPTION:
4343 		return f2fs_ioc_get_compress_option(filp, arg);
4344 	case F2FS_IOC_SET_COMPRESS_OPTION:
4345 		return f2fs_ioc_set_compress_option(filp, arg);
4346 	case F2FS_IOC_DECOMPRESS_FILE:
4347 		return f2fs_ioc_decompress_file(filp);
4348 	case F2FS_IOC_COMPRESS_FILE:
4349 		return f2fs_ioc_compress_file(filp);
4350 	default:
4351 		return -ENOTTY;
4352 	}
4353 }
4354 
4355 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4356 {
4357 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4358 		return -EIO;
4359 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4360 		return -ENOSPC;
4361 
4362 	return __f2fs_ioctl(filp, cmd, arg);
4363 }
4364 
4365 /*
4366  * Return %true if the given read or write request should use direct I/O, or
4367  * %false if it should use buffered I/O.
4368  */
4369 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4370 				struct iov_iter *iter)
4371 {
4372 	unsigned int align;
4373 
4374 	if (!(iocb->ki_flags & IOCB_DIRECT))
4375 		return false;
4376 
4377 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4378 		return false;
4379 
4380 	/*
4381 	 * Direct I/O not aligned to the disk's logical_block_size will be
4382 	 * attempted, but will fail with -EINVAL.
4383 	 *
4384 	 * f2fs additionally requires that direct I/O be aligned to the
4385 	 * filesystem block size, which is often a stricter requirement.
4386 	 * However, f2fs traditionally falls back to buffered I/O on requests
4387 	 * that are logical_block_size-aligned but not fs-block aligned.
4388 	 *
4389 	 * The below logic implements this behavior.
4390 	 */
4391 	align = iocb->ki_pos | iov_iter_alignment(iter);
4392 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4393 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4394 		return false;
4395 
4396 	return true;
4397 }
4398 
4399 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4400 				unsigned int flags)
4401 {
4402 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4403 
4404 	dec_page_count(sbi, F2FS_DIO_READ);
4405 	if (error)
4406 		return error;
4407 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4408 	return 0;
4409 }
4410 
4411 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4412 	.end_io = f2fs_dio_read_end_io,
4413 };
4414 
4415 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4416 {
4417 	struct file *file = iocb->ki_filp;
4418 	struct inode *inode = file_inode(file);
4419 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4420 	struct f2fs_inode_info *fi = F2FS_I(inode);
4421 	const loff_t pos = iocb->ki_pos;
4422 	const size_t count = iov_iter_count(to);
4423 	struct iomap_dio *dio;
4424 	ssize_t ret;
4425 
4426 	if (count == 0)
4427 		return 0; /* skip atime update */
4428 
4429 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4430 
4431 	if (iocb->ki_flags & IOCB_NOWAIT) {
4432 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4433 			ret = -EAGAIN;
4434 			goto out;
4435 		}
4436 	} else {
4437 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4438 	}
4439 
4440 	/*
4441 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4442 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4443 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4444 	 */
4445 	inc_page_count(sbi, F2FS_DIO_READ);
4446 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4447 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4448 	if (IS_ERR_OR_NULL(dio)) {
4449 		ret = PTR_ERR_OR_ZERO(dio);
4450 		if (ret != -EIOCBQUEUED)
4451 			dec_page_count(sbi, F2FS_DIO_READ);
4452 	} else {
4453 		ret = iomap_dio_complete(dio);
4454 	}
4455 
4456 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4457 
4458 	file_accessed(file);
4459 out:
4460 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4461 	return ret;
4462 }
4463 
4464 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4465 				    int rw)
4466 {
4467 	struct inode *inode = file_inode(file);
4468 	char *buf, *path;
4469 
4470 	buf = f2fs_getname(F2FS_I_SB(inode));
4471 	if (!buf)
4472 		return;
4473 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4474 	if (IS_ERR(path))
4475 		goto free_buf;
4476 	if (rw == WRITE)
4477 		trace_f2fs_datawrite_start(inode, pos, count,
4478 				current->pid, path, current->comm);
4479 	else
4480 		trace_f2fs_dataread_start(inode, pos, count,
4481 				current->pid, path, current->comm);
4482 free_buf:
4483 	f2fs_putname(buf);
4484 }
4485 
4486 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4487 {
4488 	struct inode *inode = file_inode(iocb->ki_filp);
4489 	const loff_t pos = iocb->ki_pos;
4490 	ssize_t ret;
4491 
4492 	if (!f2fs_is_compress_backend_ready(inode))
4493 		return -EOPNOTSUPP;
4494 
4495 	if (trace_f2fs_dataread_start_enabled())
4496 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4497 					iov_iter_count(to), READ);
4498 
4499 	if (f2fs_should_use_dio(inode, iocb, to)) {
4500 		ret = f2fs_dio_read_iter(iocb, to);
4501 	} else {
4502 		ret = filemap_read(iocb, to, 0);
4503 		if (ret > 0)
4504 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4505 						APP_BUFFERED_READ_IO, ret);
4506 	}
4507 	if (trace_f2fs_dataread_end_enabled())
4508 		trace_f2fs_dataread_end(inode, pos, ret);
4509 	return ret;
4510 }
4511 
4512 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4513 				     struct pipe_inode_info *pipe,
4514 				     size_t len, unsigned int flags)
4515 {
4516 	struct inode *inode = file_inode(in);
4517 	const loff_t pos = *ppos;
4518 	ssize_t ret;
4519 
4520 	if (!f2fs_is_compress_backend_ready(inode))
4521 		return -EOPNOTSUPP;
4522 
4523 	if (trace_f2fs_dataread_start_enabled())
4524 		f2fs_trace_rw_file_path(in, pos, len, READ);
4525 
4526 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4527 	if (ret > 0)
4528 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4529 				   APP_BUFFERED_READ_IO, ret);
4530 
4531 	if (trace_f2fs_dataread_end_enabled())
4532 		trace_f2fs_dataread_end(inode, pos, ret);
4533 	return ret;
4534 }
4535 
4536 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4537 {
4538 	struct file *file = iocb->ki_filp;
4539 	struct inode *inode = file_inode(file);
4540 	ssize_t count;
4541 	int err;
4542 
4543 	if (IS_IMMUTABLE(inode))
4544 		return -EPERM;
4545 
4546 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4547 		return -EPERM;
4548 
4549 	count = generic_write_checks(iocb, from);
4550 	if (count <= 0)
4551 		return count;
4552 
4553 	err = file_modified(file);
4554 	if (err)
4555 		return err;
4556 	return count;
4557 }
4558 
4559 /*
4560  * Preallocate blocks for a write request, if it is possible and helpful to do
4561  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4562  * blocks were preallocated, or a negative errno value if something went
4563  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4564  * requested blocks (not just some of them) have been allocated.
4565  */
4566 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4567 				   bool dio)
4568 {
4569 	struct inode *inode = file_inode(iocb->ki_filp);
4570 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4571 	const loff_t pos = iocb->ki_pos;
4572 	const size_t count = iov_iter_count(iter);
4573 	struct f2fs_map_blocks map = {};
4574 	int flag;
4575 	int ret;
4576 
4577 	/* If it will be an out-of-place direct write, don't bother. */
4578 	if (dio && f2fs_lfs_mode(sbi))
4579 		return 0;
4580 	/*
4581 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4582 	 * buffered IO, if DIO meets any holes.
4583 	 */
4584 	if (dio && i_size_read(inode) &&
4585 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4586 		return 0;
4587 
4588 	/* No-wait I/O can't allocate blocks. */
4589 	if (iocb->ki_flags & IOCB_NOWAIT)
4590 		return 0;
4591 
4592 	/* If it will be a short write, don't bother. */
4593 	if (fault_in_iov_iter_readable(iter, count))
4594 		return 0;
4595 
4596 	if (f2fs_has_inline_data(inode)) {
4597 		/* If the data will fit inline, don't bother. */
4598 		if (pos + count <= MAX_INLINE_DATA(inode))
4599 			return 0;
4600 		ret = f2fs_convert_inline_inode(inode);
4601 		if (ret)
4602 			return ret;
4603 	}
4604 
4605 	/* Do not preallocate blocks that will be written partially in 4KB. */
4606 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4607 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4608 	if (map.m_len > map.m_lblk)
4609 		map.m_len -= map.m_lblk;
4610 	else
4611 		return 0;
4612 
4613 	map.m_may_create = true;
4614 	if (dio) {
4615 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4616 		flag = F2FS_GET_BLOCK_PRE_DIO;
4617 	} else {
4618 		map.m_seg_type = NO_CHECK_TYPE;
4619 		flag = F2FS_GET_BLOCK_PRE_AIO;
4620 	}
4621 
4622 	ret = f2fs_map_blocks(inode, &map, flag);
4623 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4624 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4625 		return ret;
4626 	if (ret == 0)
4627 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4628 	return map.m_len;
4629 }
4630 
4631 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4632 					struct iov_iter *from)
4633 {
4634 	struct file *file = iocb->ki_filp;
4635 	struct inode *inode = file_inode(file);
4636 	ssize_t ret;
4637 
4638 	if (iocb->ki_flags & IOCB_NOWAIT)
4639 		return -EOPNOTSUPP;
4640 
4641 	ret = generic_perform_write(iocb, from);
4642 
4643 	if (ret > 0) {
4644 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4645 						APP_BUFFERED_IO, ret);
4646 	}
4647 	return ret;
4648 }
4649 
4650 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4651 				 unsigned int flags)
4652 {
4653 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4654 
4655 	dec_page_count(sbi, F2FS_DIO_WRITE);
4656 	if (error)
4657 		return error;
4658 	f2fs_update_time(sbi, REQ_TIME);
4659 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4660 	return 0;
4661 }
4662 
4663 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4664 	.end_io = f2fs_dio_write_end_io,
4665 };
4666 
4667 static void f2fs_flush_buffered_write(struct address_space *mapping,
4668 				      loff_t start_pos, loff_t end_pos)
4669 {
4670 	int ret;
4671 
4672 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4673 	if (ret < 0)
4674 		return;
4675 	invalidate_mapping_pages(mapping,
4676 				 start_pos >> PAGE_SHIFT,
4677 				 end_pos >> PAGE_SHIFT);
4678 }
4679 
4680 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4681 				   bool *may_need_sync)
4682 {
4683 	struct file *file = iocb->ki_filp;
4684 	struct inode *inode = file_inode(file);
4685 	struct f2fs_inode_info *fi = F2FS_I(inode);
4686 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4687 	const bool do_opu = f2fs_lfs_mode(sbi);
4688 	const loff_t pos = iocb->ki_pos;
4689 	const ssize_t count = iov_iter_count(from);
4690 	unsigned int dio_flags;
4691 	struct iomap_dio *dio;
4692 	ssize_t ret;
4693 
4694 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4695 
4696 	if (iocb->ki_flags & IOCB_NOWAIT) {
4697 		/* f2fs_convert_inline_inode() and block allocation can block */
4698 		if (f2fs_has_inline_data(inode) ||
4699 		    !f2fs_overwrite_io(inode, pos, count)) {
4700 			ret = -EAGAIN;
4701 			goto out;
4702 		}
4703 
4704 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4705 			ret = -EAGAIN;
4706 			goto out;
4707 		}
4708 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4709 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4710 			ret = -EAGAIN;
4711 			goto out;
4712 		}
4713 	} else {
4714 		ret = f2fs_convert_inline_inode(inode);
4715 		if (ret)
4716 			goto out;
4717 
4718 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4719 		if (do_opu)
4720 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4721 	}
4722 
4723 	/*
4724 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4725 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4726 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4727 	 */
4728 	inc_page_count(sbi, F2FS_DIO_WRITE);
4729 	dio_flags = 0;
4730 	if (pos + count > inode->i_size)
4731 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4732 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4733 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4734 	if (IS_ERR_OR_NULL(dio)) {
4735 		ret = PTR_ERR_OR_ZERO(dio);
4736 		if (ret == -ENOTBLK)
4737 			ret = 0;
4738 		if (ret != -EIOCBQUEUED)
4739 			dec_page_count(sbi, F2FS_DIO_WRITE);
4740 	} else {
4741 		ret = iomap_dio_complete(dio);
4742 	}
4743 
4744 	if (do_opu)
4745 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4746 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4747 
4748 	if (ret < 0)
4749 		goto out;
4750 	if (pos + ret > inode->i_size)
4751 		f2fs_i_size_write(inode, pos + ret);
4752 	if (!do_opu)
4753 		set_inode_flag(inode, FI_UPDATE_WRITE);
4754 
4755 	if (iov_iter_count(from)) {
4756 		ssize_t ret2;
4757 		loff_t bufio_start_pos = iocb->ki_pos;
4758 
4759 		/*
4760 		 * The direct write was partial, so we need to fall back to a
4761 		 * buffered write for the remainder.
4762 		 */
4763 
4764 		ret2 = f2fs_buffered_write_iter(iocb, from);
4765 		if (iov_iter_count(from))
4766 			f2fs_write_failed(inode, iocb->ki_pos);
4767 		if (ret2 < 0)
4768 			goto out;
4769 
4770 		/*
4771 		 * Ensure that the pagecache pages are written to disk and
4772 		 * invalidated to preserve the expected O_DIRECT semantics.
4773 		 */
4774 		if (ret2 > 0) {
4775 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4776 
4777 			ret += ret2;
4778 
4779 			f2fs_flush_buffered_write(file->f_mapping,
4780 						  bufio_start_pos,
4781 						  bufio_end_pos);
4782 		}
4783 	} else {
4784 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4785 		*may_need_sync = false;
4786 	}
4787 out:
4788 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4789 	return ret;
4790 }
4791 
4792 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4793 {
4794 	struct inode *inode = file_inode(iocb->ki_filp);
4795 	const loff_t orig_pos = iocb->ki_pos;
4796 	const size_t orig_count = iov_iter_count(from);
4797 	loff_t target_size;
4798 	bool dio;
4799 	bool may_need_sync = true;
4800 	int preallocated;
4801 	ssize_t ret;
4802 
4803 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4804 		ret = -EIO;
4805 		goto out;
4806 	}
4807 
4808 	if (!f2fs_is_compress_backend_ready(inode)) {
4809 		ret = -EOPNOTSUPP;
4810 		goto out;
4811 	}
4812 
4813 	if (iocb->ki_flags & IOCB_NOWAIT) {
4814 		if (!inode_trylock(inode)) {
4815 			ret = -EAGAIN;
4816 			goto out;
4817 		}
4818 	} else {
4819 		inode_lock(inode);
4820 	}
4821 
4822 	ret = f2fs_write_checks(iocb, from);
4823 	if (ret <= 0)
4824 		goto out_unlock;
4825 
4826 	/* Determine whether we will do a direct write or a buffered write. */
4827 	dio = f2fs_should_use_dio(inode, iocb, from);
4828 
4829 	/* Possibly preallocate the blocks for the write. */
4830 	target_size = iocb->ki_pos + iov_iter_count(from);
4831 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4832 	if (preallocated < 0) {
4833 		ret = preallocated;
4834 	} else {
4835 		if (trace_f2fs_datawrite_start_enabled())
4836 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4837 						orig_count, WRITE);
4838 
4839 		/* Do the actual write. */
4840 		ret = dio ?
4841 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4842 			f2fs_buffered_write_iter(iocb, from);
4843 
4844 		if (trace_f2fs_datawrite_end_enabled())
4845 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4846 	}
4847 
4848 	/* Don't leave any preallocated blocks around past i_size. */
4849 	if (preallocated && i_size_read(inode) < target_size) {
4850 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4851 		filemap_invalidate_lock(inode->i_mapping);
4852 		if (!f2fs_truncate(inode))
4853 			file_dont_truncate(inode);
4854 		filemap_invalidate_unlock(inode->i_mapping);
4855 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4856 	} else {
4857 		file_dont_truncate(inode);
4858 	}
4859 
4860 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4861 out_unlock:
4862 	inode_unlock(inode);
4863 out:
4864 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4865 
4866 	if (ret > 0 && may_need_sync)
4867 		ret = generic_write_sync(iocb, ret);
4868 
4869 	/* If buffered IO was forced, flush and drop the data from
4870 	 * the page cache to preserve O_DIRECT semantics
4871 	 */
4872 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4873 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4874 					  orig_pos,
4875 					  orig_pos + ret - 1);
4876 
4877 	return ret;
4878 }
4879 
4880 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4881 		int advice)
4882 {
4883 	struct address_space *mapping;
4884 	struct backing_dev_info *bdi;
4885 	struct inode *inode = file_inode(filp);
4886 	int err;
4887 
4888 	if (advice == POSIX_FADV_SEQUENTIAL) {
4889 		if (S_ISFIFO(inode->i_mode))
4890 			return -ESPIPE;
4891 
4892 		mapping = filp->f_mapping;
4893 		if (!mapping || len < 0)
4894 			return -EINVAL;
4895 
4896 		bdi = inode_to_bdi(mapping->host);
4897 		filp->f_ra.ra_pages = bdi->ra_pages *
4898 			F2FS_I_SB(inode)->seq_file_ra_mul;
4899 		spin_lock(&filp->f_lock);
4900 		filp->f_mode &= ~FMODE_RANDOM;
4901 		spin_unlock(&filp->f_lock);
4902 		return 0;
4903 	} else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
4904 		/* Load extent cache at the first readahead. */
4905 		f2fs_precache_extents(inode);
4906 	}
4907 
4908 	err = generic_fadvise(filp, offset, len, advice);
4909 	if (!err && advice == POSIX_FADV_DONTNEED &&
4910 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4911 		f2fs_compressed_file(inode))
4912 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4913 
4914 	return err;
4915 }
4916 
4917 #ifdef CONFIG_COMPAT
4918 struct compat_f2fs_gc_range {
4919 	u32 sync;
4920 	compat_u64 start;
4921 	compat_u64 len;
4922 };
4923 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4924 						struct compat_f2fs_gc_range)
4925 
4926 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4927 {
4928 	struct compat_f2fs_gc_range __user *urange;
4929 	struct f2fs_gc_range range;
4930 	int err;
4931 
4932 	urange = compat_ptr(arg);
4933 	err = get_user(range.sync, &urange->sync);
4934 	err |= get_user(range.start, &urange->start);
4935 	err |= get_user(range.len, &urange->len);
4936 	if (err)
4937 		return -EFAULT;
4938 
4939 	return __f2fs_ioc_gc_range(file, &range);
4940 }
4941 
4942 struct compat_f2fs_move_range {
4943 	u32 dst_fd;
4944 	compat_u64 pos_in;
4945 	compat_u64 pos_out;
4946 	compat_u64 len;
4947 };
4948 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4949 					struct compat_f2fs_move_range)
4950 
4951 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4952 {
4953 	struct compat_f2fs_move_range __user *urange;
4954 	struct f2fs_move_range range;
4955 	int err;
4956 
4957 	urange = compat_ptr(arg);
4958 	err = get_user(range.dst_fd, &urange->dst_fd);
4959 	err |= get_user(range.pos_in, &urange->pos_in);
4960 	err |= get_user(range.pos_out, &urange->pos_out);
4961 	err |= get_user(range.len, &urange->len);
4962 	if (err)
4963 		return -EFAULT;
4964 
4965 	return __f2fs_ioc_move_range(file, &range);
4966 }
4967 
4968 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4969 {
4970 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4971 		return -EIO;
4972 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4973 		return -ENOSPC;
4974 
4975 	switch (cmd) {
4976 	case FS_IOC32_GETVERSION:
4977 		cmd = FS_IOC_GETVERSION;
4978 		break;
4979 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4980 		return f2fs_compat_ioc_gc_range(file, arg);
4981 	case F2FS_IOC32_MOVE_RANGE:
4982 		return f2fs_compat_ioc_move_range(file, arg);
4983 	case F2FS_IOC_START_ATOMIC_WRITE:
4984 	case F2FS_IOC_START_ATOMIC_REPLACE:
4985 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4986 	case F2FS_IOC_START_VOLATILE_WRITE:
4987 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4988 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4989 	case F2FS_IOC_SHUTDOWN:
4990 	case FITRIM:
4991 	case FS_IOC_SET_ENCRYPTION_POLICY:
4992 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4993 	case FS_IOC_GET_ENCRYPTION_POLICY:
4994 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4995 	case FS_IOC_ADD_ENCRYPTION_KEY:
4996 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4997 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4998 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4999 	case FS_IOC_GET_ENCRYPTION_NONCE:
5000 	case F2FS_IOC_GARBAGE_COLLECT:
5001 	case F2FS_IOC_WRITE_CHECKPOINT:
5002 	case F2FS_IOC_DEFRAGMENT:
5003 	case F2FS_IOC_FLUSH_DEVICE:
5004 	case F2FS_IOC_GET_FEATURES:
5005 	case F2FS_IOC_GET_PIN_FILE:
5006 	case F2FS_IOC_SET_PIN_FILE:
5007 	case F2FS_IOC_PRECACHE_EXTENTS:
5008 	case F2FS_IOC_RESIZE_FS:
5009 	case FS_IOC_ENABLE_VERITY:
5010 	case FS_IOC_MEASURE_VERITY:
5011 	case FS_IOC_READ_VERITY_METADATA:
5012 	case FS_IOC_GETFSLABEL:
5013 	case FS_IOC_SETFSLABEL:
5014 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5015 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5016 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5017 	case F2FS_IOC_SEC_TRIM_FILE:
5018 	case F2FS_IOC_GET_COMPRESS_OPTION:
5019 	case F2FS_IOC_SET_COMPRESS_OPTION:
5020 	case F2FS_IOC_DECOMPRESS_FILE:
5021 	case F2FS_IOC_COMPRESS_FILE:
5022 		break;
5023 	default:
5024 		return -ENOIOCTLCMD;
5025 	}
5026 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5027 }
5028 #endif
5029 
5030 const struct file_operations f2fs_file_operations = {
5031 	.llseek		= f2fs_llseek,
5032 	.read_iter	= f2fs_file_read_iter,
5033 	.write_iter	= f2fs_file_write_iter,
5034 	.iopoll		= iocb_bio_iopoll,
5035 	.open		= f2fs_file_open,
5036 	.release	= f2fs_release_file,
5037 	.mmap		= f2fs_file_mmap,
5038 	.flush		= f2fs_file_flush,
5039 	.fsync		= f2fs_sync_file,
5040 	.fallocate	= f2fs_fallocate,
5041 	.unlocked_ioctl	= f2fs_ioctl,
5042 #ifdef CONFIG_COMPAT
5043 	.compat_ioctl	= f2fs_compat_ioctl,
5044 #endif
5045 	.splice_read	= f2fs_file_splice_read,
5046 	.splice_write	= iter_file_splice_write,
5047 	.fadvise	= f2fs_file_fadvise,
5048 };
5049